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Abstract

Simple Polymorphic Usage Analysis

Ph.D. Thesis

Keith Wansbrough

Computer Laboratory
University of Cambridge

Cambridge, England

28 March, 2002.

Implementations of lazy functional languages ensure that computations are per-
formed only when they are needed, and save the results so that they are not repeated.
This frees the programmer to describe solutions at a high level, leaving details of con-
trol flow to the compiler.

This freedom however places a heavy burden on the compiler; measurements
show that over 70% of these saved results are never used again. A usage analysis that
could statically detect values used at most once would enable these wasted updates
to be avoided, and would be of great benefit. However, existing usage analyses either
give poor results or have been applied only to prototype compilers or toy languages.

This thesis presents a sound, practical, type-based usage analysis that copes with
all the language features of a modern functional language, including type polymor-
phism and user-defined algebraic data types, and addresses a range of problems that
have caused difficulty for previous analyses, including poisoning, mutual recursion,
separate compilation, and partial application and usage dependencies. In addition
to well-typing rules, an inference algorithm is developed, with proofs of soundness
and a complexity analysis.

In the process, the thesis develops simple polymorphism, a novel approach to
polymorphism in the presence of subtyping that attempts to strike a balance be-
tween pragmatic concerns and expressive power. This thesis may be considered an
extended experiment into this approach, worked out in some detail but not yet con-
clusive.

The analysis described was designed in parallel with a full implementation in the
Glasgow Haskell Compiler, leading to informed design choices, thorough coverage
of language features, and accurate measurements of its potential and effectiveness
when used on real code. The latter demonstrate that the analysis yields moderate
benefit in practice.
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Chapter 1.

α Introduction

Lazy functional languages ensure that computations are performed only when they
are needed, and save the results so that computations are never repeated. This frees
the programmer to describe solutions at a high level, leaving details of control flow
to the compiler.

This freedom however places a heavy burden upon the compiler. In recent tests
over a wide range of programs written in a lazy functional language and compiled
using a modern optimising compiler, the programs were found to spend over 20% of
their time needlessly updating values that were never used again – in fact, over 70%
of updates were wasted (Section 1.3.2). A usage analysis that could statically detect
values not used again would enable these wasted updates to be avoided, and would
be of great benefit. However, existing usage analyses either give poor results or have
been applied only to prototype compilers or toy languages.

In this thesis, I design a usage analysis that is applicable to full-scale languages,
and implement it in a production compiler. In the process, I develop novel techniques
to balance practicality with accuracy. The implementation guides the development,
and enables quantitative measurements of its benefit in practice.

1.1 Contributions of this thesis

This thesis makes three major contributions:

• I design a practical usage analysis that copes with all the language features
found in a modern functional language implementation, including type poly-
morphism (Section 5.2) and user-defined algebraic data types (Section 5.3),
and addresses a range of problems that have caused difficulty for previous anal-
yses, including poisoning (Section 3.3.5), mutual recursion (Section 3.3.6),
separate compilation (Section 3.8), and partial application and usage depen-
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2 CHAPTER 1. INTRODUCTION

dencies (Section 4.1.3). I give inference algorithms as well as type systems
(Section 5.5), with proofs of soundness and complexity analyses (Section 5.6).

• In the process, I develop simple polymorphism, a type system for polymorphism
in the presence of subtyping that attempts to strike a novel balance between
pragmatic concerns and expressive power (Section 4.5). This thesis may be
considered an extended experiment into this approach, worked out in some
detail but not yet conclusive.

• The analysis described was designed in parallel with a real implementation in
the Glasgow Haskell Compiler (Chapter 6), leading to informed design choices,
thorough coverage of language features, and accurate measurements of its po-
tential and effectiveness when used on real code. I show that the analysis yields
moderate benefit in practice (Section 6.8).

In the process, I make the following technical contributions:

• I give an operational semantics for a language with Church-style explicit types
and Girard–Reynolds polymorphism, which preserves the intended type-erasure
semantics but without erasing the types (Section 4.2.3). This is a useful proof
technique for demonstrating soundness results in polymorphic calculi.

• I present a coherent story of subtyping for algebraic data types, where subtyp-
ing is performed on the arguments of type constructors rather than merely on
the constructors themselves, and derive an effective decision algorithm (Sec-
tion 5.3.4).

• I design a notation, annotation schemes, that formally describes any of a wide
range of alternatives which may be taken in assigning usage annotations to al-
gebraic data types (Section 5.4). I parameterise my well-typing and inference
rules over these descriptions, and present annotation schemes that encapsu-
late a variety of previous approaches as well as some novel ones. I consider
approaches to mutual, nested, negative, and non-regular recursion in some
detail.

• I design a novel closure algorithm which performs constraint approximation as
required by simple polymorphism, rather than purely simplification as is usual
(Section 4.5.4). The algorithm is explained in detail.

• I present a constraint solution algorithm which is used both alone (Section 3.5.4)
and as part of the closure algorithm (Section 4.5.5). The algorithm processes
the simple atomic constraints generated by my inference in essentially linear
time, and I prove its correctness and complexity (Section 3.6.3).

• A few analyses in the past have used a goodness ordering on solutions that is
covariant on arrow types, rather than contravariant as one might expect. I
explain why this is justified (Section 3.4).

• I identify two kinds of usage, demand and use, and formally capture the dis-
tinction in both an operational semantics and a (sketched) type system (Ap-
pendix C). I explain the connection with strictness, absence, and linear logics.
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Finally, I believe that the present thesis gives a clearer exposition of usage analysis
than any previous work. I give examples and discuss difficult points, I distinguish
clearly between the output of a usage analysis and the means by which it is ob-
tained, I compare the existing literature, and wherever possible I expose a design
space rather than merely selecting a single alternative. The analysis is developed in
stages: Chapter 2 establishes the formal framework, Chapter 3 describes a straight-
forward monomorphic usage analysis for a toy language, Chapter 4 describes the
simple-polymorphic usage analysis, and Chapter 5 extends this to a full-featured lan-
guage. The thesis surveys and critically examines the related work on usage analysis,
other program analyses, subtyping and polymorphism, polymorphic type inference,
algebraic data types, and other areas. Useful references into the literature are given
throughout.

The structure of the thesis is outlined and illustrated in Section 1.6.

1.2 The context: Lazy functional languages and optimisa-
tion

In the remainder of this chapter, we outline the approach taken by this thesis and
place it within its wider context. We do not attempt a survey of all relevant literature;
instead the state of the art will be referenced and discussed chapter by chapter.

1.2.1 Strongly-typed lazy functional languages

Functional languages are programming languages based more or less directly on
Church’s lambda calculus [Chu33]. The earliest was probably LISP [MAE+62], but
pure functional languages did not appear until some time after a seminal series of
papers by Landin describing the experimental language ISWIM [Lan64, Lan66].

The most popular functional languages in use today are ML [MTHM97] and
Haskell [PJH+99]. ML is impure and strict, while Haskell is pure and lazy.1 This
thesis mainly concerns the latter class of languages, although similar analysis tech-
niques may well be applicable to the former.

We do not attempt to argue here the benefits of functional languages generally or
lazy languages in particular; instead the reader is referred to the excellent discussions
of [Lan66, Hug89, HJ94, Wad98].

1.2.2 Types

An important characteristic of modern functional languages, and indeed many non-
functional languages as well, is that they are strongly typed. This means that every
expression is statically (at compile time) given a type, which describes its expected
behaviour at runtime, and these are checked for compatibility. If there is a mismatch
(a type error), then the program is not compiled; if on the other hand the program is

1To be strictly correct, all existing Haskell implementations are lazy, but Haskell itself is defined
only to be non-strict.
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type correct, then since every function application is to a demonstrably compatible
argument, it is certain that the program will never crash (or go wrong [Mil78]) due to
an incompatible argument. This is a powerful aid to the programmer in debugging;
in fact it is commonly said (and with a fair degree of truth) that once a program has
been made to pass the type checker, it is correct! This surprising observation is prob-
ably due to the fact that types are able to express the intentions of the programmer
in a form comprehensible to the compiler. The expressivity of the typing paradigm
has also encouraged the use of higher-order abstractions such as maps and folds in
functional programming to a much greater degree than in the procedural community
(pace the recent popularity of Design Patterns [GHJV95]). Thus these languages are
sometimes referred to as HOT languages, for Higher-Order and Typed [Wad97]. The
benefits of strong typing are argued elsewhere, e.g., [CW85, Pie02].

Types also have advantages for the compiler. Since it is certain that all func-
tion applications are to compatible arguments, for example, there is no need to
perform runtime checking. Compilation via a typed intermediate language is also
popular [SA95, HM95, MWCG99, PJS98a], both because the additional information
available enables a wide variety of type-directed optimisations to be performed, and
because the type system provides the compiler designer with the same type safety
properties as the source language type system provides the programmer. The latter
can be particularly useful, trapping many incorrectly-written transformations at an
early stage [PJS98a, §11].

1.2.3 Laziness

The earliest functional languages were strict, or call-by-value. When evaluating the
application of a function to an argument, the argument is first evaluated to a value,
and then this value is substituted into the body of the function in place of the formal
parameter. Call-by-value evaluation is familiar from procedural languages such as C
or Pascal, and it is efficiently implementable. But its semantics is different from the
usual semantics of the lambda calculus, and certain idioms are difficult to express,
such as functions on infinite streams or control-flow abstractions like the if function.
In call-by-value, the expression (λx . x + x) (1 + 2) reduces as follows

(λx . x + x) (1 + 2) �→v (λx . x + x) 3 �→v 3 + 3 �→v 6

in three steps.
An alternative to call-by-value is call-by-name. Under call-by-name, the argument

to a function is substituted in directly, without first evaluating it. This avoids the
problem of unnecessary computation or unforced nontermination: if a value is never
required, it will never be evaluated. However, it introduces another problem: the
argument to a function will be evaluated separately each time it occurs. Thus

(λx . x + x) (1 + 2) �→n (1 + 2) + (1 + 2) �→n 3 + (1 + 2) �→n 3 + 3 �→n 6

in four steps.
To avoid this, implementors developed a third technique, call-by-need or lazy
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evaluation [Wad71, AFM+95].2 Lazy evaluation has the best of both worlds: it has
the semantics of call-by-name, with the efficiency of call-by-value. Under call-by-
need, the argument to a function is not evaluated until its value is actually needed,
and the resulting value is stored so that if it is needed again the value may be given
immediately without further evaluation. Thus

(λx . x + x) (1 + 2) �→l

1+2

• + • �→l

3

• + • �→l 6

in three steps. Observe that we evaluate only expressions whose value is actually
required, as in call-by-name, but we evaluate each expression only once, as in call-
by-value.

An important consequence of lazy evaluation is that the program is evaluated in a
much less sequential manner than call-by-value or procedural programs. Evaluation
is demand-driven: an expression is evaluated only when (or if) its value is actually
needed, and control flow is much less significant than data flow. This leads to elegant
formulations of algorithms operating on large or potentially infinite data structures,
such as streams or game trees. With attention drawn away from fine details of control
flow, the programmer is free to focus on higher-level aspects of the problem’s data
structures and the relationships between them.

For example, Hughes [Hug89, §5] gives a simple example of a noughts-and-
crosses (tic-tac-toe) program that uses alpha-beta pruning to select the best move.
His algorithm is neatly expressed as a compositional pipeline:

evaluate = max ◦maximise′ ◦ highfirst ◦maptree static ◦ prune 8 ◦ gametree

where gametree generates the (potentially infinite) game tree, and subsequent stages
prune the tree, perform static evaluation at each node, reorder branches at each
node to select the best first, and select the best solution using alpha-beta pruning to
avoid unnecessary computation. Control flow is left entirely implicit: even though
the algorithm is presented directly as an operation on the infinite game tree, during
execution the game tree is generated only on demand, and computations are per-
formed only for those nodes that are actually required. In fact, the game tree itself
may well be entirely eliminated by a subsequent optimisation known as deforesta-
tion [Wad90a, Gil96].

This freedom from fine details can be seen concretely in the commonly-observed
statistic that a program written in Haskell has usually about a tenth of the number
of lines as the same program written in C or C++, and may be indistinguishable to
the untrained eye from the problem specification [HJ94, §7].

1.2.4 The need for optimisation

However, this freedom to express programs at a very high level does come at a cost.
Control flow must be specified somewhere, and if it is not specified by the program-
mer it must be determined by the compiler. Further, the laziness of evaluation re-
quires significant book-keeping internally, to keep track of delayed computations and

2This is not to be confused with the “lazy” lambda calculus of Abramsky [Abr90], which in fact has
a call-by-name semantics. In this thesis, the term “lazy” refers to call-by-need.
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results of previous computations. Both of these mean that a compiler for a lazy func-
tional language has a significantly harder task than one for a procedural language,
or even a strict functional one (folklore suggests a slowdown of two to ten times
relative to C; see [HFA+96] for some concrete measurements). In consequence, op-
timisation for lazy functional languages has been a major area of research over the
last twenty years or so.

Of the many different approaches to optimisation in these languages, we focus
on the implementation of laziness. There are three main ways in which the costs
associated with laziness may be reduced.

• First, we can design improved runtime systems that require less book-keeping,
or do it faster or in less space.

• Second, we can identify places where call-by-need can be turned into call-by-
value, evaluating the argument first and avoiding delaying the computation.

• Third, we can identify places where call-by-need can be turned into call-by-
name, substituting the argument in directly and evaluating it along with the
function body.

The first approach has led to the design and incremental improvement of a va-
riety of abstract machines for lazy functional languages, some of which are cited
in Section 1.3.1 below. The second approach is known as strictness analysis, and
its large literature is briefly touched upon in Appendix C.6. The third approach is
known as usage analysis, and is the subject of this thesis.

1.2.5 The Glasgow Haskell Compiler

At this point we take a moment to introduce the compiler which has motivated our
research, the Glasgow Haskell Compiler (GHC)3 [PJS98a, PJ92]. GHC is a compiler
for the lazy functional language Haskell [HW90, PJH+99]. It was developed by
Peyton Jones and many others at the University of Glasgow, and more recently at
Microsoft Research, Cambridge. It comprises around 70 000 lines of Haskell, written
over a ten-year period, and is in active use by thousands of users around the world.

The design aims for GHC are twofold. First, it aims to be the best available
compiler for Haskell: it accepts the entire standard Haskell 98 language [PJH+99]
along with the commonly-accepted extensions, it generates efficient code, it is rea-
sonably fast, it gives high-quality error messages, and it is actively maintained.
Second, it aims to be a testbed for investigation of new optimisation techniques
and language features: it is open-source, it is substantially commented and doc-
umented, and its design is modular. Both aims appear to have been achieved:
GHC is the de facto standard Haskell compiler, and in recent years a host of opti-
misations and language features have been added, including deforestation [Gil96],
multi-parameter type classes [PJJM97], functional dependencies [Jon99], implicit
parameters [LSML00], restricted existential quantification, concurrency [PJGF96],

3Available from http:www.haskell.org/ghc/.
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Figure 1.1 The architecture of the Glasgow Haskell Compiler.
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asynchronous exceptions [MPJMR01], and more. Thus GHC was a natural target for
our analysis and optimisations. Our actual experience is described in Chapter 6.

The architecture of GHC is depicted in Figure 1.1. Haskell source is first parsed,
typechecked, and syntactic sugar is removed, converting it into the compiler’s inter-
mediate language, Core.

Core is a small functional language, technically an explicitly-typed polymorphic
lambda calculus in the style of Girard–Reynolds [Gir72, Rey74] with the addition of
letrec (for binding, sharing, and recursion) and constructors and case (for algebraic
data types). Crucially, Core has an operational semantics stating that first, heap
allocation is performed by letrec and only by letrec, and second, evaluation is performed
by case and only by case. These two facts greatly simplify the evaluator, but they also
aid us in understanding the operational behaviour of a program. It is this operational
interpretation of the intermediate language that allows us to design a usage analysis
at the level of the intermediate language, without having to descend into the back
end of the compiler.

At the Core level, GHC performs a large number of optimisations, each a source-
to-source transformation. All transformations preserve types, and indeed many are
type-directed. Some of the more important are specialisation, the worker/wrapper
transformation that takes advantage of strictness and absence information, full lazi-
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ness, and floating in, along with many local optimisations wired into the simplifier
and performed repeatedly between each major transformation pass. This structure
is described in more detail in [PJS98a].

Once Core optimisation is complete, the code is transformed into a low-level code
called STG [PJ92], from which either C or assembly code is generated for execution.

GHC is described in more detail in the references cited. Core is an intermediate
language and for a long time had no standard textual representation, but recently
Tolmach has developed a standard for External Core [TGT01], including both a syn-
tax and an operational semantics.

1.3 Usage

Obviously the central concept in usage analysis is usage. But what exactly is usage?
We answer this question below.

1.3.1 Thunks and updates

In Section 1.2.3 above we illustrated lazy evaluation by drawing shared expressions
separately from the main expression, with blobs and arrows indicating sharing. This
intuition is formalised by the notion of graph reduction, due to Wadsworth [Wad71].
An expression is represented by a graph in which edges denote pointers and nodes
denote combinators (primitives, applications, and abstracted expressions). Sharing
is now trivially indicated by having multiple pointers to a single node. Reduction
rewrites the graph, repeatedly replacing a graphical redex with its contractum. For
example, the reduction sequence of the expression (λx . x+x) (1+2) we saw earlier
is as follows:

@

λx +

+ 1 2

x x

� +

+

1 2

� +

3

� 6

This model turns out to be quite inefficient, however, since the evaluator spends
a lot of time walking up and down the graph locating the next redex and then copy-
ing a subgraph. A number of more efficient machines for lazy evaluation have been
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developed, including the G-machine [Joh87, Aug87] and the Three-Instruction Ma-
chine [FW87] (see [PJL92] for a discussion and further references), culminating in
the STG-machine model of Peyton Jones [PJ92], implemented in the Glasgow Haskell
Compiler.

In this thesis we work with an abstract version of the STG-machine, described in
detail in Chapter 2. The evaluator works with a heap which contains the graph, and a
stack which contains the current context of evaluation. Delayed computations (such
as 1 + 2 in our example) are placed on the heap as thunks (also known as suspen-
sions; the name “thunk” is due to [Ing61]),4 and only evaluated when demanded.
Once a thunk has been evaluated, it is overwritten or updated with the resulting
value, so that subsequent accesses will return this value immediately without further
computation. Thus our example proceeds as follows (omitting many details):

Stack Heap
(λx . x + x) (1 + 2)

� x′ + x′ x′ : 1 + 2 build thunk
� 1 + 2, x′ + x′ x′ : 1 + 2 demand x′

� 3, x′ + x′ x′ : 1 + 2 evaluate
� 3 + x′ x′ : 3 update thunk and return
� 3 + 3 x′ : 3 lookup value
� 6 x′ : 3 evaluate

It should be clear from this example how laziness is achieved: if a thunk is never
demanded, it is never evaluated; if a thunk is demanded more than once, subsequent
accesses yield the value computed by the initial demand.

1.3.2 Update avoidance: the opportunity

This is all very well, and the STG machine is certainly an efficient implementation of
lazy evaluation, but there is an important source of inefficiency: sometimes laziness
is not necessary (Section 1.2.4). Consider the evaluation of a slightly different term,
(λx . λy . x + x + y) (1 + 2) (3 + 4). Here the value of x is demanded twice, but
the value of y is demanded just once. Whereas the update of the thunk 1 + 2 with
the value 3 saves work the second time x is demanded, the update of the thunk 3+4
with 7 is wasted. Is this a significant problem, and if so, can we avoid it by not
performing unnecessary updates?

Marlow [Mar93] measured the number of updates performed and actually re-
quired during execution of some example programs compiled with GHC. He deter-
mined that on average, only 30% of all updates performed were necessary, and that
avoiding the remaining 70% could result in roughly a 20% performance increase,
due to a reduction in administration related to updates, avoiding the updates them-
selves, and benefits to the heap allocator and garbage collector.

To obtain more detailed results for ourselves we modified our Haskell compiler,
GHC, so that it generated code to record the proportion of all allocated thunks that
are demanded at most once (see Section 6.7.2). The necessary modifications are

4The amusing origin of the term is given in the eponymous entry of [Ray91].
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Figure 1.2 The opportunity.
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rather simple: we need only to track the total number of thunks allocated and, for
each thunk, whether it is entered never, once, or more than once. We compiled and
ran the entire NoFib suite, a large suite of around 50 benchmark programs ranging
from tiny ones up to 10 000 line applications [Par93].

Figure 1.2 gives the results, which amply support the folklore and are consistent
with the data of [Mar93]. Each bar is a program from NoFib, with thunks allocated
divided into those used more than once, exactly once, and not at all during execu-
tion. In every program but one, the majority of thunks are demanded at most once,
and hence do not need to be updated. In more than a third of the programs, over
95% of thunks are never entered more than once! There is clearly huge scope for
optimisation here (although we discuss in Section 6.9.2 one reason such statistics
may be misleading).

1.3.3 Usage analysis

In order to avoid unnecessarily updating a thunk, we must obtain information on the
number of times it will be demanded. We refer to this as its usage. Since we have
only two alternatives – to update the thunk, or not to update it – we need distinguish
only two different usages: used-at-most-once and possibly-used-many-times, denoted 1
and ω respectively [TWM95a]. If a thunk is demanded just once, or not at all, then
we may annotate it 1. If a thunk may be demanded twice, three times, or some
unbounded number, or if we do not know how many times it will be demanded, we
must annotate it ω. Then a thunk annotated 1 may safely not be updated, but a
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thunk annotated ω must be updated. In the above example, we would like the thunk
for 1+2 to be given the annotation ω, but that for 3+4 to be given 1. We sometimes
refer to thunks that are not updated as single-entry thunks.

A usage analysis is simply an algorithm that infers such annotations statically for
all thunks in a program (more precisely, for all thunk creation points); our quest in
this thesis is to design a good usage analysis, which infers 1 for as many annotations
as possible.

More generally, usage applies to values as well. A function is used each time it
is applied to an argument, and a value is used each time it is passed to a primitive
operation like +, or inspected and decomposed in a case statement. We refer to a
function that is applied at most once as a one-shot lambda.

Other annotation domains are possible: it is sometimes useful to distinguish be-
tween used-once and not-used, for example, or one may distinguish all seven distinct
nonempty subsets of {0, 1, > 1}. We consider these possibilities speculatively in Ap-
pendix C.

1.3.4 Optimisations enabled by usage information

Update avoidance is not the only optimisation that is enabled by usage information.
Below we consider several others.

Inlining inside lambdas. Consider the expression

let x = e in λy . case x of . . . (1.1a)

and suppose that x does not occur anywhere in the case alternatives. We could
avoid the construction of the thunk for x entirely by inlining it at its (single)
occurrence site, thus:

λy . case e of . . . (1.1b)

Now e is evaluated immediately by the case, instead of first being allocated as a
thunk and then later evaluated by the case. In general this transformation is a
disaster, because now e is evaluated as often as the lambda is applied, and that
might be a great many times. If we could prove that the lambda was applied
at most once, and hence that x’s thunk would be evaluated at most once, then
we could safely perform the transformation [PJM99].

Floating in. Even when a thunk cannot be eliminated entirely, it may be made less
expensive by floating its binding inwards, towards its use site. For example,
consider:

let x = e in λy . . . . (f (g x)) . . . (1.2a)

If the lambda is known to be one-shot (called at most once), it would be safe
to float the binding for x inwards, thus:

λy . . . . (f (let x = e in g x)) . . . (1.2b)

Now the thunk for x may never be constructed (in the case where f does
not evaluate its argument); furthermore, if g is strict then we can evaluate e
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immediately instead of constructing a thunk for it. This transformation is not
a guaranteed win, because the size of closures can change, but on average it is
very worthwhile [PJPS96].

Full laziness. In order to share their evaluation between successive applications, in-
variant subexpressions may be hoisted out of functions [PJL91]. This is exactly
the opposite of the inlining and float-in transformations just discussed above;
for example, (1.2b) would be transformed into (1.2a). As we have just seen,
though, hoisting a subexpression out of a function that is called only once
makes things (slightly) worse, not better. Information about the usage of func-
tions can therefore be used to restrict the full laziness transform to cases where
it is (more likely to be) of benefit.

The latter two transformations were discussed in detail in [PJPS96], along with mea-
surements demonstrating their effectiveness. That paper pessimistically assumed
that every lambda was called more than once. By identifying one-shot lambdas, us-
age information allows more thunks to be floated inwards and fewer to be hoisted
outwards, thus improving the effectiveness of both transformations.

To summarise, we have strong reason to believe that accurate information on
the usage of subexpressions can allow a compiler to generate significantly better
code, primarily by relaxing pessimistic assumptions about lambdas. A great deal
more background about transformations used in the compilation of lazy languages
is given in [San95, Gil96, PJPS96, PJ96].

More formally, Gustavsson and Sands [GS00a] in their work on space behaviour
of lazy functional languages define work-safety and space-safety of program trans-
formations (work safety was introduced informally in [PJS98b, §4.1]). They define
a use-once-don’t-drag property (first named in [GS01a]), which is slightly stronger
than used-at-most-once in that after its single use, a thunk having the property not
only must not be used again, but must not be referred to in any live binding (even
if this reference is never evaluated). They show that this property is sufficient to
guarantee the work- and space-safety of the inlining transformation. They (correctly,
Section 3.6.1) conjecture that our analysis has this property.5 Gustavsson argues in
[Gus98, §9.1] that not dragging is also important in an update-avoiding implemen-
tation using garbage collection, because otherwise the collector might attempt to
follow a dangling pointer; preventing this would require a process similar to black-
holing (Section 2.4.2).

1.3.5 Usage analyses: related work

There has been little work on usage analyses until recently. The earliest work of
which we are aware is that of Goldberg [Gol87], who used an abstract interpreta-
tion to derive information on the sharing of partial applications during call-by-need

5But note that the extended usage analysis of Appendix C, like the analyses of Mogensen [Ses91,
Mar93, Mog97a] and others that address 0-usage, do not avoid dragging and thus do not guaran-
tee space-safety of inlining. Whether they guarantee work-safety of inlining is an open problem, but
Gustavsson and Sands conjecture that they do and that a proof along their lines would be straightfor-
ward [GS01a, §6].
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evaluation of a program. This information can be used to optimise the generation
of supercombinators, essentially implementing the full laziness transformation de-
scribed above and in [PJL91].

Abstract interpretation and flow analysis have been used for a number of other
usage or sharing analyses, notably Sestoft’s usage-interval analysis [Ses91, c.5] (dis-
cussed further in the appendix, Section C.6), Johnsson and Boquist’s sharing analysis
for GRIN [BJ96, §5], and Marlow’s update avoidance analysis for GHC [Mar93].

Marlow addresses precisely the same problem as this thesis, that of identifying
thunks used at most once during execution in programs compiled by GHC. His anal-
ysis is an abstract interpretation, with abstract values consisting of triples

AbVal = N
Var × N

Var × (AbVal→ AbVal )

The first component of the triple is a multiset of closures (variables) that will be en-
tered (used) when the expression is evaluated. The second component is a multiset
of closures that may possibly be referenced when the object is applied (if a function)
or deconstructed (if a constructor). The third component is the abstract function
from abstract argument to abstract result, relevant only if the object is a function.
This information is sufficient to determine whether a given closure in a program
should be marked updatable or non-updatable.

An abstract interpretation is given for a language equivalent to our full language
FL0, and it was implemented in GHC. The results are very good, ranging from 7–
72% of unnecessary updates avoided on a range of real programs from the NoFib
test suite. However, the method chosen is extremely expensive for some programs,
because the information stored for a given expression is unbounded. The treatment
of recursion involves a fixpoint calculation in an infinite domain, which must be
approximated by an arbitrary small number of iterations (Marlow performs just one
iteration). The analysis also has no proof of soundness, although the success of
the implemented analysis (which performs runtime checks to ensure non-updatable
thunks are never re-entered) is a strong argument for soundness.

Turner et al. [TWM95a] point out that Marlow’s analysis is overly conservative,
giving an example of a term in which their analysis (and hence our analysis of Chap-
ter 3, which is strictly more powerful) is able to mark a thunk non-updatable where
Marlow’s is not.

Gill [Gil96, pp. 72ff] presents a very simple set of “types” that are able to denote
used-once arguments and non-shared application; “types” must be written by hand
and justified intuitively, since no type rules or inference are given.

In 1987, Girard introduced linear logic [Gir87, Wad93b, Gir95]. Linear logic
is a resource-conscious logic, in which each proposition may be used only once.
Wadler [Wad90b, Wad91, Wad93a] proposed that linear logic could be used to define
a type system for pure functional languages in which the usage of values is precisely
controlled. Such a type system would allow (linear) values to be updated in place,
avoiding copying and garbage collection.

Inspired by Wadler and others, a number of type-based analyses appeared cap-
turing usage, single-threading, and related notions. Guzmán and Hudak [GH90]
give a type-based analysis distinguishing seven combinations of mutability, shar-
ing, and linearity properties for a call-by-need functional language with mutable
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arrays; the type system is presented in classical style, augmented with a “liability”
which tracks the usage of free variables. Launchbury et al. [LGH+92] give a linear-
style type system which infers annotations from the set {Zero,Once,Many}, where
Once is interpreted to mean at most once. They have no proof of correctness, and
no inference. Bierman [Bie91, Bie92] proposed a type system taking annotations
from a seven-point lattice subsuming linearity, call-by-name (absence / usage), call-
by-value (strictness), and call-by-need (see the appendix, Section C.3.2 for further
discussion of the Bierman lattice). Wright and Baker–Finch [WBF93] give a type-
based analysis with intersection types for a call-by-name language, related to rele-
vant logic [Dun86], with usage-count annotations taken from the natural numbers.
Wright’s later analysis [Wri96], also linear-style and for call-by-name, is parame-
terised by an annotation algebra and may be instantiated as a linearity analysis,
a strictness analysis, or one of three flavours of usage analysis (affine, affine-plus-
linear, and linear with zero).

Maraist, Odersky, Turner, and Wadler observed [MOTW95] that lazy (call-by-
need) evaluation corresponds to affine linear logic [Jac94]. Together with Mossin,
the latter two authors proposed Once Upon a Type [TWM95a, TWM95b], the analysis
upon which this thesis is based.

Once Upon a Type proposes a type-based usage analysis for a call-by-need lan-
guage, with annotations taken from the set {1, ω}. They present a natural (big-step)
semantics for call-by-need based on [Lau93] but with rules that enforce correctness
of usage annotations. Their well-typing rules are based on linear logic, but permit ar-
bitrary weakening, and contraction only for variables annotated ω. The judgements
are decorated with a set of constraints. The system is proven sound with respect to
the natural semantics, and an inference is presented.

The key limitations of this work are an issue we term poisoning and address in
Section 3.3.5, which leads to extremely poor results in practice, and the lack of
treatment of type polymorphism or algebraic data structures other than lists, which
we address in Chapter 5. The analysis is also usage-monomorphic. Nonetheless, this
work formed the foundation of our own, and we owe much to the structure of its
type system and soundness proof. The analysis of Chapter 3 is a slight but strict
extension to Once Upon a Type, although there are differences in presentation.

A number of researchers other than ourselves were inspired by this research and
set to work improving it: Faxén [Fax95, Fax97], Mogensen [Mog97a, Mog98], and
Gustavsson [Gus98, Gus99, GS00b, Gus01a]. We refer to the work of these authors
in detail where relevant throughout the thesis.

Faxén [Fax95, Fax97] gives a type-based flow analysis for a functional language
with explicit evals and thunks. From the results of the flow analysis he is able to
derive, inter alia, sharing information. The analysis uses subtyping to model flow,
and constrained polymorphism to capture polyvariance. The second analysis [Fax97,
c.5] performs generalisation at λ and instantiation at applications, rather than the
standard approach due to Milner [Mil78] of generalisation at let and instantiation at
variables followed in this thesis; undecidability is sidestepped by ad hoc approxima-
tion [Fax97, §5.2.4].

Mogensen [Mog98] extends the analysis of [TWM95a] to include more general
recursive data types, and observes that to give good types to programs involving
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selection functions such as fst and snd it is necessary to incorporate a zero annotation
as well as 1 and ω. Furthermore, Mogensen incorporates subsumption, thus avoiding
the problem of poisoning. The analysis does not possess a proof of correctness;
indeed, we identified several errors in the published version of the system [Mog97a].
However, our use of subsumption was inspired by this work.

Gustavsson [Gus98, GS00b] has developed a series of usage analyses based on
[TWM95a], but incorporating an additional optimisation, update marker check avoid-
ance. Subsumption and constrained usage polymorphism are included, and the sys-
tems are all proven sound. More details can be found in the related work sections of
Chapters 2, 3, 4, and 5.

Finally, Kobayashi [Kob99] addresses the problem of update-in-place or immedi-
ate garbage collection for call-by-value languages, and refines the linear approach
by adding an annotation δ in addition to the usual 0, 1, ω. Kobayashi annotates heap
allocation and access. A heap access (variable dereference) may be annotated δ if
the variable is accessed but not held onto or returned; a variable may still be bound
linearly (and annotated 1) even if it is referenced several times at δ and then finally
at 1, since by this point there are no other live references to this variable. In other
words, Kobayashi’s type system takes the order of evaluation into account. In the
type system, annotations appear on pairs, on functions, and on function arguments.
Subtyping is permitted, and is implemented by means of a one-bit tag embedded
within a heap pointer denoting whether the value pointed to is annotated 1 or ω.
However, Kobayashi observes that curried functions present a problem [Kob99, §9].

The only practical experience above is by Marlow and Kobayashi; Johnsson and
Boquist, Gustavsson, and Faxén have implemented prototypes and experimented
with small programs. For this reason, the practical experience obtained in the present
work (Chapter 6) is very important.

Other surveys of usage analysis can be found in [GS01a, §5] and [Ses91, §5.1.6].

1.4 Program analysis

So, we want to design a usage analysis. But what is an analysis, and what sort of
analysis should we use? Nielson et al. define program analysis as follows:

Program analysis offers static compile-time techniques for predicting safe
and computable approximations to the set of values or behaviours aris-
ing dynamically at runtime when executing a program on a computer.
[NNH99, p. 1]

They then identify four major analysis techniques: data flow analysis, constraint-
based analysis, abstract interpretation, and type- and effect-based analysis. Briefly,
these can be described as follows.

Data flow analysis. A data flow analysis considers the program as a graph, with
nodes representing points of the program and edges representing control flow.
It sets up a system of equations relating the state of the program at each point
to its state at other points. The least solution of this system of equations yields
the desired approximation to the state of the program at each point.
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Constraint-based analysis. Constraint-based analysis extracts from a program a set
of constraints describing the way in which the space of possible behaviours is
constrained by each part of the program. The constraints are inequalities or
set inclusions. Again, the least solution of this system of constraints yields the
desired approximation to the behaviour of the program.

Abstract interpretation. An abstract interpretation defines an abstract domain, in-
terprets the semantics of the program over this domain, and then abstractly
executes the program in this domain. The abstract domain approximates the
actual domain used at runtime in such a way as to make execution determin-
istic and the behaviour of the program decidable. The result of the abstract
execution is related to the result of actual execution by an approximation rela-
tion or Galois connection.

Type- and effect-based analysis. A type- or effect-based analysis defines a system
of annotated types which add additional information about the behaviour of
the program to the existing types of the language. The analysis consists of a set
of well-typing rules which allow the annotated type of a term to be derived. A
well-typing may be obtained by conventional type inference, or by generating a
set of constraints to be solved subsequently. The resulting types of the program
and subterms yields the desired information.

There are other, more ad hoc, approaches to program analysis, but these are the
main systematic ones.

1.4.1 Type-based analysis

The language we work with comes from the so-called HOT (Higher-Order, Typed)
class of languages [Wad97]; specifically, we work with a typed intermediate language
in a HOT language compiler. Of the four approaches listed above, type-based analysis
best fits the type-based nature of these languages. A type-based usage analysis can
be tightly integrated with the rest of the compiler, giving benefits in both directions:
the analysis can readily make use of the existing type manipulation machinery for
computing and maintaining its usage information, and the rest of the compiler can
readily access the results of the analysis.

Furthermore, type-based analyses are extremely flexible. In consequence, they
have become very popular, being applied to a vast range of problems, ranging from
locating Y2K errors in legacy COBOL [EHM+99] to avoiding dynamic memory allo-
cation and garbage collection in ML [TT94], amongst many others.

We note in passing that these apparently-distinct analysis techniques are often
formally equivalent [NNH99, §1.1] Thus, for example, Jensen [Jen91] and oth-
ers [PS96, PS92, Mon93] have shown that abstract interpretation is equivalent to
type-based analysis with intersection types, and that polyvariance (or “splitting”)
in data flow analysis is equivalent to polymorphism in type-based analysis [JW95].
Nevertheless, the techniques have differences of emphasis and flavour. We focus on
a type-based analysis, but use a constraint-based approach to type inference.
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1.4.2 Limitations of program analysis

Program analyses were defined at the beginning of this section as static techniques
that yield safe and computable approximations. We might hope for better than this:
why must we settle for approximations to the truth?

Unfortunately, no static analysis can be exact. The reason is that a static analysis
must be an algorithm that always terminates, and so it can only compute decidable
properties. Most interesting properties, however, relate to the dynamic behaviour of
the program and are undecidable, as can easily be established by a reduction along
the following lines (established here for usage analysis):6

Theorem 1.1 (Incompleteness for usage analyses)
No usage analysis can be both sound and complete.

Proof Assume (for the sake of contradiction) that we have a sound and complete
usage analysis. Then let P be a program, and construct the program P ′ which
binds x, uses it once, runs P , then uses x a second time. Ask the usage analysis
what is the correct usage annotation for x; if it says ω then the program halts,
if it says 1 then the program does not halt. Thus we have solved the Halting
Problem. This is a contradiction, and so no complete usage analysis can exist.

�

Thus we must accept an approximate analysis.

1.5 Designing a type-based usage analysis

Having elected to design a type-based analysis, we must now consider what is re-
quired. In the present section we set out the general structure of a type-based anal-
ysis, and then examine some specific considerations.

1.5.1 Structure

A type-based analysis begins with a source language in which are written the pro-
grams it analyses. This source language will be typed, and its underlying type sys-
tem will form the framework from which we will hang the annotations used by our
analysis.

We must also have a semantics that defines the property we are interested in.
Without a formal semantics we can only appeal to the reader’s intuition to jus-
tify our analysis. The semantics we give in this thesis is an operational one, re-
flecting the intensionality of our definition of usage (Section 1.3.3). It defines us-
age by allowing the program to be annotated with usage information, and going
wrong [Mil78, WF94] (Section 1.2.2) if this information is incorrect.

6Rice’s Theorem [Ric53] [DM58] [HU79, §8.4] establishes a similar result for properties of lan-
guages recognised by Turing machines, but despite the intuitive similarity it is not clear how this relates
to intensional dynamic properties of program behaviour. For this reason, we give a direct proof.
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The analysis is called type-based because information about the property we are
interested in is carried by the types. Therefore, we must define the structure of
these annotated types, based on the underlying types of the source language. It
is convenient to work with an explicitly-typed language, and so the source term
language must also be extended to use the new annotated types, yielding a typed
target language.

The core of the analysis is a set of well-typing rules that extend the underlying
well-typing rules of the source language so as to determine the correct values of the
type annotations. The rules define the relationships between types and terms, and
what is a valid typing for any given program; they encode our knowledge about the
dynamic behaviour of the program in a way that allows some of it to be inferred
statically.

In many cases the well-typing rules will admit more than one typing for a given
program (for example, an approximating analysis may admit the typing “don’t know”
for all terms). In this case, a goodness ordering must be provided that defines which
is the best one. For well-behaved systems this will be the principal type or typ-
ing [Jim96], but for systems that lack principal types another ordering is required.

The well-typing rules are only able to tell us if a typing is correct or not; in general
they do not directly provide us with a typing for an untyped (or only source-typed)
source term. We must therefore provide an inference algorithm that computes the
best valid typing for any given source program.

These six (source language, semantics, typed target language, well-typing rules,
goodness ordering, and inference algorithm) together define a type-based analysis.
However, a type-based analysis should also be justified by a number of proofs. Al-
though the analysis cannot be complete (Theorem 1.1), we require that it be sound:
analysis results must be safe approximations of the true values. We require several
other properties: all source programs must have a valid typing (i.e., no program
may be rejected; see Section 1.5.5), the inference algorithm must compute a valid
typing for all source terms that possess one (i.e., the inference algorithm must be
sound), and it must compute the best if there is more than one (a kind of inference
completeness result). It is also useful to have a complexity bound for the analysis.

The analyses developed in this thesis, Chapters 3, 4, and 5, all fit within this
framework; the semantics given in Chapter 2 is presented as a trivial usage anal-
ysis, and the speculative system of Appendix C lacks only the inference algorithm,
goodness ordering, and proofs.

1.5.2 Practical considerations

Two important practical considerations in the design of a usage analysis are its effi-
ciency of execution and its ease of implementation.

To be practical, a usage analysis intended to be added to an existing compiler
should not increase compilation times significantly for programs of average size.
While GHC (Section 1.2.5) is not an extremely rapid compiler, it is still fast enough
for programmers to use the normal edit-compile-test-debug cycle: a module is typi-
cally compiled in a few seconds. An analysis that noticeably worsens this turnaround
time will not be popular with users, and significant effort should be put into both al-
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gorithmic optimisations and fine-tuning to minimise the cost of the analysis.
Less obviously, the analysis should be easily implementable as an extension to

the existing compiler. While GHC was designed as a “motherboard” [PJ92, §11]
into which analyses and optimisations can be plugged, not all extensions are created
equal. Those that are predominantly local, dealing with particular fragments of code
at particular phases during optimisation, are the easiest to implement. Those that
act globally, collecting information about the whole module (or worse, the whole
separately-compiled program, Section 1.5.6), are much harder.

Another potential source of difficulty in implementation is the level at which the
analysis is embedded: there is a spectrum from recomputing information each time
the program is inspected by the analysis, through adding information as explicit term
or type annotations, all the way to extending the abstract syntax of terms and/or
types to incorporate the new information. While the last alternative is theoretically
the cleanest, most readily distributes the inferred information throughout the com-
piler, and provides the best guarantees that information remains consistent during
optimisation, it is also by far the hardest to implement, requiring substantial and
widely-distributed changes to the code base. We attempted a number of different
embeddings, and our experiences are documented in Section 6.2.

For practical reasons, then, we must ensure that our usage analysis does not
increase compilation times significantly, and that it is not too difficult to implement.

1.5.3 Performance measurement

Recall once more (Theorem 1.1) that our usage analysis will necessarily be incom-
plete. Since we cannot hope to identify every used-once thunk, we must surely hope
to identify as many as possible. This is an experimental question, and so we must
set up a scenario in which to test our analysis and some metrics by which we may
measure its performance.

As a typical use scenario, we take the NoFib suite of benchmarks [Par93]. This is
a suite of around 50 programs ranging from toy benchmarks of a few lines (primes,
nqueens) through to substantial applications (anna, veritas, HMMS). Performance of
GHC is regularly compared against this suite in regression testing, so the compiler
should already perform well on them – this presents us with a hard target, since
other analyses such as strictness may be competing with usage analysis to optimise
the same part of a program.

Our initial metric is the most obvious, as we have seen already in Section 1.3.2.
We measure the total number of thunk allocations performed during evaluation, and
track the subsequent usage of each, breaking the numbers down into the numbers
used more than once and at most once. We also measure the number of identified
used-once thunks allocated. Comparing these gives us a measure of the effectiveness
of the analysis: the proportion of used-once thunks that are identified.

This metric is not ideal, however, since we are not targeting only update avoid-
ance. Section 1.3.4 listed a range of other optimisations we seek to enable; many of
these are aimed at reducing the total number of allocations performed by the pro-
gram, and hence affect our statistics. We compare allocations and average execution
time to measure the effect of the other optimisations. Execution time is a particu-
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larly unstable metric due to timing variations, swapping, and cache behaviour; the
folklore suggests that total allocations is a prime indicator of running time, and this
is easy to measure precisely.

During development, a number of informal metrics were used as a guide, in
order to verify that the analysis was on the right track and to isolate problems. For
example, the types shown in Figure 4.1 for some standard Haskell functions are the
ones we would intuitively expect; it was clear from the types obtained for the same
functions in the earlier analysis that something was not right, and this led to the
development of simple polymorphism (Section 4.1). Another useful approach was
to examine the annotated output from toy programs like primes or nqueens and
compare the inferred results with a hand-simulation of their execution. This led to
a number of advances in the analysis, notably the finer treatment of data structures
(Section 5.4), and the use of specialisation (Section 6.3.3).

1.5.4 Proof techniques

Since we work with an operational semantics and seek to prove a soundness result,
the natural approach is to use the syntactic proof technique developed by Wright
and Felleisen [WF94]. The difficulties involved with traditional soundness proofs
based on denotational semantics or structural (big-step) operational semantics are
well argued in this paper, and we do not repeat them here. Wright and Felleisen’s
technique involves giving a small-step semantics for the language, such that each
intermediate step in the evaluation of the program is itself a program, and showing
that evaluating the program one step preserves its type. This result is called subject
reduction in the paper, but we refer to it as progress, proving also that a well-typed
non-value can always reduce.

1.5.5 Soft typing

In [Fag90, CF91], Fagan and Cartwright introduce soft typing as a way of bringing
the benefits of static typing to dynamically-typed languages such as Scheme, without
restricting their expressiveness. A soft type system can statically type all programs, by
inserting explicit runtime checks around the arguments of applications not provably
type-correct. The resulting program is statically well-typed, and the programmer
can detect errors before execution by inspecting the inserted checks. They define
two criteria for a soft type system to be effective and practical: first, the programmer
must not be required to supply any type information, and second, few unnecessary
checks should be inserted.

A type-based usage analysis must similarly be designed in such a way that all
input programs can be typed, and that no type information need be provided by the
user. In this sense, our analysis must be soft. However, rather than inserting runtime
checks at each application site a soft usage analysis collects information from all sites
and gives the function a type general enough to cover each. Thus we trade worsened
precision of the inferred types for guaranteed freedom from runtime violations.
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1.5.6 Dealing with separate compilation

Large programs are commonly broken up into multiple modules, which are each
compiled separately and then linked together to form the final executable. This
improves modularity (different parts of the program are in different modules) and
compilation speed (only part of the program need be recompiled when one module
is changed). However, separate compilation makes program analysis more difficult:
the analysis can see only part of the program at any one time.

In the languages we consider in this thesis, a module is essentially a set of letrec
bindings along with a signature, a set of exported variables with their types. When
one module imports another, the signature variables of the imported module are
added to the initial typing environment in which the present module is compiled.

Ideally, we would perform our usage analysis for the whole program at once,
with all modules combined, generating code appropriate to the actual uses each part
makes of the others. As is usual, however, we instead compile each module separately
for speed and convenience.

Gustavsson [Gus01a, p. 4] observes that “Whether an argument is used at most
once may depend on the entire program, so usage analyses are inherently global.”
This global nature makes dealing with separate compilation rather more difficult for
usage than for many other analyses. To perform usage analysis in conjunction with
separate compilation, we must

• compute the usage annotations of the module being compiled in the absence
of any information on the usage of exported variables,

• convey usage information from the analysis of one module to that of the next
by means of usage types in signatures, and

• ensure that the usage types we provide for exported variables permit any pos-
sible use by modules that import the present one.

We call the last condition maximal applicability. These conditions ensure that all pro-
grams may be successfully analysed, and that the results of the analysis of individual
modules, when combined, provide a sound analysis of the entire program.
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Table 1.1 Languages in this thesis.

L0 simplified source language §2.2 Fig. 2.1
LIX0 simplified instrumented executable language §2.3 Fig. 2.3
LIX1 monomorphically usage-typed language §3.2 Fig. 3.1
LIX2 polymorphically usage-typed language §4.2 Fig. 4.2
FL0 full source language §5.1 Fig. 5.1
FLIX0 full instrumented executable language §5.1.4 Fig. 5.3
FLIX2 full poly usage-typed language §§5.2,5.3 Fig. 5.5
ELX extended executable language §C.3 Fig. C.1
EL1 extended usage-typed language §C.4 Fig. C.5

1.6 How To Read This Thesis

The thesis develops a simple-polymorphic usage analysis for a real language, pro-
ceeding in several stages.

Chapter 1 introduces the thesis, and establishes the context: lazy functional lan-
guages, usage, and type-based analysis.

Chapter 2 introduces the formal framework for the rest of the thesis, giving an
operational semantics (with a notion of usage) to a toy language, L0. This language
serves as source language while we develop the basic components of a usage analysis
in Chapter 3. That (monomorphic) analysis is insufficient in practice, and so in
Chapter 4 we develop simple polymorphism in order to address the problems, still
working with only the toy language so as to avoid unnecessary clutter.

Chapter 5 moves on to the full language, FL0, adding the key features of type
polymorphism and user-defined algebraic data types. Since we are now in a position
to conduct a trial by fire, Chapter 6 implements the analysis in GHC and measures the
results. This ends the main body of the development, and we conclude in Chapter 7.

Appendix A gives a summary of the notations used in the thesis, and Appendix B
collects all the definitions, well-typing rules, and inference rules for the full lan-
guage. In Appendix C we consider a speculative future direction, investigating finer
distinctions of usage than simply 1 vs. ω. Deferred proofs appear in Appendix D.

The structure of the thesis reflects the structure of the languages we develop, as
illustrated in Figure 1.3. Chapter 2 lays the foundation, trivial analysis for the toy
language. Chapter 3 contains the monomorphic analysis for the toy language. Chap-
ter 4 presents the polymorphic analysis. Chapter 5 then extends these results to the
full language. This illustration is repeated at the head of each chapter, appropriately
highlighted to indicate the position of the chapter within the whole. The various
languages are summarised in Table 1.1, each with the location of its definition.
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Figure 1.3 Thesis structure.

FLIX0

Full source
language FL0

trivial
Ch. 5

polymorphic
Ch. 5

FLX Full executable
language

FLIX2

LIX0

Toy source
language L0

trivial
Ch. 2

monomorphic
Ch. 3polymorphic

Ch. 4

LIX1 LX
Toy executable

language

LIX2

Instrumented
intermediate

languages



24 CHAPTER 1. INTRODUCTION



Chapter 2.

FLIX0

FL0 FLX

FLIX2

LIX0

L0 LIX1 LX

LIX2

Formal

Framework

Our intuitive understanding of usage and usage analysis must be made formal in
order to provide a framework in which we can define various usage analyses and ex-
amine their soundness and power. In this chapter we construct the formal machinery
that will be required in the remainder of the thesis.

The presentation in this chapter is designed to generalise to the languages and
analyses of later chapters; thus we occasionally use constructions that are slightly
more complex than the reader may expect.

The development is mostly standard, and the eager reader may proceed to Chap-
ter 3. In summary, this chapter introduces a simply-typed lambda calculus L0 (with
letrec and conditional) and translates it into its type erasure LX, giving the latter
an abstract machine semantics based on that of Sestoft [Ses97] and proving a type
soundness result. The novelty of LX is its use of update flags on bindings and lambda
terms (Section 2.3.1), in order to control updates and copying, i.e., usage.

2.1 Introduction

In this chapter, we define the following:

1. a source language (Section 2.2), in which the programs we analyse are written;

2. an executable language (Section 2.3), with a notion of usage information, on
which the analysed programs will be executed;

3. a trivial translation (Section 2.3.3) which takes source programs into the exe-

25
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Figure 2.1 The source language L0.

Terms M ::= A atom
| n literal (integer)
| λx : t . M term abstraction
| M A term application
| M1 + M2 primop (addition)
| if0 M then M1 else M2 zero-test conditional
| letrec xi : ti = Mi in M recursive let binding

Atoms A ::= x term variable

t-types t ::= t1 → t2 function type
| Int primitive type (integers)

cutable language, thus defining the meaning of a source program (this may be
seen as an obviously-correct but vacuous usage analysis); and

4. an operational semantics (Section 2.4) for the executable language, with a no-
tion of correct usage information, and by which we formalise our concept of
usage.

These can be seen as four of the six parts of a usage analysis we defined in Sec-
tion 1.5.1 (cf. Section 3.1). The supporting proofs are given in Section 2.5, and
related work in Section 2.6.

The executable language, unlike the source language, contains update flags, which
give information on the expected usage behaviour of the program. The operational
semantics depends on the soundness of these flags for correct behaviour; if they
are unsound then execution will get stuck. Thus the operational semantics encodes
formally our intuitive concept of usage.

A usage analysis is simply a translation of the source language into the executable
language; a sound usage analysis may infer any values for the update flags as long
as they preserve the operational meaning of the program (even though in general
the exact execution sequence will differ according to the flags). The aim of a usage
analysis is to improve upon the trivial translation, choosing update flags that are
more accurate but never unsound.

In our presentation of the executable language LX and its operational semantics
– specifically in our use of shallow evaluation contexts, our various terminal sets
of configurations, and our use of separate update flags independent of type anno-
tations (against [TWM95a]) – we are greatly indebted to the presentation of Gus-
tavsson [Gus98, §2]. We were inspired by Moran and Sands [MS99] to use Sestoft’s
abstract machine style [Ses97] for our operational semantics, and we use some of
their proof techniques.
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2.2 The source language

Typed intermediate languages such as Core (Section 1.2.5) are generally extensions
of the typed lambda calculus, usually containing (inter alia) type polymorphism and
algebraic data types. At first, however, we treat a language without these features.
We do this to avoid unnecessary clutter whilst we develop our theory; we will see in
Chapter 5 that these features may be added in a largely orthogonal way. While the
language described here is simplified, it still contains much of the technical complex-
ity required to exercise usage type analysis.

This language, L0, is presented in Figure 2.1. It is explicitly typed, with type
annotations given to binding occurrences of variables in λ-abstractions and letrec-
bindings. The use of explicit types allows the type of any subterm to be determined
locally, without performing type inference, and is a rather standard presentation for
typed calculi. The user is not forced to provide all the type annotations herself;
rather, they are inferred from context and optionally any annotations that are sup-
plied by the user. Such inference is beyond the scope of this thesis. Throughout the
thesis we omit type annotations from examples where they are uninteresting or clear
from context.

L0 terms are restricted syntactically to A-normal form [FSDF93]: function argu-
ments are atoms (i.e., variables) rather than general terms. This restriction forces all
heap allocation and lazy evaluation to be represented explicitly by letrec bindings,
and has become rather standard [Lau93, AF94, TMC+96, PJS98a, GS00b]. Most of
the analyses in this thesis could be extended rather easily to unnormalised terms (we
do this in the implementation, Section 6.4.4), but doing so here would unnecessarily
complicate the presentation.

L0 variables, literal constants, term abstractions, and applications are all stan-
dard. Primops are the primitive operations of the machine (arithmetic and logic,
comparison, foreign functions, and so on). The arguments of a primop are of some
primitive type, and are evaluated to values before applying the operation. Primops
are always saturated (i.e., given all their arguments). For simplicity, we consider only
a single primop, addition; throughout the thesis the rules for other primops would
differ only trivially from those for +, and could easily be added. Since we omit al-
gebraic data types, we cannot include case in the simplified language; to introduce
the potential for branching execution we include if0, which tests its (integer) first
argument against zero, yielding its second argument if they are equal and its third if
not. Recursion is introduced by letrec in the usual way: variables xi have the values
of Mi and are in scope over both the body M and all the right-hand sides Mi. Note
that we write Mi to denote the vector M1, M2, . . . , Mn. There is an index of all no-
tation in Appendix A. L0 does not have a non-recursive let, because by appropriate
α-conversion letrec can always be used instead.

Types are straightforward: functions t1 → t2 from domain t1 to codomain t2, and
the primitive type Int (again, further primitive types could be added trivially and are
omitted purely for simplicity of presentation).

As usual, terms are identified up to α-conversion; thus λx : Int . x and λy : Int . y
are the same term. We follow the Barendregt Variable Convention [Bar81, §2.1.13]
[Pit01], that all bound variables of a term are assumed to be distinct from each other
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Figure 2.2 Well-typing rules for the source language L0.
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Γ, xj : tj �0 M : t

(�0-LetRec)
Γ �0 letrec xi : ti = Mi in M : t

and from the free variables of the term, and we implicitly perform α-conversion
wherever necessary to preserve this property.

2.2.1 Source typing

The well-typing rules for L0 are given in Figure 2.2, and are completely standard.
This figure defines the relation Γ �0 M : t, which can be read as stating that “In type
environment Γ, the L0 term M can be given type t.” For example, rule (�0-If0) states
that in environment Γ, if M can be given type Int and M1 and M2 can both be given
the same type t, then in the same environment the expression if0 M then M1 else M2

can be given the type t.
The type environment Γ is a finite set of pairs x : t associating a variable x with

a type t, with at most one pair x : t for each variable x. Γ may be viewed as a
partial function from variables x to types t, as in Γ(x) = t. The comma operator Γ, Γ′

denotes union of two environments Γ and Γ′, subject to the above restriction. The
set of variables bound by Γ is denoted dom(Γ).

Since L0 is explicitly typed, these rules are unambiguous and can be interpreted
as an algorithm for computing the function (Γ, M) �→ t in the usual way [LY98,
Mil78, DM82].

A fully formal account would include judgements for well-formed types and en-
vironments, in a style similar to that of Cardelli [Car96]; we do not do this here.
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2.3 The executable language

We will give meaning to the source language by providing it with an operational se-
mantics. Specifically, we present a high-level abstract machine on which programs
may be executed. In order to capture our intuitive understanding, we give to the
abstract machine a notion of usage. That is, programs to be executed on it are an-
notated with (optional) usage information, and the machine makes use of this in its
execution. Crucially, if the information provided to the abstract machine is incorrect,
the execution fails. This gives us a way of verifying the correctness of usage informa-
tion provided by an analysis: the information is correct if and only if the execution
of the annotated program does not fail in this way.

In this section we define the annotated language as a separate language, the
executable language LIX0, and give a trivial translation IT0 from L0 into it, which
simply embeds programs without adding any usage information.

2.3.1 The language

The terms and types of the executable language LIX0 are defined in Figure 2.3 (the
remaining syntactic categories are for the benefit of the operational semantics, below
in Section 2.4). Evaluation contexts indicate where evaluation occurs in a term: in
the function part of an application, in the first argument of a primop and then the
second, and in the condition of a conditional.

LIX0 contains usage information in the form of update flags on bindings and
abstractions. Update flags χ are taken from the set {•, !}, where • denotes “not
updatable/copyable” and ! denotes “updatable/copyable” or “not known” (see Sec-
tion 1.3.3):

• for a binding, χ = ! means the binding will be updated and χ = • means it will
not (i.e., it is a single-entry thunk); and

• for an abstraction, χ = ! means the abstraction may be copied (allowing multi-
ple invocations) and χ = • means it may not (i.e., a one-shot lambda).

Literals may be freely copied, and so we do not give them an update flag.
LIX0 also has an additional term form addn M , which is a syntactic device

used to handle the evaluation of arguments to a primop (an “additional expression
form” [WF94, §7]). Primops must have all their arguments evaluated to a value be-
fore the result can be computed, but the operational semantics evaluates them one
at a time. Once the first argument is evaluated, we reduce to a partially-saturated
primop and place the next argument in evaluation position, proceeding in this man-
ner until all arguments are evaluated. To accommodate this, we extend the syntactic
category M of terms with a new term addn M , denoting n+M , the primop + where
the left argument has been evaluated but the right has not.

In all other respects, L0 and LIX0 are identical.
We define an operation stripping, denoted �, which takes an LIX0 term to its

corresponding L0 term. Stripping omits update flags, and translates addn M to n +
M . Stripping � is not to be confused with erasure �, defined below; stripping omits
update flags, leaving types, whereas erasure omits types, leaving update flags.
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Figure 2.3 The executable language LIX0 and configurations LIXC0.

Terms M ::= R[M ] filled evaluation context
| letrec xi : ti =χi Mi in M recursive let binding
| A atom
| V value

Shallow R ::= [·] A term application
evaluation | [·] + M primop (addition)
contexts | addn [·] partially-saturated primop

| if0 [·] then M1 else M2 zero-test conditional

Atoms A ::= x term variable

Values V ::= n literal (integer)
| λχx : t . M term abstraction

Types t ::= t1 → t2 function type
| Int primitive type (integer)

Update χ ::= • not updatable/copyable
flags | ! updatable/copyable

Configurations C ::= 〈H; M ; S 〉 where dom(H) �dom(S)

Heaps H ::= ∅
| H, x : t =χ M where x /∈ dom(H)

Stacks S ::= ε
| R, S
| #x : t, S where x /∈ dom(S)
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2.3.2 Erasure

The executable language LIX0 bears type annotations just like L0, but we will see
shortly that the operational semantics ignores these completely. This fact is impor-
tant later (see Section 5.1.4): types are used in typechecking, analysis, and optimi-
sation, but types are ignored at runtime. Thus we may erase the type annotations
from LIX0 and its operational semantics without changing its behaviour. Erasure
is justified by an analogue of the famous theorem of Milner, that “well-typed pro-
grams do not go wrong” [Mil78, §3.7]; this result is proven in Section 2.5. Since
a well-typed program never has a type error, types need not be checked during ex-
ecution, and thus need not even be present. Implementations of Haskell, ML, and
other Hindley–Milner-based languages therefore erase all type information prior to
execution.

This means that the actual executable language is a language without types,
which we call LX. Rather than present yet another language, we simply indicate
the portions of LIX0 that are not in LX, the instrumentation,1 by lowlighted text in
Figure 2.3 and subsequently. The instrumentation is very useful in expressing the
analyses, but does not form a part of the analyses’ ultimate output. The instrumenta-
tion in LIX0 consists of L0 types; subsequent analyses in the thesis will augment LX
with instrumentation from other languages: L1, L2, and so on. However, in all cases
the underlying operational semantics is exactly that of LX; in other words, although
the instrumentation and its manipulation by the semantics may differ, the projection
into LX and its manipulation are identical.

The operation of removing the instrumentation from LIX0 we call erasure, and
denote �; it generalises to heaps, stacks, and contexts as well as terms. It is defined
by a simple induction on the structure of its argument.

Type erasure is standard for strongly-typed languages [WF94, §1], and was com-
mon already when Milner wrote his paper [Mil78, p. 349].

2.3.3 The trivial translation

The trivial translation IT0 takes L0 programs into LIX0, where they may be executed.
The translation is trivial because it infers no usage information. We write IT0�M �
for the trivial translation of L0 term M into LIX0.
IT0�M � embeds M into LIX0 by marking all update flags as !, “not known” (i.e.,

“updatable/copyable”), and in all other respects leaving the term untouched. The
definition is a simple induction on the structure of the source term and we omit the
details. Note that (as with all usage analyses in this thesis) we have (� ◦ IT0) = idL0 ,
i.e., (IT0�M �)� = M .

2.4 Operational semantics

We define the operational semantics of LIX0 by a high-level abstract machine, es-
sentially the first lazy abstract machine of Sestoft [Ses97]. The semantics is given in

1LIX0 stands for “eXecutable Language, Instrumented with types from L0”.



32 CHAPTER 2. FORMAL FRAMEWORK

Figure 2.4 The LIXC0 operational semantics: � and �δ.
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(λχx : t . M) A �δ M [A/x] (�δ-App)
n + M �δ addn M (�δ-PrimOp-L)
addn1 n2 �δ n3 if n3 = n1 + n2 (�δ-PrimOp-R)
if0 n then M1 else M2 �δ Mi if i = (n = 0 ? 1 : 2) (�δ-If0)
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Figure 2.4.

2.4.1 Statics

The semantics is defined over abstract machine configurations, which are triples
〈H; M ; S 〉 consisting of a heap H, a term under evaluation M (traditionally called
the control [Lan64]) and a stack S. The set of all well-formed LIX0 configurations is
denoted LIXC0. A heap is an unordered set of quadruples x : t =χ M , at most one
for any x, denoting a binding of variable x of type t to term M with update flag χ.
The set of variables bound by H is denoted dom(H). A stack is a list of shallow eval-
uation contexts R and update frames #x : t, as explained below. Values bound by
the heap must be disjoint from those bound by update frames on the stack; we write
dom(H) �dom(S) to abbreviate dom(H) ∩ dom(S) = ∅.

During evaluation, the term is unwound into a list of nested shallow evaluation
contexts according to the evaluation order, until a variable or value is reached. For
example, in the term

M = (if0 1 + 2 then M1 else M2) x

the function is evaluated before the argument, the condition is evaluated before the
branches, and the left argument of the sum is evaluated before the right, and so M
is unwound to

〈 ∅; 1; [·] + 2, if0 [·] then M1 else M2, [·] x 〉
i.e.,

[if0 [[1] + 2] then M1 else M2] x

and the value 1 is evaluated first. Each shallow evaluation context is a simple term
with a hole in the evaluation position, such that the term in the hole must be evalu-
ated before execution can proceed with the context.

Evaluation stops when a term is reduced to a value V , i.e., a literal or a function
abstraction. Values cannot be reduced further.

To model laziness, when a heap binding is being evaluated an update frame
recording the name of the variable whose value is being computed is pushed onto
the stack. When the computation is complete, the update frame is popped off and
the binding updated with the new value. At most one update frame may appear for
any variable x, and the set of variables for which update frames appear in stack S is
denoted dom(S).

2.4.2 Dynamics

The semantics of Figure 2.4 defines a transition relation C � C ′ from configurations
to configurations. This transition relation unwinds terms and manipulates the heap,
and uses a primitive transition relation R[V ] �δ M to perform the basic computa-
tions (function application, primops, and conditional).

The rule (�-Unwind) unwinds a shallow evaluation context: if the control is a
filled evaluation context R[M ], the context R is placed on the stack and evaluation
proceeds with M in the control. The dual rule (�-Reduce) applies when the term



34 CHAPTER 2. FORMAL FRAMEWORK

is finally reduced to a value and the context is on the top of the stack; the value is
placed back into the context and a primitive reduction R[V ] �δ M is performed.

The rule (�-LetRec) places new bindings into the heap, renaming variables to
fresh names to avoid conflicts, and evaluation proceeds with the body of the letrec.

When a variable appears as the control, it is looked up in the heap by either
(�-Var-Once) or (�-Var-Many), and evaluation continues with the term to
which it is bound. The binding is removed from H; this is called blackholing [Jon92,
Lau93] and enables the detection at runtime of certain programs that would other-
wise not terminate, such as letrec x : Int =! x in x. If the binding is marked • (not
updatable), the binding is removed entirely since it should not be needed again; if in-
stead the binding is marked ! (updatable), an update frame is pushed onto the stack,
indicating that the binding should be restored when evaluation of the right-hand side
is complete (using the newly-computed value as the right-hand side).

This update is performed by (�-Update): when the control has been reduced
to a value and an update frame is on the top of the stack, a binding is added to
the heap, binding the named variable to the newly-computed value; the update flag
is necessarily ! since if it were • the update frame would not have been created.
The side condition on (�-Update) prevents copying of a value marked • (i.e., not
copyable); it makes use of the auxiliary function | · |, which returns the update flag
of a value if present and ! (copyable/not known) otherwise. Note that a binding to a
dead variable (i.e., one which can never be looked up) is not considered to be a copy
in this sense.2

The primitive reductions R[V ] �δ M are straightforward. Rule (�δ-App) is
the familiar β rule (the argument is always an atom because of the restriction to
A-normal form, Section 2.2). Rules (�δ-PrimOp-L) and (�δ-PrimOp-R) perform
the addition primop; recall we force the evaluation of the left argument first, and
then use a placeholder to force evaluation of the right argument before performing
the addition itself. Finally, rule (�δ-If0) selects one of the two branches, based on
whether its argument is zero or non-zero (the side condition is expressed using the
conditional expression (P ? x : y), meaning “if P then x else y”).

2.4.3 Evaluation and termination

We now define initial and terminal configurations, dividing the latter into value and
stuck configurations.

A program is run by placing it in the control of a machine with an empty heap
and stack: the initial configuration of a program is given by 〈; ; 〉, where

(M)〈;;〉 � 〈 ∅; M ; ε 〉

Evaluation proceeds via the reduction relation � until a configuration is reached
where no rule applies. The configuration C terminates with configuration C ′, denoted

2The creation of such a binding is impossible in the monomorphic type system of Chapter 3, but it
is possible in the polymorphic type system of Chapter 4. See the proofs of Lemmas D.7 and D.10 in the
appendix.
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C ↓ C ′, when it can evaluate no further. That is,

C ↓ C ′ � C �∗ C ′ ∧ ¬∃C ′′ . C ′ � C ′′

Terminal configurations C ′ may be of several forms.

• C ′ ∈ Value if C ′ is of the form 〈H; V ; ε 〉. This is normal termination: C ′ is a
value configuration, and the result of the program is V .

All other terminal configurations are called stuck configurations, which can be parti-
tioned into four sets:

• C ′ ∈ BlackHole if C ′ is of the form 〈H; x; S 〉 where x /∈ dom(H) but x ∈
dom(S). This indicates a black hole (Section 2.4.2) has been detected.

• C ′ ∈ Wrong if C ′ is of the form 〈H; V ; R, S 〉 where R[V ] ��δ. This is a
runtime type error.

• C ′ ∈ BadBinding if C ′ is of the form 〈H; x; S 〉 where x /∈ dom(H) ∪ dom(S).
This indicates an incorrect binding update flag.

• C ′ ∈ BadValue if C ′ is of the form 〈H; V ; #x : t, S 〉 where |V | �= !. This
indicates an incorrect value update flag.

These sets are exhaustive and disjoint:

Theorem 2.1 (Configuration sets)
All LIXC0 (or LXC) configurations C ′ are either reducible or in exactly one of the
sets {Value, BlackHole, Wrong, BadBinding, BadValue}.

Proof By inspection. �

Our goal is to ensure that a program never reaches a configuration C ′ in Wrong or in
Bad = BadBinding ∪ BadValue.3 Configurations in Wrong arise from runtime type
errors, and as we show in Section 2.5, translations of well-typed source programs
do not go wrong. Configurations in Bad arise from incorrect usage information, and
a usage analysis must take care to avoid these. An LIX0 (or LX) program is well-
annotated if it never reaches a bad configuration, and a usage analysis is sound if it
yields only well-annotated programs. All the usage analyses in this thesis are proven
sound.

2.4.4 The trivial translation

It should now be clear that the trivial translation of Section 2.3.3 is a sound usage
analysis. By not inferring any usage information at all, and instead always using the
“not known” update flag !, it ensures that no program it translates can ever reach a
configuration in BadBinding or BadValue.

3C′ ∈ BlackHole means merely that the program is nonterminating; this is not an error and we do
not attempt to avoid it. This may be clarified by imagining an additional rule C′ ∈ BlackHole ⇒ C′ �
C′.
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The essential observation is that, for well-scoped programs, we can only reach
BadBinding or BadValue if an update flag was •: BadBinding is caused by the rule
(�-Var-Once) removing a •-annotated binding, and BadValue is caused by an
attempt to copy a •-annotated lambda. Therefore, if we omit all •-flags and provide
only !-flags, we avoid Bad and the analysis is sound. This justifies our interpretation
of ! as “not known”.

Because these Bad configurations are never reached, one may discount the rule
(�-Var-Once) and the side condition to (�-Update) and recover the standard
semantics for L0 as given in [Ses97, Lau93] inter alia.

2.4.5 Copying and using abstractions

Our intuitive notion of the usage of a function (Section 1.3.3) refers to the number of
times it is used, but the side condition on (�-Update) restricts the number of times
it is copied instead. The distinction would become important in the presence of a seq
operator, which evaluates its first argument but does not use its value, returning the
value of its second argument instead. (A strict let operator would similarly introduce
zero usages into the system). Consider for example the program

letrec f =! λ•x . x + 1; z =• 41 in seq f (f z)

Execution of this would demand the value of f twice, but apply the lambda only
once, consistent with the flags. Under the present operational semantics, however,
execution would become stuck after the evaluation of f , with λ•x . x + 1 in the
control and #f on the top of the stack.

In order to allow this, we would have to track usages apart from copies, either
with pointers or with cleverer update frames. We introduce the latter in the proposed
semantics of Appendix C. But in the absence of operators such as seq, the present
semantics is sufficient for our purposes: one can see by inspection that a function
cannot be used more than once without being copied first, and so interpreting • as
“not copyable” is a stronger restriction than interpreting it as “not used more than
once”. Thus analyses sound for this interpretation are sound for the “not used more
than once” interpretation.

2.5 Proof of soundness

In order for our trivial translation to make sense, we must prove that well-typed
programs do not go wrong (following Milner [Mil78, §3.7]). In the present context,
this means that execution of a well-typed L0 term, translated into LIX0 by IT0, will
never terminate in a configuration in Wrong, BadBinding, or BadValue. This result
demonstrates that our type system and translation are sound with respect to the
operational semantics.

In the present section we outline the proof of this result; the full details are given
in Appendix D.
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2.5.1 Definitions

We first define typing for LIX0. The idea is that an LIX0 term is an L0 term with
update flags and partially saturated primops, and so typing an LIX0 term is the same
as typing its stripped version in L0. That is, typing for LIX0 terms uses the rules of
Figure 2.2 by ignoring all update flags, and adds a rule for addn M , derived from
(�0-PrimOp) and (�0-Lit):

Γ �0 M : Int
(�0-PrimOp-R)

Γ �0 addn M : Int

A configuration C may be translated into the corresponding term trans(C), such
that when trans(C) is evaluated it will unwind (by (�-Unwind) and (�-LetRec))
into the original configuration C. This allows us to treat LIXC0 configurations simply
as the equivalent terms in LIX0. If C is an LIXC0 configuration, then trans(C) ∈
LIX0 is defined by:

trans〈H; M ; R, S 〉 � trans〈H; R[M ]; S 〉
trans〈H; M ; #x : t, S 〉 � trans〈H, x : t =! M ; x; S 〉
trans〈H; M ; ε 〉 � letrec H in M

(Notice that we allow an empty set of bindings in letrec for simplicity.)
Given this equivalence, we may define well-typing for configurations in the obvi-

ous way. We write �0 C : t, denoting that the LIXC0 configuration C has type t, iff
its translation trans(C) has type t in the empty environment. That is,

∅ �0 trans〈H; M ; S 〉 : t
(�0-Config)

�0 〈H; M ; S 〉 : t

2.5.2 Proof outline

We now move on to the proof itself. The crucial lemma is the progress lemma; it
says that any well-typed configuration is either terminal in Value or BlackHole, or
can progress further.

Lemma 2.2 (Progress)
For all LIXC0 configurations C, if �0 C : t then either (i) C ∈ Value ∪ BlackHole or
(ii) ∃C ′ . C � C ′ and C � C ′ ⇒ �0 C ′ : t.

Proof By cases on C, using various lemmas. The full proof is given in Appendix D,
Lemma D.10. �

We now need merely establish the initial state and apply the progress lemma
repeatedly until we are done.

Lemma 2.3 (Instrumented soundness for L0, �0, IT0)
For all L0 terms M , if ∅ �0 M : t then
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(i) (IT0�M �)〈;;〉 is well-defined.

(ii) �0 (IT0�M �)〈;;〉 : t.

(iii) If (IT0�M �)〈;;〉 ↓ C ′ then C ′ ∈ Value ∪ BlackHole.

Proof

1. By inspection of the definitions of 〈; ; 〉 and IT0.

2. By induction on the structure of M .

3. By Lemma 2.2, by induction on the length of derivation of (IT0�M �)〈;;〉 ↓
C ′. �

This shows that execution of a well-typed L0 program does not go wrong, if the
L0 program is translated into LIX0 by the trivial translation and executed using the
operational semantics defined above. Thus our type system �0 is sound.

However, recall from Section 2.3.2 that in practice the program is executed with
all types erased. To demonstrate that this is possible, i.e., that the types are purely
instrumentation and the execution behaviour does not depend on them, we prove the
final result, Theorem 2.5. This involves the translation T0 used in practice, defined
by T0 � �◦IT0, i.e., the instrumented translation IT0 followed by erasure �. In order
to prove this, we require one more lemma.

The Correspondence Lemma 2.4 states that the LIXC0 reduction sequence and
the LXC reduction sequence proceed in lock-step when started respectively on a
well-typed LIXC0 configuration C and on its erasure (C)�.

Lemma 2.4 (Correspondence)
The functions 〈; ; 〉 and � are well-defined on LX and LXC (as well as LIX0 and
LIXC0), and make the following two diagrams commute:

LIX0

�

〈;;〉
LIXC0

�

LX
〈;;〉

LXC

LIXC0

�

�
LIXC0

�

LXC
�

LXC

Proof By inspection of the definitions. �

Our final result then is:

Theorem 2.5 (Soundness for L0, �0, T0)
For all L0 terms M , if ∅ �0 M : t then

(i) (T0�M �)〈;;〉 is well-defined.

(ii) If (T0�M �)〈;;〉 ↓ C ′ then C ′ ∈ Value ∪ BlackHole.

Proof Follows from Lemma 2.3 by the Correspondence Lemma 2.4. �
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This states that a well-typed L0 program may be executed by performing the trivial
translation and then stripping all instrumentation from the resulting program. The
usage analyses in the remainder of the thesis are all more complicated than this, but
all of them satisfy this property. Each takes a well-typed L0 program, translates it
into an instrumented executable language, and then strips the instrumentation. The
resulting LX program is well-defined, and if it terminates, terminates in Value or
BlackHole.

2.6 Related work

The ultimate origin of the operational semantics for lazy evaluation described in this
chapter is the natural semantics of Launchbury [Lau93]. This is an untyped, big-step
semantics defined on (heap, expression) pairs, for a lambda calculus with letrec, case,
and constructors. It features blackholing for variables, as in our Section 2.4.2. This
semantics was modified slightly for [TWM95a]; independently it was translated to an
abstract machine by Sestoft [Ses97] and used by, inter alia, Moran and Sands [MS99]
and Gustavsson [Gus98], where we discovered it. Update flags and update frames
first appeared in the Three Instruction Machine (TIM) and are due to Fairbairn and
Wray [FW87]. The first abstract machine for a functional language was the SECD
machine (Stack-Environment-Control-Dump) of Landin [Lan64].

We now consider the work of Gustavsson et al. in some detail, in consequence of
its close relationship to the present work.

Gustavsson and Sands in [GS01a] define the use-once-don’t-drag criterion to mean

. . . that an argument must be used at most once and when it is used there
may be no other references to the closure holding the argument.

They go on to define this formally by an operational abstract machine semantics ex-
actly of the form given in this chapter, with the addition of a don’t-drag side condition
on (�-Var-Once) requiring that x /∈ fv(H, M, S), and the omission of the side con-
dition on (�-Update) and update flags on abstractions; they also explain that in the
presence of the don’t-drag side condition a garbage collection rule for unreferenced
heap bindings and update flags is required. They prove that the use-once-don’t-drag
property is sufficient to show the space- and work-safety of the inlining transfor-
mation described in Section 1.3.4. They implicitly define a usage analysis as an
annotation of a source program with update flags (“use-once-don’t-drag bindings”)
such that evaluation never becomes stuck due to incorrect flags, and they give a re-
sult (Proposition 2.3) roughly equivalent to our Correctness Theorem 3.2 showing
that the update flags (if correct) do not affect the semantics of the program.

The semantics of [Gus98] is similar, but in addition to updates it also addresses
update marker checks, annotating values and (value-generating) primops with inter-
vals ι = [ν, ξ] (where ν, ξ ∈ P(N) ∪ {ω}) denoting the number of update markers
expected on the stack after the value is obtained. This enables another optimisation,
update marker check avoidance, since the presence or absence of an update marker
during evaluation may now be determined statically.
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Gustavsson’s polymorphic analysis [GS00b] uses essentially the same operational
semantics, except that interval annotations ι are replaced by κ annotations taken
from the same annotation set as the binding annotations. These are examined by two
rules corresponding to our single rule (�-Update). The semantics of these value
annotations differs from ours in that they appear on primops as well as values, and
whereas our semantics becomes stuck if an attempt is made to copy a •-annotated
value, Gustavsson and Svennigsson’s semantics simply drops the binding which is
being updated, thus becoming stuck only if that binding was live at the time of
update. This is related to the notion of “use-once-don’t-drag” discussed above, and
permits decoupling of the usage of values and expressions without the overhead of
introducing update marker check intervals.



Chapter 3.

FLIX0

FL0 FLX

FLIX2

LIX0

L0 LIX1 LX

LIX2

Monomorphic

Usage Types

Our first usage analysis is based on type inference for a relatively simple monomor-
phic usage type system. As well as being interesting in its own right, this system
introduces the concepts underlying the more complex usage type systems of later
chapters.

3.1 Introduction: a usage analysis

A usage analysis is an algorithm that takes a source term in L0 and returns an ex-
ecutable term in LX (or an instrumented variant), annotating the term with usage
information. The decision to use a type-based analysis (see Section 1.5) provides us
with a standard framework within which to design our analysis and prove it correct.
A type-based analysis consists of six parts, around which we structure this chapter
(indeed, Chapters 4 and 5 follow the same plan):

1. a source language of programs to analyse (L0, already presented in Section 2.2);

2. an operational semantics defining the desired property (�, already presented
in Section 2.4);

3. a typed target language, an instrumented executable language consisting of the
source language extended with types intended to carry information about the
desired property (LIX1, Section 3.2);

4. a set of well-typing rules which define the typings that carry valid information
(�1, Section 3.3);

41
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5. a goodness ordering on typings, defining the best valid typing should there be
more than one (�, Section 3.4); and

6. an inference algorithm which computes the best valid typing for each source
program (IT1, Section 3.5).

The use of a goodness ordering is non-standard, and arises because the type sys-
tems in this thesis lack the usual principal type property [Jim96, Hin69] (see Sec-
tion 3.7.2).

The analysis must also be supported by certain proofs, all of which appear in
Section 3.6:

7. a type soundness proof demonstrating that the well-typing rules capture the
desired property (Theorem 3.1);

8. a nonrestrictivity proof demonstrating that all source terms have a valid target
typing (Theorem 3.3);

9. an inference soundness proof demonstrating that the inference algorithm com-
putes a valid typing for all source terms that have one (Theorem 3.7); and

10. an inference pseudo-completeness proof demonstrating that the inference algo-
rithm computes the best valid typing if there is more than one (Theorem 3.8).

In Section 3.6 we also prove a complexity bound (Theorem 3.9).
The behaviour and expressiveness of the analysis is discussed in Section 3.7.

Finally, we consider the technical issues of dealing with separate compilation (Sec-
tion 3.8), and summarise the related work (Section 3.9).

The analysis presented in this chapter was first published by the author (with
Simon Peyton Jones) in [WPJ99]. That paper also included a discussion of algebraic
data types and type polymorphism, which we here defer to Chapter 5. The analy-
sis is not especially novel, being only a minor extension of that of Turner, Wadler,
and Mossin [TWM95a]; the crucial difference is the addition of subsumption (Sec-
tion 3.3.5). In addition, we believe the presentation is cleaner and clearer than that
of either paper.1

3.2 A language with usage types

Our first task is to design a typed target language which we shall call LIX1, an instru-
mented executable language consisting of LIX0 extended with types carrying usage
information. This language is presented in Figure 3.1. It differs from the earlier
language (Figure 2.3) in only two ways: lambda terms have an additional annota-
tion κ, and type annotations are of sort σ rather than t. The operational semantics
is identical for each, mutatis mutandis (the κ annotations on lambdas are ignored).
We now discuss the extended type and term languages in detail.

1When reading these papers, it is important to note that the primitive ordering on usage annota-
tions is the opposite of that in this thesis: in [WPJ99], [TWM95a], and [Gus98] the ordering is 1 ≤ ω,
whereas in the present thesis it is ω ≤ 1.
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Figure 3.1 The usage-typed language LIX1 (cf. Figure 2.3).

Terms e ::= a atom
| n literal (integer)
| λκ,χx : σ . e term abstraction
| e a term application
| e1 + e2 primop (addition)
| addn e partially-saturated primop
| if0 e then e1 else e2 zero-test conditional
| letrec xi : σi =χi ei in e recursive let binding

Atoms a ::= x term variable

τ -types τ ::= σ1 → σ2 function type
| Int primitive type (integer)

σ-types σ ::= τκ usage-annotated type

Usage κ ::= 1 used at most once
annotations | ω possibly used many times

Update χ ::= • not updatable/copyable
flags | ! updatable/copyable

Shallow evaluation contexts R, values v, configurations C, heaps H, and stacks S
are defined in the same manner as for LIX0.

3.2.1 The type language

The types of LIX1 are the types of the source language L0, annotated with usage
annotations κ. Types are defined by mutual recursion between two sorts, σ of types
usage-annotated on top, and τ of types not usage-annotated on top. We occasionally
use the variable ψ to range over both τ - and σ-types.

Usage annotations are denoted κ, and may be either 1 or ω, with the intuitive
meanings “used at most once” and “possibly used many times” respectively (Sec-
tion 1.3.3). Annotations are ordered by ≤, with ω ≤ 1. The unusual orientation of
this ordering arises from the direction of the subtyping relation, as explained in Sec-
tion 3.3.5. These usage annotations are intended to correspond to the update flags
of the executable language: 1 corresponds to • (“not updatable/copyable”), and ω
to ! (“updatable/copyable” or “not known”).

Every expression is given a σ-type, and the topmost annotation |σ| of that type is
called the usage of the expression. The primitive-typed expression 42, for example,
may have the type Intω, meaning that it is an integer which may be used many
times; |Intω| = ω. For t an L0 type, we write �t�ωσ for the function that returns a σ-
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type consisting of t with ω in every usage annotation position, and similarly for �t�ωτ
which returns a τ -type.

While primitive types have no further structure, function types have an argument
and a result type, and in designing the type system it was necessary to decide whether
these each required separate annotations:

• The usage of a function may differ from the usage of its result, since the function
may be applied several times and its result each time may be shared amongst
any number of consumers. Hence the result type must be annotated distinctly
from the function itself.

• The usage of the argument should be recorded, since this is a property of the
function. Thus the argument type should be annotated with this usage, which
is clearly distinct from the topmost annotation and that of the result.

This means that both the argument and result types of a function should be anno-
tated. The function λx . x + 1, then, may be given type (Int1 → Intω)ω, denoting a
function from Int to Int, itself usable many times, each time using its argument once
and returning a result that may be used many times. Compare λx . x+x, which uses
its argument twice: the above type becomes (Intω → Intω)ω, indicating that it uses
the argument many times. A used-once thunk may be passed to the first function,
but not to the second.

We will occasionally use the notion of the polarity (or variance) of an annotation
position. As usual [TS96, def. 47] this is obtained by counting the number of arrows
one must pass to the left of to reach the annotation position: if this is even the
position has positive polarity (+) and is covariant; if it is odd the position has negative
polarity (−) and is contravariant. For example, here is a usage type decorated with
the polarity of its annotation positions:(

(Intω
+ → Intω

−
)ω− → Intω

− → (Intω
− → Intω

+
)ω+

)
ω+

A usage variable is said to occur positively (negatively) if it appears in a positive
(negative) position.2 We use the variable ε to range over polarities {+,−}.

3.2.2 The term language

The terms of LIX1 are the terms of the instrumented executable language LIX0 (Sec-
tion 2.3.1) with types changed from t to σ and usage annotations κ added to lambda
abstractions. The stripping (to L0) and erasure (to LX) functions are extended to
strip usage annotations thus:

(λω,!x : Int1 . x + 1)� = λx : Int . x + 1 and (λω,!x : Int1 . x + 1)� = λ!x . x + 1

LIX1 is explicitly-typed. In such calculi, each term or subterm records enough
information to reconstruct unambiguously the derivation tree used to type it (at

2Note that Gustavsson [Gus99, §5.5.2] defines covariance and contravariance oppositely, because
of the opposite direction of his primitive subtype ordering (see Section 3.9).
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least up to subsumption). Consequently, the type of any term or subterm may be
determined purely by local inspection, given only the typing environment and no
other context. This explicit typing property is very useful in a type-driven compiler.

The term abstraction λκ,χx : σ . e of LIX1 bears two annotations: a usage anno-
tation and an update flag. We briefly explain why these are necessary.

Usage annotations κ. Consider the term λx : Int1 . x + 1. This has a type of the
form (Int1 → Intω)?, but there is not enough information to determine the
correct topmost annotation without examining the context in which it is used.
To preserve explicit typing, we record this topmost annotation in the usage
annotation of the abstraction thus: λωx : Int1 . x+1. The type of this expression
is now unambiguously (Int1 → Intω)ω. This is important because in LIX1, the
type of a lambda abstraction, and the constraints the derivation places on the
types of free variables, differ depending on the usage of the abstraction itself
(see Section 3.3.4).

Update flags χ. We saw in Sections 2.3.1 and 2.4.2 that update flags χ are used to
control the abstract machine’s execution of an LX program. Since the same
abstract machine is used to execute LIX1 terms, the update flags must still be
present in order to control it.

Thus lambda abstractions bear two annotations, a usage annotation to preserve ex-
plicit typing, and an update flag to control execution. Distinguishing them allows us
to discuss the end results of the analysis (update flags, which survive type erasure,
enabling safe execution) independently of the means by which they are obtained
(usage annotations and a usage type system).3

Despite this separation of usage annotations and update flags, the two are very
closely related. In fact, the update flag is an abstraction of the topmost usage anno-
tation of the corresponding type: 1 corresponds to •, and ω corresponds to !. For this
reason, well-typed LIX1 terms may contain λ1,•x . e or λω,!x . e, but never the cross-
cases.4 (This one-to-one relationship between update flags and usage annotations
does not hold in the type system of Chapter 4.)

3In this respect our presentation is cleaner than that of [TWM95a], whose operational semantics
is not strictly type-free. This property is required if we are to use a type-erased executable language in
practice (Section 2.3.2).

4Even though λ1,!x . e would be sound, no reasonable analysis would elect to miss such an oppor-
tunity, and λω,•x . e is potentially unsound.



46 CHAPTER 3. MONOMORPHIC USAGE TYPES

Figure 3.2 Well-typing rules for LIX1 (cf. Figure 2.2).
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(�1-Var)
Γ, x : σ �1 x : σ

(�1-Lit)
Γ �1 n : Intω

Γ �1 e : Int1 Γ �1 ei : σ i = 1, 2
(�1-If0)

Γ �1 if0 e then e1 else e2 : σ

Γ �1 ei : Int1 i = 1, 2
(�1-PrimOp)

Γ �1 e1 + e2 : Intω

Γ �1 e : Int1
(�1-PrimOp-R)

Γ �1 addn e : Intω

Γ, x : σ1 �1 e : σ2

occur(x, e) > 1⇒ |σ1| = ω
occur(y, e) > 0⇒ |Γ(y)| ≤ κ for all y ∈ Γ

(�1-Abs)
Γ �1 λκ,κ†

x : σ1 . e : (σ1 → σ2)κ

Γ �1 e : (σ1 → σ2)1 Γ �1 a : σ1
(�1-App)

Γ �1 e a : σ2

Γ, xj : σj �1 ei : σi for all i
Γ, xj : σj �1 e : σ(
occur(xi, e) +

∑n
j=1 occur(xi, ej)

)
> 1⇒ |σi| = ω for all i

(�1-LetRec)
Γ �1 letrec xi : σi =|σi|† ei in e : σ

Γ �1 e : σ′ σ′ � σ
(�1-Sub)

Γ �1 e : σ
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3.3 Usage well-typing rules

The next task is to define a set of well-typing rules that specify which LIX1 typings
carry valid usage information. The intuition of the type system is as follows:

We say a variable may be used more than once if either

• it occurs (i.e., may be referred to) more than once in its scope,
or

• it occurs free in a function abstraction which may be used
more than once.

If a variable may be used more than once, the value bound to that
variable may also be used more than once.

We give the resulting well-typing rules in Figure 3.2. Since the types of LIX1 are
simply those of L0 augmented with usage information, the well-typing rules are those
of L0 (as given in Figure 2.2) augmented with extra side conditions constraining
valid usage annotations and update flags, along with an additional rule, (�1-Sub),
for subsumption. In fact, a well-typed L0 term may be translated into a well-typed
LIX1 term simply by placing ω-annotations everywhere on each t-type, yielding a
σ-type, and letting all bindings be flagged by ! and all lambdas annotated by ω, !.
The judgement Γ �1 e : σ may be read as stating that “In type environment Γ, the
LIX1 term e can be given type σ.” We deal only with the novel portions of the rules
below. Note that ω ≤ 1; the reason for this will be explained in Section 3.3.5.

3.3.1 Update flags

Update flags, the output of the analysis, appear on bindings and lambda abstractions,
and are computed in rules (�1-LetRec) and (�1-Abs) from the topmost annotation
of the corresponding usage type. An annotation of ω indicates a value that might
be used more than once, and so must be marked !, “updatable/copyable”; and an
annotation of 1 indicates a value that is used at most once, and so may be marked •,
“not updatable/copyable”. The function ·† denotes this correspondence: ω† � !, and
1† � •.

3.3.2 Basic uses

Literals and the results of primops5 are primitive values with no internal structure,
and may safely be used many times, as shown in rules (�1-Lit), (�1-PrimOp), and
(�1-PrimOp-R). The latter rule can in fact be derived from the other two.

The scrutinee of an if0 and the operands of a primop are both used at most once
(in fact, exactly once), and similarly in an application the function is used (applied)
exactly once, as shown in rules (�1-If0), (�1-PrimOp) and (�1-PrimOp-R), and
(�1-App).

5Primitive operations; see Section 2.2.
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3.3.3 The syntactic occurrence function

In order to compute the usage according to the intuition stated above, we define a
syntactic occurrence function to count the number of occurrences of a variable in its
scope. By using this, rules (�1-Abs) and (�1-LetRec) compute the usage of each
variable at its binding site. The value of occur(x, e) is the number of free syntactic
occurrences of the variable x in the expression e. For example, occur(x, x + x + y) =
2; occur(x, λx . x y) = 0. If a variable occurs more than once in its scope, the
topmost annotation of its type is required to be ω; otherwise its type is unrestricted.
An alternative method more directly related to affine linear logic is discussed in
Section 3.9.7; our approach is closer to the “liabilities” of [GH90].

We define occur inductively; the only interesting case is if0, where we conserva-
tively approximate by taking the maximum number of syntactic occurrences in either
branch. Thus:6

occur(x, if0 e then e1 else e2) � occur(x, e) + max (occur(x, e1), occur(x, e2))

We take the maximum (or least upper bound) of the branches because our usage
annotations are upper bounds on the number of uses: 1 denotes at most once, and
ω denotes no restriction. The type-based strictness analysis of Barendsen and Smet-
sers [BS98] takes the minimum here, since strictness annotations indicate a lower
bound. Appendix C shows how one might use more precise annotations to combine
usage and strictness.

3.3.4 Occurrences in a closure

A further constraint on usage annotations is that if a variable y is free in a lambda
abstraction (�1-Abs), the topmost annotation |Γ(y)| of the type of y is required to be
less than the usage annotation of the abstraction. Recalling the annotation ordering
ω ≤ 1 (Section 3.2.1), this means that if the lambda may be used more than once,
so may its free variables – precisely the second clause of the intuition stated in Sec-
tion 3.3 above. The reason for this is that y is shared between applications of the
abstraction – each time the abstraction is applied, y may be demanded.

For example, consider the following expression:

letrec y : Intω =! 1 + 2
in letrec f : (Int1 → Intω)ω =! λω,!x : Int1 . x + y

in f 3 + f 4

Here y is shared between applications of the abstraction, and so is used twice during
evaluation even though it occurs only once in its scope.

3.3.5 Subsumption

A distinctive feature of the present system compared with more conventional linear
type systems, including [TWM95b], is our use of subsumption. Rule (�1-Sub) states

6In the type system of Clean, this is referred to as “taking the evaluation order into account” [PvE98,
§4.5.4] [dMJB+99, §4.3.6]. For a quasi-linear type system that takes the evaluation order into account
rather more seriously, see [Kob99] (discussed briefly in Section 1.3.5).
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Figure 3.3 The subtype (�) and primitive (≤) orderings over LIX1.

ψ � ψ

κ1 ≤ κ2 τ1 � τ2
(�-Annot)

τ1
κ1 � τ2

κ2

(�-Lit)
Int � Int

σ3 � σ1 σ2 � σ4
(�-Arrow)

σ1 → σ2 � σ3 → σ4

κ ≤ κ

1

➵

ω

ω ≤ κ κ ≤ 1

that an expression of type σ′ can be used in place of an expression of type σ if those
types are related as σ′ � σ by the subtyping relation, defined in Figure 3.3. For
example, an expression of type Intω may soundly be used in place of an expression
of type Int1.

Consider the expression

letrec f = λx . x + x
a = 2 + 3
b = 5 + 6

in a + (f a) + (f b)

Here it is clear by inspection that the values of both a and b will be demanded more
than once. We therefore expect both to be given type Intω. On the other hand, in

letrec f ′ = λx . x + 1
a = 2 + 3
b = 5 + 6

in a + (f ′ a) + (f ′ b)

it is clear that while a will be demanded twice, b will be demanded only once, and
we expect a and b to be given types Intω and Int1, respectively.

Comparing the two, we see that applying f to an argument should constrain it
to a used-many type (as for b), but applying f ′ to an argument should impose no
constraint – it should be applicable equally to used-once and used-many arguments.
We give f the type (Intω → Int1)ω, and f ′ the type (Int1 → Int1)ω, and in addition we
note that while f is not applicable to an argument of type Int1, f ′ is applicable to an
argument of type Intω.

This one-way notion of compatibility is exactly subtyping, and so we define a
subtyping relation � on usage types and add a subsumption rule (�1-Sub) to the set
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of well-typing rules to obtain the desired behaviour. In terms of the example above,
(�1-Sub) allows us to conclude that argument a of type Intω also has type Int1 and
hence can be an argument of f ′. Subsumption enables us to give to a function a type
that conveys information about the function alone, irrespective of the arguments it
is passed.

There is no need for an explicit coercion of the argument, because values of the
subtype ‘just work’ in place of values of the supertype. This is sometimes known as
subset inclusion or containment subtyping [Mit96, §10.4.3] [Gun92, § 9.1] as opposed
to coercion or conversion subtyping, where values of a subtype must be explicitly
converted to values of the supertype, as with Int � Float in machine arithmetic, or
S � D in Mossin’s binding-time analysis [HM94, §5] [Mos93, §4.2].

The subtyping relation � is the type ordering induced by the annotation ordering
≤, contravariant on function types as usual. We have ω ≤ 1, because a thunk anno-
tated ω may be used any number of times, including once, while a thunk annotated
1 may only be used at most once – “ω can be used in place of 1”. From this we may
derive, for example:

τω � τ1

τ1
1 → τ2

ω � τ1
ω → τ2

1

and so on. Contravariance arises because of the duality between input and output:
just as a (function returning a) ω-thunk may be used in place of a (function return-
ing a) 1-thunk, a function expecting a 1-thunk may be used in place of a function
expecting a ω-thunk. That is, ω ≤ 1 (rather than 1 ≤ ω) leads to the correct subtype
ordering.

Subsumption addresses a problem, which we call the poisoning problem, found in
the work of Turner et al. [TWM95a]. For the second example above, their analysis
infers the type Intω for b. Why? Clearly a’s type must be Intω, since a is used more
than once. So a non-subsumptive type system must attribute the type (Intω → Int1)ω

to f ′. But since f ′ is applied to b as well, b gets f ′’s argument type Intω. We call this
the poisoning problem because one call to f ′ poisons all the others. We have seen
that this problem does not arise in our system.

Crucially, the implementations we have in mind, and specifically the abstract ma-
chine described in Section 2.3, use self-updating thunks [PJ92, §3.1.2]. This means
that thunks a and b in the example each carry information on whether they require
to be updated, and f ′’s behaviour is independent of this information. In an imple-
mentation where the consumer of a thunk performs the update [BHY88], variable
occurrences are annotated with update flags, and our subsumption rule would not be
sound. Soundness can however be recovered by additional runtime support, as in
Kobayashi’s system [Kob99, rem. 2.6].

3.3.6 Demands and recursive binding groups

The letrec construct defines a mutually-recursive binding group. In general the us-
ages of the bound variables are interdependent: the body may demand certain vari-
ables, which may demand others, which may demand yet others, some of which may
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already have been demanded. If we define demanded(xi) to be the number of times
the variable xi is actually demanded during evaluation of the letrec expression, then
we may rewrite the occurrence-check clause in (�1-LetRec) as follows:7

demanded(xi) > 1⇒ |σi| = ω for all i

This says that for each variable, if it is demanded more than once then it must be
annotated ω.

However, calculating demanded(xi) accurately at compile time is non-trivial (even
over the restricted domain {0, 1, ω}), and not really necessary. The (�1-LetRec) rule
approximates demanded(xi) as follows:

demanded(xi) ≤ occur(xi, e) +
n∑

j=1

occur(xi, ej)

This says that the demands on xi during evaluation of the letrec are no more than
the sum of its occurrences in the body and those in the right-hand sides of each
binding. Since each right-hand side is evaluated at most once, this is a safe (over-)
approximation; the inequality is strict only when one or more bindings in the letrec
are dead (i.e., never demanded). For letrec 〈x = y + 1; y = 3; z = y + 2〉 in x
the approximation yields demanded(y) ≤ ω, but since z is dead8 the only demand
comes from x’s right-hand side, and the true value is 1. Since in practice other
phases of compilation can be expected to remove dead bindings, this approximation
is reasonable.9

3.4 The goodness ordering

With the well-typing rules of the previous section, many L0 programs have more than
one valid LIX1 typing. For example, the program letrec x : Int = 5 in x + 2 may be
annotated either as letrec x : Int1 =• 5 in x + 2 or as letrec x : Intω =! 5 in x + 2. Both
have the same L0 types, and both are well-LIX1-typed, but obviously we prefer the

7Not counting uses arising indirectly from applications, which depend instead on rules (�1-Abs)
and (�1-App) for correct annotation.

8“ ‘Whose chopper is this?’ ‘Zed’s’ ‘Who’s Zed?’ ‘Zed’s dead, baby; Zed’s dead.’ ” – Fabienne and
Butch, Pulp Fiction [Var94, track 8] [Tar94, p. 135].

9We could be more accurate and obtain the correct demand for y above as follows. Write � for the
guard function n � m = (n = 0 ? 0 : m):

� 0 1 ω

0 0 0 0
1 0 1 ω
ω 0 1 ω

Then the vector demanded(xi) may be defined as the pointwise least fixed point of:

demanded(xi) � occur(xi, e) +
n∑

j=1

demanded(xj) � occur(xi, ej)

This more accurate formulation turns out to be useful later in Appendix C.
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first typing, because the first allows us to avoid updating the binding for x whereas
the second does not. In this section, we define a goodness ordering � that formalises
our intuition as to which typing is the best.

3.4.1 Intuition

The first typing in the example above is better than the second because the update
flag χ on the binding is • (“not updatable”) rather than !. Since the update flag is
computed from the corresponding usage annotation κ, this means that for bindings
the best annotation is the maximum annotation: 1, since ω ≤ 1. Similarly for ab-
stractions: the best update flag is • (“not copyable) and hence the best annotation
is 1. None of the other usage annotations in the term or types are relevant, since
only these two affect the update flags and hence subsequent execution.

3.4.2 Existence

Now observe that in the well-typing rules, we impose no negative constraints on an-
notations: increasing one annotation may require other annotations to increase, but
will never require them to decrease (i.e., all constraints are covariant). This means
that there is always a typing that (pointwise) maximises the annotations of interest;
in fact, there is always a typing that (pointwise) maximises all annotations, making
as many as possible 1. We define this to be the best typing, and call the pointwise
extension of ≤ to types (covariant on function types) the goodness ordering �.

We can formally prove the existence of a best solution using the constraint theory
of Sections 3.5.1 and D.3 below (q.v.). Briefly, a solution of a constraint C is defined
to be a substitution S such that �e SC, i.e., for all κ, κ′, we have C �e 〈κ ≤ κ′〉 ⇒
Sκ ≤ Sκ′. The set of solutions SC = {S | �e SC} of a given constraint C can
be partially ordered under the obvious pointwise ordering S � S′ = ∀u . Su ≤
S′u. Furthermore, the poset (SC ,�) is lub-closed: if �e SC and �e S′C then
�e (S � S′)C.10 (In other words, SC is a Moore family [NNH99, §3.2.3].) Thus if

there exists any solution at all, there exists a greatest solution under the pointwise
ordering.

3.4.3 Covariance of �

The goodness ordering is covariant on function types:

σ1 � σ′
1 ∧ σ2 � σ′

2 ⇒ (σ1 → σ2) � (σ′
1 → σ′

2)

This is in contrast with the subtype ordering:

σ′
1 � σ1 ∧ σ2 � σ′

2 ⇒ (σ1 → σ2) � (σ′
1 → σ′

2)

10Proof Consider a constraint 〈κ ≤ κ′〉 in C. By assumption we have Sκ ≤ Sκ′ and S′κ ≤ S′κ′.
We wish to prove (S � S′)κ ≤ (S � S′)κ′. Observe that (S � S′)κ = (Sκ � S′κ) ∈ {Sκ, S′κ}. Now
Sκ ≤ Sκ′ ≤ (Sκ′ � S′κ′) = (S � S′)κ′, and similarly S′κ ≤ S′κ′ ≤ (Sκ′ � S′κ′) = (S � S′)κ′. The
result follows by transitivity of ≤. �
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and may be somewhat surprising. To see why this is correct, consider the usage
annotations on a function f with type (τ1

κ1 → τ2
κ2)ω:

• We want to maximise κ2, because it may annotate a lambda or a letrec binding,
and 1 will yield better results than ω.

• We want to maximise κ1, because if this function is exported it should place the
least demand possible on the caller. (We need consider only exports because
within a single module, maximising the argument’s topmost annotation will
force κ1 upwards anyway.)

While maximising κ1 is consistent with the subtype ordering, maximising κ2 is in
opposition to it. This is because we want not the most general or usable type but the
one that is most informative about the context (Section 3.7.2). In a sense, for the
present inference information flows from context to term, whereas for conventional
type systems information flows from input to output. The goodness ordering reflects
this flow.

3.5 Usage inference

The final part of our type-based analysis is the inference algorithm IT1, which must
compute the best valid LIX1 typing for any L0 program. That is, when presented
with an L0 program, this algorithm must infer an equivalent LIX1 program which
is well-typed according to the rules of Section 3.3; and if there is more than one
such, it should choose the one that is the ‘best’ according to the goodness ordering
of Section 3.4.

The well-typing rules in Figure 3.2 include a number of side conditions that con-
strain usage annotations. For example, the second condition of the (�1-Abs) rule
states that if the bound variable occurs syntactically more than once in the body, the
topmost annotation of its type must be ω. Treated as rules for checking a typing,
these are trivial to implement; but the construction of such a typing ex nihilo is not
so trivial. Many such constraints may apply to a single annotation, and annotations
may be interdependent.

Such difficulties can be overcome in a general and powerful way. Whenever we
are required to provide an annotation that is not at present completely determined,
we simply generate a fresh usage variable for that annotation. Whenever we en-
counter a constraint that cannot yet be checked because not all its annotations are
ground, we record the constraint and proceed. This first phase yields a pair: an ex-
pression with free usage variables, and a set of constraints over those variables. Then
in a second phase we find values for all the variables such that all the constraints are
satisfied. Since all the side conditions are satisfied by these values, the ground typ-
ing resulting from applying this substitution satisfies the well-typing rules. Indeed,
in general there is more than one such substitution, and we may choose the best one
as defined in Section 3.4.

This section begins by introducing the constraint notation we use (Section 3.5.1).
The first phase �1 of the inference is described in Section 3.5.2. A pessimisation
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Figure 3.4 Type inference rules from L0 to LIX1.
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(�1-Var)
Γ, x : σ �1 x � x : σ; ∅; �x�

(�1-Lit)
Γ �1 n � n : Intω; ∅; ��

Γ �1 M � e : Intκ; C; V
Γ �1 Mi � ei : σi; Ci; Vi i = 1, 2
(C3, σ) = FreshLUB(σ1, σ2) (�1-If0)

Γ �1 if0 M then M1 else M2 � if0 e then e1 else e2 : σ;
C ∧ C1 ∧ C2 ∧ C3; V � (V1 � V2)

Γ �1 Mi � ei : Intκi ; Ci; Vi i = 1, 2
(�1-PrimOp)

Γ �1 M1 + M2 � e1 + e2 : Intω; C1 ∧ C2; V1 � V2

σ1 = �t1�freshσ fresh v
Γ, x : σ1 �1 M � e : σ2; C1; V
C2 = {V (x) > 1⇒ 〈|σ1| = ω〉}
C3 =

∧
y∈Γ{V (y) > 0⇒ 〈|Γ(y)| ≤ v〉}

(�1-Abs)
Γ �1 λx : t1 . M � λv,v†

x : σ1 . e : (σ1 → σ2)v; C1 ∧ C2 ∧ C3; V \ {x}

Γ �2 M � e : (σ1 → σ2)κ; C1; V1

Γ �2 A � a : σ′
1; C2; V2

C3 = {σ′
1 � σ1} (�1-App)

Γ �2 M A � e a : σ2; C1 ∧ C2 ∧ C3; V1 � V2

σi = �ti�freshσ for all i
Γ, xj : σj �1 Mi � ei : σ′

i; Ci
1; Vi for all i

C1 =
∧

i

(
Ci

1 ∧ {σ′
i � σi}

)
Γ, xj : σj �1 M � e : σ; C2; V

C3 =
∧

i{
(
V (xi) +

∑
j Vj(xi)

)
> 1⇒ 〈|σi| = ω〉}

(�1-LetRec)
Γ �1 letrec xi : ti = Mi in M � letrec xi : σi =|σi|† ei in e : σ;

C1 ∧ C2 ∧ C3; (
⊎

i Vi � V ) \ {xi}
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pass Pess, presented in Section 3.5.3, permits use of the inference for separately-
compiled modules. Finally in Section 3.5.4 we pass to the second phase CS of the
inference, constraint solution. The combination of these three parts yields the com-
plete inference:

IT1(Γ, M) � (CS ◦ Pess ◦�1)(Γ, M) = (e, σ)

where e : σ is the best well-typed LIX1 term corresponding to M .

3.5.1 Constraints

Informally, a constraint is simply a set of equalities 〈κ = κ′〉 or inequalities 〈κ ≤ κ′〉
which constrain the valid assignments to the variables. Constraints are combined
with ∧, and the trivial constraint is denoted ∅. We write {P ⇒ C} to abbrevi-

ate
{

C if P

∅ otherwise
; note that this is not a conditional constraint, since P must be stat-

ically known. A solution S to a constraint is an assignment (or substitution) that
satisfies all the equalities and inequalities. The constraint C entails the constraint D,
written C �e D, iff all solutions of C are also solutions of D. Two constraints are con-
sidered equal if each entails the other. We abbreviate the statement “S is a solution
to C” by writing �e SC. Full details are given in the appendix, Section D.3.

3.5.2 Inference algorithm phase 1

The first phase of the inference algorithm, �1, converts an L0 program into an LIX1

program with usage variables in place of ground usage annotations, along with a
constraint on these variables describing valid assignments. The algorithm proceeds
inductively on the syntax of the input program.

This phase is defined in Figure 3.4. The figure defines a relation

Γ �1 M � e : σ; C; V

which may be read “In the LIX1 type environment Γ, the L0 term M translates to
LIX1 term e, which has type σ, generated constraints C, and free term variables V .”
Notice that �1 may be viewed as a function: Γ and M are inputs (inherited at-
tributes), and e, σ, C, and V are outputs (synthesized attributes). The multiset11 of
free term variables V is used to count syntactic occurrences, implementing the occur
function of Section 3.3.3 without an additional pass over the term. We denote usage
variables by u, v, and permit them to occur wherever a κ annotation is permitted.

The well-typing rules of Figure 3.2 need little modification to be used as inference
rules. As is standard for inference algorithms [Mit96, lemma 10.4.9], we restrict uses
of (�1-Sub) to the argument derivation of (�1-App), the condition and branches of
(�1-If0), arguments of (�1-PrimOp), and bindings of (�1-LetRec). Constraints

11A multiset [Bli89] is a function taking each possible element to a natural number multiplicity. The
empty multiset is denoted ��, the singleton multiset �x�, multiset union (addition of multiplicities) by
V1 � V2, multiset lub (pointwise maximum multiplicity) by V1 � V2, and deletion of a set of elements
from a multiset by V \ A, where (V \ A)(x) = 0 if x ∈ A and V (x) otherwise.
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are generated at these points by using the rules of Figure 3.3 in reverse: to obtain
the conclusion, we must generate the constraints required by the antecedents (read-
ing 〈κ ≤ κ′〉 for κ ≤ κ′). The result is a syntax-directed rule set, and hence an
algorithm.12

The technical details of fresh variable generation have been omitted for clarity,
but are entirely standard. The operation “fresh v” chooses a fresh usage variable v.
The operation �t�freshσ returns a σ-type of the same shape as the t-type t, but with
a fresh usage variable in each annotation position; e.g., �Int → Int�freshσ = (Intu1 →
Intu2)u3 . The operation FreshLUB takes a vector of types and returns a constraint
and a type (possibly containing fresh usage variable annotations) such that under
the constraints, the result type is the least upper bound of the arguments.13 For
example

FreshLUB((Int1 → Intu1)1,
(Intω → Intu2)ω) = ({〈u1 ≤ u3〉, 〈u2 ≤ u3〉}, (Intω → Intu3)1)

where u3 is fresh.
The update flags χ on lambdas and bindings are dependent on the correspond-

ing ground usage annotations, according to the function ·†, defined in Section 3.3.1.
Since their values depend on the ground values of the corresponding annotations,
they must be computed after the substitution performed at the end of the second
phase (Section 3.5.4); for simplicity of presentation we disregard this issue and
write, e.g., v† directly in (�1-Abs), intending this to be computed after the final
substitution. Since the substitution chosen by our algorithm takes all free usage
variables to either 1 or ω, the value of ·† is well-defined everywhere it is used.

3.5.3 Pessimisation

The analysis must in practice deal with separate compilation of modules. Specifi-
cally, it must allow for uses by subsequent modules of variables exported from the
current module, even though these uses are not visible to the analysis. We handle
this problem with a pessimisation step in the analysis,14 performed after inferring the
constraints but before finding a solution to them.

Pessimisation (which we discuss in detail in Section 3.8) requires adding a set
of pessimising constraints to C. These constraints simulate all possible future uses of
exported variables, by forcing all positive annotations in types of exported variables
to ω. Let ∆ be the type environment consisting of only those variables which are
exported from the current module. Then Pess(∆) � {Pess+(σ) | σ ∈ rng(∆)},
where

Pess+(τκ) = Pess+(τ) ∧ 〈κ = ω〉
Pess−(τκ) = Pess−(τ)
Pessε(σ → σ′) = Pessε̄(σ) ∧ Pessε(σ′)
Pessε(Int) = ∅

12This clear explanation of the inference process is taken more-or-less verbatim from [RF01, §5.1].
13In other words, (C, σ) = FreshLUB(σ1, σ2) only if C �e 〈σ1 ≤ σ〉 and C �e 〈σ2 ≤ σ〉, and for all

σ′, if C �e 〈σ1 ≤ σ′〉 and C �e 〈σ2 ≤ σ′〉 then C �e 〈σ ≤ σ′〉. The definition is left as an exercise.
14Thanks are due to David N. Turner and Clem Baker–Finch for this apt term; Joshua Lawrence

directed the author to a prior use in The Story of Mel [Ray91, pp. 406ff].



3.5. USAGE INFERENCE 57

Then the constraint passed to the constraint solving algorithm below is actually C ′,
where C ′ = C ∧ Pess(∆). For example, let ∆ = {f : ((Intu1 → Intu2)u3 → Intu4)u5 ,
g : Intu6}. Then Pess(∆) = {〈u5 = ω〉, 〈u1 = ω〉, 〈u4 = ω〉, 〈u6 = ω〉}.

3.5.4 Inference algorithm phase 2

Recall that the first phase has obtained from the source term M and environment Γ
a triple (e′, σ′, C ′) representing the space of possible annotations of M (the set V is
of no further interest). We must choose the (unique) best solution S as defined in
Section 3.4, and apply it to e′ and σ′ to obtain a ground LIX1 term Se′ and a ground
type Sσ′, the results of the analysis.

The algorithm CS takes as input a set
∧n

i=1 Ci of atomic constraints, each either
〈κ = κ′〉 or 〈κ ≤ κ′〉. It outputs an assignment of values 1 or ω to the usage variables
ui such that as many as possible are set to 1 while satisfying all the constraints, or
fails if the constraints are unsatisfiable.15

We make use of a union-find [Tar75] [TvL84] [CLR90, §22.3] data structure
to maintain a set of equivalence classes of usage variables, with two operations:
FIND(ui) to find the distinguished (root) variable in the class of which ui is a mem-
ber, and UNION(ui, uj) to merge the equivalence classes of which ui and uj are
members. In addition, we maintain a finite map from the root variables of the equiv-
alence classes to either a constant usage annotation 1 or ω, or a pair (uk, vl) of sets
of variables bounding the equivalence class from below and above respectively. Ini-
tially each variable belongs to a singleton equivalence class of its own, and every
equivalence class maps to the pair (∅, ∅) of empty bounds.

We may interpret the data structure as a constraint in the following way. Firstly,
interpret each equivalence class having k members as a conjunction of k − 1 atomic
equality constraints forming a spanning tree of members of the class. Secondly, in-
terpret each mapping from a root variable ui to a constant κ as an equality constraint
〈ui = κ〉. Thirdly, interpret each mapping from a root variable ui to a pair of bounds
(uk, vl) as a conjunction of inequality constraints

∧
k〈uk ≤ ui〉 ∧

∧
l〈ui ≤ vl〉. The

conjunction of these three sets of constraints is the constraint denoted by the data
structure. Algorithm failure is interpreted as the unsatisfiable constraint 〈1 ≤ ω〉.
Further input is permitted after failure, but yields only repeated failure.

The algorithm considers each atomic constraint C1, C2, . . . in turn, using it to
update the data structure in such a way that after stage m, the denotation of the
data structure is equal to the conjunction

∧m
i=1 Ci of constraints seen so far, and thus

the conjunction of the data structure and the remaining constraints
∧n

i=m+1 Ci is
equal to the complete set of constraints. Once the algorithm is complete (m = n),
the solution may simply be read off the data structure. Alternatively, at any point the
algorithm may fail, thus indicating that no solution exists.

15Thanks are due to Fritz Henglein for pointing out to the author that this problem is simply reach-
ability. Consider a directed graph with vertices 1, ω, and the usage variables of the constraint, and
for each constraint 〈κ ≤ κ′〉 an edge from κ to κ′ (equality constraints are represented by a pair of
edges). Then if vertex 1 is reachable from vertex ω, the constraint is insoluble; otherwise, each variable
reachable from ω should be set to ω, and the remainder to 1. This can be solved by a simple worklist
algorithm, in time linear in the number of edges.
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Although there are eighteen different types of constraint (κ and κ′ may each be 1,
ω, or a variable, and the constraint may be equality or inequality), we need consider
only four: 〈ui = 1〉, 〈ui = ω〉, 〈ui = uj〉, and 〈ui ≤ uj〉. All the others are either
equivalent to one of these, trivial (e.g., 〈uj ≤ 1〉), or cause immediate failure (e.g.,
〈1 ≤ ω〉).

For each atomic constraint, the algorithm first reduces it to one of the six cases
above. If it is one of the four nontrivial constraint forms, it begins by replacing each
variable in the constraint with the root variable of the equivalence class to which it
belongs. It then proceeds as follows:

• 〈ui = 1〉 or 〈ui = ω〉: if ui maps to 1 or ω respectively, then do nothing. If ui

maps to ω or 1 respectively, then fail (we have found a conflict). Otherwise,
ui maps to (uk, vl); update the map so ui maps to 1 or ω respectively, and
recursively add the constraints 〈vl = 1〉 or 〈uk = ω〉 respectively.

• 〈ui = uj〉: if ui maps to 1 or ω, recursively add the constraint 〈uj = 1〉 or
〈uj = ω〉 respectively; similarly for uj . Otherwise ui maps to (uk, vl) and uj

maps to (u′
k, v

′
l); merge the two equivalence classes and map the root of the

combined equivalence class to (uk u′
k, vl v

′
l), i.e., the lower (upper) bound is the

union of the lower (upper) bounds of ui and vj .

• 〈ui ≤ uj〉: if ui maps to 1 or ω, recursively add the constraint 〈uj = 1〉 or
do nothing respectively; dually for uj . Otherwise ui maps to (uk, vl) and uj

maps to (u′
k, v

′
l); update the map so that ui maps to (uk, ujvl) and uj maps to

(uiu′
k, v

′
l).

Once all the constraints have been considered, the data structure maps each variable
(by equivalence class) either to a constant or to a pair of bounds.

Now we are in a position to determine the optimal solution. If a variable is
mapped to a constant, then clearly it must take that value. If a variable is mapped
to a pair of bounds, it may take either 1 or ω as value, so long as this is consistent
with the bounds. It is clearly safe to set all such floating variables to the same value;
if we choose 1 then we obtain the best solution (the most 1s possible, Section 3.4).
We thus derive from the data structure a substitution taking each variable to either 1
or ω in a way consistent with the constraint

∧n
i=1 Ci and optimal with respect to the

goodness ordering.
Having derived the optimal substitution S from C ′, algorithm CS finally applies

it to e′ and σ′, returning the pair (Se′, Sσ′) as result.
The constraint solver described in this section is used again in the inference sys-

tem of Chapter 4, to compute both the final solution and the intermediate transitive
closures required for generalisation. In the latter case, we extend the solver by per-
mitting access to the internal data structure and reification of the data structure as a
constraint. We discuss this further in Section 4.5.5.

The algorithm makes essential use of the fact that the domain has only two
points; were the usage annotation domain to be extended (as, e.g., Appendix C),
it would have to be replaced with a more general constraint solver.
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3.6 Proofs

For the type-based usage analysis we have so far described to be correct, recall from
Section 3.1 that certain proofs are required. We present these proofs in outline be-
low. In Section 3.6.1 we prove that the well-typing rules are sound with respect to
our operational definition of usage, and that all L0 terms have a valid LIX1 typing.
In Section 3.6.2 we prove that the inference algorithm computes a valid LIX1 typing
for every source term. In Section 3.6.3 we prove that the result of the inference al-
gorithm is in fact the best solution according to the goodness ordering. Additionally,
we prove a complexity bound for the inference algorithm (Section 3.6.4). We use
the same notation as Chapter 2.

3.6.1 Well-typing rules

To be correct, the well-typing rules must guarantee the desired properties: that

• the computed χ-annotations are correct, i.e., respected by the execution, and

• the result of executing a well-typed target program is the same as that of exe-
cuting the corresponding source program.

Since the operational semantics has been designed to validate the χ-annotations by
failing if they are invalid (Section 2.3), the first property may be demonstrated by
showing that the well-typing rules are sound with respect to the operational seman-
tics. As in Section 2.5, this means that a well-typed LIX1 term e must never terminate
in a configuration in Wrong, BadBinding, or BadValue; if it terminates it must do so
in a configuration in Value or BlackHole.

The operational semantics we use for LIX1 is simply that of LIX0, modified
appropriately in order to carry τ - and σ-types as instrumentation rather than t-
types and to ignore κ annotations on lambdas. An analogue of the Correspondence
Lemma 2.4 states that the instrumentation is ignored, i.e., that LIX1 and LX execute
in lock-step. The results are as follows.

Theorem 3.1 (Type soundness)
For all e ∈ LIX1, if ∅ �1 e : σ and there exists a configuration C ′ such that (e)〈;;〉 ↓ C ′,
then C ′ ∈ Value ∪ BlackHole.

Proof By Progress Lemma D.10 (proven by cases on C), and induction on the
length of derivation of (e)〈;;〉 ↓ C ′. The full proof is given in the appendix,
Theorem D.11. �

Progress Lemma D.10 states that the configuration remains well-typed after a
reduction step. It follows that it remains closed, and this is equivalent to the don’t-
drag side condition of Gustavsson and Sands on (�-Var-Once), described in Sec-
tion 2.6, that if a variable is used at most once, no references to it remain after it is
used.

The second property makes use of the stripping operation (e)� = M (defined in
Section 3.2.2), which takes an LIX1 term to the corresponding L0 term by stripping
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both all update flags and all usage annotations. We must show that e gives the same
result as M , i.e., if M terminates with result V (or a black hole), then e terminates
with the same result (or a black hole, respectively), and vice versa. It is sufficient to
observe results at ground types only (here just Int).

Theorem 3.2 (Correctness)
For all LIX1 target programs e, where ∅ �1 e : σ, let M be the corresponding L0

source program (e)�. Then we have

(i) (e)〈;;〉 ↓ ⇔ (T0�M �)〈;;〉 ↓
( i.e., the LIX1 program e terminates iff the L0 program M does); and

(ii) If (e)〈;;〉 ↓ C ′ and (T0�M �)〈;;〉 ↓ C ′′, then all the following hold:

(a) C ′ ∈ BlackHole⇔ C ′′ ∈ BlackHole

(b) C ′ ∈ Value⇔ C ′′ ∈ Value

(c) C ′ = 〈H; n; ε 〉 ⇔ C ′′ = 〈H ′; n; ε 〉

( i.e., if the two programs terminate, they both terminate in the same way, viz.,
black hole, non-ground value, or the same ground value).

Proof By the Correspondence Lemma we may ignore the instrumentation, and
consider the two FLX terms M1 = (e)� and M0 = (M)�. The two directions
of (i) are proven separately, showing by induction on the length of the respec-
tive reduction sequence that each can simulate the other and relating terminal
configurations. The full proof appears in the appendix, Theorem D.17. �

We also must show that all source terms have a target typing:

Theorem 3.3 (Nonrestrictivity)
For all L0 environments Γ, terms M , and types t, if Γ �0 M : t then there exists an
LIX1 environment Γ′, term e, and type σ such that (Γ′)� = Γ, (e)� = M , (σ)� = t,
and Γ′ �1 e : σ.

Proof Let Γ′ = �Γ�ω, e = �M�ω, and σ = �t�ωσ , where �·�ω extends �·�ωσ to typing
environments and terms, placing ω annotations and ! flags everywhere (see
Section 3.3). �

Together, these three results strongly support our claim that the type system mod-
els our operational notion of usage. Theorem 3.1 demonstrates that well-typed pro-
grams do not go wrong: the analysis yields operationally correct update flags. The-
orem 3.2 demonstrates that the observable behaviour of a well-typed LIX1 program
is identical to that of its corresponding L0 program: the analysis does not affect be-
haviour. And Theorem 3.3 reassures us that there is at least one corresponding LIX1

program for every L0 program: the analysis is soft (see Section 1.5.5), and does not
reject any program. However, these results do not tell us whether or not the type sys-
tem chooses good update flags; for this we must rely on practical experience, which
we obtain in Section 3.7.
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3.6.2 Inference phase 1

There are two desirable properties of an inference (with respect to the well-typing
rules). Soundness states that if a term is typeable, the inference yields a well-typing
for it. Completeness, on the other hand, states that all well-typings for the term are
instances of the result of the inference.

The inference algorithm described in Figure 3.4 is sound and complete with re-
spect to the well-typing rules of Figure 3.2. That is, for every well-typed L0 term �1

yields a constraint with at least one solution, every solution yields a well-typed LIX1

term, and all well-typed annotations of the L0 term appear in the set of solutions.
In stating this formally we make use of Theorem 3.3 to justify quantifying over

all LIX1 terms rather than all L0 terms; the theorem states that every L0 term has at
least one corresponding LIX1 term. We state our claims formally as follows.

Theorem 3.4 (Soundness and completeness of inference phase 1)
For all Γ in LIX1 and M, t in L0 such that (Γ)� �0 M : t and 1 /∈ ann+(Γ),

(i) �1 (Γ, (e)�) = (e′, σ′, C, V ) is well defined16

( i.e., the algorithm �1 is deterministic and does not fail);

(ii) (e′)� = (e)� and (σ′)� = (σ)�

( i.e., the inference algorithm merely annotates the source term, and does not
alter it or its source type);

(iii) ∀S . �e SC ⇒ Γ �1 Se′ : Sσ′

( i.e., all solutions of the resulting constraint are well-typed); and

(iv) For all e, σ such that (e)� = M , (σ)� = t, and Γ �1 e : σ, there exists a
substitution S such that �e SC and Se′ = e, Sσ′ = σ.
( i.e., all well-typed annotations of the source term are solutions of the resulting
constraint).

Proof Proofs of (i) and (ii) are straightforward. (iii) is proved by induction over
the structure of the inference derivation tree and inspection of each inference
rule, comparing it with the corresponding well-typing rule. (iv) follows from
the syntax-directed nature of the rules, and a similiar argument to (iii). A full
proof appears in the Appendix, Section D.17. �

3.6.3 Inference phase 2

The constraint solution algorithm described in Section 3.5.4 always terminates with a
solution if one exists. Furthermore, the solution returned is the unique best solution
determined by the criteria of Section 3.4. However, the solution is not necessarily
principal (see Section 3.7.2).

Theorem 3.5 (Soundness and pseudo-completeness of inference phase 2)
For all constraints C,

16It is well defined modulo the names of fresh variables; we continue to omit details of fresh variable
management.
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(i) Algorithm CS terminates.

(ii) If there exists an S such that �e SC, then CS succeeds.

(iii) If CS succeeds with substitution S, then �e SC, and for all S′ such that �e

S′C, S′ � S ( i.e., S is the best solution to C).

Proof (i) follows from Theorem 3.6 below. (ii) and (iii) follow from consideration
of the invariant stated in Section 3.5.4, namely that the data structure is an iso-
morphic representation of the constraint. A full proof appears in the appendix,
Section D.19. �

The algorithm is very efficient, due to the simple nature of the constraints:

Theorem 3.6 (Complexity of constraint solver)
Algorithm CS has essentially O(1) amortized cost per constraint.

We prove this amortized complexity result using the accounting method [CLR90,
§18.2]. By reifying costs as dollars and attaching them to parts of the data structure,
we are able to charge extra for cheap operations and use these saved costs to pay for
more expensive ones. If the charge for each operation is O(f), and there is always
sufficient money to pay for the time we actually use, then the algorithm has O(f)
amortized cost.17

Proof We maintain the invariant that every variable uk, vl appearing in a (uk, vl)
entry in the mapping has $1 on it.

Pay $1 for a 〈ui = 1〉 or 〈ui = ω〉 constraint, $2 for a 〈ui = uj〉 constraint, and
$4 for a 〈ui ≤ uj〉 constraint.

• Adding a constraint 〈ui = 1〉 or 〈ui = ω〉 costs $1 plus the cost of adding
one 〈uk = 1〉 or 〈uk = ω〉 constraint for each uk or ul. This costs $1
per variable (by induction), but each variable has $1 on it already, by our
invariant. Thus the total cost is $1.

• Adding a constraint 〈ui = uj〉 costs $1 plus possibly the cost of adding an
〈· = 1〉 or 〈· = ω〉 constraint, which is $1 (by induction). Thus the total
cost is (at most) $2.

• Adding a constraint 〈ui ≤ uj〉 costs $1 plus possibly the cost of adding an
〈· = 1〉 or 〈· = ω〉 constraint, which is $1 (by induction). We also add two
variables to entries in the mapping, and must place $1 on each. Thus the
total cost is (at most) $4.

Each $1 pays for an O(1) operation, and the invariant is maintained. We pay at
most $4 per constraint. Hence the algorithm has an amortized cost of at most
O(1) per constraint. �

17The image beneath the text here is of a New Zealand $1 coin, depicting the kiwi apteryx australis,
our national bird.
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This analysis assumes we can implement the UNION and FIND operations in
constant time. In fact there is no known algorithm to do this, but the union-find
algorithm with balancing and path compression achieves m operations on n variables

in O(mα(m, n)) time, where α(m, n) ≤ 4 for all n ≤ 22·
··
2

}
17

, essentially constant
time per operation [CLR90, pp. 449, 453].

3.6.4 Overall results

We now combine the results of the above sections into three key proofs about the
inference as a whole.

Theorem 3.7 (Inference soundness)
For all M in L0, if (CS◦ �1)(∅, M) = e : σ then ∅ �1 e : σ and (e)� = M .

Proof Follows directly from Theorems 3.4 and 3.5, and inspection of the definition
of �. �

Theorem 3.8 (Inference pseudo-completeness)
For all M , if (CS◦ �1)(∅, M) = e : σ then for any e′, σ′ such that (e′)� = M and
∅ �1 e′ : σ′, we have e′ � e and σ′ � σ (where � is extended pointwise to types,
usage annotations, and update flags in terms).

Proof Follows from Theorems 3.4 and 3.5 and the definition of �. �

Theorems 3.7 and 3.8 above relate to whole-program usage analysis, with no
imported or exported variables. In order to extend them to separate compilation, we
would have first to define more precisely what we mean by a module and a signature.
We would then restate the above theorems, extending them to modules, nonempty
initial environments, and the pessimisation step as detailed informally below:

• “For all well-typed L0 modules and all maximally-applicable LIX1 environ-
ments, the inference (�1;Pess; CS) succeeds, yielding a well-typed LIX1 mod-
ule whose erasure is the original module, and whose signature is maximally
applicable.”

• “For all well-typed L0 modules and all maximally-applicable LIX1 environ-
ments, the inference (�1;Pess; CS) yields a LIX1 module that is better (in
terms of the goodness ordering) than any other well-typed LIX1 module whose
erasure is the original module.”

We do not give formal details of this extension.

Theorem 3.9 (Inference complexity)
If we assume that nesting of conditionals and abstractions is limited to a constant
depth and a linear algorithm exists for union-find, then the complexity of the infer-
ence IT1 is bounded by O(n), where n is the size of the program.
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Proof Because the rules are syntax-directed and types are explicit, phase 1 (�1)
generates a constraint set of size approximately linear in the size of the pro-
gram text. The approximation arises from the (�1-If0) and (�1-Abs) rules. In
the former, the subtyping of the result type generates constraints proportional
to the result type (which is not specified separately in the program text but
is bounded by the size of the branches of the conditional). In the latter, con-
straints are generated for each lambda that are proportional to the number of
its free variables. Hence arbitrary nesting of conditionals and/or abstractions
can yield arbitrarily large constraint sets. We do not expect this situation to
arise in practice and so we rule it out by assumption above, but even if we
were to relax this the constraint set would be bounded by the square of the
program text size.18

Pessimisation generates at most one constraint per annotation position in types
of signature variables, and this is bounded by the size of the program.

Both are straightforward walks over the abstract syntax tree, taking O(1) time
per node.

By Theorem 3.6 the constraint solver (CS) in phase 2 takes time essentially
linear (actually O(mα(m, n)) for m constraints and n usage variables, where

α(m, n) ≤ 4 for all n ≤ 22·
··
2

}
17

) in the size of the constraint set. The final
substitution takes time linear in the size of the program.

Combining the above yields the desired result. �

3.7 Discussion

When we implemented the monomorphic analysis of this chapter (extended to a
full-featured language) as described in Section 6.2.1, we discovered that it gave ex-
tremely poor results in practice. In the entirety of the standard libraries just two
thunks were annotated as used-once. More recent trials of the same analysis (Sec-
tion 6.8.3) confirmed these results. In Section 3.7.1 we explain the reason for this
poor behaviour. Section 3.7.2 discusses the lack of principal types and its conse-
quences.

3.7.1 Curried functions and separate compilation

The problem with the monomorphic usage analysis is most clearly evident for cur-
ried functions, particularly in conjunction with separate compilation. Consider the
following innocuous-looking definition:

g = λx . λy . x + y − 1
18Thanks to Jörgen Gustavsson for pointing this case out to us [Gus99, §5.7].
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On first glance, it would seem as if g demands its arguments only once, yielding a
type like:

g : (Int1 → (Int1 → Intω)ω)ω

However, this type is not correct. The function g may be partially applied, as in the
following example:

let h = g z
in h 3 + h 4

Here the value of z will in fact be demanded twice, once for each call of h. So the
type of g above must be wrong. Returning to the definition of g, we see that x is
used inside the λy-abstraction, and so by (�1-Abs) the topmost annotation of the
type of x is at most that of the λy-abstraction – if the abstraction is used more than
once, so may x be.

There are two valid types we can assign to g:

g : (Intω → (Int1 → Intω)ω)ω

g : (Int1 → (Int1 → Intω)1)ω

In the first, the first argument is given the (bad) annotation ω, but in exchange
the function returned by g z has a ω-type. In the second, the first argument has
the (good) annotation 1, but the price is that the partial application of g cannot be
shared.

These constraints are perfectly reasonable: if g z is called many times, then z will
be demanded many times. But the LIX1 analysis is forced to make the choice once
and for all, at the definition site of g. If g is ever partially applied, then all uses of g
will have an ω annotation on their first argument. We have already called this bad
behaviour poisoning (Section 3.3.5), because the single partial application poisons g,
which then goes on to poison all its application sites.

The same is true even for the identity function idInt = λx : Int . x, which the
LIX1 analysis must type either as (Int1 → Int1)ω or as (Intω → Intω)ω, not both.
Although the problem does not solely lie with curried functions, it is the frequency
of curried functions in Haskell code that makes the LIX1 strategy such a poor one.

Indeed, if a function of two or more curried arguments is exported from the
current module, we must assume that it will be partially applied, and pessimisation
adds constraints to enforce this (Section 3.5.3). In the common case that all the
lambdas are adjacent, i.e., all arguments are required before any are used, this means
that all arguments but the last will be free in the final abstraction, and thus that all
arguments but the last will be forced to ω.

This is fatal for idiomatic Haskell, which strongly encourages curried function
definitions, both in syntax and in evaluator design [PJ92, §3.2.1] (unlike ML which
tends to encourage tupled arguments and uncurried functions). It means that the
LIX1 analysis can provide interesting usage annotations only for the last argument
of a function; inevitably poisoning ensures that this is insufficient to yield significant
(or even measurable) gains for real programs.

This failure was the strong motivation for the development of the polymorphic
usage analysis described in the next chapter.19

19Another possible way of addressing the problem of curried functions would be to treat adjacent �
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3.7.2 No principal types?

The use of a goodness ordering on types is a little unusual. Conventionally, one has
instead a principal type property [Jim96, Hin69], which states that every term (in an
environment) has a principal or most general type from which all other types that it
can be given may be derived, by subtyping or instantiation. Since the principal type
encapsulates all possible types of the term, it is chosen as the best type.

The type system �1, however, does not have the principal type property. The
(slightly contrived) function

f = λx . λy . letrec d = x + x in if0 x then y else d

for example may be typed either as (Intω → (Int1 → Int1)ω)ω or (Intω → (Intω →
Intω)ω)ω. If �1 had the principal type property, there would be a single type with
both of these as instances, and this would be the obvious type to choose for f . In
fact, however, neither type is a subtype of the other and their greatest lower bound
(Intω → (Int1 → Intω)ω)ω is not a valid type for f ; in other words, there is no principal
type for f .

This lack of principal types means we must find another means of choosing one
best type from a set of possible types. The goodness ordering (Section 3.4) is such a
means; in this case it selects the type (Intω → (Int1 → Int1)ω)ω as the best, enabling
updates of the d thunk to be avoided. But type systems with the principal type prop-
erty enjoy a number of pleasant properties, notably completeness and predictability,
which the goodness ordering is unable to provide. Is the loss worth it?

One very practical consequence of the lack of principal types is a lack of pre-
dictability. Since the full range of allowable types for a given function is not nec-
essarily representable within the type system, the analysis must heuristically choose
one. Inlining or duplicating the definition of a function, moving the definition to an-
other module, or even apparently unrelated changes to the program, may cause the
heuristic to choose differently in a subsequent compilation, leading to dramatically
different analysis results. This is not the case in a system with principal types.

Jim suggests [Jim96, §6] that some of the benefits of principal typings may be
had in their absence by finding a representation for all possible typings. In the system
of [TWM95a], closely related to ours, Turner et al. prove such a property by pairing
the type with the global constraint set Θ before solution (corresponding to our C in
�1). This representation certainly captures all possible typings, as we have shown
in Theorem 3.4. However, this trick does not allow us to give a principal LIX1 type
to every L0 term; selecting an LIX1 translation requires committing to a particular
solution of the constraint set, in general giving it a non-principal type.

Of course, principal types could be preserved by reifying the constraint and stor-
ing it within the type, using constrained polymorphism (Section 4.8.1). But Sec-
tion 4.7.3 argues that in fact principal types and usage analysis may be mutually
exclusive, explaining that generalisation of a function leads to the loss of usage in-
formation within it.

abstractions together, with a single rule for multiple abstraction (as, e.g., Nordlander [Nor98]) [per-
sonal communication, Mick Francis, January 2002]. A corresponding multiple application rule could
constrain the annotations of the supplied arguments as appropriate for the number of arguments pro-
vided. We have not investigated this. However, the problem exemplified by idInt would still remain.
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In summary, then, there is a tension between having principal types (which gives
predictability and avoids poisoning) and not having them (which gives more usage
information and simpler types). We discuss this further in Section 4.7.3.

3.8 Separate compilation

In this section we justify the use of pessimisation in Section 3.5.3.
Section 1.5.6 considered the difficulties of performing usage analysis in conjunc-

tion with separate compilation. We must perform the analysis without reference to
information on the usage of variables exported from the present module (signature
variables), and with only the usage types of variables imported from other modules
(not their right-hand sides). In order for this to work, we explained the necessity
for maximal applicability: we must ensure that usage types we provide for exported
variables permit any possible use by modules that import the present one.

What does this mean? Consider an exported function f = letrec c = 21 +
20 in λg . g c + 1. In what ways must we allow an importing module to use this
function?

• We must allow for each variable to be used multiple times, and so its topmost
annotation must be ω: e.g., f id + f id requires f : ((Intω → Int1)1 → Intω)ω.

• We must allow for each function’s result value to be used multiple times, so the
result annotation must be ω: e.g., letrec x = f id in x + x requires f : ((Intω →
Int1)1 → Intω)ω.

• We must allow for the function to be passed a function which uses its argument
multiple times, so the annotation of the argument of the function argument must
also be ω: e.g., letrec g = λx . x+x in f g requires f : ((Intω → Int1)1 → Intω)ω.

• And similarly for all other positive annotation positions.

Negative annotation positions do not matter because they do not affect the use of
the function; instead, they specify the use it makes of other functions.

More formally, to see how to do this we must examine the meaning of any possible
use.20 Careful inspection of the type inference rules (Figure 3.4) shows that positive
(negative) annotations in the typing environment only ever appear to the left (right)
of a primitive inequality constraint 〈· ≤ ·〉, and never in an equality constraint.21

Thus we guess that allowing any possible use would mean forcing any or all positive
20Trifonov considers the related notion of “future use” in [TS96, §4.1].
21Specifically: Because rule (�1-Var) takes the type σ of variable x from the type environment and

yields it as the expression target type, we must consider not only types in the environment, but also
the expression target type. In (�1-If0), the branch types σ1 and σ2 are constrained to be subtypes
of the least upper bound type σ. Rule (�1-PrimOp) places no constraint on the usages of the ei.
The abstraction rule (�1-Abs) bounds the topmost annotation of certain variables in the environment
to be less than v. Application (�1-App) places no constraint on the topmost usage annotation of
the function e1, but requires σ′

1 � σ1, where σ′
1 (appearing on the left) is an expression target type

(potentially from the typing environment), and σ1 is a negative portion of the type of e1, appearing on
the right. Finally in (�1-LetRec), the body types σ′

i all appear as subtypes of the binder types.
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annotations to ω and negative annotations to 1. However, further inspection of the
inference rules show that no constraint ever forces an annotation to 1 (the constant
1 simply never appears); thus we need consider only the first half, forcing any or all
positive annotations to ω.

When we import a module, the types of the imported variables are fixed. To
avoid violation of the constraints under any possible use, then, we must ensure that
when each module is compiled, all positive annotations of exported variables are
pre-forced to ω. Adding these constraints will not affect the solvability of the present
module, because they could have been induced by an appropriate program body
anyway. This is pessimisation, as defined formally in Section 3.5.3.

The approach of this section relates interestingly with the usual scheme in which
exported variables are given their principal types. These are minimal in the sub-
type ordering and permit all sound uses by means of subtyping, and correspond
to minimising positive annotations and maximising negative ones. Here we do not
have principal types (see Section 3.7.2), and instead force positive annotations to
the absolute minimum value to achieve maximal applicability, and allow negative
annotations to be maximised according to the goodness ordering (Section 3.4).

3.9 Related work

A number of researchers have addressed similar problems to those considered in this
chapter. We have already discussed Once Upon a Type [TWM95a, TWM95b], the
direct ancestor to the present work, in Section 1.3.5; we discuss the others below.

3.9.1 Gustavsson

The work of Gustavsson is closely related to ours, and so we address it in some detail.
Gustavsson [Gus98] presents a monomorphic, type-based usage analysis for es-

sentially the same source language as ours, but with the addition of update marker
check intervals ι as described in Section 2.6. Gustavsson’s type system features
the same subtyping relation as LIX1 (extended to cover the interval annotations),
but notationally the primitive “capability ordering” is opposed to ours: Gustavsson
writes ✓ ≤ ! [Gus98, §4.1], whereas we write ω ≤ 1.

Multiple occurrences are checked and annotated by linear environment manage-
ment in the style of Turner et al. [TWM95a] (Section 3.9.7). Values and expressions
have separate typing judgements, corresponding roughly with the fact that update
markers apply to values and updates apply to (bound) expressions. Occurrence of
variables free in a closure (Section 3.3.4) is dealt with by the rule (Value) which
injects values into expressions, such that if the value may be duplicated (by an up-
date) then all its free variables must be marked updatable. This allows an elegant
treatment of constructors later (see Section 5.3.2), similar to that of [Mar93]. It also
allows the separation of the use of a binding from the use of the value to which it is
bound, permitting the typing of

letrec x =• 1 + 2 in letrec y =! (λz . z) x in y + y
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which while well-annotated in LX is ill-typed in our system LIX1 (LIX1 cannot ex-
press that while x’s value is used twice, the binding itself is used only once). Gustavs-
son and Svenningsson [GS00b] attribute this separation to Faxén [Fax95]. There is
a connection here with the extended type system of Appendix C, which has separate
notions of demand and use and is able to type this expression successfully.

Although the type soundness results proven by Gustavsson [Gus98, §6] are not of
quite the same form as those proven in the present chapter, their import is identical.
The inference developed in [Gus99, c.5] is essentially the same as ours, modulo the
additional complexity of the constraints relating to the interval annotations. The
discussion of principal types in [Gus99, §5.5] refers to the combination of inferred
type and constraint set. The best solution is defined by the same ordering as ours, and
his constraint language strictly contains ours, so presumably Gustavsson’s solution
algorithm would be applicable to our constraints also; this algorithm is also believed
to be linear [Gus99, §5.7].

Gustavsson reports [Gus98, §8] that his monomorphic usage analysis discovers
an average of 58% of all thunks used at most once, although this figure varies wildly
from 0% to 100% for different programs. This seems to demonstrates the effective-
ness of carrying update marker check intervals in addition to usage annotations in
the type system, since these results are better than those we obtained with T1 for
similar programs. However, these results were for very small programs of between
two and thirty lines of Haskell. For the same reasons as ours, his analysis is expected
to be far less effective for large programs, and this led him [Gus99, §8.2.4] to design
a constrained-polymorphic analysis [GS00b] (Section 4.8.1.6). Furthermore, his re-
sults are based on measurements of a prototype interpreter for a simplified language,
rather than on a full-featured implementation in a production compiler.

The semantics of [GS00b] removes the interval annotations, thus simplifying the
constraint language, reducing it to that of Section 3.5.1 (plus the hiding operator
required for constraint abstraction as discussed in Section 4.8.4). [GS01b] gives an
algorithm that solves these constraints in time cubic in the number of variables. This
is less efficient than the algorithm of Section 3.5.4 in the case where the number of
constraints is linear in the number of variables; however Gustavsson and Svennings-
son’s algorithm applies much more generally, and may be of use when applying the
inferences of this chapter and the next to type systems such as that of Appendix C
which have richer annotation lattices.

3.9.2 Uniqueness types

The programming language Clean [PvE98] has a uniqueness type system, which is
closely related to usage typing. Uniqueness types allow stateful objects such as files
or mutable arrays to be accessed in a purely functional way by ensuring that each
such object has a reference count of at most one. Objects having at most a single
reference to them may be updated in place without violating purity since such an
update is indistinguishable from a copy; this is not the case when more than one
reference to the object exists.

In Clean, types of expressions, function arguments, and results are given unique-
ness annotations in the same manner as LIX1 has usage annotations: • denotes
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“unique” and × “non-unique”, with subtyping relation • ≤ ×. This is opposite to
that for usage: an expression of type Int• having only a single reference may be
passed to a function that accepts arguments of type Int× having multiple references,
but the converse is not possible. Apart from this difference, however, subtyping is
defined largely as for our languages, including the accommodation of data types in
Chapter 5.22 The uniqueness type system of Clean uses a form of constrained poly-
morphism to give most-general types to functions such as foldr that can be given
several different monomorphic uniqueness types.

Uniqueness and usage are not the same. An object that is used at most once
certainly has at most one reference to it,23 and an object with multiple references
is almost certainly used more than once, but an object may be used many times
through a single reference as well as through multiple references. It is significant
that uniqueness enables a function to make an assumption about its argument (no
other references, so don’t copy), whereas used-at-most-onceness enables a thunk to
make an assumption about itself (no other uses, so don’t update). This means that
information in the two analyses flows in opposite directions, and reverses the sense
of the subtyping relation.24

The theory of uniqueness typing is based on term-graph rewriting systems, and
a notion of type system appropriate for term graphs. This leads to some infelicities,
notably in the treatment of curried and higher-order functions and case statements,
as well as to a generally unfamiliar method. On the other hand, Clean is a practical
lazy functional programming language with a good production-quality compiler that
has been in wide use for many years, with uniqueness analysis incorporated since
1992 [AvGP92]. Thus uniqueness analysis is one of the very few linear-logic-based
analyses that has seen successful use in the field.

Uniqueness typing is described first in [BS93b, BS93a], and more recently in
[BS96]. However, the most accessible introduction is [BS95b]. Barendsen et al.
have also presented their system in a more conventional manner by means of an
inductive type system over a term language with a natural semantics in [BS95a],
and this led to a related strictness analysis [BS98].

3.9.3 Subsumption

The use of subtyping turns out to have been rediscovered several times. It was pro-
posed independently25 by myself [WPJ99], Gustavsson [Gus98], and Faxén [Fax95],
but in the context of usage analysis it had already appeared in [GH90] and [LGH+92],
and in the context of binding-time analysis it was already well known, e.g., [Mos93].
It is also present in the uniqueness type system of Clean, where it has the opposite
sense to usage subtyping and is referred to as “coercion” [dMJB+99, §4.3.4].

22There are two other significant differences: if two functions lie in the subtype relation then their
topmost annotations must be identical rather than merely related; and so-called “consistent substitu-
tion” requires the same for type variables. The latter is discussed further in relation to data types, in
Section 5.4.4.3.

23Assuming we actually mean use-once-don’t-drag (Section 1.3.4).
24See also the discussion in [Gus99, §7.4].
25Gustavsson confirms this in [Gus99, p. 218].



3.9. RELATED WORK 71

3.9.4 Type inference

The standard Hindley–Milner type inference AlgorithmW for inferring the principal
type scheme of an expression in the lambda calculus with let was introduced by
Milner in [Mil78, DM82], although the algorithm without let had already appeared
in [Hin69]. The inference of Section 3.5 is based on this algorithm, but instead of
performing unification while passing over the term, it accumulates constraints to be
solved after examination of the entire term (see Section 4.8.1.2).

3.9.5 The goodness ordering

Sewell [Sew98, §4] uses a “modified ‘subtype’ order”, similar to our goodness or-
dering, to define “most local possible” types in a capability inference system for a
distributed π-calculus.

Flanagan and Felleisen [FF99, §4.2] discuss in detail the problem of selecting one
of multiple solutions to a constraint. Like ours, their subtype ordering is contravari-
ant on function types, and multiple solutions to a constraint may be incomparable
under this ordering even though some obviously contain more information than oth-
ers. To resolve this they introduce an ordering which ranks solutions according to
their accuracy; like ours, this is covariant on function types.

In the system of Flanagan et al., as in our own, internal variables (those not
mentioned in either type or context) are still significant if they annotate a term.
This means that the notion of observability must be different from that of systems
where only external variables are significant, such as [TS96]. This may explain the
need for a covariant goodness ordering, and also Pottier’s criticism of it [Pot01, §6].
Such variables must not be simplified away, and should be treated as positive when
searching for a least solution.

3.9.6 Constraint solution

Henglein [Hen91] gives a constraint solution algorithm for constraints rather more
complex than ours, over a two-point domain. He derives an almost-linear algo-
rithm, and his reduction [Hen91, p. 17] is related to our algorithm, but the bulk
of his algorithm deals with the complexities of his constraint terms. Rehof and Mo-
gensen [RM99] discuss implementing similar constraints to ours, over finite (semi-)-
lattices, using both a fixpoint technique due to Kildall and a reduction to Horn-clause
satisfiability due to Dowling and Gallier. Their algorithm is linear.

3.9.7 Occurrences and affine linear logic

Due to the constraints on occurrences of variables, the well-typing rules of Sec-
tion 3.3 describe an affine linear [Jac94] type system: in the terminology of linear
logic, we permit arbitrary weakening (bound variables need not be used) but re-
stricted contraction (only bound variables annotated with ω may be used more than
once). The observation that affine logics correspond to lazy (call-by-need) languages
is due to Maraist et al. [MOTW95].
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We could equally well have expressed this explicitly, using a system with sepa-
rated environments as introduced by Girard’s Logic of Unity [Gir93]. An example is
Barber and Plotkin’s Dual Intuitionistic Linear Logic, DILL [BP97]. DILL D(C) judge-
ments are of the form Γ ; ∆ � t : A, where t is a term, A is a type, Γ is an intuitionistic
environment (of variables for which weakening and contraction are permitted) and
∆ is a linear environment (of variables for which weakening and contraction are not
permitted). Loosely, types can be intuitionistic or linear; a type of the form !A is
intuitionistic and a type A is linear.

There are two variable rules, one for intuitionistic and one for linear variables,
respectively taking the type from the intuitionistic and linear environments:

(Int-Ax)
Γ1, x : A, Γ2 ; − � x : A

(Lin-Ax)
Γ ; x : A � x : A

The rule for lambda abstractions, (�I), introduces linear functions that use their
argument linearly:

Γ ; ∆, x : A � t : B
(�I)

Γ ; ∆ � λx : A . t : A � B

If we want to use the function multiple times, we must derive a typing using (!− I):

Γ ; x : A � t : B
(�I)

Γ ; − � λx : A . t : A � B
(!I)

Γ ; − �!λx : A . t : !(A � B)

and it is clear that to obtain a function usable with type !(A � B), we have had to
guarantee that it has no free linear variables – ∆ must be empty. This is exactly the
free variable condition we discussed above in Section 3.3.4, clause 3 of (�1-Abs)!

Multiple occurrences are counted not syntactically, but by the way the environ-
ments are combined in the rules. For example, consider the application rule:

Γ ; ∆1 � u : A � B Γ ; ∆2 � t : A
(�E)

Γ ; ∆1, ∆2 � u t : B

Intuitionistic variables are shared between subterms, but linear variables are counted
separately and then added together. The implicit condition that no variable is dupli-
cated in ∆1, ∆2 ensures that no linear variable may be used more than once.

The connection with our annotated system should be clear: to the left of the
turnstile ω-annotated types go into Γ and 1-annotated types into ∆; to the right of
the turnstile !A corresponds to τω and A corresponds to τ1.

The present system could have used such careful manipulation of environments
to compute usage annotations; either using separated environments as above, or a
single environment with special annotations as in [TWM95b, Gus98, GS00b]. In-
deed, the increased resolution of the system of Appendix C requires it. But for the
present, we prefer the syntactic occurrence function: it is easy to understand, simple
to implement, and uses only conventional environment manipulation. These factors
become important when integrating the type system into an existing type-directed
compiler.
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FLIX2

LIX0

L0 LIX1 LX

LIX2

Polymorphic

Usage Types

In order to address the limitations of monomorphic usage analysis, we introduce
a more powerful system, a simple polymorphic usage analysis. This novel analysis
adds enough power to the monomorphic analysis to be useful, without raising the
complexity of the analysis so far as to be impractical.

The analysis is an approximating one, and a key claim of the present thesis is that
this approximation is desirable: the overhead of manipulating an alternative rep-
resentation not involving approximation is high, and the approximation forced by
simple polymorphism dramatically reduces this overhead whilst still yielding good
pragmatic results for the inference. We discuss the support for this claim in Chap-
ter 6; in the present chapter we present the type system and inference algorithm.

The presentation largely follows the structure of Chapter 3. Section 4.1 sum-
marises the problems of the monomorphic analysis and motivates simple polymor-
phism as a solution. Section 4.2 introduces the polymorphic language, LIX2; the
well-typing rules are given in Section 4.3. Section 4.4 presents the basic infer-
ence algorithm IT2, but defers the theory and practice of finding the best simple-
polymorphic type to Section 4.5. The algorithm is proved correct in Section 4.6.
Section 4.7 considers a number of possible improvements to the algorithm, and ex-
amines the results of the implementation. Section 4.8 considers related work.

4.1 Introduction

As we saw in Section 3.7, the monomorphic usage analysis of the previous chapter
has severe limitations, and turns out to be essentially useless in practice. The sim-
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ple polymorphic analysis of the present chapter extends that analysis to one that is
useful in practice, increasing the power while still keeping the costs reasonable and
thus remaining within the design criteria of Section 1.5.2. We begin by recalling
the problem we encountered with the monomorphic usage analysis (Section 4.1.1),
consider an obvious but unsatisfactory solution (Section 4.1.2), and then propose an
extension that will solve it (Section 4.1.3).

4.1.1 Problems with monomorphic usage analysis

Section 3.7.1 showed that the monomorphic usage analysis is unable to avoid poi-
soning the first argument of functions like g = λx . λy . x + y − 1, a two-argument
curried function, if both saturated and partial applications are permitted. Since sep-
arate compilation forces the analysis to assume that any exported function may be
partially applied, this means that for all exported functions, all arguments but the
last are forced to ω, obviously an undesirable situation.

The two possible monomorphic types of g are:

g1 : (Intω → (Int1 → Intω)ω)ω

g2 : (Int1 → (Int1 → Intω)1)ω

Only one of these two incomparable types may be chosen, and since only one is
maximally applicable (Section 3.8) the choice is usually forced.

The problem is even more starkly demonstrated by the identity function, idInt =
λx : Int . x. Clearly the result of idInt may be used as many times as the argu-
ment; but the monomorphic analysis of Chapter 3 must choose either (Int1 → Int1)ω

or (Intω → Intω)ω, not both. If idInt is once applied to an argument used ω, then the
second type is chosen and it will poison all arguments to which it is subsequently
applied.

It seems that the problem stems from a lack of principal types – we would like to
give the function a single type having both alternatives as instances, thus permitting
the best type to be used for each application site independently. Gustavsson [GS00b]
refers to this as “taking the context into account”: the type of the function is made
sensitive to the context of its application.

4.1.2 An idea: polymorphism

There is an obvious way of extending the monomorphic type system to admit princi-
pal types, namely constrained polymorphism [Cur90, AW93]. Constrained polymor-
phism adds the ability to abstract over a set of usage variables and the constraints
over them. For example:

g3 :: (∀u, v : 〈u ≤ v〉 . Intu → (Int1 → Intω)v)ω

is a constrained-polymorphic type. In general, given an expression e one may use
the inference algorithm already presented in Chapter 3 to find its type τ and the
constraints C over it; it then trivially follows that if ui is the set of usage variables
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free in τ then e can be given type ∀ui : C . τ and that this is principal (all other types
for e are instances of this type).

However, we are looking for a simple and lightweight solution and constrained
polymorphism is neither simple nor lightweight (as we discuss in Section 4.8.1).
Instead, we propose a novel form of polymorphism, simple polymorphism, which uses
approximation to give unconstrained polymorphic types to generalised expressions.

4.1.3 A solution: Simple polymorphism

Consider again the example. The function g may be given one type having both g1

and g2 as instances simply by using a polymorphic type, making the (equal) usages
of the argument and the partial application a parameter:

g4 :: (∀u . Intu → (Int1 → Intω)u)ω

Now the two valid types are instances of this polymorphic type, and each call site
can instantiate g4’s type appropriately. (The reader may be surprised by the location
of the ∀u inside the outermost usage annotation; see Section 4.2.1 for a discussion of
this point.)

That solves the problem nicely. The remaining challenge is how to come up with
this type for g. After all, here is another possible type for g:

g5 :: (∀u1, u2, u3 . Intu1 → (Intu2 → Intu3)u1)ω

Here we have replaced the ω and 1 annotations with usage variables, and then quan-
tified over them. This type is sound in the type system we define in Section 4.3, but
it is unnecessarily complicated, because nothing is gained by the extra polymorphism.
For example, the usage u2 on the second argument of g5 does not give any extra
information to the caller (1 was as informative as possible), nor does it make g5 any
more applicable. Similarly, the usage u3 instead of ω carries no benefit.

We can characterise the situation quite precisely, as follows:

• A usage variable in a positive position1 – for example, u3 in the type of g5 – may
as well be turned into the constant ω.

• A usage variable in a negative position – for example, u2 in the type of g5 – may
as well be turned into the constant 1.

• Only usage variables that appear both covariantly and contravariantly in the
function’s type need be universally quantified.

Thus we use polymorphism purely to represent dependencies between usage annota-
tions, i.e., between inputs and outputs. All other uses of polymorphism are redun-
dant, because they are already covered by subsumption (Section 3.3.5). A denota-
tional semantics of types is introduced in Section 4.5.2 that makes this redundancy
clear.

1Positive (covariant) and negative (contravariant) are defined in Section 3.2.1.
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Figure 4.1 Some sample typings.

plus :
(
∀u1 . Intu1 → (Int1 → Intω)u1

)ω

id :
(
∀u1 . ∀α . αu1 → αu1

)ω

and :
(
∀u1, u2 . Boolu1 → (Boolu2 → Boolu2)u1

)ω

apply :
(
∀u1, u2, u3 . ∀α, β . (αu1 → βu2)u3 → (αu1 → βu2)u3

)ω

plus3 :
(
∀u1 . Intu1 → (Intu1 → (Int1 → Intω)u1)u1

)ω

flip :
(
∀u1, u2, u3 . ∀α, β, γ .
(αu1 → (βu2 → γu3)1)u2 → (βu2 → (αu1 → γu3)u2)u2

)ω

compose :
(
∀u1, u2, u3, u4 . ∀α, β, γ .
(βu1 → γu2)u3 → ((αu4 → βu1)u3 → (αu4 → γu2)u3)u3

)ω

map :
(
∀u1, u2 . ∀α, β .
(αu1 → βu2)ω → ((List u1 α)1 → (List u2 β)u2)ω

)ω

foldr :
(
∀u1, u2 . ∀α, β .
(αu1 → (βu2 → βu2)1)ω → (βω → ((List u1 α)1 → βu2)ω)ω

)ω

build :
(
∀u1 . ∀α .(
∀β . (αω → (βω → βω)ω)ω → (βω → βu1)1

)
1 → (List ω α)u1

)ω

augment :
(
∀u1, u2, u3 . ∀α .(
∀β . (αω → (βω → βω)ω)ω → (βu1 → βu2)1

)
u3

→ ((List ω α)u1 → (List ω α)u2)u3
)ω

zipWith :
(
∀u1, u2, u3, u4 . ∀α, β, γ .
(αu1 → (βu2 → γu3)1)ω

→ ((List u1 α)u4 → ((List u2 β)1 → (List u3 γ)u3)u4)ω
)ω

mkPair :
(
∀u1 . ∀α, β .
αu1 → (βu1 → (Pair u1 u1 α β)u1)u1

)ω

fst :
(
∀u1 . ∀α, β .
(Pair u1 1 α β)1 → αu1

)ω
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One might argue that it would be easier to get rid of subtyping and use polymor-
phism instead. But in our explicitly-typed intermediate language, at every call site of
a polymorphic function the function is applied to all the type and usage arguments
necessary to instantiate all its universally quantified variables. So the more variables
we quantify over, the larger our intermediate programs will become. Furthermore,
by separating the two we are able to distinguish two distinct properties:

• we use subtyping to express the fact that a function may accept a range of
argument types, and

• we use polymorphism to express dependencies between the usage annotations
within a single type.

Simple usage polymorphism, therefore, describes a type system that supports both
subtyping and polymorphism, but does not permit subtyping constraints on quan-
tified variables. Like all type systems, it is an attempt to strike a balance between
practical considerations (such as decidability, complexity, predictability) and expres-
sive power. Simple usage polymorphism strikes a new balance between simplicity
and power: simple quantification adds some principality to the monomorphic type
system, but not all, while retaining relatively simple (and compact) types.

4.1.4 Examples

We embark on the technical material in Section 4.2, but first we pause to examine
some motivating examples typed in our proposed system.

Figure 4.1 gives the usage-polymorphic typings inferred by our system for a num-
ber of standard Haskell library functions.2 (In order to include real examples we
anticipate somewhat by using the type polymorphism and algebraic data types of
Chapter 5.) When typing such library functions, we clearly must choose types that
permit all possible uses; that is, that make no assumptions about how often the func-
tion or its partial applications are called. The types in the figure make use of usage
polymorphism; without this, all variable annotations in the figure would take the
“not known” value ω, thus yielding dreadful results from the analysis.

• Usage polymorphism is used to describe dependencies between argument and
result. The simplest possible example of this is the identity function, id, which
simply returns its argument untouched. Clearly, if id is passed a use-once (use-
many) thunk, it returns a use-once (use-many) thunk; this is expressed by its
type.

• The short-circuit “and” is defined by

and a b = case a of {True→ b; False→ False}

Its type contains the same partial application dependency as Section 4.1.3’s g4

(in u1). However, it also contains a dependency (in u2) between its second
2Most of these should be self-explanatory. apply, written as infix $ in Haskell, is strictly unneces-

sary, but useful (because of its precedence) for avoiding excess parentheses in expressions. build and
augment are used in “cheap deforestation”, described in [Gil96, §3.4.2].
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argument and result: if the first argument is True the function behaves like
id. This dependency does not conflict with the False case because the returned
value (False) shared between all invocations of and is given the type Boolω,
which is a subtype of Boolu2 .

• The three-argument curried addition function plus3 demonstrates that curried
functions of more than two arguments still only have a single usage argument
dealing with partial application. A type of the form (·u1 → (·u2 → (·1 →
·ω)u4)u3)ω would have the constraint 〈u1 ≤ u3〉 as before (the first argument
is used at least as many times as the first partial application), along with the
unsurprising 〈u2 ≤ u4〉 (the second argument is used at least as many times as
the second partial application), but in addition there is a constraint 〈u1 ≤ u4〉
(the first argument is also used as many times as the second partial applica-
tion). These three constraints are resolved by unifying all four usage variables,
according to the approximation algorithm described in Section 4.5.4.

• The flip function is defined by flip f x y = f y x. Notice the 1 in its type,
indicating that when it calls f it always fully applies it.

• Function composition compose is defined conventionally:

compose f g x = f (g x)

It exhibits a common pattern in which to each ∀α corresponds a ∀u, and all
occurrences of α are decorated by that u. This pattern does not however justify
abstracting over σ-types (i.e., allowing id to have type (∀α . α → α)ω), as we
would then be unable to express such useful types as α1: see Section 5.2.2.

• Constructor functions like mkPair and destructor functions like fst can now
be given regular types, at least with the (�-Data-Equal) annotation scheme
(see Chapter 5); in a system such as [WPJ99] with monomorphic usage types
only, these require typing rules.

4.2 A language with polymorphic usage types

Once again, our first task is to design a new typed target language which we shall
call LIX2. This extends LIX1 (described in Section 3.2) with usage polymorphism:
it possesses usage-generalised types, usage abstraction (generalisation), and usage
application (instantiation). The extension is conservative: all well-typed LIX1 terms
are well-typed in LIX2 also. The language is presented in Figure 4.2. Here and
elsewhere, lowlighted text is unchanged from a previous presentation (in this case
Figure 3.1). We now discuss the term and type languages and the extended opera-
tional semantics in detail.

4.2.1 The type language

In order to permit usage generalisation, we extend the type language with usage
variables and universal quantification over them.



4.2. A LANGUAGE WITH POLYMORPHIC USAGE TYPES 79

The monomorphic language LIX1 was augmented with usage variables for the
purposes of inference (Section 3.5); they were not a part of the language proper. In
LIX2, usage variables are properly included in the type language. We use variables u,
v, w, and occasionally x to denote usage variables (the context will always make it
clear whether x refers to a usage or a term variable). Usage variables range over the
domain {1, ω}.

Quantification of usage variables is introduced by a usage for-all quantifier, ∀u . τ ,
denoting the type “τ for any value of u”. The scope of the bound usage variable u is
exactly τ , as usual. The type may be instantiated with any particular value κ of u by
performing an appropriate substitution, yielding τ [κ/u].

The two-tier structure of our usage types means that we must choose whether
our quantifier should generalise σ-types or τ -types. Consider the type of the identity
function id:

(i) The quantifier could generalise τ -types, so ∀u . τ is a τ -type and id would have
type (∀u . Intu → Intu)ω; or

(ii) The quantifier could generalise σ-types, so ∀u . σ is a σ-type and id would have
type ∀u . (Intu → Intu)ω.

The correct choice is (i), as becomes apparent when we consider formulating well-
typing rules for the system. If we quantified σ-types, then we might be presented
with a type such as ∀u . τu on a variable used multiple times in its scope. Is this well-
typed? We want to require that the topmost annotation is ω, but |∀u . τu| is not even
well-defined! If instead we quantified τ -types, the topmost annotation would not lie
within the scope of the quantifier and this situation could not arise. Operationally, we
may observe that the topmost annotation of the type of an expression should give the
usage of that expression. Usage quantification is erased at runtime (like all other type
information, Section 2.3.2), and so the actual usage of an expression of generalised
type is necessarily identical to that of any instance. This identity is readily modelled
at the type level by permitting quantifiers only beneath the topmost annotation of a
type.

Furthermore, it is not clear that the types expressible in system (ii) would be
useful: ∀u . τu can be expressed by τω (τ1) in a positive (negative) position if u is
not free in τ ; otherwise τ is a function type, and dependencies between the usage of
a function and the usages of its argument or result do not arise from the type rules.
This same choice is made by Gustavsson in [GS00b].

For notational convenience, we write ∀ui . τ to abbreviate ∀u1 . ∀u2 . . . .∀un . τ .
As usual we consider types up to α-conversion of bound usage variable names.

We make use below of the notion of polarity of an annotation position or us-
age variable occurrence, as introduced in Section 3.2.1 (see also Figure 5.8). For
target types, we define a positive occurrence of a usage variable u in a type τ or σ
to be one annotating a covariant position, and a negative occurrence to be one an-
notating a contravariant position. In the case of a σ-type, the topmost annotation
is considered to be covariant. We define functions fuv+(σ) (fuv−(σ)) as the set of
usage variables occurring positively (negatively) in σ; similarly for τ -types. Thus if
σ = ((αu1 → βu2)u3 → (γu4 → δu5)u6)u7 , we have fuv+(σ) = {u1, u5, u6, u7} and
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Figure 4.2 The polymorphically usage-typed language LIX2 (cf. Figure 3.1).

Terms e ::= a atom
| n literal (integer)
| λκ,χx : σ . e term abstraction
| e a term application
| Λu . e usage abstraction
| e κ usage application
| e1 + e2 primop (addition)
| addn e partially-saturated primop
| if0 e then e1 else e2 zero-test conditional
| letrec xi : σi =χi ei in e recursive let binding

Atoms a ::= x term variable
| a κ atom usage application

τ -types τ ::= σ1 → σ2 function type
| Int primitive type (integer)
| ∀u . τ usage-generalised type

σ-types σ ::= τκ usage-annotated type

Usage κ ::= 1 used at most once
annotations | ω possibly used many times

| u, v usage variable

Update χ ::= • not updatable/copyable
flags | ! updatable/copyable

Shallow evaluation contexts R, values v, configurations C, heaps H, and stacks S
are defined in the same manner as for LIX0 and LIX1.
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fuv−(σ) = {u2, u3, u4}. The notation fuv(σ) denotes the set of usage variables oc-
curring positively or negatively in σ; i.e., fuv+(σ) ∪ fuv−(σ). We use ε to range over
{+,−}, and write ε̄ for sign negation, defined by −̄ � + and +̄ � −.

4.2.2 The term language

We accommodate the extension of the type language by adding explicit term forms
for usage abstraction (generalisation) and application (instantiation), in the style of
Girard and Reynolds [Gir72, Rey74]. As Peyton Jones describes in [PJS98a, §3.2]
with respect to type polymorphism, this explicit usage polymorphism deals smoothly
with scoping issues for term annotations and integrates well with a type-preserving
optimising compiler.3

We write usage abstraction as Λu . e, and usage application as e κ. The former
generalises e by abstracting it with respect to usage variable u; the latter instantiates
the usage argument of e to κ. As with ∀ui . τ , we write Λui . e to abbreviate
Λu1 . Λu2 . . . .Λun . e, and similarly for e κi. As usual we consider terms up to α-
conversion of bound usage variable names. Atoms are extended to include variables
applied to a vector of usages for technical reasons described in Section 4.2.3 below.

Although usage annotations are extended to include usage variables, update flags
remain the same. This is because update flags must be available statically in order
to control code generation for thunks. The well-typing rules and inference must take
this into account when computing the update flags (Section 4.3.1).

4.2.3 The operational semantics: type erasure without erasing types

At runtime, all type information is erased (Section 2.3.2) since the soundness proofs
assure us that a well-typed program cannot have a runtime type error. This type
information includes usage-generalised types, usage abstractions, and usage appli-
cations, so in one sense these have no operational semantics at all. But while this is
true of the target language LX, we work mostly with the instrumented target lan-
guage LIX2, which preserves the types in order to permit easier soundness proofs.
This places us in a novel position: we wish to write a type-erasure operational se-
mantics without erasing the types.

In the monomorphic setting, this was relatively straightforward, and we have
successfully done this for LIX0 (Section 2.3) and LIX1 (Section 3.2). In the presence
of polymorphism, however, it becomes a little more difficult.

Since usage applications are invisible to the LX operational semantics we must
permit them everywhere, even within the argument of a function application; thus
atoms become variables applied to zero or more usage arguments. These applications
are “administrative” – they are part of the instrumentation required to keep types in
order, and do not correspond to any operational behaviour of the uninstrumented
semantics or implementation.

Since usage abstractions are also invisible to the LX operational semantics, they
3In fact, the compiler we target (GHC, Section 1.2.5) already uses this technique for type polymor-

phism, and our implementation is greatly simplified by simply reusing the same machinery for usage
polymorphism (Section 6.2.2).
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Figure 4.3 The operational semantics of usage polymorphism, LIXC2

(extends Figure 2.4).

R ::= . . . | [·] κ

v ::= . . . | Λu . v

a ::= . . . | a κ

〈H; Λu . e; S 〉 �um 〈H ′; Λu′ . e′; S′ 〉 (�-ULam)
if 〈H; e[u

′
/u]; S 〉�um,u′ 〈H ′; e′; S′ 〉

u′ fresh

〈H; letrec xi : σi =κi ei in e; S 〉 (�-LetRec)
�um 〈H, yi : ∀um . σi =κi Λum . ei[φ]; e[φ]; S 〉

where yi �dom(H) ∪ dom(S)
φ = [yi um/xi

]

(Λu . e) κ �δ e[κ/u] (�δ-UApp)

All other rules unchanged from Figure 2.4.

cannot stop evaluation. That is, we must permit evaluation underneath usage abstrac-
tions! If the usage lambda is deleted at runtime, Λu . e cannot be a value in general –
it looks just like e. This is a rather surprising consequence of our programme, and it
necessitates some technical trickery in the formulation of the operational semantics.

The modifications to the semantics are summarised in Figure 4.3. We achieve the
desired behaviour by giving a reduction rule (�-ULam) for Λu . e, if e is reducible.
If v is a value, then Λu . v is also a value. The unfortunate overlap between the term
Λu . e and the value Λu . v does not cause any difficulties, since if e is reducible it is
certainly not a value.

When reducing under a usage lambda using (�-ULam), we must α-convert
the term to ensure the bound usage variable is distinct from every usage variable
occurring in H, S, and um, lest an occurrence appear in e′ and be inadvertently
captured.4 (This is merely a proof device, and obviously does not occur at runtime.)

Furthermore, the semantics maintains the set um of in-scope usage variables. This
set is used to ensure that all heap bindings are closed with respect to usage variables.
If a binding in the heap were to have a free usage variable, a subsequent reference to
that variable from underneath a usage lambda might capture that variable, leading

4Alternatively, since we work up to α-equivalence, we could simply choose u to be distinct from
these bound names and avoid the need to substitute.
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ultimately to a type error. To avoid this, in the (�-LetRec) rule we close over all
in-scope usage variables before adding a binding to the heap. This is similar to the
techniques used in the Glasgow Haskell Compiler to float let-bindings in the pres-
ence of type lambdas [PJPS96, §4], and by Morrisett et al. to perform polymorphic
closure conversion while translating System F programs into TAL [MWCG99, §5.2].
In fact, the latter paper also observes that in a type-erasure interpretation a τ (in our
notation) should be considered a value; however, their translation does not appear
to perform evaluation underneath a type abstraction.

The primitive reduction rule (�δ-UApp) for usage application is unsurprising.
Exactly the same technique is used to give an operational semantics for type

polymorphism in the full language (Section 5.1.4), where the reduction relation is
parameterised over two sets αl, um, and type abstraction and application are treated
in the same way as usage abstraction and application.

4.3 Polymorphic usage well-typing rules

The next task is to define a set of well-typing rules that specify which LIX2 programs
are valid; i.e., in particular, which programs carry valid usage types. The rules extend
those of LIX1 (described in Section 3.3); we simply add new rules to deal with the
new term forms, usage abstraction and usage application. Update flags and the
subtype relation are also computed slightly differently due to the addition of usage
variables.

The well-typing rules for LIX2 are presented in Figure 4.4. The judgement Γ �2

e : σ may be read as stating that “In type environment Γ, the LIX2 term e can be
given type σ.” The discussions of Section 3.3 on basic uses, syntactic occurrence,
occurrences in a closure, subsumption, and demands and recursive binding groups
remain unchanged for the extended language, and we discuss only the new rules
and issues below.

4.3.1 Update flags

Update flags are computed in (�2-LetRec) and (�2-Abs) from the topmost usage
annotation of the corresponding type. Although for LIX2 usage annotations have
been extended to include variables, update flags must still be either • (not updatable
or copyable) or ! (updatable or copyable). A usage variable is treated the same as ω
because ω expresses complete lack of information (it is the bottom element of the
annotation lattice). If the topmost annotation is a universally-quantified variable,
then statically we do not know whether the expression will be used at most once or
many times; thus we must mark it updatable or permit it to be copied.5

The conversion is performed by the function ·†, which now has the following
5Conceivably we could check to see if the variable is always instantiated to the same value (e.g.,

due to an enclosing application to a constant), and use that value; in practice however we expect this
optimisation to be of little value (e.g., such an application should be β-reduced by the optimiser) and
do not implement it.
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Figure 4.4 Well-typing rules for LIX2 (cf. Figure 3.2).
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(�2-Var)
Γ, x : σ �2 x : σ

(�2-Lit)
Γ �2 n : Intω

Γ �2 e : Int1 Γ �2 ei : σ i = 1, 2
(�2-If0)

Γ �2 if0 e then e1 else e2 : σ

Γ �2 ei : Int1 i = 1, 2
(�2-PrimOp)

Γ �2 e1 + e2 : Intω

Γ �2 e : Int1
(�2-PrimOp-R)

Γ �2 addn e : Intω

Γ, x : σ1 �2 e : σ2

occur(x, e) > 1⇒ |σ1| = ω
occur(y, e) > 0⇒ |Γ(y)| ≤ κ for all y ∈ Γ

(�2-Abs)
Γ �2 λκ,κ†

x : σ1 . e : (σ1 → σ2)κ

Γ �2 e : (σ1 → σ2)1 Γ �2 a : σ1
(�2-App)

Γ �2 e a : σ2

Γ, xj : σj �2 ei : σi for all i
Γ, xj : σj �2 e : σ(
occur(xi, e) +

∑n
j=1 occur(xi, ej)

)
> 1⇒ |σi| = ω for all i

(�2-LetRec)
Γ �2 letrec xi : σi =|σi|† ei in e : σ

Γ �2 e : σ′ σ′ � σ
(�2-Sub)

Γ �2 e : σ

Γ, u �2 e : τκ u /∈ (fuv(Γ) ∪ fuv(κ))
(�2-UAbs)

Γ �2 Λu . e : (∀u . τ)κ

Γ �2 e : (∀u . τ)κ

(�2-UApp)
Γ �2 e κ′ : (τ [κ

′
/u])κ
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extended definition (cf. Section 3.3.1):

1† � •
ω† � !
u† � !

Notice that the usage annotation and update flag are no longer in a one-to-one rela-
tionship, justifying the decision of Section 3.2.2 to separate them.

Section 4.7.3 discusses the effect of generalisation on the usage information com-
puted by the analysis: clearly the fact that u† = ! suggests that we should not gener-
alise too often.

4.3.2 Usage abstraction and application

We have two new term forms for which to provide type rules: usage abstraction and
usage application.

The usage abstraction rule (�2-UAbs) abstracts a usage variable from an expres-
sion e : τκ, yielding a generalised type.

Considering how this is done for the comparable case of type abstraction in
ML [MTHM97, §4.8, §4.10(15)], we see that this is only valid if the abstracted usage
variable does not occur free in the type environment. Without such a restriction,
the relationship between the type and the environment would be broken by the new
binder: consider that from

x : Intu �2 λω,!g : (Intu → Intω)ω . g x : ((Intu → Intω)ω → Intω)ω

we would be able to derive

x : Intu �2 (Λu . λω,!g : (Intu → Intω)ω . g x) ω (λy . y + y) : Intω

which potentially violates soundness by using x twice without forcing its topmost
annotation to ω.

There is a further restriction unique to the present situation. Observe that the
expression to be generalised has a σ-type, and yet generalisation is permitted only
at the τ -level. Section 4.2.1 explains that the topmost annotation remains the same
despite generalisation or instantiation, and so we simply lift it over the quantifier,
generalising e : τκ to Λu . e : (∀u . τ)κ. This leads to the crucial further restriction
on generalisation, namely that we may not generalise the topmost annotation itself,
since this would violate the scoping rules. That is, we may not generalise e : τu to
Λu . e : (∀u . τ)u.

These restrictions are implemented in the side condition of (�2-UAbs), which
requires that the abstracted variable not occur in either fuv(Γ) or fuv(κ).

The usage application rule (�2-UApp) applies an expression e : (∀u . τ)κ (of
usage-generalised type) to a usage annotation κ′. This is completely straightforward:
the actual usage argument is substituted for the formal one, and the topmost usage
annotation is dropped back down into place (cf. [MTHM97, §4.10(2)]).
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Figure 4.5 The subtype (�) and primitive (≤) orderings over LIX2 (cf. Figure 3.3).

ψ � ψ

κ1 ≤ κ2 τ1 � τ2
(�-Annot)

τ1
κ1 � τ2

κ2

τ1 � τ2
(�-All-U)

∀u . τ1 � ∀u . τ2

(�-Lit)
Int � Int

σ3 � σ1 σ2 � σ4
(�-Arrow)

σ1 → σ2 � σ3 → σ4

κ ≤ κ

1

➵

ω

ω ≤ κ κ ≤ 1 u ≤ u

4.3.3 Subtyping

Our language now permits usage variables u as annotations, in addition to the con-
stants 1 and ω. We accommodate this in our definition of the primitive ordering ≤
(Figure 4.5), stating that for all variables u, the relations ω ≤ u, u ≤ 1, and u ≤ u
all hold; distinct usage variables are incomparable. Similarly, in the definition of
the subtype ordering �, usage-quantified types are comparable only if the quantified
variable is the same in both cases; this of course can be achieved by α-conversion.

This definition of subtyping is particularly simple to state and to work with. The
main reason for this is that our subtyping relation is purely structural; for example,
we have

(∀u . Intu → Intu)ω � (∀u . Intω → Int1)ω

but we have
(∀u . Intu → Intu)ω �� (Intω → Int1)ω

because the two types being compared are of different shapes (we consider a defini-
tion of subtyping that would allow this in Section 4.5.2).

The (�-All-U) rule corresponds precisely to that of Systems Fun, F≤, F<:, and
Fω
≤ [CW85, CG92, CMMS94, SP94] in the case where the bound is omitted; indeed,

it is hard to imagine a different rule.

4.4 Polymorphic usage inference

Once again, the final part of our type-based analysis is the inference algorithm IT2,
which must compute the best valid LIX2 typing for any L0 program. That is, when
presented with an L0 program, the algorithm must infer an equivalent LIX2 program
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which is well-typed according to the rules of Section 4.3, and if there is more than
one such, it should choose the one that is the ‘best’ in some appropriate sense.

The algorithm works in much the same way as the IT1 inference of Section 3.5.
Phase 1 of the inference, �2 (Section 4.4.1), passes over the program annotating
it with fresh usage variables and generating constraints over them. Unlike IT1,
this phase must also introduce appropriate usage abstractions as explained in Sec-
tion 4.4.2. This is followed by a pessimisation pass, Pess (Section 4.4.3), which
allows for usage of exported functions by other modules. Finally phase 2, CS (Sec-
tion 4.4.4), finds the best solution to the constraints and applies it to the program,
yielding the best valid LIX2 typing of the source program. The combination of these
three parts yields the complete inference:

IT2(Γ, M) � (CS ◦ Pess ◦�2)(Γ, M) = (e, σ)

where e : σ is the best well-typed LIX2 term corresponding to M .

4.4.1 Inference phase 1

The first phase of the inference algorithm, �2, takes an L0 term and yields an equiva-
lent LIX2 term, along with an appropriate constraint on its free variables. This phase
is defined in Figures 4.6 and 4.7. The figures define a relation

Γ �2 M � e : σ; C; V

which may be read “In the LIX2 type environment Γ, the L0 term M translates to
LIX2 term e, which has type σ, generated constraints C, and free term variables V .”

In Section 3.5.2 we were able to obtain an inference algorithm for LIX1 by re-
stricting uses of (�1-Sub) to certain canonical locations in the derivation tree. Simi-
larly, here we obtain an inference algorithm for LIX2 by restricting also the locations
of the additional non-syntax-directed rules (�2-UAbs) and (�2-UApp) as described
in Section 4.4.2. Thus the �2 algorithm remains syntax-directed.

The constraints used and the basic inference rules are identical to those already
discussed (in Sections 3.5.1 and 3.5.2 respectively), and so we examine them no
further. Update flags are computed using ·† in the same manner as before, but with
the extended definition found in Section 4.3.1.

The (�2-Var) rule is extended to deal with usage-generalised term variables in
the type environment; these variables are fully instantiated with fresh usage variables
in the usual way [MTHM97, §4.10(2)]. The side condition “τ a usage-monotype”,
i.e., not of the form ∀u . τ ′, simply ensures the fullest possible instantiation; it pre-
serves the invariant that the expression type σ synthesized by �2 is a monotype (i.e.,
in ML terminology, a type rather than a type scheme).

The most complicated inference rule, (�2-LetRec), deals with recursive binding
groups, and is discussed separately below.

4.4.2 Generalisation

Up to this point, LIX2 looks very much like LIX1. But phase 1 of the inference is sig-
nificantly more complicated for the simple-polymorphic language. Constraints are
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Figure 4.6 Basic type inference rules from L0 to LIX2, omitting (�2-LetRec)
(cf. Figure 3.4).
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fresh vi τ a usage-monotype
(�2-Var)

Γ, x : (∀ui . τ)κ �2 x � x vi : (τ [vi/ui
])κ; ∅; �x�

(�2-Lit)
Γ �2 n � n : Intω; ∅; ��

Γ �2 M � e : Intκ; C; V
Γ �2 Mi � ei : σi; Ci; Vi i = 1, 2
(C3, σ) = FreshLUB(σ1, σ2) (�2-If0)

Γ �2 if0 M then M1 else M2 � if0 e then e1 else e2 : σ;
C ∧ C1 ∧ C2 ∧ C3; V � (V1 � V2)

Γ �2 Mi � ei : Intκi ; Ci; Vi i = 1, 2
(�2-PrimOp)

Γ �2 M1 + M2 � e1 + e2 : Intω; C1 ∧ C2; V1 � V2

σ1 = �t1�freshσ fresh v
Γ, x : σ1 �1 M � e : σ2; C1; V
C2 = {V (x) > 1⇒ 〈|σ1| = ω〉}
C3 =

∧
y∈Γ{V (y) > 0⇒ 〈|Γ(y)| ≤ v〉}

(�2-Abs)
Γ �1 λx : t1 . M � λv,v†

x : σ1 . e : (σ1 → σ2)v; C1 ∧ C2 ∧ C3; V \ {x}

Γ �2 M � e : (σ1 → σ2)κ; C1; V1

Γ �2 A � a : σ′
1; C2; V2

C3 = {σ′
1 � σ1} (�2-App)

Γ �2 M A � e a : σ2; C1 ∧ C2 ∧ C3; V1 � V2
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no longer merely accumulated for later solution: whereas the monomorphic infer-
ence builds the constraint in phase 1 and then solves it in phase 2, the polymorphic
inference must interleave the building of the constraint with its partial solution or
approximation. This is because of generalisation. In the monomorphic language,
typings differ only in the value of their usage annotations and we are able to infer a
constraint C for a given source program M that encodes all possible target typings
of that program, deferring the choice of a best solution to phase 2. In the simple-
polymorphic language, typings may also differ in structure: the generalisation rule
(�2-UAbs) introduces a quantifier, but is not source-syntax-directed. Thus we must
choose while inferring the constraint C whether to usage-generalise a term or not,
and this decision fixes the structure and necessarily loses information. Furthermore,
precisely because our polymorphism is simple (and thus we cannot quantify over
constraints), we must approximate the constraint at every generalisation step, rather
than only approximating the whole, just once, in phase 2.

Determining where to perform these generalisation steps is another issue that
must be considered, since the well-typing rules of Figure 4.4 give us no guidance.
The same issue arises for type generalisation in languages such as ML with implicit
polymorphism, and the standard choice is that of Milner [Mil78, pp. 354–355]: poly-
morphism is introduced at let(rec) bindings. This is done by using a closure operator
to compute the most general types for the binders in each binding group, from the
inferred types of their right-hand sides [DM82, p. 210] [MTHM97, §4.8]. Thus, us-
age abstractions are permitted only at letrec bindings, and usage applications are
generated at each variable occurrence to freshly instantiate its type.

Usage generalisation at letrec leads to the use of predicative or “rank-1” [Lei83]
polymorphism only: as in ML, letrec-bound variables are given type schemes where
all quantifiers appear at the front, while expressions and lambda-bound variables
are always given monomorphic types. While our inference system generates and
uses only such predicative polymorphism, a simple modification to the inference
algorithm would allow impredicative types to occur in the initial environment. It is
not obvious how one might infer useful impredicative types, although we do discuss
this issue briefly in Section 4.7.4.

The inference rule for letrec, then, is presented in Figure 4.7. This rule translates
a mutually-recursive group of bindings,6 and generalises their types according to a
suitably-modified variant of the Damas–Milner generalisation rule.

Translation of a source term letrec xi : ti = Mi in M begins by adding fresh anno-
tations to convert the source binder types ti to target types τi

vi . The right-hand sides
of the bindings are now translated, in an environment extended with the newly-
computed target types of the bindings being translated (thus permitting recursion).
We collect the resulting constraints, and add further constraints requiring the types
of the right-hand sides to be subtypes of those of their binders.

The crucial step now follows: we invoke the closure operation

Clos(C1, Γ, τi
vi) = (C ′

1, uk, S)

6We assume that letrecs have already been broken into strongly-connected components by an ear-
lier analysis (not described in this thesis).
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Figure 4.7 Type inference rule (�2-LetRec) (cf. Figure 3.4).

Γ �2 M � e : σ; C; V

τi
vi = �ti�freshσ for all i

Γ, xj : τj
vj �2 Mi � ei : σ′

i; Ci
1; Vi for all i
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∧

i

(
Ci

1 ∧ {σ′
i � τi

vi}
)

(C ′
1, uk, S) = Clos(C1, Γ, τi

vi)

Γ, xj : (∀uk . Sτj)vj �2 M � e : σ; C2; V

C3 =
∧

i{
(
V (xi) +

∑
j Vj(xi)

)
> 1⇒ vi = ω}

Γ �2 letrec xi : ti = Mi in M

� letrec xi : (∀uk . Sτi)vi =v†
i Λuk . Sei[(xj uk)/xj

] in e : σ;

C ′
1 ∧ C2 ∧ C3; (

⊎
i Vi � V ) \ {xi}

in order to determine the vector of usage variables over which the binders are to
be generalised, and to perform any approximation necessary. Clos is passed three
things: the vector τi

vi of (monomorphic) binder types to generalise, the type en-
vironment Γ within which to generalise, and the constraint C1 over these types.
Implicitly there are three sorts of usage variable in the domain of the constraint C1:

• candidate variables, from the types of the binders, which might or might not be
generalised,

• forbidden variables, from the types in the environment and the topmost anno-
tations vi of the binder types, which cannot be generalised because they are
outside the scope of the usage binders to be introduced, and

• internal variables, which participate in constraints and may annotate the right-
hand side terms ei within the scope of the usage binders but do not occur in
τi

vi or Γ, and might or might not be generalised.

The closure operation returns a vector uk of usage variables to generalise, along with
a substitution S which has the effect of unifying each of these variables with a cluster
of candidate and/or internal variables. It also returns a constraint C ′

1, the residual
constraint after unification and necessary approximation have been performed.
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The intent is that the closure algorithm returns the largest possible set of vari-
ables uk over which the bindings may be abstracted without violating scoping rules
or soundness. This is stronger than Damas–Hindley–Milner, where the closure op-
eration need only avoid violating scoping rules; here the constraint set introduces
additional dependencies not apparent merely from the set of free usage variables
of Γ, which must remain satisfiable after generalisation.

In order to generate this set, the closure operation may approximate the con-
straint set in some way, possibly involving unification of some variables. This is why
C ′

1 (the approximated constraint set) and S (the unifying substitution, to be applied
to the binding types and right-hand sides) must be returned also.

Given the vector uk of generalisable usage variables, we construct the polymor-
phic types of the binders, and use them to translate the body of the letrec.7 We then
add the multiple-use constraints in the same way as for (�2-Abs) (notice here an-
other reason we must not generalise over the topmost annotations vi: if we did so,
we could not set them equal to ω here). The translated term incorporates the poly-
morphic binder types and right-hand sides with the unifying substitution applied; we
also must instantiate all recursive calls within the binding group with appropriate us-
age applications (see [HHPJW94]).8

As an aside, observe that this strategy permits only monomorphic recursion.
Usage-polymorphic recursion is also permitted by the type rules, and could be in-
ferred by using the so-called Kleene–Mycroft iteration technique of [DHM95], taking
advantage of the finiteness of our annotation lattice (see also [Myc84, Hen93]). The
constrained-polymorphic analysis of [GS00b, §3.9] performs inference for usage-
polymorphic recursion.

The details of the closure operation are particularly interesting and also some-
what involved, so we defer a discussion of them to Section 4.5; Section 4.5.4 presents
the closure algorithm itself.

7We abstract over the same vector uk for each binding. It was pointed out to the author by Mark
Jones [personal communication] that in general it is not necessary to quantify all types in the same
mutually-recursive binding group over the same vector of variables, but redundant quantifiers intro-
duced in this way have no ill effect (other than the size increase of the type). Jones gave the following
Haskell type generalisation example (where undefined has type ∀α . α):

m x y = n y (inferred type: α → β → γ)
n y = m undefined y (inferred type: β → γ)

This may be translated with explicit quantification as follows:

m α β γ x y = n α β γ y
n δ ε y = m ⊥ δ ε (undefined ⊥) y

Here n requires only two type arguments, whereas m requires all three. The constant type substituted
for ⊥ is arbitrary (the Glasgow Haskell Compiler uses type (), “unit”, for this purpose). A similar
example may be constructed for usage types in LIX2. A slightly more sophisticated (�2-LetRec) rule
would take this into account and drop unnecessary variables when generalising each binder, but for
simplicity we do not attempt this.

8As written these substitutions induce quadratic behaviour, but careful implementation can perform
all the expression substitutions (but not the type substitutions) in a single pass over the whole program.
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4.4.3 Pessimisation

Once the first phase of inference has completed, and before the final phase, we must
allow for separate compilation by pessimising exported functions (cf. Section 3.5.3).
The addition of generalised types changes the pessimisation operation slightly: a
generalised type is maximally applicable in the same way as a ω-annotated type,
since it may always be instantiated at ω if necessary. The definition therefore be-
comes: Pess(∆) � {Pess+∅ (σ) | σ ∈ rng(∆)}, where

Pess+U (τκ) = Pess+U (τ) ∧
{
∅, if κ = u and u ∈ U

〈κ = ω〉, otherwise

Pess−U (τκ) = Pess−U (τ)

Pessε
U (∀u . τ) = Pessε

U∪{u}(τ)

Pessε
U (σ → σ′) = Pessε̄

U (σ) ∧ Pessε
U (σ′)

Pessε
U (Int) = ∅

This simply forces all positive annotations to either a bound usage variable or ω.
Again, the resulting constraints are added to the constraint arising from �2 before
passing to the final phase of the algorithm. For example, let ∆ = {f : (∀u . (Intu1 →
Intu2)u → Intu)u5 , g : Intu6}. Then Pess(∆) = {〈u5 = ω〉, 〈u1 = ω〉, 〈u6 = ω〉}.

4.4.4 Inference phase 2

The final phase of the inference must, given an LIX2 program with free usage vari-
ables and a constraint over them, find the best assignment to the variables that sat-
isfies the constraint.

At this point, the location of and variables bound by the usage abstractions have
all been determined, and the only remaining choice to be made is the values of
those usage variables still free. Just as in Section 3.4 with LIX1, we have a typing
with unbound variables in some annotation positions, under some set of constraints,
and we wish to select the best one. Exactly the same algorithm we applied previously
(Section 3.5.4) is appropriate here: take the best solution to the constraint according
to the goodness ordering �, and apply the resulting substitution to the program.
Generalised variables have already been bound, and are unaffected; taking these as
fixed, the result is the corresponding well-typed LIX2 program with the maximum
number of •-flags, as required. Since the ordering is lub-closed, there is always a
best solution (Section 3.4.2).

4.5 Generalisation and simple polymorphism

This section describes a key contribution of the present thesis: it describes how to in-
fer the best possible types in a simple-polymorphic language; specifically, how to per-
form generalisation. The language LIX2 does not in general admit principal types,
but Section 4.5.1 argues that it is crucial to ensure the weaker property of maximal
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applicability. Section 4.5.2 illustrates and motivates our approach to generalisation,
considering the simple case of closed types only. This approach is extended in Sec-
tion 4.5.3 to the general case of types within a typing environment. Section 4.5.4
presents the resulting closure algorithm and describes its operation in detail. Finally,
Section 4.5.5 explains the extensions required to the constraint solver of the previous
chapter.

4.5.1 Most-general types and maximal applicability

Milner’s paper [Mil78, pp. 354–355] clearly states the intent of let-polymorphism:
the behaviour of let x = e in e′ should be exactly the same as that of e′[e/x]. That is,
the different uses of x should not interfere, and all possible behaviour of the term e
should be exposed in the type chosen for x. This is what is meant by principal or
most general type. It turns out that with our simple-polymorphic type system, most-
general types do not always exist. However, there is a related but weaker property,
maximal applicability, that we can and must achieve, and which we have already
encountered in another context.

Even if we cannot ensure that let x = e in e′ and e′[e/x] behave identically with
respect to usage, we must at least have that if e′[e/x] is typeable then so is let x =
e in e′. That is, if we can infer usage annotations for the L0 term e′[e/x] (as we always
can when let x = e in e′ is well-L0-typed), then we can infer usage annotations also
for the L0 term let x = e in e′. This is simply a consequence of the soft typing property
(Section 1.5.5). We say that an annotated type for x satisfying the condition that it
can be used in any well-L0-typed L0-context is maximally applicable.

From the discussion in Section 3.8 it is clear that a type is maximally applicable iff
no positive annotation in it is equal to 1. Briefly, this is because of the following. The
inference algorithm fails exactly when a constraint 〈1 ≤ ω〉 is directly or indirectly
asserted. The inference algorithm always uses types from the environment on the
left-hand side of the subtype relation, thus:9 Γ(x) � ·. Explicit annotations contained
in the inference algorithm are always ω, never 1. Thus to avoid inference failure due
to types in the environment, it is sufficient to ensure that no positive annotation in
rng(Γ) is ever 1.10 Observe that most-general types are always maximally applicable,
but that the converse is not true in general.

4.5.2 Which type is ‘best’?

Generalisation seeks to find the most general type possible for letrec-bound variables,
given the restriction to simple polymorphism and the requirement that the type be
maximally applicable. The present section attempts to formalise this intuitive guide-
line. We discuss in Section 4.7.3 below whether choosing the most general type
possible is actually the best thing to do.

Consider as a first example the problem of generalising the type of idInt = λx :
9See footnote 13 in Section 4.5.3.

10Note that the polymorphic annotation u is OK, because (�-Var) will instantiate it to a fresh
variable v, and 〈v = ω〉 merely forces v to ω without causing failure.
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Figure 4.8 Constraint and subtyping lattice of idInt.

idInt : (Intκ1 → Intκ2)ω = λx : Int . x

κ+
2

κ−
1

[ω, 1]

[1, 1] [ω, ω]

[u, u]

Int . x; that is, computing the closure11

Clos(〈κ1 ≤ κ2〉, ∅, (Intκ1 → Intκ2)ω)

If we allowed constrained polymorphism we could obtain the (principal) type

(∀u1, u2 : 〈u1 ≤ u2〉 . Intu1 → Intu2)ω

With simple polymorphism, however, this type is not available. Our intention is
to approximate in order to avoid such constraints. The simple-polymorphic types
satisfying the constraints (i.e., the possible results of generalisation) are as follows:

(1) (Intω → Intω)ω

(2) (Intω → Int1)ω

(3) (Int1 → Int1)ω

(4) (∀u . Intω → Intu)ω

(5) (∀u . Intu → Int1)ω

(6) (∀u . Intu → Intu)ω

Of these, (2), (3), and (5) are not maximally applicable, and thus (as we have seen)
are unacceptable. (1) is the poor solution chosen by the monomorphic analysis IT1,
as we saw in Section 4.1.1. Inspection of the remaining two types shows that (4) is
no better than (1): if the result is used ω then (4) may be instantiated at ω and
(1) applies directly; but if the result is used 1 then (4) may be instantiated at 1 but
(1) still applies because of the subsumption rule (�2-Sub). This leaves only type (6),
which is maximally applicable yet usable at both (Intω → Intω)ω and (Int1 → Int1)ω

without poisoning. We therefore return this type as result:

Clos(〈κ1 ≤ κ2〉, ∅, (Intκ1 → Intκ2)ω) = (〈κ1 = u〉 ∧ 〈κ2 = u〉, [u], {κ1 �→ u, κ2 �→ u})
11To avoid consideration of forbidden and internal variables at this stage we have assumed the

topmost annotation is fixed to ω in advance and simplified the constraint by removing intermediate
variables.
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Our arguments here have been rather informal. To enable us to explore more
formally the reasons for choosing one abstracted type over another, we introduce a
semantic subtyping relation �, distinct from the syntactic relation � of Section 4.3.3
and elsewhere in this thesis. Following [Pot01, def. 12], we consider a type to denote
the set of all its ground (syntactic, structural) subtype and instantiation instances.12

Thus � Intω � = {Intω, Int1}, � Int1 � = {Int1}, and � (∀u . Intu → Intu)ω � = {(Intω →
Intω)ω, {(Int1 → Int1)ω, (Intω → Int1)ω}. Now we may define the subtype relation as
reverse set inclusion: σ � σ′ iff �σ � ⊇ �σ′ �. Clearly this relation strictly includes the
syntactic, structural one. It also accurately reflects the behaviour of our type system,
which has arbitrary instantiation and subsumption: if a variable in the environment
has type σ, then it may be used at exactly those types σ′ where σ � σ′. In this model,
“more general” simply means “smaller in the semantic subtype ordering”.

Returning to the example, we may now consider the denotations of the legal
types for idInt above. κ1 lies in a negative position, and κ2 in a positive position.
Thus we have

(1) � (Intω → Intω)ω � = {(Intω → Intω)ω, (Intω → Int1)ω}
(2) � (Intω → Int1)ω � = {(Intω → Int1)ω}
(3) � (Int1 → Int1)ω � = {(Int1 → Int1)ω, (Intω → Int1)ω}
(4) � (∀u . Intω → Intu)ω � = {(Intω → Intω)ω, (Intω → Int1)ω}
(5) � (∀u . Intu → Int1)ω � = {(Int1 → Int1)ω, (Intω → Int1)ω}
(6) � (∀u . Intu → Intu)ω � = {(Intω → Intω)ω, {(Int1 → Int1)ω, (Intω → Int1)ω}

Now observe that (4) and (5) are redundant: they are equivalent to (1) and (3)
respectively. We prefer structural subtyping over quantification where the two are
equivalent, and so retain (1) and (3), because the former yields ground annotations
which are both cheaper to manipulate and easier to interpret: by this expedient we
know that variable annotations occur only when the analysis cannot assign 1 or ω,
i.e., only when there is a dependency between usage annotations, as we intended
in our introduction (Section 4.1.3). This for example allows the code generator
to consider only 1-annotated thunks to be single-entry, rather than having also to
investigate certain u-annotated thunks somehow (hence the simple definition of ·†
in Section 4.3.1). We may now put the remaining four types in a subtyping lattice,
thus:

(2) (Intω → Int1)ω

(3) (Int1 → Int1)ω (1) (Intω → Intω)ω

(6) (∀u . Intu → Intu)ω

This clearly shows that the generalised type (∀u . Intu → Intu)ω is a subtype of
all other types of idInt, and is therefore the most general type for idInt; it is also
maximally applicable.

12This approach is related to the so-called ideal model [MPS84] [CW85, §3] in which types denote
certain sets of values, and more closely to the powertypes of [Car88].
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Figure 4.9 Constraint and subtyping lattice of kInt.

kInt : (Intκ1 → (Int1 → Intκ2)κ3)ω = λx : Int . λy : Int . x

κ+
2 κ+

3

κ−
1

[ω, 1, 1]

[1, 1, 1] [ω, ω, 1] [ω, 1, ω]

[u, u, 1] [u, 1, u] [ω, ω, ω]

[u, u, u]

We may abbreviate the constraint set arising from the definition of idInt and the
corresponding subtyping lattice as shown in Figure 4.8, where it is implicit that the
usage annotations are given in order, and that free usage variables are quantified.
Ground instances are denoted by rectangular nodes; maximally-applicable types are
denoted by double borders; arrows point to smaller types in the subtype ordering.

We may treat a function like kInt similarly (Figure 4.9). Once again, the gener-
alised type (∀u . Intu → (Int1 → Intu)u)ω covers all the others.

This works for combinations of the above patterns of constraints as well: ,

, and even all admit simple-polymorphic most-general types; the lattice for
the latter (sometimes called a bowtie for obvious reasons) is shown in Figure 4.10.

So far it seems like we have a better solution than we had hoped for – there
has been a unique best solution in each case – but the problems considered have
been very simple. The next-smallest problem is exemplified by the functions twice
and plus3, which both have the same set of constraints and subtyping lattice (Fig-
ure 4.11).

It is clear from this diagram that no single simple-polymorphic type can cover
all the instances. The best candidates, namely the minimal ones (none of them is
minimum), are [1, 1, u, u], which omits {[ω, ω, ω, ω], [ω, ω, ω, 1]}, [u, u, ω, ω], which
omits {[1, 1, 1, 1], [ω, 1, 1, 1]}, and [u, u, u, u], which omits just {[1, 1, ω, ω]}. Of these,
only the latter two are maximally applicable. The algorithm presented in Section 4.4
chooses the latter, but if the omitted instance is desired in a particular case a different
choice may be preferable (Section 4.7.2). The usage-generalised types chosen by the
algorithm for the functions above are thus:

twice : (∀u . (Intu → Intu)ω → (Intu → Intu)ω)ω

plus3 : (∀u . Intu → (Intu → (Int1 → Intω)u)u)ω
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Figure 4.10 Bowtie constraint and subtyping lattice.
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[1, 1, 1, 1] [ω, ω, ω, ω][u1, 1, ω, u1] [u1, u1, ω, 1][ω, 1, u1, u1] [ω, u1, u1, 1]

[1, 1, ω, 1] [ω, 1, 1, 1] [ω, 1, ω, ω] [ω, ω, ω, 1]

[ω, 1, ω, 1]
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Figure 4.11 Constraint and subtyping lattice of twice and plus3.

twice : ((Intκ2 → Intκ3)ω → (Intκ1 → Intκ4)ω)ω = λf . λx . f (f x)
plus3 : (Intκ3 → (Intκ1 → (Int1 → Intω)κ2)κ4)ω = λx . λy . λz . x + y + z
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κ−
1 κ−
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[ω, 1, ω, 1]

[ω, 1, 1, 1] [1, 1, ω, 1] [ω, 1, ω, ω] [ω, ω, ω, 1]

[1, 1, ω, ω]

[ω, ω, ω, ω][1, 1, 1, 1]

[ω, 1, u, u]

[u, 1, ω, u]

[u, u, ω, 1]

[ω, u, u, 1]

[u, 1, u, u] [u, u, u, 1] [ω, u, u, u] [u, u, ω, u]

[1, 1, u, u] [u, u, ω, ω][u, u, u, u]
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4.5.3 Forbidden variables

So far we have considered only the simple case in which the only variables are those
occurring in the type of the binder (i.e., candidate variables), and all constraints are
between these variables. In general, as we saw in Section 4.4.2, the situation is
complicated by the presence of forbidden and internal variables. Forbidden variables
are variables that are outside the scope of the generalisation operation, and therefore
must not be generalised: variables occurring free in the type environment Γ, and the
topmost annotations of the binder types (these are syntactically ungeneralisable, as
described in Section 4.2.1). Internal variables are generated during inference but do
not appear in the binder types or environment; they do however participate in the
constraint and may annotate lambdas and bindings within the binding right-hand
sides.13

In generalising we must deal appropriately with constraints over all three sorts
of variable, making generalisation for LIX2 significantly more difficult than for a
type system without constraints such as that of Standard ML. In such a type system,
the only restriction on generalisation is that generalised variables must not them-
selves be forbidden (see Section 4.3.2). With constraints, however, we must also
restrict generalisation of variables related to forbidden variables, in order to preserve
soundness. Consider a constraint 〈u1 ≤ x〉, where x is forbidden. Generalising u1 in-
troduces a universal quantifier, meaning u1 may now take any value in {ω, 1}. Thus
the constraint may only be satisfied by setting x = 1 or by unifying the two variables
with x = u1. But the former is potentially unsound and the latter is impossible: forc-
ing x to 1 may conflict with subsequent constraints,14 and it is outside the scope of
u1’s quantifier (this is the definition of forbidden) and thus ununifiable.

We will generalise only where required, thus ensuring that generalised variables
represent actual dependencies. This has two consequences. Firstly, since the only
communication between the constraint and subsequent usage sites is via the type
of the binder, it only makes sense to generalise candidate variables: generalising an
internal variable would lead to types such as ∀u . Int1 → Intω in which the generali-
sation serves no purpose. Secondly, since subsumption means that positive candidate
variables can be minimised and negative candidate variables maximised without af-
fecting applicability, it only makes sense to generalise variables that appear both
positively and negatively in the binder type (see Section 4.1.3). These arise from a
dependency, where a positive candidate variable is constrained to be greater than a
negative candidate variable. In this case the monomorphic solutions are incompara-
ble, and instead we unify the variables and generalise.

13It is occasionally useful to know the direction of the constraints generated by the inference. From
the discussion in Section 3.8 footnote 21 (which still holds in the present context) we know that positive
(negative) variables from the type environment are constrained only from above (below); further, from
the explicit subtyping applied to the binder type (clause 3 of (�2-LetRec), Figure 4.7), we know that
positive (negative) variables in the binder type are constrained only from below (above) unless they
occur recursively (recursive occurrences appear as variables from the type environment, and so are
constrained oppositely). Internal variables may be constrained from either direction.

14The variable x is either a topmost annotation or a negative environment annotation. If x is a top-
most annotation and the binder it annotates is used more than once in its scope, x = ω will be asserted
by (�2-LetRec). If x is a (necessarily negative) environment annotation, it may be constrained to lie
below a positive environment annotation, and this annotation may be constrained to ω at a later point,
thus forcing x = ω also. Both of these cases would lead to an insoluble constraint set.
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A candidate variable may only be generalised if it may safely take all values in the
annotation domain {ω, 1}. (In the discussion that follows, recall ω ≤ 1, i.e., down-
wards means towards ω and upwards means towards 1; subsumption pulls positive
candidate variables downward and negative candidate variables upward.) There are
four different ways in which any given candidate variable may be constrained, and
in only two of them is generalisation possible:

1. If the candidate is constrained to take a partic-
ular value, it cannot be generalised.15

u+ ω ✗

2. If the candidate is constrained to lie above (be-
low) another candidate variable, with the lower
variable negative and the upper variable pos-
itive, then the constraint expresses a depen-
dency and the candidate can only be gener-
alised by unifying the two variables. The other
candidate variable must also be generalisable.

u+

v− u = v

✓ 1

➵

ω

3. If the candidate is constrained to lie above (be-
low) an internal variable, then it can only be
generalised if the internal variable is either as-
signed ω (1) or unified with the candidate vari-
able. To ensure that generalisation is used only
to express a dependency, we unify internal vari-
ables only when they lie both above and below
a generalised variable.

u+

u10 ↓ ω or = u

✓

4. If the candidate is constrained to lie above (be-
low) a forbidden variable, we cannot generalise
it, since this would involve forcing the forbid-
den variable to ω (1).

u+

x

✗

This is essentially an informal description of the closure algorithm given in more
detail in Section 4.5.4.

For example, consider the following program, where additional usage annota-
tions are used to indicate the usage types of subexpressions:

letrec sumdown : (Intu6 → (Intu7 → Intu8)u9)u10

= λu11s : Intu12 . λu13i : Intu14 .
(if0 iu14

then su12

else (sumdown (su12 + iu14)ω (iu14 +−1ω)ω)u8)u15

in sumdown 100

The constraint generated just prior to closure of sumdown is as follows; candidate
variables are circled, and forbidden variable u10 is dotted. For discussion purposes

15In our simple two-point lattice, a variable’s range is either unrestricted or restricted to a single
value; this is likely not to be the case for the extension discussed in Appendix C, and so this part of the
definition will need to be reconsidered.
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we have added three extra variables u1, u2, u3, along with the dotted constraints;
these are not part of the constraint generated by the program above.

u+
10 u+

9
u15 u+

8

u14 ω u11 u13 u1

u12

u−
7

u3 u−
6

u2

ω ω

Ignoring the additional variables and constraints, we can see that the closure algo-
rithm will unify variables {u6, u12, u13, u9, u15, u8} and generalise them with a single
variable. No other variables will be generalised or altered: u10 may not be gener-
alised as it is a topmost annotation, and u7 may only take the value ω (in addition to
the fact that neither u10 nor u7 are dependent on any other candidate variable).

If u1 and u2 were present as internal variables, u1 would be forced to 1 and u2

to ω, since respectively they lie above and below the generalised variables. If u3 was
present as a (positive16) environment variable, generalisation would be prevented.

4.5.4 The closure algorithm

The closure operator Clos(·, ·, ·) determines the appropriate generalisation of the
binder types, based on the constraint set and the type environment. It is the core of
the inference, and the major technical contribution of the present chapter. It chooses
a generalisation which is ‘best’ consistent with the discussions above, approximating
the constraint set where necessary.

Figure 4.12 shows the closure algorithm. Recall from Section 4.4.2 the interface
of the closure operation:

Clos(C0, Γ, τi
κi) = (C ′, ui, S)

where τi
κi is the vector of (monomorphic) binder types to generalise, Γ is the type

environment within which to generalise, and C0 is the constraint over these types.
The output is a reduced constraint set, a vector of usage variables over which to
generalise, and a unifying substitution to be applied. We now discuss the algorithm
step by step.

1. Compute variable sets. The algorithm begins by computing the sets G0 of
candidate and F0 of forbidden variables. The candidate variables come from

16Polarities in the environment pull in opposite directions from polarities in the binder type; see
footnote 13 above.
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Figure 4.12 The closure operation.
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) where

G0 = {uε | u ∈ fuvε(τi)}
F0 = fuv(κi) ∪ fuv(Γ)

(C, S0) = TransitiveClosure(C0)
G = G0 \ dom(S0)
F = F0 \ dom(S0)

Φ(A) = G ∩ {u−, v+ | u ≤C v ∧ u− ∈ A ∧ v+ ∈ A}
∩ {uε | uε ∈ A ∧ ¬∃x ∈

(
F ∪ {v | vε̄ ∈ (G \A)}

)
. x ≤ε

C u}
G′ = gfp(Φ)

(∼) = {(u, v) | u ≤C v ∧ u− ∈ G′ ∧ v+ ∈ G′}±∗

where R±∗ � (R ∪R−1)∗

U = {u | uε ∈ G′} / (∼)

ui = a vector containing one representative

from each equivalence class in U
S = {(x �→ ui) | ∃u− ∈ G′ . u ≤C x ∧ ∃v+ ∈ G′ . x ≤C v ∧ ui ∈ [u](∼)}

∪ {(x �→ ω ) | ¬∃u− ∈ G′ . u ≤C x ∧ ∃v+ ∈ G′ . x ≤C v}
∪ {(x �→ 1 ) | ∃u− ∈ G′ . u ≤C x ∧ ¬∃v+ ∈ G′ . x ≤C v}
where x ∈ (fuv(C) \ dom(S0))

C ′ = SC
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the binder types, and are marked with polarities from their occurrence.17 The
forbidden variables come from the topmost annotations of the binder types
(which are syntactically ungeneralisable) and from the free usage variables of
the type environment Γ; their polarity is irrelevant. Once these sets have been
computed, the closure operation proper is performed by PClos(C0, G0, F0).

2. Remove grounded variables. According to point 1 of Section 4.5.3, we must
not attempt to generalise any variable that is already constrained to take a
particular value. To avoid this, we invoke an auxiliary partial constraint solver
TransitiveClosure which forms the transitive closure of the constraints collected
in C0. If this succeeds it returns a set of substitutions S for variables whose
values are completely determined by C0, and a residual constraint set C con-
straining these variables directly to their values, and the remaining variables
equivalently to C0. The substitution is then used to remove from consideration
these determined variables, both from the set of candidate variables (lest we
attempt to generalise them) and from the set of forbidden variables (lest we
needlessly avoid generalising a variable because of an irrelevant constraint).

The residual constraint set C induces a partial order ≤C over the free vari-
ables of C, the transitive closure of C0. We write u ≤+

C v for u ≤C v and
u ≤−

C v for v ≤C u. If C0 is unsatisfiable, TransitiveClosure and the entire
translation fail; Theorem 4.4 in Section 4.6.2 states that this never occurs. The
TransitiveClosure operation is a straightforward modification of the constraint
solver of Section 3.5.4; see Section 4.5.5 for details.

3. Find clusters. Once grounded variables have been removed from considera-
tion, point 2 of Section 4.5.3 directs us to find groups or clusters of dependent
candidate variables (subsets of G). Dependent here means that each negative
variable is constrained to lie below a positive variable in the same cluster, and
vice versa; we require this to ensure that polymorphism is only used where
needed. The clusters must be generalisable: no cluster should be constrained
to lie above or below any other distinct cluster (point 2), and no cluster should
be constrained to lie above or below a forbidden variable (a variable in F ;
point 4).

The algorithm first takes the largest dependent subset G′ of G not contain-
ing any variables constrained to lie above or below a variable in F , and then
quotients it by the pairwise dependence relation. Each equivalence class thus
generated is a distinct cluster, and can be unified and generalised as a distinct
usage variable. The set G′ is computed as the greatest fixed point (gfp) of func-
tion Φ, where the second conjunct of Φ requires variables in G′ to be dependent
on each other, and the third removes variables that would constrain forbidden
variables or variables that have already been excluded from the set.18 (We

17If a usage variable u were to appear both positively and negatively in the binder types, it would
appear twice in G0, once as u− and once as u+. It can be shown, however, that with the inference
algorithm as given this never occurs.

18We need only check that positive (negative) variables are not greater (less) than variables in F ;
the other direction is ensured by the first clause and transitivity of ≤.
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must take a fixed point because a constraint x ≤C v+ removes not just v+ from
the set, but also all u− such that u− ≤C v+, and for each such u− all w+ such
that u− ≤C w+, and so on.) The relation (∼) is computed as the reflexive sym-
metric transitive closure of the dependency relation, and the set of clusters U
is computed as the quotient of G′ by (∼).

4. Perform unifications. Having found the clusters of candidate variables to be
generalised, we now perform the required unifications. Since the constraint C
may contain many internal variables in addition to the candidate variables,
we treat these as well, following point 3 of Section 4.5.3. In general, each
cluster in U constrains multiple internal variables between the candidate ones.
If two candidate variables u and v in a cluster are to be unified and generalised,
then all variables in between them must be so also. In addition, other internal
variables may be constrained to lie above (or below) the cluster, and must be
forced to 1 (or ω respectively).

This unification and forcing is formalised by the last three equations of Fig-
ure 4.12. First an arbitrary representative variable is picked from each cluster.
Then a substitution is generated that unifies all variables lying within each clus-
ter with the representative variable of that cluster, and constrains the variables
above and below the cluster to 1 and ω respectively.19 Finally, the constraint is
approximated by applying the substitution to it.

5. Output results. The final constraint C ′, vector of variables representing the
clusters to generalise ui, and substitution S are returned.

The algorithm just described never forces either forbidden or candidate variables.
In some circumstances, this behaviour is not optimal. Section 4.7.2 discusses some
heuristics that may be used to get better behaviour.

If desired, the behaviour of the monomorphic usage analysis of Chapter 3 may
be obtained by replacing the definition of Figure 4.12 with the trivial non-closure
algorithm

TrivClos(C, Γ, τi
κi) � (C, [ ], [ ])

Steps 3 and 4 of the algorithm may be a little hard to follow. We can visualise
them as follows:

u−
1 u−

2

u+
3 u+

4 u+
5 u+

6

u7

u8

u9

u10

u11

u12
u13

u14

u15

1

➵

ω

19The domain of the substitution will never include forbidden variables (i.e., x /∈ F for all x �→ ui

in S), since the third conjunct in the definition of Φ ensures that any constraint between a forbidden
variable and a cluster prevents the cluster from being generalised.



4.5. GENERALISATION AND SIMPLE POLYMORPHISM 105

Here we visualise the constraint as a kind of abstract Hasse diagram; variables of
interest are shown explicitly, and the remainder are indicated simply by regions
of the plane. The diagram shows a single cluster of dependent candidate vari-
ables {u1, u2, u3, u4, u5, u6}, with internal variables constrained to lie above the clus-

ter shaded in yellow , internal variables constrained to lie below the cluster shaded

in cyan , and internal variables constrained to lie both above and below the cluster

(and hence within the cluster) shaded in green .

Positive variables in the diagram pull downwards toward ω due to the subtype
ordering, and negative variables pull upwards toward 1. Where a positive variable
is constrained to lie above a negative variable, the two directions compete and we
unify the variables, approximating the constraint between them.

All variables in the green region, including the candidate variables defining the
cluster and the internal variables u7 and u8, will be unified with a single variable and
generalised. All variables in the cyan region, including u9, u10, u11, will be forced to ω
so as to permit this generalisation, and the variables in the yellow region, including
u12, u13, will be forced to 1 for the same reason. This unification approximates away
all constraints lying within these three regions. The white region unconnected with

the cluster, including u14, u15, is unaffected.

4.5.5 Computing the transitive closure

The closure operation of Section 4.5.4 makes use of an operation TransitiveClosure,
which partially solves a set of constraints, returning a substitution and a residual
constraint. This operation also converts the constraint into a form that allows us to
compute Φ(A), (∼), S, and C ′ in Figure 4.12, by exposing the partial order ≤C .

The TransitiveClosure operation is implemented by extending the implementa-
tion of CS in Section 3.5.4, as described in detail below.

The codomain of the finite mapping is extended to allow an equivalence class
to be mapped to a generalised variable; the algorithm treats this exactly as if the
class was mapped to a constant. When TransitiveClosure is applied to a constraint
set, it performs the algorithm of Section 3.5.4 on the set, building the data structure
described there or failing if the constraint set is unsatisfiable. It halts once all the
constraints have been considered, but before attempting to determine the optimal
solution.

Operations are provided to obtain the substitution implied by the data structure
(obtained by restricting the finite map to those variables mapped to a constant), to
return the set of variables constrained by the data structure (the domain of the finite
map), and to reify the data structure as a constraint.

In addition, an operation is provided that queries a variable constrained by the
data structure, returning (unless it is mapped to a constant) its upward and down-
ward cones, i.e., the sets of variables constrained to lie respectively above and below
the variable. These sets are computed by a transitive closure algorithm for digraphs
due to Nuutila [Nuu94], using the graph for which the nodes are the variables in
the finite map and the directed edges from each node are the upper or lower bounds
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of each variable (respectively). The algorithm is modified so as to obtain the set of
nodes in the transitive closure, rather than the set of components.

Finally, an operation implements the final lines of Figure 4.12, computing S
and C ′, directly on the data structure, using set union and intersection on the up-
ward and downward cones of the variables in each equivalence class to determine
the sets of variables to be assigned to u, 1, and ω.

These operations, in conjunction with those already described in Section 3.5.4,
are sufficient to implement the closure algorithm of Section 4.5.4, and hence the
entire inference IT2.

4.6 Proofs

Recall from Section 3.1 that a type-based analysis must be supported by proofs that
the type system and inference are sound, and preferably complete. It is also useful
to know the complexity of the analysis. The proofs of these properties are presented
(in sketch form) below; the full proofs appear in the appendix.

4.6.1 Well-typing rules

Once again, correctness requires that the type system be sound with respect to the
operational semantics (cf. Section 3.6.1): a well-typed LIX2 term e must never ter-
minate in a configuration in Wrong, BadBinding, or BadValue; it must either fail to
terminate, or terminate in a configuration in Value or BlackHole.20

The operational semantics we use for LIX2 is that of LIX0, with the instrumenta-
tion modified in two ways. Firstly, the types carried are polymorphic τ - and σ-types
rather than t-types. Secondly, rules are added for usage abstractions and applica-
tions, and the rule for letrec is modified. The details are a little involved, but as they
are identical to the way in which type abstractions and applications are handled in
Section 5.1.4, we defer discussion to that section. As usual, an analogue of the Cor-
respondence Lemma 2.4 states that the instrumentation is ignored, i.e., that LIX2

and LX execute in lock-step.

Theorem 4.1 (Type soundness)
For all e ∈ LIX2, if ∅ �2 e : σ and there exists a configuration C ′ such that (e)〈;;〉 ↓ C ′,
then C ′ ∈ Value ∪ BlackHole.

Proof By Progress Lemma D.10 (proven by cases on C), and induction on the
length of derivation of (e)〈;;〉 ↓ C ′. The full proof is given in the appendix,
Theorem D.11. �

We further expect that its behaviour will be the same as that of the equivalent L0

term M = (e)�: if M terminates with result V (or a black hole), then we expect e
to terminate with the same result (or a black hole, respectively), and vice versa. The
latter property can be expressed as follows:

20Note that due to type erasure, BlackHole is extended to include some configurations of the form
〈H; Λu . x; S 〉.
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Theorem 4.2 (Correctness)
For all LIX2 target programs e, where ∅ �2 e : σ, let M be the corresponding L0

source program (e)�. Then we have

(i) (e)〈;;〉 ↓ ⇔ (T0�M �)〈;;〉 ↓
( i.e., the LIX2 program e terminates iff the L0 program M does); and

(ii) If (e)〈;;〉 ↓ C ′ and (T0�M �)〈;;〉 ↓ C ′′, then all the following hold:

(a) C ′ ∈ BlackHole⇔ C ′′ ∈ BlackHole

(b) C ′ ∈ Value⇔ C ′′ ∈ Value

(c) C ′ = 〈H; n; ε 〉 ⇔ C ′′ = 〈H ′; n; ε 〉

( i.e., if the two programs terminate, they both terminate in the same way, viz.,
black hole, non-ground value, or the same ground value).

Proof By the Correspondence Lemma we may ignore the instrumentation, and
consider the two FLX terms M2 = (e)� and M0 = (M)�. The two directions
of (i) are proven separately, showing by induction on the length of the respec-
tive reduction sequence that each can simulate the other and relating terminal
configurations. The full proof appears in the appendix, Theorem D.17. �

We also must show that all source terms have a target typing:

Theorem 4.3 (Nonrestrictivity)
For all L0 environments Γ, terms M , and types t, if Γ �0 M : t then there exists an
LIX2 environment Γ′, term e, and type σ such that (Γ′)� = Γ, (e)� = M , (σ)� = t,
and Γ′ �2 e : σ.

Proof Follows immediately from Theorem 3.3, since every LIX1 typing is also an
LIX2 typing. �

Together, these three results strongly support our claim that the type system mod-
els our operational notion of usage. Theorem 4.1 demonstrates that well-typed pro-
grams do not go wrong: the analysis yields operationally correct update flags. The-
orem 4.2 demonstrates that the observable behaviour of a well-typed LIX2 program
is identical to that of its corresponding L0 program: the analysis does not affect be-
haviour. And Theorem 4.3 reassures us that there is at least one corresponding LIX2

program for every L0 program: the analysis is soft (see Section 1.5.5), and does not
reject any program. However, these results do not tell us whether or not the type sys-
tem chooses good update flags; for this we must rely on practical experience, which
we gain in Section 4.7.5.

4.6.2 Inference phase 1

The inference IT2 is intended to infer a well-typed LIX2 annotation for a given L0

program. We now proceed to prove that this inference algorithm is sound, and has
other good properties. The formal statement of these properties should be compared



108 CHAPTER 4. POLYMORPHIC USAGE TYPES

with Theorem 3.4, Section 3.6.2, where the LIX1 inference �1 is shown to be com-
plete as well as sound. The difference is in clause (iv), which for �1 states that all
well-typed annotations of the source term are solutions of the resulting constraint but
for �2 states only that there is one solution of the resulting constraint. We explain
why this incompleteness is unavoidable below.

Theorem 4.4 (Soundness of inference phase 1)
For all Γ in LIX2 (possibly with free usage variables) and M, t in L0 such that (Γ)� �0

M : t and 1 /∈ ann+(Γ),

(i) �2 (Γ, M) = (e′, σ′, C, V ) is well defined21

( i.e., the algorithm �2 is deterministic and does not fail);

(ii) (e′)� = M and (σ′)� = t
( i.e., the inference algorithm merely annotates the source term, and does not
alter it or its source type);

(iii) ∀S . �e SC ⇒ SΓ �2 Se′ : Sσ′

( i.e., all solutions of the resulting constraint are well-typed); and

(iv) ∃S . �e S(C ∧
∧

u∈(fuv(Γ)∪fuv(σ′))〈u = ω〉) and 1 /∈ ann+(σ′)
( i.e., the resulting constraint has at least one solution, and permits all possible
future uses).

Proof Proofs of (i) and (ii) are straightforward. (iii) is proved by induction over
the structure of the inference derivation tree and inspection of each inference
rule, comparing it with the corresponding well-typing rule.

The proof of satisfiability (iv) makes use of a lemma: if Γ � Mi � ei :
σi; Ci; Vi and all the Ci are satisfiable, then the conjunction

∧
i Ci is also satis-

fiable. We proceed by structural induction on the inference derivation tree. All
the rules in Figure 4.6 can be seen by inspection to preserve the well-typedness
property and the lemma, since usage variables are only ever constrained to ω
or a fresh usage variable. This leaves (�2-LetRec).

Recall that the monomorphic inference �1 can be obtained simply by provid-
ing a trivial definition for Clos. It is therefore unsurprising that the result is
established using a Lemma 4.5 (below) describing properties of Clos, and is
parameterised over its definition.

A full proof appears in the Appendix, Section D.14. �

Lemma 4.5 (Closure operation)
For all C, Γ, σi such that ∃S′ . �e S′C ( i.e., C is satisfiable),

(i) The closure operation Clos(C, Γ, τi
κi) = (C ′, ui, S) is well-defined,

21It is well defined modulo the names of fresh variables; we have already noted that we are omitting
the details of fresh variable management. Here this also means that the list of usage variables in scope
occurs in Γ of Γ �2 e : σ but not in Γ of �2 (Γ, M), since in the latter the free usage variables are
managed separately.
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and we have the following results, where F0 � (fuv(Γ) ∪ fuv(κi)):

(ii) C ′ =e SC
( i.e., a solution of the residual constraint, applied to the substituted term, sat-
isfies all the original constraints);

(iii) ∃S′ . �e S′C ′

( i.e., the residual constraint is satisfiable);

(iv) For all substitutions S′, S′′ such that S′|U\ui
= S′′|U\ui

(where U is the set of
all usage variables), we have that �e S′C ′ ⇔ �e S′′C ′

( i.e., the ui may safely take any value; alternatively, the residual constraint is
independent of the values of the ui);

(v) dom(S) ⊆ fuv(C) \ F0, and for all x ∈ F0 and κ ∈ {1, ω}, if ∃S′ . �e

S′(C ∧ 〈x = κ〉) then ∃S′ . �e S′(C ′ ∧ 〈x = κ〉).
( i.e., the substitution does not attempt to touch variables to which it is not
applied, and neither does C ′ constrain them further); and

(vi) ui ⊆ (fuv(Sτi) \ F0)
( i.e., the variables ui are all abstractable).

(vii) ∀u ∈ fuv+(τi) . Su �= 1
( i.e., no positive annotation is forced to 1).

Proof Proofs of these properties appear in the appendix, Lemma D.13. �

Attempting to prove completeness of �2 with respect to �2 fails immediately
because the inference infers rank-1 usage-polymorphic types only whereas the well-
typing rules permit arbitrary usage polymorphism (see Section 4.7.4). But it fails for
another reason also: the choice of which variables to generalise is made based only
on C, Γ, and σi after inferring the bindings but before inferring the body or the remain-
der of the program. Generalising a variable can be destructive because it constrains
related variables to accept any value for the generalised variable; these constraints
could be relaxed if the inference knew the variable would only ever take one value
in the body and the remainder of the program. Also, not generalising a variable can
be destructive because it fails to insulate application sites from each other; if the
inference knew that certain variables (free usage variables in Γ and topmost annota-
tions of σi) forbidden at generalisation time and related to otherwise-generalisable
variables would later be constrained to a constant, the constraints preventing gen-
eralisation could be relaxed. Our inference cannot know these things, and thus is
incomplete even for rank-1 usage polymorphism.

Note that this is distinct from the other incompletenesses of our analysis: the lack
of most-general types for LIX2 (Section 4.5.2), and the necessary incompleteness of
any static analysis with respect to the dynamic, operational-semantic property of
correct usage annotation (Section 1.4.2).
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4.6.3 Inference phase 2

Phase 2 of the LIX2 inference is identical to that of LIX1, and the proofs already
presented in Section 3.6.3 apply unchanged.

4.6.4 Overall results

We now combine the results of the above sections into a result about the inference
as a whole.

Theorem 4.6 (Inference soundness)
For all M in L0, if (CS◦ �2)(∅, M) = e : σ then ∅ �2 e : σ and (e)� = M .

Proof Follows directly from Theorems 4.4 and 3.5, and inspection of the definition
of �. �

Theorem 4.7 (Inference complexity)
If we assume that nesting of conditionals and abstractions is limited to a constant
depth, types annotating letrec bindings are limited to a constant size, and a linear
algorithm exists for union-find, then the complexity of the inference IT2 is bounded
by O(nm2), where n is the size of the program and m is the size of the largest binding
group (set of expressions ei bound by a letrec) in the program.

Proof The dominant term comes from the algorithm which computes the transi-
tive closure of the constraints, used to obtain the upper and lower cones for
variables in G0 in order to compute Φ, S, and C (see Section 4.5.5). Nuu-
tila [Nuu94] gives a worst-case bound of O(ne+n+e) for his algorithm, where
n is the number of vertices and e the number of edges. Both n (the number
of variables in the constraint) and e (the number of constraints) may be ap-
proximated in our setting by the size of the constraint C passed to Clos, which
(under the assumptions given) is bounded by the size of the binding group
being generalised. Thus the closure operation is quadratic in this parameter,
and since it is invoked at each letrec this must be multiplied by the size of the
program to obtain its overall contribution. This dominates remaining factors,
which are essentially linear, as before (Theorem 3.9 for IT1). �

The assumption on types of letrec bindings is a little strong, but Henglein ar-
gues in relation to ML that “Good programs have small types”; since types are in
some sense abstractions of program behaviour, no reasonable program has a huge
type [Hen93, §6.1]. This is well supported by the fact that for over ten years ML’s
type inference was believed to be linear or possibly quadratic, whereas in fact it is
doubly-exponential [KMM91]! Clearly in practice functional programmers do not
write code of the kind that leads to such behaviour; the same observation restricts
our exposure in this case.
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4.7 Discussion

There are a number of ways in which the inference could be extended or improved;
we discuss these below in Sections 4.7.2, 4.7.3, and 4.7.4. We also summarise the
results obtained from our implementation of the analysis in Section 4.7.5. Firstly,
however, we consider the possible wider applications of simple polymorphism.

4.7.1 Application of simple polymorphism

Simple polymorphism is not tied to usage analysis. We believe that it should have
wider applications to type-based analyses. One obvious candidate is the binding-
time analysis of Dussart, Henglein, and Mossin [DHM95], which presently uses
constrained polymorphism over a two-point domain (static vs. dynamic). Unique-
ness [BS95b, BS96] (Section 3.9.2) would be another example.

All these analyses are over two-point annotation domains. Simple polymorphism
should certainly be applicable to any domain possessing a top and a bottom element.
However, it is not clear whether in larger domains the approximation performed by
simple polymorphism would be too great to be useful.

4.7.2 Better generalisation

The generalisation algorithm described in Section 4.5.4 may certainly be improved.
Generalisation is presently prevented whenever there is a dependency on a forbid-
den variable at the time of generalisation. However, in certain cases that apparent
dependency may later be removed, or steps could be taken to partially generalise
anyway, or the generalisation algorithm could remove the dependency itself. All of
these could improve the generality of the results of inference.

Observe that generalisation may be prevented by a variable occurring in the type
environment whenever that variable is free at generalisation time, even if it will later
be constrained to ω or 1 and thus unlinked from the candidate variables. This sug-
gests that an inference algorithm should take care to constrain usage variables in the
type environment as soon as possible, replacing fully-constrained variables with con-
stants. Unfortunately, this is not always readily achieved: some annotations may be
forced to ω early because they annotate a binder that is to be pessimised, but others
will only forced to ω based on knowledge of their occurrence or use as arguments to
other functions, knowledge that is only available after inference of the body of the
letrec which is performed after generalisation.

In general, no LIX2 inference can avoid approximating (Section 4.5.2). But in
specific cases, one approximation may be better than another: if plus3 is used in
a context where the second and third arguments are always supplied together, the
in-general-unsafe type described by [1, 1, u, u] can be used rather than [u, u, u, u]. If
some heuristic is available to make such choices, it can be used to influence the
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outcome of inference appropriately. If κ2 is forced to 1:

κ+
2

1

κ+
4

κ−
1 κ−

3

then κ1 will be maximised to 1 also, and κ3 and κ4 unified, yielding the desired type:

(∀u . Intu → (Int1 → (Int1 → Intω)1)u)ω

Forcing to 1 requires examination of the remainder of the program to ensure that
inference will not subsequently fail; forcing to ω on the other hand is always safe,
although it may lead to poisoning or loss of usage information.

An interesting application for such heuristics therefore is to select a negative
candidate variable to force to ω, in order to break a zig-zag link between a forbidden
variable and a cluster which it is preventing from generalisation. In

κ+
2 u−

Γ

κ−
1 κ−

3

ω

the variable uΓ occurs negatively in the environment and is therefore preventing κ1,
κ2, and κ3 from being unified and generalised. If we let κ3 = ω as shown, the zig-
zag is broken and κ1 and κ2 may be unified and generalised, at the expense of κ3.
Similarly, longer zig-zags that would normally all be unified to a single variable may
be split into multiple variables by judicious forcing. The present algorithm does not
attempt these things, but heuristics controlling such behaviour can be imagined.

An even more unorthodox heuristic might determine that forcing an environment
variable (or some other forbidden variable) is called for. In the example at the end of
Section 4.5.3, we suggested imagining u3 was a positive variable in the environment,
preventing u9, u6, u8 from being unified and generalised. If we were to force u3 = ω,
these variables would be generalisable. One can imagine situations in which gaining
generalisation of this type is worth the possible loss of a 1-type for u3: for example,
if u3 is the topmost annotation of a toplevel function, it is highly likely it will be used
more than once and thus forced to ω eventually anyway.

In our presentation of the algorithm, we avoid such heuristics, and simply choose
the largest possible forcing-free generalisations.

4.7.3 Usage analysis and generalisation

A significant observation, which we made after designing and implementing the clo-
sure algorithm, is that generalisation and usage analysis in fact work against each



4.7. DISCUSSION 113

other to a significant degree. Principal types, and our weaker maximal applicability
property, aim to find a single type that describes all possible uses of the binder (Sec-
tion 4.5.1); usage analysis seeks to discover which actual uses are made of the binder
in order to optimise for them alone. Thus generalisation erects a barrier to usage
analysis: the generalised expression is permitted no information on how it is used,
and the abstract machine must pessimistically assume all possible uses (thus u† = !).

Henglein and Mossin, in presenting a binding-time analysis [HM94], note that
their system has principal types and explain that “[t]his admits modular (‘local’)
binding-time analysis of a (function) definition, independent of any of its applica-
tions.” While this may be appropriate and useful for a binding-time analysis, it is
exactly the opposite of what we desire in a usage analysis. Usage types are intended
precisely to give information about function applications. This information is inher-
ently not local to the definition, but is a global property of the contexts in which the
function is used [Gus01a, p. 4]. This suggests that it may be the case that no useful
usage analysis has principal types!

This suggests that wholesale generalisation of every letrec-bound variable will
lead to poor results. Contrast

letrec x = e
in
. . . x . . .

(where x occurs only once in the body), with the inlined version

. . . e . . .

In the former, the generalisation procedure approximates the constraints pertaining
to e, potentially leading to a less informative type; in the latter, the exact constraints
are used and all available information is retained. The good behaviour of the lat-
ter example may be preserved in the former by simply not generalising: since there
is only one occurrence of x, there is no potential for poisoning, and since there is
no generalisation, there is no approximation. If there is only one occurrence of the
binder, then, simply not generalising has the same effect as using constrained poly-
morphism! Even if there is more than one occurrence, they may be at sufficiently
similar types that not generalising is the better choice. Therefore, it may be wise to
use the monomorphic letrec in most places, and reserve the polymorphic generalis-
ing version for toplevel or exported functions only. This is borne out in our results
(Section 6.8).

The fact that generalising the topmost annotation is syntactically impossible (Sec-
tion 4.2.1) alleviates the problem somewhat by ensuring that the overall usage of the
function as a whole, at least, is fixed statically.

Recall, however, that the benefit to the function of eschewing principal types is
balanced by a disadvantage to the caller: if a function with a dependency, such as
idInt (Section 4.1.1) is called in both contexts (or is exported), then in the absence
of polymorphism argument and result must both be annotated ω. This causes those
contexts in which the result is in fact used only once to be needlessly poisoned by the
ω annotation on the second argument. Principal types guarantee that the function
cannot needlessly poison its context.
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An alternative with which we experiment in Section 6.3.3 is specialisation: a
function f : (∀u . τ)ω = e can be replaced by two functions f1 : (τ [1/u])ω = e[1/u]
and fω : (τ [ω/u])ω = e[ω/u], and all former invocations of f 1 and f ω may be
replaced respectively by invocations of f1 and fω. This allows thunks within f to be
given accurate update flags, at the expense of an increase in code size (for a function
with n usage arguments, up to 2n copies are required). In some cases this may be
beneficial.

The Holy Grail, of course, would be to design a constraint system that could de-
fer the decision of which variables to generalise until the end, when all available
information about the program has been collected. This would yield inference com-
pleteness results analogous to those for LIX1 and �1, namely that the inference
always yields the best target typing of the source program (Theorem 3.8).

4.7.4 Beyond ML-style polymorphism

Section 4.4.2 explains the decision to use ML-style polymorphism, generalising (and
approximating) at letrec nodes only and using rank-1 usage polymorphism. But the
well-typing rules admit more general behaviour. For example, there exist L0 pro-
grams which can be given complete LIX2 types only by using rank-2 polymorphism,
and which will be unnecessarily approximated by the algorithm. Such programs in-
volve passing a generalised function as argument to another function, and then using
it polymorphically. Here is a contrived example:

applyIdIntL0
= λf : (Int→ Int) . λx : Int . f x

applyIdIntLIX2
= λω,!f : (∀u . Intu → Intu)ω . Λu . λω,!x : Intu . f u x

With this hand-generalised function, the application (applyIdInt idInt) is still usage-
polymorphic, and may be applied both to a second argument that may be used at
most once (returning a result that may be used at most once) and to one that may
be used many times (returning a result that may be used many times). In contrast,
the present inference algorithm yields the generalisation

applyIdIntLIX2
= Λu1 u2 . λω,!f : (Intu1 → Intu2)ω . λω,!x : Intu1 . f x

in which the values of both u1 and u2 are fixed once the first argument is supplied,
and application to second arguments of differing usage results in inference failure or
poisoning.

This example is clearly contrived, but in other contexts rank-2, a.k.a. nested or
impredicative, polymorphic types have in fact been shown to be useful (such as in
the lazy state threads of [LPJ94]) and they might conceivably prove to be so here.
Inference is known to be undecidable in this case [Wel94], but such types could be in-
troduced in specific cases by explicit type signatures or a special-case algorithm. Few
alterations would need to be made in order to permit their use; see [OL96], which
describes the method used in GHC to implement rank-2 type polymorphism.22 One
possible approach for inferring such types suggests itself from the common usage-
variable-follows-type-variable pattern shown clearly by the type inferred for compose

22Simon L. Peyton Jones, personal communication, 17 September, 2001.
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(Figure 4.1): we could attempt to follow each nested type quantifier with a usage
quantifier, possibly improving the type of functions such as build. We have not tried
this.

It is possible to approximate at locations other than letrec nodes, as in Nordlan-
der’s O’Haskell, discussed in Section 4.8.2.

4.7.5 Implementation

We have implemented our analysis within the Glasgow Haskell Compiler (GHC) (Sec-
tion 1.2.5). Our plan of attack is that of [WPJ99, §2.3]: we perform an initial usage
type inference soon after translation into Core; subsequent transformations preserve
usage type soundness, but at any point we may choose to perform another inference
to improve the accuracy of the types (recall that a decidable inference of any inter-
esting operational property is necessarily an approximation). Finally, we perform
an inference just prior to translation to STG, to ensure maximally-accurate usage
information is available when deciding which code to generate for each thunk.

Usage information is used in two places. Firstly, it is used by the code generator in
making the decision as to whether or not to generate an updatable thunk. Secondly,
it is used by the optimisation passes: the usage analysis informs the optimiser about
one-shot lambdas (Section 1.3.4) in order to increase the scope for code-floating
transformations such as inlining and full laziness.

We have performed detailed measurements of the results of adding our analysis
to the optimising compiler GHC. All standard libraries were compiled with the anal-
ysis, in addition to the program under test. For each program, the change in total
bytes allocated and in run time was measured relative to the version of the compiler
and libraries without usage inference. We also computed the percentage of thunks
actually demanded at most once during execution that were statically identified as
such by the analysis (the effectiveness).

Table 4.1 shows the effectiveness of the usage analysis and the improvement in
run time for a representative selection of programs in the test suite. The results
indicate that the simple polymorphic analysis is successful in solving the problems
we identified with the monomorphic analysis. Library functions such as those in
Figure 4.1 are given good types, and a significant fraction of used-once thunks are
identified by the analysis. This measurably improves the run time of the programs
tested. The results are presented and discussed in more detail in Section 6.8.

The comparative results of Section 6.8.2, however, clearly show that appropriate
treatment of data structures is very important to the effectiveness of the analysis,
and it is to this that we turn in the next chapter.

4.8 Related work

In this section we consider the large body of work on constrained polymorphism, the
approach we rejected (Section 4.8.1); Nordlander’s work on pragmatic subtyping
(Section 4.8.2), which uses a different approach to generate what are essentially
simple-polymorphic types; and related work making use of annotation polymorphism
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Table 4.1 Run time improvement and effectiveness of usage analysis.

Results of usage analysis
Program Run time (seconds) Effectiveness

None Usage None Usage
spectral/boyer 11.49 11.45 (−0.35%) 0.00% 0.00%
real/bspt 10.22 10.03 (−1.86%) 0.00% 5.60%
real/cacheprof 1.43 1.44 (+0.70%) 0.00% 4.68%
spectral/clausify 16.41 16.22 (−1.16%) 0.00% 14.24%
spectral/cryptarithm2 11.01 10.46 (−5.00%) 0.00% 93.13%
spectral/fft2 16.45 14.71 (−10.58%) 0.00% 71.48%
real/gamteb 9.22 9.13 (−0.98%) 0.00% 0.00%
imaginary/integrate 6.98 6.48 (−7.16%) 0.00% 43.54%
real/lift 0 0 − 0.00% 2.67%
spectral/mandel 15.36 14.15 (−7.88%) 0.00% 1.25%
spectral/multiplier 15.18 14.85 (−2.17%) 0.00% 22.66%
spectral/puzzle 16.69 17.08 (+2.34%) 0.00% 0.00%
imaginary/queens 14.32 14.32 (+0.00%) 0.00% 0.00%
real/reptile 0.02 0.01 − 0.00% 1.47%
spectral/simple 13.8 14.76 (+6.96%) 0.00% 42.37%

Geometric mean: (−2.19%)

(Section 4.8.3). In more depth, we attempt to relate our system to the HM(X) system
of [SMZ99] (Section 4.8.4).

4.8.1 Constrained polymorphism

There has been a large amount of research on subtyping and polymorphism. A num-
ber of researchers have worked on the problem of simplifying subtyping constraints,
since without some simplification effort, the constraints resulting from straightfor-
ward type inference become unmanageably large (both uninterpretable for the user,
and slow to process for the machine). However, few have attempted to approximate
constraints: the simplification that is done is usually meaning-preserving. Below we
summarise work in the area.

4.8.1.1 Polymorphism and subtyping

The canonical polymorphic lambda calculi are of course the Girard–Reynolds poly-
morphic lambda calculus, System F [Gir72, Rey74], and its higher-order exten-
sion, Fω [Gir72]. Extensions of these systems to include subtyping are F≤ (“F-
sub”) [CG92, CMMS94] and Fω

≤ [Car88, SP94], respectively. These extensions use
bounded quantification, as introduced by [CW85], to correctly deal with the be-
haviour of functions in the presence of subsumption. Types in these systems are of
the form ∀α ≤ τ1 . τ , where τ1 places an upper bound on the types with which α may
be instantiated.
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Amadio and Cardelli [AC91, AC93] give an early survey of the problem of sub-
typing and recursive types, and discuss the meaning of subtyping, subtyping rules,
type equivalence, canonical forms, and models. They give an algorithm for deciding
τ1 ≤ τ2, based on regular (but possibly infinite) trees. This can be seen as equivalent
to a coinductive definition of subtyping, as observed by Pierce and Sangiorgi [PS93];
this approach was worked out in detail by Brandt and Henglein [BH98]. An excellent
and accessible overview of the current state of the art is given by Gapeyev, Levin, and
Pierce in [GLP00].

Two forms of subtyping are possible: structural subtyping [Car88], in which the
subtype relation holds only of types that have the same structure, and may be de-
composed into the conjunction of many applications of a primitive or atomic relation
on basic types, and non-structural subtyping [JP99], in which the subtype relation
need not follow the structure of the types, and the subtype ordering has a least ele-
ment ⊥ and a greatest element �. Subtyping in the present thesis is structural, and
this greatly simplifies our algorithms, although it is not clear in general which form
of subtyping is harder [JP99, HR98].

Because of the formal equivalence between type-based analysis and abstract in-
terpretation (Section 1.4.1), polymorphism has a corresponding concept in flow
analysis, namely polyvariance (or splitting) [Bul84, JW95, WJ98].

4.8.1.2 Type inference and constraints

ML-like languages traditionally perform type inference according to Damas–Hindley–
Milner’s Algorithm W (see Section 5.1.1). This infers polymorphic type schemes for
let-bound identifiers (by means of an operation called generalisation), and monomor-
phic types elsewhere. The algorithm depends on unification [Rob65, MM82], which
is invoked at application nodes (e1 e2) to require that the type of e2 is equal to the
argument type of e1. In the presence of a subsumption rule, however, unification can
no longer be used. At an application node (e1 e2), the requirement is now that the
type of e2 be a subtype of the argument type of e1. This is naturally expressed as a
constraint on the relevant types as first observed by Wand [Wan87], and type infer-
ence becomes a problem in constraint solution: one collects constraints on free type
variables and finds the least solution satisfying the constraints. From here it is only a
small step to constrained polymorphism [Cur90, Mit84, AW93, Mit91, TS96], where
we allow arbitrary constraints on quantifiers rather than merely an upper bound:
∀α : C . τ .23

4.8.1.3 Constraint solution

Unfortunately, constraint solution is a much harder problem in general than unifica-
tion; exactly how hard depends on various parameters of the problem [LM92], but it
may be as hard as nondeterministic exponential time; [Tiu97] gives a PTIME algo-
rithm in one case, and [Fre97] shows that constraint solution in the structural case
is PSPACE-complete. On the other hand, non-structural subtyping may be easier:

23In the presence of recursive types, the two forms are in fact equivalent [PS96].
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[LM92] claims linear in a very restricted case, [Hen99] gives an O(n2) algorithm for
a special case derived from object-oriented programming, and [JP99] gives an O(n3)
general algorithm. One may also consider the difficulty of deciding the subtype rela-
tion C � τ1 ≤ τ2 or constraint entailment C � C ′ [LM92, TS96, HR98].

4.8.1.4 Constraint simplification

In an attempt to deal with this, practical algorithms must perform simplification on
constraint sets, as well as using clever internal representations. As explained in
[AWP97], these simplifications are useful from the point of view both of the user
(simpler types are easier to read, write, and understand) and of program analyses
(simpler types make the relevant properties clearer, and take less time to process).

The earliest work on constraint simplification is that of Fuh and Mishra [FM90].
A good recent overview is given by Pottier in [Pot01].

The definitive work in the field is that of Trifonov and Smith [TS96], which gives
an observational characterisation of polymorphic subtyping, proves it equivalent to
a semantic one that generalises the regular trees of [AC93], and gives an efficient
algorithm for a powerful decidable approximation to it. They give a general rep-
resentation ∀�α . τ\C for constrained types that subsumes earlier representations;
these representations are closed, which is convenient for the technical development.
The observations on a constraint are the possible future constraints that may occur;
types in the context may acquire only new lower bounds, and root types may acquire
only new upper bounds. This leads to the notion of the polarity of a variable in a
constraint, one which is useful in garbage-collecting unreachable constraints. The
algorithm makes use of an efficient constraint set representation, the kernel. The
algorithm subsumes Damas–Hindley–Milner type scheme instantiation, and subtyp-
ing and prenex-form union types in [AC93], and enables the soundness of various
constraint garbage-collection algorithms [EST95] to be proven.

Pottier’s work [Pot01, Pot98, Pot00] is based on that of [TS96], and develops a
polymorphic, subtyping type inference engine in detail. Constraints are reduced to
atomic constraints, and garbage collection is performed of unreachable constraints
according to polarities. Simplification is then performed by means of an algorithm
based on Hopcroft’s finite state automaton minimisation algorithm [Hop71] (see also
[HU79, §3.4], but this algorithm may be less efficient).

In our system, the notion of observability must be different from that of [TS96].
Internal variables, that is, those that are not mentioned in either type or context,
may still be significant if they annotate a term. This is also the case for Flanagan
and Felleisen’s labels annotating program points of interest [FF99], and this explains
their use of a covariant goodness ordering (see Section 3.4.3) as well as Pottier’s
criticism of it [Pot01, §6]. Such variables must not be simplified away, and should
be treated as positive when searching for a least solution.

Flanagan and Felleisen [FF99] discuss elegantly and thoroughly the problem of
performing (in practice) set-based analysis of Scheme programs. The constraint sys-
tems generated get very large (linear or quadratic in the size of the program, and
solution is kn3 + O(n2), small k but significant for 1000-plus line programs), seri-
ously affecting performance, and so they discuss techniques for “approximate sim-
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plification” – efficiently yielding simpler but not necessarily optimal constraint sets
(optimal is PSPACE-hard), not to be confused with constraint approximation.

They give four algorithms for simplifying constraint sets, three of which are based
on regular tree grammars (RTGs), in increasing order of difficulty: delete empty con-
straints, delete unreachable constraints, delete ε-constraints, and Hopcroft’s [Hop71]
algorithm. Benchmarks are given showing their effectiveness (very significant) in
practice. They discuss Trifonov and Scott, and Pottier, noting that they subsume
their ad hoc simplifications.

They briefly consider conservative approximation of constraint sets, but by au-
tomatic entailment checking of human-supplied constraints, rather than automatic
inference of such.

[MW97] use cycle elimination as well as other standard procedures on their con-
straint sets, which are represented as a transitive kernel D of C, where each variable
in D has a set of upper and lower bounds, and D is the minimal set such that its tran-
sitive closure is C (this is a similar representation to that of [TS96]’s kernel, except
that Trifonov retains the transitively-generated constraints also).

4.8.1.5 Constraint approximation

The approaches so far have all performed constraint simplification while preserv-
ing the observational meaning of the constraints. A few people have considered
constraint approximation, where information is deliberately lost, preserving sound-
ness but not completeness. Flanagan and Felleisen [FF99] consider allowing the
programmer to supply approximate constraints for a type and verifying that they
entail the machine-inferred constraint. Nordlander’s eagerly-approximating subtyp-
ing algorithm is considered in Section 4.8.2. Cardelli’s greedy algorithm for type-
checking F≤ [Car93] resolves all subtyping constraints immediately on generation
(i.e., at application sites), performing unification on type variables as necessary to
ensure that constraints need never be propagated. Pierce and Turner [PT97] also in-
fer unbounded-polymorphic types, although they discuss the extension to bounded
polymorphism. Their approximation makes use of an unusual operation to remove
particular undesirable free variables from a type, which simply promotes the type
upwards until the variables disappear. This is used to avoid variables leaving their
scopes. For example, ∀Y . ( ) → (Y → Y ) ≤ ∀Y . ( ) → X should not yield
Y → Y ≤ X, but ⊥ → � ≤ X. Obviously they work with non-structural sub-
typing. Amtoft [Amt94] converts strictness constraints into a normal form by means
of an approximation that alters the solution set but preserves the minimal (i.e., best)
solution. The HM(X) system of Odersky, Sulzmann, and Wehr [OSW98], with its
cylindrical constraint systems, provides an elegant setting for considering constraint
approximation, and we do this in Section 4.8.4 below.

4.8.1.6 New approaches

Some recent work has addressed the problem of large constraints more directly.
Rather than merely simplifying constraints, the new approach is to invent much
more efficient ways of storing the constraint set, which avoid the usual exponential
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blow-up in constraint size by performing more sharing. Algorithms over these effi-
cient representations themselves become more efficient, since less work is repeated.
This is reminiscent of unification in standard ML type inference, which may yield
types that are exponential in size when displayed even though the internal shared
digraph representation is only linear [Tiu97].

Rehof and Fähndrich [RF01] avoid the potentially-exponential blow-up of the
size of the constraint set as program size increase by means of instantiation con-
straints. Instead of making a fresh copy of the constraint inferred for a function at
each application site, their analysis simply stores a substitution from which the con-
straint may be derived. They then show that reachability techniques for context-free
languages can be applied to the resulting structure, allowing the constraints to be
solved dramatically faster: O(n3) in the size of the typed program, as opposed to the
O(n8) previous best-known algorithm for the same problem.

Gustavsson and Svenningsson [GS00b] similarly avoid increasing the size of the
constraint set by means of constraint abstractions, presented in a companion pa-
per [GS01b]. Their analysis builds a constraint abstraction for the constraint inferred
for each function, and applies it to its actual parameters at each application site. The
size of these applications is bounded by the size of the type of the binder, unlike
the substitution instances they replace which may be quadratic in size or worse. In
the companion paper they present a constraint solver that runs in time O(n3) in the
number of variables.

Each of these techniques appears to be a very promising route to avoiding the
approximation inherent in our simple polymorphism while still running in reasonable
time.

4.8.2 Pragmatic subtyping

Nordlander [Nor98, Nor99, Nor02] describes a pragmatic approach to polymor-
phic subtyping, arising from his implementation of the object/functional language
O’Haskell. He discusses the practical difficulties of complete inference algorithms for
polymorphic subtyping, and identifies an “inherent conflict. . . that is not present in
the original ML type system.

“While the principal type of an ML expression is also the syntactically
shortest type, the existence of subtype constraints in polymorphic subtyp-
ing generally makes a principal type longer than its instances.” [Nor98,
§1]

He then presents an algorithm that (if it succeeds) always infers types without subtype
constraints – exactly what we have called simple polymorphism! This is

“a particularly interesting compromise. . . since such types possess the
ML property of being syntactically shortest among their instances, even
though they might not be most general. We might say that the algorithm
favours readability over generality.”

Nordlander’s system permits the programmer to annotate her program explicitly in
cases where types with constraints are actually required.
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However, Nordlander’s algorithms are not applicable to the problem of usage
polymorphism. He works in a setting based on [Hen96], equipped with an extensi-
ble, partially-ordered subtype relation which may have significantly more structure
than our lifted annotation ordering. More importantly, his system is intended for
use in the context of type inference for object-oriented languages, which turns out
to be quite different from usage inference: a central assumption is that “[we] sup-
port subtyping only when the types involved are known.” [Nor98, §2]. Based on this
assumption, the algorithm approximates constraints α ≤ β between unknowns by
equality constraints, unifying the variables. While in OO programming the type of
either object or method is likely to be known, and functions like twice (Figure 4.11)
are infrequent, we have identified the central contribution of polymorphism as the
ability to express dependency constraints between input and output (Section 4.1.3),
exactly the constraints Nordlander unifies away. (In our system, undetermined vari-
ables are only unified if they lie within a generalisable cluster; variables lying above
or below the cluster are forced to 1 or ω respectively). In our setting, the only known
annotation is ω, and it seems likely that Nordlander’s algorithm would assign this to
most variables (consider his solver rule (D)), reducing the system to the monomor-
phic system of Chapter 3.

The system is an interesting modification to the standard efficient-unification al-
gorithm of Martelli and Montanari [MM82], treating a constraint of a variable by a
variable as a unification, but a constraint of a variable by a set of terms as a least up-
per or greatest lower bound operation. This approximating, eager constraint solver
is then used in a modification of Milner’s AlgorithmW (see Section 3.9.4). As usual,
types of let bindings are generalised and types of variables are instantiated (both at
simple-polymorphic types), but in addition the constraint solver is invoked whenever
the scope of a variable is exited, namely outside lambda abstractions and let bodies.
This eager invocation is necessary, since if the constraint set ever gets too large the
approximations may lead to failure (an example is given where three constraints is
too many). It also ensures that the non-approximating closure operation is effective:
a type variable may only be generalised if it does not occur in the constraint!24 To
obtain better results, Nordlander treats curried abstraction and application as un-
curried, with a special rule that considers all the arguments simultaneously (as do
[PT97]).

4.8.3 Annotation polymorphism

The idea of usage polymorphism itself is in no way new. It is proposed in the paper
that started us off, [TWM95a], although this proposal differs from our polymor-
phism in that our system provides a usage-polymorphic type for a single copy of
a function, rather than generating multiple specialised copies or variants (but see
Section 6.3.3), or passing usage arguments at runtime. A similar notion of annota-

24Actually, it is not surprising that generalisation can only be performed if the relevant variable is
unconstrained; this is in the nature of simple-polymorphic types. However, in our system the closure
operation selects the variables to generalise and then performs the required approximation to allow
the selected generalisation, whereas Nordlander performs approximation elsewhere, and in closure
generalises only those variables already generalisable.
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Figure 4.13 Logical type rules for bounded usage quantification.

(�b-Var)
C; Γ, x : σ �b x : σ

(�b-Lit)
C; Γ �b n : Intω

C; Γ �b e : Int1 C; Γ �b ei : σ i = 1, 2
(�b-If0)

C; Γ �b if0 e then e1 else e2 : σ

C; Γ �b ei : Int1 i = 1, 2
(�b-PrimOp)

C; Γ �b e1 + e2 : Intω

C; Γ �b e : Int1
(�b-PrimOp-R)

C; Γ �b addn e : Intω

C; Γ, x : σ1 �b e : σ2

C �e {occur(x, e) > 1⇒ |σ1| = ω}
C �e {occur(y, e) > 0⇒ |Γ(y)| ≥ κ} for all y ∈ Γ

(�b-Abs)
C; Γ �b λκx : σ1 . e : (σ1 → σ2)κ

C; Γ �b e1 : (σ1 → σ2)1 C; Γ �b e2 : σ1
(�b-App)

C; Γ �b e1 e2 : σ2

C; Γ, xj : σj �b ei : σi for all i
C; Γ, xj : σj �b e : σ
C �e {occur(xi, e) +

∑n
j=1 occur(xi, ej) > 1⇒ |σi| = ω} for all i

(�b-LetRec)
C; Γ �b letrec xi : σi = ei in e : σ

C; Γ �b e : σ′ C �e {σ′ � σ}
(�b-Sub)

C; Γ �b e : σ

C ∧D; Γ, ui �b e : τκ ui /∈ fuv(C, Γ, κ)
(�b-UAbs)

C ∧ ∃ui . D; Γ �b Λui : D . e : (∀ui : D . τ)κ

C; Γ �b e : (∀ui : D . τ)κ C �e ∃ui . D
(�b-UApp)

C ∧D; Γ �b e ui : τκ

C; Γ �b e : σ ui /∈ fuv(Γ, e, σ)
(�b-Hide)

∃ui . C; Γ �b e : σ
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tion polymorphism is also familiar in the flow analysis community, under the term
polyvariance [Bul84, JW95, WJ98]; many flow analyses are abstract interpretations
rather than type-based analyses, but it has been shown that the two are closely re-
lated [Jen91]. Polyvariance has been applied to many different analyses, notably
here binding-time analysis [DHM95], and so its application to usage is unsurprising.

Christian Mossin’s work with Dussart and Henglein [DHM95, Mos93, HM94] re-
lates to a two-point binding-time lattice (S < D) of annotations of lambda-calculus
expressions. The system has subtyping (with explicit coercions), (bounded) anno-
tation polymorphism, and constraints. A slightly unusual formulation is used for
polymorphism and bounds (abstracting over each separately), but we believe it is
equivalent to the standard presentation. Polymorphism occurs at let-nodes as usual,
but Kleene–Mycroft iteration [DHM95, §§3.4,3.5,4] is used to decidably infer poly-
morphic recursion (possible due to the finite nature of the lattice).25

Similarly, the Clean uniqueness typing system of Barendsen et al. [BS96] features
constrained uniqueness polymorphism for lambda-lifted functions and data construc-
tors, and polymorphic recursion using Kleene–Mycroft iteration [PvE98, p. 5].

Annotation, or “property”, polymorphism is considered in [GSSS01], where a
generic implementation by reduction to Boolean constraints is proposed.26

4.8.4 Constraint approximation in HM(X)

Rather than approaching the simple-polymorphic type system directly, it might be
fruitful to consider a more general constrained-polymorphic type system, with the
simple-polymorphic types as a subset. We considered this, basing our work on the
HM(X) system of [SMZ99] (revised from [OSW98]). In this setting, the restriction
to simple polymorphism means simply that all constraints appearing on abstracted
variables must be trivial; this may be achieved by explicit approximation.

Figure 4.13 presents the well-typing rules for such a system, with explicit con-
straints and constrained quantification. The term and type languages are a slight
extension of LIX2; we have simply added constraints to quantifiers and usage ab-
stractions. The rules define a relation C; Γ �b e : σ, where C is a constraint set.
Note that as usual we identify types up to α-equivalence; for example in (�b-UApp)
we would normally choose ui to be fresh with respect to C. The constraint entail-
ment relation · �e · appearing in the rules is defined in Section 3.5.1, and other
constraint operations in the appendix, Section D.3.

The usage abstraction and usage application rules are of particular interest. Rule
(�b-UAbs) abstracts over a vector of usage variables ui, preserving the relevant con-
straints D in the bound on the quantifier. Note the use here of explicit usage ab-
straction, just as in LIX2 (Section 4.2.2). Rule (�b-UApp) instantiates the vector of
usage variables, adding the constraints from the bound into the constraint set of the

25Polymorphic recursion is used in the function f x y = if x == 0 then 1 else f y (x − 1) where
the recursive call switches the arguments. In this case, the binding times of the arguments must be
switched also.

26Note that the assertion made by Glynn et al. that source (type) polymorphism and annotation
(usage) polymorphism do not coexist in our work is false, as demonstrated by Chapter 5. Type poly-
morphism was elided from [WPJ00] purely in order to clarify the presentation.
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consequent. Again a side condition ensures satisfiability.
An important contribution of the work of [OSW98, SMZ99] is the use of the

hiding operator ∃u . C (i.e., of cylindrical constraint systems) apparent in rule
(�b-UAbs): the existentially-quantified copy of D preserved in the consequent of
the rule is necessary to ensure the satisfiability of D and thus the well-typedness of e
even in cases where the abstraction is never applied. Trifonov and Smith’s definitive
paper [TS96] (Section 4.8.1.4) does not use such an operator, and others such as Jim
and Palsberg [JP99] use an ad hoc approach, maintaining a set of “fresh variables”
which do not participate in entailment checks.

While the rules of Figure 4.13 are largely based on those of HM(X), there are
some significant changes.27 Firstly, variables u in the present system do not scope
over types, but only annotations, and so the canonical forms of [SMZ99] are not
applicable; secondly, our system alters not just the constraint system X, but also the
type rules, adding extra requirements on C in variable-binding rules (i.e., (�b-Abs)
and (�b-LetRec)). The ∃-introduction rule (�b-Hide)’s side condition reflects the
fact that terms may now contain free variables u. As in the HM(X) rules, an implicit
side condition to each rule requires that all constraints appearing are satisfiable.
Without this condition, a type derivation for a term would not necessarily imply the
existence of a solution to the constraints, and nonsensical typings would be admitted
for many unsound terms.28

We now introduce a notion of approximation. An approximation to a constraint
set C is a constraint set D such that D �e C; that is, a solution to the approximation
is a solution to the original constraint set. The implicit side condition that constraint
sets be satisfiable guarantees that there is still a solution.

Clearly we may already substitute (simplified but) equal constraint sets without
loss of accuracy, as follows (recall C =e D iff C �e D and D �e C):

C; Γ �b e : σ C =e D
(�b-Equal)

D; Γ �b e : σ

Further, we allow the removal of unnecessary variables, again without loss of accu-
racy, as follows:

C; Γ �b e : σ C �e 〈u = κ〉
(�b-Merge)

∃u . C; Γ[κ/u] �b e[κ/u] : σ[κ/u]

Finally, if we wish to allow constraint-set approximation, possibly losing accuracy
but not soundness, we may add the rule:

C; Γ �b e : σ D �e C
(�b-Approx)

D; Γ �b e : σ

27Martin Sulzmann [personal communication, 9 January, 2002] believes that this system is able to
fit within the HM(X) framework.

28A further change is that ∀-introduction and elimination now have a (target) term representation.
The rules are still “logical”, however, from the point of view of source terms, and thus we must still
formulate a syntax-directed form of these rules for practical use.
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The simple-polymorphic usage inference problem may now be seen as follows.
Given M , find an annotation e typeable in this system (i.e., e such that (e)� = M and
C; ∅ �b e : σ) but such that all bounds D occurring in e are trivial; choose the best
annotation of these in some appropriate sense (see Section 4.5).

The key issue is the restriction to trivial bounds. Consider the (�2-LetRec) in-
ference rule of Section 4.4.2. We must generalise each term Mi using (�b-UAbs). If
D in this rule is trivial, then the existential portion of the constraint set resulting from
(�b-UAbs) and the bound on the quantifiers both disappear, leaving an unbounded
rule identical to (�2-UAbs) (Figure 4.4). This may be achieved in the same manner
as the algorithm of Section 4.5.4, by using rule (�b-Approx) to equate certain vari-
ables or fix them to 1 or ω, and then performing the appropriate substitutions in τi

and e using rule (�b-Merge).
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Chapter 5.

FLIX0

FL0 FLX

FLIX2

LIX0

L0 LIX1 LX

LIX2

Covering the

Full Language

In the present chapter we extend our usage analysis to handle type polymorphism
and user-defined algebraic data types. These essential features were omitted earlier
in order to simplify the presentation; adding them justifies our claim that we deal
with usage analysis for real, full-featured functional languages.

The exposition of this full analysis largely follows the structure of previous chap-
ters. We begin in Section 5.1 by presenting the new features of the full source lan-
guage FL0. We extend the target language FLIX2 with the new features in the
following two sections: Section 5.2 discusses usage typing for type polymorphism,
which turns out to be relatively straightforward; Section 5.3 addresses the more dif-
ficult problem of usage typing for user-defined algebraic data types. The system we
devise is parameterised over the choice of annotation scheme for data type declara-
tions, and so we discuss choosing an annotation scheme separately in Section 5.4.
The extended usage inference is presented in Section 5.5; it is essentially the same as
that of Section 4.4. The required results are proven in Section 5.6, and we consider
related work in Section 5.7.

Discussion of a number of implementation-specific language issues is deferred to
Chapter 6.

5.1 The full source language

Chapter 2 described the simplified source language L0. We begin this chapter by ex-
tending this language with the new features, yielding FL0, the full source language.
We also give an operational semantics for this language.

127
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5.1.1 Type polymorphism

The first new language feature is type polymorphism. (Polymorphism was first named
by Strachey [Str67, §3.6]. Algorithm W, which infers polymorphic type schemes, is
due to Milner [Mil78], along with the famous soundness theorem stating that “well-
typed programs do not go wrong”. Damas [DM82] introduced the modern notation
for type schemes and showed that Algorithm W obtains principal type schemes, al-
though the equivalent result had already been obtained by Hindley [Hin69] for a
calculus without let. A tutorial is [Car87]. Lee and Yi [LY98] formally define an
equivalent “folklore” AlgorithmM that has better error behaviour.) The source lan-
guage we have been working with so far is monomorphic; for example, we can write
the two functions

app1 : (Int→ Int )→ Int→ Int = λf : Int→ Int . λx : Int . f x
app2 : (Int→ (Int→ Int))→ Int→ (Int→ Int) = λf : Int→ (Int→ Int) . λx : Int . f x

but we cannot write the general application function that takes any function and its
argument and applies the one to the other. We would like to write this function and
give it the polymorphic type ∀α, β . (α→ β)→ α→ β.

Languages in the Hindley–Milner tradition, such as ML [MTHM97] and Haskell
[PJH+99], perform this generalisation implicitly. That is, the programmer can write
simply λf . λx . f x without annotation and the language will infer the correct
polymorphic type automatically. Similarly, when the function is used, the general
(polymorphic) type is implicitly instantiated with the correct type parameters.

However, in a typed intermediate language it becomes necessary to record these
steps explicitly. As Peyton Jones describes in [PJS98a, §3.2] this can be done most ef-
fectively using the Girard–Reynolds polymorphic lambda calculus (a.k.a. System F )
[Gir72, Rey74]. In this calculus, the expression M is generalised with respect to the
type variable α by a type abstraction Λα . M , and instantiated with type t by a type
application M t. This is the technique used by the typed intermediate languages we
address, and we must therefore discover how to deal with this appropriately in our
usage analysis.

5.1.2 User-defined algebraic data types

The second new language feature, another crucial feature of modern functional lan-
guages, is the ability to define new algebraic data types. (User-defined algebraic data
types were suggested by Landin in [Lan64], and their initial algebra semantics dis-
cussed in [GTW78] and many related papers. They first appeared in the language
Hope [BMS80], and have subsequently become central to modern functional lan-
guages such as ML and Haskell.) A language provides a selection of primitive base
types and allows more complex and structured types to be built up from them. These
user-defined algebraic data types are defined recursively and expressed as tagged
sums of products. A datum is constructed by applying a tag, or constructor, to a vec-
tor of elements of the appropriate types. Such data are taken apart (deconstructed)
using a case expression, which selects an expression based on the tag and binds its
variables to the component elements of the datum.
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Figure 5.1 The full source language FL0 (cf. Figure 2.1).

Terms M ::= A atom
| n literal (integer)
| Ki tk Aj constructor
| λx : t . M term abstraction
| M A term application
| Λα . M type abstraction
| M t type application
| case M : T tk of Ki xij →Mi case expression
| M1 + M2 primop (addition)
| if0 M then M1 else M2 zero-test conditional
| letrec xi : ti = Mi in M recursive let binding

Atoms A ::= x term variable
| A t atom type application

t-types t ::= t1 → t2 function type
| Int primitive type (integers)
| T tk algebraic data type
| ∀α . t type-generalised type
| α type variable

Decls T : data T αk = Ki tij algebraic data type declaration

5.1.3 Language extensions

Figure 5.1 presents our full source language FL0, including these features. The
well-typing rules are given in Figure 5.2, and should be unsurprising. They extend
the language and well-typing rules of Chapter 2. Here and elsewhere, lowlighted
text denotes material that is retained unchanged from an earlier presentation, and
highlighted text denotes material newly introduced or altered. The full set of rules
appears in Appendix B. Type polymorphism is represented by term forms Λα . M
(denoting abstraction of type variable α from expression M) and M t (denoting
application of expression M to type t), and by type forms ∀α . t (denoting the type t
generalised over free type variable α) and α (denoting a type variable). We consider
terms and types up to α-equivalence of type variables as well as term variables.

Algebraic data types are declared using the declaration syntax

data T αk = Ki tij

which defines a data type with type constructor T , formal type parameters αk, and
constructors Ki. The data type is a tagged sum of products; each constructor Ki tags
the product

∏
j tij , where the tij may have free type variables in αk. Constructors are

unique within a program, and so to each data constructor Ki corresponds a unique
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Figure 5.2 Well-typing rules for the full source language FL0 (extends Figure 2.2).
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All the rules for L0 (q.v. Figure 2.2),
with the addition of:

Γ, α �0 M : t α /∈ ftv(Γ)
(�0-TyAbs)

Γ �0 Λα . M : ∀α . t

Γ �0 M : ∀α . t1
(�0-TyApp)

Γ �0 M t2 : t1[t2/α]

t◦ij = tij [tk/αk
] all j

Γ �0 Aj : t◦ij all j

where data T αk = Ki tij (�0-Con)
Γ �0 Ki tk Aj : T tk

Γ �0 M : T tk

t◦ij = tij [tk/αk
] all i, j

Γ, xij : t◦ij �0 Mi : t all i

where data T αk = Ki tij (�0-Case)
Γ �0 case M : T tk of Ki xij →Mi : t

data declaration and type constructor T .1 When constructing a datum, the actual
type parameters tk instantiating the formal parameters αk must be specified.

Destruction is performed by the case statement, which scrutinises an expression,
the scrutinee, and chooses one of the branches to execute on the basis of its tag.
The instantiated type of the destructed datum must be specified in an annotation to
resolve potential ambiguity. In the chosen branch, the specified variables are bound
to the values from the scrutinee and the expression is evaluated.2 We assume that all
case statements are complete, i.e., that they contain a branch for every constructor of
the data type. Relaxing this assumption would provide an additional way in which
programs could go wrong at runtime, but would not otherwise affect the analysis.

Our constructors are lazy rather than strict. This means that evaluation of each
argument of a constructor is delayed until its value is demanded, and that once it is

1This could be made explicit by writing KT
i rather than just Ki, but since T is invariably clear from

context it is simpler to use the latter form.
2In earlier work [WPJ99, WPJ98] we used a form of case statement that avoided variable binding,

requiring the branches to be of function type and passing them the values from the scrutinee as argu-
ments. This was intended to simplify the proofs while complicating the statement of the typing rules.
In the present work we have elected to use the conventional form of the case statement, thus making
the well-typing rules simpler (the proofs are not in fact made significantly more complicated).
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evaluated its value is memoised in order that subsequent demands may reuse it. This
laziness is made explicit by the use of an A-normal form representation (Section 2.2),
which forces all constructor arguments to be letrec-bound.

5.1.4 Operational semantics

Recall from Section 2.3.2 that since a well-typed LIX0 program does not “go wrong”,
i.e., does not have a runtime type error, we may safely erase all type information,
obtaining the executable language LX. Even with type polymorphism, this remains
the case. This means that type abstraction and application may be removed entirely
before execution; they are purely book-keeping operations intended to preserve well-
typing, and have no operational meaning at runtime. This fact has significant bearing
on their correct treatment by the usage analysis, described in Section 5.2 below.

This is possible only because FL0’s polymorphism is parametric [Str67, §3.6.4]:
polymorphic expressions in FL0 behave identically at all types. A language with a
typecase construct [ACPR95, ACPP91] (Simula-67’s Inspect [Bir84]), which permits
behaviour of a function to be conditional on the type of its argument, would in
general require types to be present at runtime. In addition to permitting type-erased
execution, parametricity provides the programmer with “theorems for free” [Rey83,
Wad89, LP96, Cra99].

The instrumented executable language FLIX0 is presented in Figure 5.3. The
instrumentation includes types, usage annotations, and type abstractions and ap-
plications. Omitting the instrumentation yields the uninstrumented executable lan-
guage FLX. The stripping and erasure functions � and � are extended in the obvious
manner (Sections 2.3.1 and 2.3.2).

The operational semantics for the full language appears in Figure 5.4. The tech-
nique we use here to handle type polymorphism provides a type-erasure semantics
without erasing the types, and is exactly the same as that used in Section 4.2.3 to
handle usage polymorphism. The reader is referred to that section for the details.
Note particularly that type applications are considered atomic, and evaluation is per-
mitted beneath type abstractions.

Case expressions are strict in their scrutinee, as seen in the definition of shallow
evaluation contexts R. Constructors take an update flag to control copying: K• de-
notes a constructor that must not be copied, and K ! denotes one that may be copied
without restriction (see Section 2.3.1). The operational semantics for constructors
and case makes no reference to the data type declarations or constructor arities;
(�δ-Case) needs only the index i of the constructor to determine which case branch
to take. The function |V | used by the (�-Update) rule is extended to inspect the
update flag on constructors. The remainder of the semantics is as described in Sec-
tion 2.4; a complete presentation of the combined operational semantics is deferred
to the appendix, Figure B.5.
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Figure 5.3 The executable language FLIX0 and configurations FLIXC0.
(cf. Figure 2.3).

Terms M ::= R[M ] filled evaluation context
| letrec xi : ti =χi Mi in M recursive let binding
| Λα . M type abstraction
| A atom
| V value

Shallow R ::= [·] A term application
evaluation | [·] t type application
contexts | case [·] : T tk of Ki xij →Mi case expression

| [·] + M primop (addition)
| addn [·] partially-saturated primop
| if0 [·] then M1 else M2 zero-test conditional

Atoms A ::= x term variable
| A t atom type application

Values V ::= n literal (integer)
| Kχ

i tk Ak constructor
| λχx : t . M term abstraction
| Λα . V type abstraction of value

Types t ::= t1 → t2 function type
| Int primitive type (integer)
| T tk algebraic data type
| ∀α . t type-generalised type
| α type variable

Update χ ::= • not updatable/copyable
flags | ! updatable/copyable

Configurations C ::= 〈H; M ; S 〉 where dom(H) �dom(S)

Heaps H ::= ∅
| H, x : t =χ M where x /∈ dom(H)

Stacks S ::= ε
| R, S
| #x : t, S where x /∈ dom(S)
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Figure 5.4 The full operational semantics (cf. Figure 2.4).
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〈H; M ; S 〉

〈H; R[M ]; S 〉 �αl
〈H; M ; R, S 〉 (�-Unwind)

〈H; V ; R, S 〉 �αl
〈H; M ; S 〉 (�-Reduce)

if R[V ] �δ M

〈H; letrec xi : ti =χi Mi in M ; S 〉 (�-LetRec)
�αl

〈H, yi : ∀αl . ti =χi Λαl . Mi[φ]; M [φ]; S 〉
where yi �dom(H) ∪ dom(S)

φ = [yi αl/xi
]

〈H; Λα . M ; S 〉 �αl
〈H ′; Λα′ . M ′; S′ 〉 (�-TyLam)

if 〈H; M [α
′
/α]; S 〉�αl,α′ 〈H ′; M ′; S′ 〉

α′ fresh

〈H, x : t =• M ; x; S 〉 �αl
〈H; M ; S 〉 (�-Var-Once)

〈H, x : t =! M ; x; S 〉 �αl
〈H; M ; #x : t, S 〉 (�-Var-Many)

〈H; V ; #x : t, S 〉 �αl
〈H, x : t =! V ; V ; S 〉 (�-Update)

where |V | = • ⇒ x /∈ fv(H, V, S)

where |n| = !
|Kχ

i tk Aj | = χ
|λχx : t . M | = χ
|Λα . V | = |V |
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(λχx : t . M) A �δ M [A/x] (�δ-App)
(Λα . M) τ �δ M [τ/α] (�δ-TyApp)
n + M �δ addn M (�δ-PrimOp-L)
addn1 n2 �δ n3 if n3 = n1 + n2 (�δ-PrimOp-R)
case Kχ

k Aj of Ki xij →Mi

�δ Mk[Aj/xkj
] (�δ-Case)

if0 n then M1 else M2 �δ Mi if i = (n = 0 ? 1 : 2) (�δ-If0)
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5.2 Accommodating type polymorphism

We now begin extending the target language LIX2 (described in detail in Chapter 4)
to the full target language FLIX2. The present section adds type polymorphism to
the language, and Section 5.3 adds user-defined algebraic data types.

Figure 5.5 defines the types and terms of FLIX2. This figure embodies two key
design decisions with respect to type polymorphism: what kind of type a generalised
type should be (Section 5.2.1) and what kind of type type variables should range over
(Section 5.2.2). Once these have been decided, we present the well-typing rules for
type polymorphism in FLIX2 (Section 5.2.3) and define subtyping over generalised
types and type variables (Section 5.2.4).

5.2.1 Generalised types

In translating the type of a type abstraction (Λα . e), we must decide both whether
the type (∀α . t) as a whole should be translated to a σ- or τ -type, and whether the
body type t should be translated to a σ- or τ -type. Assume e : τκ. There are four
possibilities for this type:

Body type
τ : σ :

Abstraction τ : (i) (∀α . τ)κ1 (ii) (∀α . τκ2)κ1

type σ : (iii) ∀α . τ (iv) ∀α . τκ2

Clearly a type abstraction must have a usage, but option (iii) has no explicit us-
age annotation; thus it is nonsensical (we could simply assume that the usage of
a type abstraction is always ω, but this is unnecessarily coarse). We discovered in
Section 5.1.4 that type abstraction and application have no operational significance
(to the evaluator, e and Λα . e look exactly the same); it follows that there should
be no distinction between the usage of an expression and of its abstraction, and so
κ1 = κ = κ2 and option (ii) is redundant.

The remaining options (i) and (iv) carry exactly the same information; the differ-
ence is purely syntactic. We choose option (i) because it fits more smoothly into the
existing language, in which usage-generalised types (Λu . τ) are τ -types, and usage
annotations go outside them rather than inside (see Section 4.2.1). That is, ∀α . t is
translated to (∀α . τ)κ1: we add the production τ ::= · · · | ∀α . τ .

5.2.2 Type variables

We must also independently decide: over what should type variables α (and hence
type arguments) range?

Recall that the purpose of the usage typing of a function is to convey informa-
tion about how that function uses its arguments. A polymorphic function uses its
argument identically at any type (parametricity, Section 5.1.4), but it may certainly
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choose to use it either at most once or many times. Consider the functions3

const : ∀α . ∀β .α→ β → α = λx . λy . x
const′ : ∀α . α→ α→ α = λx . λy . x

We would like to record that each of these uses its second argument not at all, and
the use of its first argument is dependent on the use of its result. If type variables
range over τ -types, both of these are straightforward:

const : (∀u . ∀α . ∀β .αu → (β1 → αu)u)ω

const′ : (∀u . ∀α . αu → (α1 → αu)u)ω

However, if type variables range over σ-types we cannot express this at all. We
therefore choose that type variables and type arguments range over τ -types, adding
the productions τ ::= · · · | α and e ::= · · · | e τ .

5.2.3 Typing

The well-typing rules (�2-TyAbs) and (�2-TyApp), shown in Figure 5.6, are based
on the observation that type abstraction and application have no operational signifi-
cance, and thus that the usage of an expression and its type abstraction are identical.
The rules simply lift and lower the usage annotation through the quantifier. We
extend environments Γ to include a set of in-scope type variables in the usual way.

5.2.4 Subtyping

The subtyping relation � of Figure 4.5 must be extended to accommodate the new
types. The extended relation is defined in Figure 5.7.

Subtyping for generalised types and type variables is straightforward. Since ∀α .
τ is a binding construct, and we identify types up to α-conversion, we need only
compare generalised types binding the same variable. In this simplified case, we
have ∀α . τ � ∀α . τ ′ iff τ � τ ′. A type variable α may be instantiated to anything,
and thus can only be guaranteed to be a subtype of itself: α � α.

5.3 Accommodating data types

The second step in extending LIX2 to the full language FLIX2 is the addition of user-
defined algebraic data types. Algebraic data types introduce additional complexity
because their values, unlike primitive values, are composed of multiple other val-
ues,4 and the use of these values must be determined. The type system described in
previous chapters is able to compute the use of a primitive value by counting syntac-
tic occurrences and dealing appropriately with the free variables of an abstraction.
These techniques apply equally well to a value of an algebraic data type, but they

3The function const′ is actually predefined in Haskell 98, under the name astypeof.
4In fact, since our constructors are lazy, an algebraic datum contains either values or thunks (de-

layed computations). We write simply “values” for brevity.
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Figure 5.5 The polymorphically usage-typed language FLIX2 (cf. Figure 4.2).

Terms e ::= a atom
| n literal (integer)
| Kκ,χ

i κl τk aj constructor
| λκ,χx : σ . e term abstraction
| e a term application
| Λα . e type abstraction
| e τ type application
| Λu . e usage abstraction
| e κ usage application
| case e : (T κl τk)κ of Ki xij → ei case expression
| e1 + e2 primop (addition)
| addn e partially-saturated primop
| if0 e then e1 else e2 zero-test conditional
| letrec xi : σi =χi ei in e recursive let binding

Atoms a ::= x term variable
| a τ atom type application
| a κ atom usage application

τ -types τ ::= σ1 → σ2 function type
| Int primitive type (integer)
| T κl τk algebraic data type
| ∀α . τ type-generalised type
| α type variable
| ∀u . τ usage-generalised type

σ-types σ ::= τκ usage-annotated type

Decls T : data (T ul αk)u = Ki σij data type declaration

Usage κ ::= 1 used at most once
annotations | ω possibly used many times

| u, v usage variable

Update χ ::= • not updatable/copyable
flags | ! updatable/copyable

Shallow evaluation contexts R, values v, configurations C, heaps H, and stacks S are
defined in the same manner as for FLIX0. The operational semantics for FLIXC2 is
the same as that for FLIXC0, mutatis mutandis.
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Figure 5.6 Well-typing rules for FLIX2 (extends Figure 4.4).
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All the rules for LIX2 (q.v. Figure 4.4),
with the addition of:

Γ, α �2 e : τκ α /∈ ftv(Γ)
(�2-TyAbs)

Γ �2 Λα . e : (∀α . τ)κ

Γ �2 e : (∀α . τ1)κ

(�2-TyApp)
Γ �2 e τ2 : (τ1[τ2/α])κ

σ◦
ij = σij [κ/u, κl/ul

, τk/αk
] all j

Γ �2 aj : σ◦
ij all j

|σ◦
ij | ≤ κ all j

where data (T ul αk)u = Ki σij (�2-Con)
Γ �2 Kκ,κ†

i κl τk aj : (T κl τk)κ

Γ �2 e : (T κl τk)κ

σ◦
ij = σij [κ/u, κl/ul

, τk/αk
] all i, j

Γ, xij : σ◦
ij �2 ei : σ all i

occur(xij , ei) > 1⇒ |σ◦
ij | = ω all i, j

where data (T ul αk)u = Ki σij (�2-Case)
Γ �2 case e : (T κl τk)κ of Ki xij → ei : σ

compute only the use of the datum as a whole. The values stored inside the datum,
occurring neither syntactically nor as free variables, must be treated differently.

We provide a general system for usage analysis of programs containing arbitrary
data types. In this respect we differ from Turner et al. [TWM95a], who treat only a
single algebraic data type, the list.

The new techniques we develop below must deal with two crucial properties of
algebraic data types.

Separation between creation and use. Algebraic data types allow values to be used
at a site syntactically separate from that at which they were created. The type
system must ensure that information regarding the value’s use is propagated
back to its creation site (Section 5.3.1).

Sharing. Algebraic data may be shared. The type system must ensure that uses from
multiple use sites are correctly combined (Section 5.3.2).

There is a wide design space as to exactly how this propagation is achieved. A
key contribution of this chapter is a notation, introduced in Section 5.3.1, that al-
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lows any particular choice to be represented precisely. This permits a clean separa-
tion between the choice (embodied in an annotated data type declaration) and the
well-typing rules (which are expressed independently of any particular annotation
scheme). The general well-typing rules are discussed in Section 5.3.3, but the choice
of an annotation scheme is deferred until Section 5.4. Subtyping becomes a little
more complicated in this setting, and we discuss it in Section 5.3.4.

5.3.1 Separation between creation and use

Consider the data type
data P α = MkP α α

A datum of type P α consists of two components, each of type α. The following L0

program shows such a datum being created and used.

letrec a = . . .
b = . . .
p = MkP a b

in
case p of

MkP x y → x + x + . . .

Notice that the first component of the pair is used twice. When we annotate this
program, the binding for a must be annotated with !. But the connection between
creation and use sites here is not direct: a and p both occur syntactically only once
in their scopes, and it is the multiple use of x that forces a’s ! annotation:

If x is used many times, so is a.

One design choice here is to consider placement into a data structure to be a
(potential) multiple occurrence, and thus to require the topmost annotation of the
type of all arguments to a constructor to be ω. This approach is too simple, however;
it is well known that intermediate data structures are extremely common [GLPJ93,
Wad90a], and these are often used at most once. In the absence of a perfect fusion
system (q.v. [Gil96, LS95]), these are a key target for our analysis. If values placed in
such data structures were always annotated ω despite their actual use, the analysis
would be drastically weakened (Section 6.8.2).

A better design choice is to use the type of p to convey usage information from
the use site (here the binding of x in the case branch) to the creation site (here
the use of a as argument to MkP). To achieve this, the type P Int must somehow be
parameterised so that the usage type of an individual component (such as σ11 = Intω)
may be constrained (at the use site) or derived from it (at the creation site).

There is a wide design space as to exactly how the type should be parameterised,
which we discuss in detail in Section 5.4. The final choice of parameterisation for a
particular data type, however, can be represented precisely by its annotated data type
declaration.

For example, the two options above for treating the P data type may be repre-
sented as follows:

data (P α)u = MkP αω αω
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and
data (P u1 u2 α)u = MkP αu1 αu2

The first adds no usage parameters to the type P , and simply assumes that all the
components are annotated ω. The second adds a parameter ui for each component,
and uses it to provide the topmost annotation. Thus P 1 1 is the type of pairs
whose components are each used at most once; P ω 1 is the type of pairs whose
first components may be used many times but whose second components are used
at most once; and P ω ω is the type of pairs whose components may each be used
many times.

The variable u annotates the overall usage of the datum. This can be used in
handling recursion, as in the following declaration for lists:

data (List u1 α)u = Nil | Cons αu1 (List u1 α)u

Here (List ω Int)1 is the type of lists of integers each of which may be used many
times, while the list structure itself may be used at most once. The annotation of
the recursive instance with u ensures that each list cell has the same usage. The
overall-usage annotation is also useful for the annotation scheme (�-Data-Equal)
discussed in Section 5.4.4.1.

In general, then, the annotated data type declaration for a source data type dec-
laration data T αk = Ki tij is of the form

data (T ul αk)u = Ki σij

where (σij)� = tij for each i, j. This declares that the component ij of a datum of
type (T κl τk)κ has type

σ◦
ij = σij [κ/u, κl/ul

, τk/αk
]

The declaration adds usage parameters ul to the type of a datum, and also names its
overall usage u. The usage-annotated type of each component of the datum is then
given in terms of this parameterisation. Notice that the type arguments αk range
over τ -types, as discussed in Section 5.2.2. The free usage variables of each σij must
be contained in {u} ∪ ul, and for technical reasons u must not occur negatively in
any σij (see Section 5.3.4.3).

5.3.2 Sharing

Data of algebraic type is frequently shared: information is often stored in a data
structure for later use, and subsequently used multiple times. In this case, what
happens to the usage annotations on the components?
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Consider the following L0 program, which makes use of the same data type P as
above.

letrec a = . . .
b = . . .
p = MkP a b

in
. . .
case p of

MkP x y → x + 1
. . .
case p of

MkP z w → z + 2

Notice that in each case statement the first component of the pair is used just once;
yet overall it is used twice, and so the binding for a must again be annotated !. It is
not enough to do as above (Section 5.3.1) and propagate the usage type of the use
site (x or z) back to the creation site (a). One must also keep track of sharing, or
multiple uses of the whole datum (here p):

If p is used many times, so are a and b.

One design choice here would be to attempt to add up (in some appropriate
sense) the usage annotations on the types of components at each use site, and to use
the sum as the type for the creation site.

However, in our type rules so far variable occurrences have always been given the
same type as that at the binding site, and multiple occurrences have been handled
by an additional constraint. In the present chapter we maintain this approach.5 The
ordinary syntactic occurrence machinery in (�2-LetRec) ensures that the topmost
annotation of the type of p is ω; based on this indication of multiple use of the
datum, we now make the component types appropriate for multiple use by the simple
constraint that the use of each component a, b must be at most the use of the datum p
as a whole,6 or equivalently that if the datum may be used more than once then so
may the components: |σ◦

ij | ≤ κ, where κ is the usage annotation on the datum. Thus
the type of p is (P ω ω Int)ω, which forces the type of a, x, and z to be Intω. In
the uniqueness type system of Clean, this is called uniqueness propagation [BS95b]
[BS96, §6].

Comparing this with the standard functional encoding of a constructor,7 e.g.,

MkP α a b = Λβ . λf : α→ α→ β . f a b

we see that this constraint is similar to that in (�2-Abs) on the free variables of a
lambda abstraction (Section 3.3.4): the usage of a and b is at most the usage of

5Appendix C demonstrates a more fine-grained approach, with careful explicit environment ma-
nipulation allowing a different solution to this problem.

6Recall that ω ≤ 1; thus this says that if the use of p is ω, the use of a must be also.
7The standard functional encoding of a constructor was given by Böhm and Berarducci [BB85],

generalising Church’s representation of the positive integers [Chu41, c. III]. Further references appear
in [Pie91, §7.7.1].
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the abstraction. The topmost annotation only of the component type is constrained
because it is the component as a whole that is stored by a constructor and retrieved
by a case statement. Any internal annotations that should be affected by multiple use
of the component will be appropriately constrained by the well-typing rules used in
the construction of that component, once multiple use is indicated by constraining
the topmost annotation.

In Turner [TWM95a, §3.2], this condition is imposed as a global well-formedness
condition on (list) data types;8 it is tidier (as here) to follow Clean [BS96, §6], and
merely constrain well-typed constructor applications. Since it is the constructor ap-
plications alone that propagate the components’ use back to their binding sites, this
is sufficient for soundness. The fact that certain well-formed types such as (List 1 α)ω

have no members is of no concern to us.
Gustavsson [GS00b, §3.7] [GS00b, §3.7] has a (Value) rule that constrains the

free variables of any value that may be updated to themselves be updatable. This
single rule elegantly has the effect of both the free-variable clause in (�2-Abs) (Sec-
tion 3.3.4) for abstractions, and the present sharing clause in (�2-Con) for construc-
tors.

Mogensen [Mog98] goes rather further in his treatment of structure sharing. His
system has a fixed set of primitive type constructors (sum, product, and unit). Since
recursion is excluded, the system is able to record the usage of each individual com-
ponent of the data structure at all levels. Clearly such an approach must break down
in the presence of general (recursive) algebraic data types.

5.3.3 Typing

Now we can give the well-typing rules for constructors and case (see Figure 5.6).
Firstly, we consider the constructor application

Kκ,χ
i κl τk aj

That is, constructor Ki (the ith constructor of type T ), given usage arguments κl,
type arguments τk, and value arguments aj , with topmost usage annotation κ and
update flag χ. The value arguments are atomic, since we use A-normal form through-
out as explained in Section 5.1.4. The constructor arguments record enough infor-
mation to reconstruct the exact type of the datum, as well as its value. Just as for
lambda abstractions (Section 3.2.2), the κ annotation forms part of the type informa-
tion and is required to allow the type of a subexpression to be computed in isolation,
whereas the χ flag forms part of the executable language FLX and is required to
control copying of the datum. Unlike for literals n, we cannot simply assume that
(κ, χ) = (ω, !).

The (�2-Con) rule gives the type of this constructor application as

(T κl τk)κ

8Turner et al.’s condition states, when translated into our notation, that the type (List σ)κ is well-
formed only if |σ| ≤ κ. Notice that the type specified here is ill-formed in our context, since we allow
only τ -types as arguments to type constructors. The effect of this condition is seen in the rule for cons:
Γ �2 cons e1 e2 : (List σ)κ holds only if Γ �2 e1 : σ with |σ| ≤ κ.
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Figure 5.7 The subtype (�) and primitive (≤) orderings over FLIX2 (cf. Figure 4.5).

ψ � ψ

κ1 ≤ κ2 τ1 � τ2
(�-Annot)

τ1
κ1 � τ2

κ2

τ1 � τ2
(�-All-U)

∀u . τ1 � ∀u . τ2

(�-Lit)
Int � Int

σ3 � σ1 σ2 � σ4
(�-Arrow)

σ1 → σ2 � σ3 → σ4

τ1 � τ2
(�-All)

∀α . τ1 � ∀α . τ2
(�-TyVar)

α � α

αk ∈ ftvε(σij)⇒ τk �ε τ ′
k for all k, ε, i, j

ul ∈ fuvε(σij)⇒ κl ≤ε κ′
l for all l, ε, i, j

where data (T ul αk)u = Ki σij (�-TyCon)
T κl τk � T κ′

l τ ′
k

κ ≤ κ

1

➵

ω

ω ≤ κ κ ≤ 1 u ≤ u

The expected types σ◦
ij of the components are computed by the substitution given in

Section 5.3.1. Sharing is handled soundly by constraining the topmost annotations
of these types as described in Section 5.3.2. Notice we need only consider the types
of components of this constructor, not of all constructors of this type. Finally, the ·†
function of Section 4.3.1 is used to compute the correct update flag.

Secondly, we consider the case statement

case e : (T κl τk)κ of Ki xij → ei

That is, expression e is scrutinised at type (T κl τk)κ, binding variables xij in
branch ej at the appropriate types. Since the case statement binds variables, the

corresponding rule (�2-Case) must compute occurrence information occur(xij , ei)
and constrain the component types σ◦

ij accordingly, in the same way as (�2-LetRec)
and (�2-Abs) (Section 3.3.3). The same substitution as above is used to relate these
types to that of the scrutinee, and this latter type is recorded explicitly in the term.
During deconstruction the scrutinee of a case statement is always used exactly once,
and so it is tempting to set its annotation κ to 1 by analogy with (�2-App). But this
is incorrect: κ is also used to detect sharing (Section 5.3.2) and must be allowed to
take any value in {ω, 1}. Annotation κ indicates the use not just of the datum, but
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also of its contents.
The arguments of Sections 5.3.1 and 5.3.2 hold regardless of whether or not

the data type under consideration is recursive. In all cases a constructor combines
components of known type into a datum; whether the components share the type
of the datum is irrelevant to the manner in which they are created, shared, and
used. Furthermore, the arguments and the resulting well-typing rules are sound no
matter what parameterisation is chosen for the data type, although some parameter-
isations will yield more precise annotations than others, and some will fail to type
all well-typed FL0 programs. However, these issues must certainly be taken into
consideration in computing the subtyping relation and in choosing an appropriate
parameterisation. It is to these latter topics that we now turn.

5.3.4 Subtyping

Subtyping for algebraic data types is rather more complicated than for polymorphic
types. The definition is given in Figure 5.7, and motivated below. To gain an in-
tuition, we investigate a few typical cases first (Section 5.3.4.1) before attempting
to generalise our observations. Our first attempt (Section 5.3.4.2) defines subtyping
between algebraic data types in terms of subtyping between the types of the compo-
nents; unfortunately this definition does not give us an algorithm, although it is of
use later. Instead, our second attempt (Section 5.3.4.3) defines it in terms of subtyp-
ing between the type and usage arguments of the type constructor; this arguably less
intuitive definition does yield a usable algorithm.

5.3.4.1 The intuition

Recall that the subtype relation � may be read as “can be used in the place of”
(Section 3.3.5). Now consider the pair type

data (Pair u1 u2 α β)u = Pair αu1 βu2

Pair is almost a Cartesian product,9 and it is clear that one object of this type can be
used in place of another if and only if each component of the first pair can be used
in place of the corresponding component of the second pair:

Pair κ1 κ2 τ1 τ2 � Pair κ′
1 κ′

2 τ ′
1 τ ′

2 ⇐⇒ τ1
κ1 � τ ′

1
κ′
1 ∧ τ2

κ2 � τ ′
2
κ′
2

Similarly for the sum type

data (Either u1 u2 α β)u = Left αu1 | Right βu2

we have

Either κ1 κ2 τ1 τ2 � Either κ′
1 κ′

2 τ ′
1 τ ′

2 ⇐⇒ τ1
κ1 � τ ′

1
κ′
1 ∧ τ2

κ2 � τ ′
2
κ′
2

Arrow types introduce contravariance in the usual way; e.g., for

data (Fun α)u = Fun (αω → Intω)u

9Modulo an extra lifting.
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we have
Fun τ � Fun τ ′ ⇐⇒ τ ′ � τ

since (τω → Intω) � (τ ′ω → Intω) iff τ ′ � τ .

5.3.4.2 A coinductive definition

Recalling that an algebraic data type is simply a sum of products and that we may
interpret a polymorphic type as a set of monomorphic instances, these examples
suggest that an appropriate definition of subtyping for algebraic data types would be

σ◦
ij = σij [κ/u, κl/ul

, τk/αk
]

σ◦′
ij = σij [κ

′
/u, κ′

l/ul
, τ ′

k/αk
]

σ◦
ij � σ◦′

ij for all i, j

κ ≤ κ′

where data (T ul αk)u = Ki σij (−) (�-TyCon-Näıve)
(T κl τk)κ � (T κ′

l τ ′
k)

κ′

This states that two algebraic data types with the same type constructor lie in the
subtype relation if corresponding components of each data constructor all lie in the
subtype relation.

However, this rule does not work as intended as an inductive definition. Algebraic
data types may be recursive, and recursive types would require an infinite inductive
proof tree. Consider the type

data (List u1 α)u = Nil | Cons αu1 (List u1 α)u

To prove the identity List κ τ � List κ τ , it is necessary to prove that τκ � τκ (the
head of the list) and that (List κ τ)u � (List κ τ)u (the tail of the list). To prove the
latter, it is necessary to prove that τκ � τκ and that (List κ τ)u � (List κ τ)u. . . and
so on. It can be seen that the resulting proof tree is infinite. In fact, the relation in-
ductively defined by (�-TyCon-Näıve), the least relation satisfying the condition,
simply excludes all recursive types – clearly not what we want.

Instead, the rule must be interpreted as coinductive [Gor94, JR97], as pointed
out by [AC91, PS93]. To indicate this we place a minus sign to the right of the
implication line, following [CC92]. A coinductive definition, dual to an inductive
one, denotes the greatest post-fixed point of the monotone operator associated with
a set of rules. (The existence of such a greatest post-fixed point is guaranteed by the
so-called [LNS82] Tarski–Knaster fixpoint theorem.) A proof that a particular pair is
in the relation coinductively defined by a set of rules consists of choosing a candidate
relation R containing the desired pair and showing that it is a post-fixed point of the
associated monotone operator (and hence is contained in the greatest such). For R
to satisfy the post-fixed point property means that each pair in R is the conclusion
of one of the rules all of whose hypotheses are again in the relation R. Treating
(�-Tycon-Näıve) as a coinductive definition therefore allows recursive types to be
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included. In our list example, the candidate relation R for List κ τ � List κ τ is
simply {τκ � τκ, (List κ τ)u � (List κ τ)u}.10

The known techniques for evaluating such coinductive definitions [AC93, BH98]
work only for regular data types, relying on the fact that the inductive proof tree,
while infinite, has a finite representation as a digraph (i.e., is regular). The nodes of
this digraph form the candidate relation of the coinductive proof. Unfortunately our
language, following Haskell, permits the use of non-regular or nested data types, in
which a type constructor may appear recursively with different arguments from the
head occurrence.11 The inductive proof trees in this case may be infinite and non-
regular (and thus the candidate relation infinite)12 and therefore not susceptible to
such algorithms. Instead, we must take another approach.

5.3.4.3 An inductive definition

Intuitively, we may re-express our definition above in the following form:

αk ∈ ftvε(σij)⇒ τk �ε τ ′
k for all k, ε, i, j

ul ∈ fuvε(σij)⇒ κl ≤ε κ′
l for all l, ε, i, j

where data (T ul αk)u = Ki σij (�-TyCon)
T κl τk � T κ′

l τ ′
k

This makes use of the sets ftvε(ψ) and fuvε(ψ), which contain all type and usage
variables (respectively) with free ε-ve occurrences in the type ψ, where ε is either +
or −, and ψ ranges over both τ - and σ-types. These sets are defined in Figure 5.8.
Note that ε̄ is sign negation, defined by −̄ � + and +̄ � −, and ε · ε′ is sign
multiplication, defined by

· − +
− + −
+ − +

The definition also uses the convenient abbreviation τ �ε τ ′, where τ �+ τ ′ stands
for τ � τ ′ and τ �− τ ′ stands for τ ′ � τ .

The inductive rule (�-TyCon) above states that two algebraic data types with
the same type constructor lie in the subtype relation if each pair of corresponding

10In fact this set must be closed under (�-Annot); for clarity we omit this step here and in the
subsequent footnote.

11An example is the type of balanced binary trees,

data (Bal α)u = BZero αu | BSucc (Bal (α, α))u

See Section 5.4.5.5 for references and further discussion.
12For example, a candidate relation R for Bal τ � Bal τ is

{τ R τ,Bal τ R Bal τ, Bal (τ, τ) R Bal (τ, τ),

Bal (τ, τ, τ, τ) R Bal (τ, τ, τ, τ), . . . }

or, more concisely expressed,

{τ R τ} ∪ {Bal τ2n

R Bal τ2n

| n ∈ N}.
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Figure 5.8 Positive and negative free occurrences.

ftvε(ψ) fuvε(ψ)

ftvε(τκ) = ftvε(τ) fuvε(τκ) = fuvε(κ) ∪ fuvε(τ)
ftvε(Int) = ∅ fuvε(Int) = ∅

ftvε(σ1 → σ2) = ftvε̄(σ1) ∪ ftvε(σ2) fuvε(σ1 → σ2) = fuvε̄(σ1) ∪ fuvε(σ2)
ftvε(∀α . τ) = ftvε(τ) \ {α} fuvε(∀α . τ) = fuvε(τ)
ftvε(∀u . τ) = ftvε(τ) fuvε(∀u . τ) = fuvε(τ) \ {u}

ftv+(α) = {α} fuvε(α) = ∅
ftv−(α) = ∅ fuv+(u) = {u}

fuv+(κ) = ∅, κ ∈ {1, ω}
fuv−(κ) = ∅

ftvε(T κl τk) =
{

α |
∨

k,ε′

(
α ∈ ftvε·ε′(τk) ∧ αk ∈

⋃
ij ftvε′(σij)

)}

fuvε(T κl τk) =


u |

∨
l,ε′

(
u ∈ fuvε·ε′(κl) ∧ ul ∈

⋃
ij fuvε′(σij)

)
∨

∨
k,ε′

(
u ∈ fuvε·ε′(τk) ∧ αk ∈

⋃
ij ftvε′(σij)

)



where data (T ul αk)u = Ki σij

type arguments lies in the subtype relation covariantly (respectively contravariantly)
if that argument occurs positively (negatively) in a component of a data construc-
tor. An argument may occur both positively and negatively, in which case both cases
apply. We have dispensed with references to u (and κ, κ′) by ensuring that all occur-
rences of u in the σij are positive (Section 5.3.1), so the consequent test κ ≤ κ′ will
already have been performed by (�-Annot).

This definition is clearly inductive in the structure of the type, and can be imple-
mented efficiently. The definitions of fuvε(ψ) and ftvε(ψ), the free usage and type
variables of a type, are also inductive, and may be readily computed in advance
(when processing data type declarations) by means of iteration to a fixpoint. Ter-
mination is guaranteed for all finite sets of data types (even non-regular, mutually
recursive ones), since there are a finite number of variables α, a finite number of
types ψ occurring as subterms of constructor argument types, and two values for ε,
ensuring a finite maximum size of the relation.

It seems ‘obvious’ that the two definitions are equivalent, but I have been unable
to find a proof. That (�-TyCon) implies (�-TyCon-Näıve) is relatively easily
proven, but the reverse direction is somewhat harder: proving that a coinductively-
defined set is contained within an inductively-defined one seems not a very common
thing to do! It is possible that techniques from [BH98], which gives an inductive pre-
sentation of another coinductively-defined subtyping relation, may apply. Luckily, we
only need the former result for our proof of soundness. This is a trivial consequence



5.4. ANNOTATION OF DATA TYPE DECLARATIONS 147

of a result proven in the appendix, Lemma D.15.

5.4 Annotation of data type declarations

In Section 5.3.1 we introduced the form of the FLIX2 data type declaration, and
showed how it could encode a variety of design choices regarding the precise param-
eterisation of a data type. In Section 5.3.3 we saw that soundness is not dependent
on the particular parameterisation; all parameterisations lead to sound well-typing
rules. However, not all parameterisations lead to a good analysis: there is a tension
between maximising precision and minimising the cost of the analysis, and certain
parameterisations are incomplete, yielding an analysis that cannot type all programs.

In this section we discuss how best to annotate FL0 data type declarations. Some
typical data structures that we use as examples are listed in Section 5.4.1. We
begin the discussion by considering two extreme approaches to the problem (Sec-
tion 5.4.2). In the light of these examples, we discuss what exactly are the factors
to be considered in designing or selecting an annotation scheme (Section 5.4.3).
Finally, we present four workable schemes (Section 5.4.4). Recursive data types
introduce additional difficulty in design, and we consider these issues separately
(Section 5.4.5). The final choice of scheme will depend on the results of experiment,
which we defer to Chapter 6.

5.4.1 Some typical data structures

These typical FL0 data type declarations will be used to illustrate aspects of the
annotation schemes below.

data List α = Nil | Cons α (List α)

data Tree α = Leaf | Node (Tree α) α (Tree α)

data Customer = MkCustomer Int String String (List String) Bool

data Term α = Var α | App (Term α) (Term α) | Lam α (Term α)

data Skew = SLeft | SNone | SRight

data AVLTree α = ALeaf | ANode (AVLTree α) α Skew (AVLTree α)

data Rose α = RLeaf α | RNode (List (Rose α))

We assume our language contains types Int, String, and Bool as primitive. AVL-trees
(a form of balanced binary tree) are due to [AVL62].

We add one somewhat contrived data type declaration intended to illustrate the
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behaviour of the various schemes as concisely as possible:

data R α β = R1 α | R2 (Int→ β)

5.4.2 Two extreme approaches

We are required to translate an FL0 data type declaration into an FLIX2 (annotated)
data type declaration, as follows:

� data T αk = Ki tij � data (T ul αk)u = Ki σij

This involves (i) choosing how many usage parameters ul to add, and (ii) choosing
how to annotate each type tij using the parameters ul and topmost usage annota-
tion u of the declared type.

The simplest approach is to add no parameterisation at all, fixing all annotations
statically. To permit all possible patterns of construction and use, it is necessary that
the annotations are all ω, as in the first alternative of Section 5.3.1. This seems
reasonable if we assume that one usually places data in a data structure in order that
it may be used repeatedly. We may write this

σij = �tij�ωσ all i, j
(�-Data-Many)

� data T αk = Ki tij � data (T αk)u = Ki σij

That is, for each component type tij place a ω annotation on top and at every usage
annotation position within the type. This ensures that each component can be used
as many times as desired, and that any appropriately-FL0-typed expression can be
placed in the data structure.

The example data type R becomes

data (R α β)u = R1 αω | R2 (Intω → βω)ω

Notice especially that ω annotations are essential in negative positions as well as
positive:13 if R2’s argument were to be typed (Int1 → βω)ω then a function using its
argument more than once could not be placed in the data structure.

This scheme clearly has the least possible overhead (none at all), but it also
has very low precision (anything that goes into or comes out of a data structure is
annotated ω).

At the other end of the spectrum, we may consider parameterising over every
annotation position of every component type of the constructor, thus:

σij = �tij�freshσ all i, j
ul = fuv(σij) (�-Data-All-Bad)

� data T αk = Ki tij � data (T ul αk)u = Ki σij

13Positive (covariant) and negative (contravariant) positions in a type are defined in Section 3.2.1;
see also Figure 5.8.
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This certainly yields the maximum possible precision, but at the expense of huge
types. It is also ill-defined for recursive data types (an infinite number of usage
arguments would be required). Our example becomes

data (R u1 u2 u3 u4 α β)u = R1 αu1 | R2 (Intu2 → βu3)u4

Even this simple example has four usage arguments; more realistic ones may have
ten or twenty. Values for these must be given at every constructor application, and
constraints on them must be generated wherever the type is used.

5.4.3 The issues

The two examples above have introduced the crucial issues to consider in choosing
an annotation scheme.

Precision. We want sufficient precision in the types of constructor components that
in realistic programs, usage inference is not significantly affected by interven-
ing data structures.

For example, a very common pattern (found, e.g., in queens from the NoFib
suite, Section 6.7.1) is the intermediate list. One function lazily generates a list
consumed by another; the structure of the list is used at most once (and each
cell is garbage-collected once the consumer has used it), but each of the stream
of elements contained in the list may be used multiple times in processing. A
good annotation scheme should permit usage inference to detect that each list
cell is used at most once, a fact that the optimiser can use to avoid ever building
the list explicitly.

However, the lack of constrained quantification in our type language restricts
the useful degree of precision that can be introduced. Constructor application
has a special rule (�2-Con), which includes an explicit constraint on the top-
most annotations of the element types that cannot be represented within the
type system. This means that constructor application cannot be replaced with
function application – the exact type of a constructor cannot be abstracted, be-
cause we cannot give it a principal type. Thus a simple wrapper function (e.g.,
wR2 = Λα . Λβ . λf : Int → β . R2 α β f) necessarily loses precision, and
there is some maximum useful degree of precision. We investigate this ques-
tion experimentally in Section 6.8.2, since it clearly depends (at least in part)
on typical coding style.

Cost. We want the additional cost of processing usage-annotated programs, in terms
of compilation time, intermediate file size, and (un)readability of error mes-
sages and internal compiler state information, to be kept as low as possible.

In practice, this means we want as few parameters as possible. The vector of
usage arguments appears in every constructor application, and constraints on
them are generated at least at every usage site. The vector also appears in
every type signature or annotation. All of these increase processing time and
file size, and make usage-annotated terms less readable.



150 CHAPTER 5. COVERING THE FULL LANGUAGE

Typeability. We must be able to type every well-typed FL0 program.

An example of an annotation scheme violating this requirement was given in
Section 5.4.2: if a constructor argument were to be typed (Int1 → βω)ω then
functions using their argument more than once could not be placed in the data
structure.

In general, (i) given a suitable instance of the data type we must be able to
use the components of the datum more than once, and indeed in any well-
FL0-typed way we choose; and (ii) we must also be able to build a (suitably
parameterised) datum from any well-FL0-typed components we choose. This
is maximal applicability, as discussed in Sections 1.5.6, 3.8, and 4.5.1.

In practice, this simply means that no 1-annotations may appear anywhere
in the types σij of the components. 1-annotations may not appear in positive
positions for reason (i), and may not appear in negative positions for reason (ii)
(as in the example). Variable and ω-annotations are permitted anywhere. This
constraint is sufficient to achieve typeability, as we show in Theorem 5.7.

One non-issue is inference. The well-typing and inference rules given in Sec-
tions 5.3 and 5.5 treat all annotation schemes uniformly, and can be proven sound
independent of the particular scheme used.

5.4.4 Some workable approaches

We now give four points on the cost–precision spectrum, namely (�-Data-Equal),
(�-Data-Full), (�-Data-Clean), and (�-Data-Restr). All four annotation
schemes satify the typeability requirement. For now we consider only the simplest
form of recursion, direct self-recursion, deferring the treatment of more complex
forms to Section 5.4.5.

5.4.4.1 Equal

It is possible to increase the precision of the (�-Data-Many) rule of Section 5.4.2
without adding any extra usage parameters. The idea is to equate the usage of
components of the data structure with usage of the data structure itself:

σij = (�tij�ωτ )u all i, j
(�-Data-Equal)

� data T αk = Ki tij � data (T αk)u = Ki σij

Our example data type R becomes

data (R α β)u = R1 αu | R2 (Intω → βω)u

To avoid complications, only the topmost usage annotations of the components are
made equal to u; any annotations lying deeper inside the component types are given
the pessimistic annotation ω.14

14Note that if (�-Data-Equal) has been used for all the data types on which the present one
depends, deeper annotations can arise only from the arrow type constructor as other type constructors
will have no usage parameters.
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This annotation scheme is ideal in terms of cost: usage-annotated data types
take no extra parameters at all, and so compilation times, intermediate file size,
and usage-annotated terms are all completely unaffected. In fact, this annotation
scheme may be implemented with only minimal modifications to the compiler, since
the syntax of terms and types has changed so little.

In terms of precision, however, this annotation scheme is inadequate. The results
of our experiments are discussed in Section 6.8; here it suffices to note that while it
may often be reasonable to identify the usage of components of different constructors
or of the same constructor, very often the structure of a data type is used differently
from its contents, and identifying these is not reasonable. This is the case for example
in the intermediate list pattern discussed in Section 5.3.1. Using (�-Data-Equal)
leads to the unification of too many usage variables, and the multiple use of a single
component leads to all being equated with ω to the detriment of the resulting types.

5.4.4.2 Full

To further increase the precision we must add additional usage parameters. An obvi-
ous way to do this is to give a distinct topmost usage annotation to each component
of the data type. As with (�-Data-Equal), for simplicity we give pessimistic deeper
annotations, except in the case of direct self-recursion where we give the recursive
instance the same type as that being declared:

σij =
{

(T ul αk)u, if tij = T αk

(�tij�ωτ )u′
, otherwise, u′ fresh

all i, j

ul = fuv(σij) (�-Data-Full)
� data T αk = Ki tij � data (T ul αk)u = Ki σij

Our example data type R becomes

data (R u1 u2 α β)u = R1 αu1 | R2 (Intω → βω)u2

This annotation scheme gives excellent precision for many common data types,
including all those defined in Section 5.4.1 except Rose. It does not deal well with
data types involving mutual recursion or indirect recursion; the usage parameters of
the inner type constructor are pessimistic and the topmost annotation is in practice
soon unified with u or ω.

The cost however can be significant. For a data type with n constructors each
of m arguments, a total of n · m usage parameters will be generated. Medium to
large data types (such as for the abstract syntax of a language) may yield twenty or
thirty parameters, with consequent types such as (Expr κ1 κ2 κ3 κ4 κ5 κ6 κ7 κ8 κ9

κ10 κ11 κ12 κ13 κ14 κ15 κ16 κ17 κ18 κ19 κ20 κ21 τ)κ. This is probably not a good idea
in terms of analysis and type-directed optimiser efficiency.

5.4.4.3 Clean

A well-motivated restriction of (�-Data-Full) is (�-Data-Clean), so named be-
cause it is based on the treatment of data structures in the language Clean ([BS93a,
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def. 8.6], referenced in [BS96, §6]). One observes that frequently a data structure
of type (say) T α β is comprised of some kind of relatively uninteresting frame-
work, along with components having the parameter types, α and β. The two types
of component must in general represent different classes of object, but one assumes
that components of the same type will be treated similarly. Thus (�-Data-Clean)
gives the same usage annotation to every component of type α, and another usage
annotation to every component of type β, etc..

The problem arises, how to annotate components of type not α or β. Evidently
direct self-recursion should recursively use the same type being declared; for ground
types we choose to annotate with ω since 1 would not be sound; and for other types
such as (α → β) or (List (T α β)) we bail out and annotate freely with ω. The
assumptions motivating the (�-Data-Clean) annotation scheme assume that these
cases do not occur frequently. The resulting rule is as follows:

σij =




αuk , if tij = α
(T uk αk)u, if tij = T αk

�tij�ωσ , otherwise
all i, j

(�-Data-Clean)
� data T αk = Ki tij � data (T uk αk)u = Ki σij

Note that the “propagation” requirement of [BS93a] [PvE98, §4.5.3] does not arise
here; it is handled instead by the constraint in the (�2-Con) rule. This makes our
rule simpler than the Clean type attribution rule.15 The (�-Data-Clean) rule can
also be seen as a generalisation of the rule used by Turner et al. in [TWM95a] to
describe lists.

Our example data type R becomes

data (R uα uβ α β)u = R1 αuα | R2 (Intω → βω)ω

This annotation scheme has excellent precision for common data types Pair,
Either, List, and Tree. But it does not work so well for Customer, AVLTree, or Term.
There are two problems. Firstly, ground components (such as the fields of Customer
or the skew parameter of AVLTree) or components of non-variable type (such as the
List (Rose α) parameter of Rose) automatically get the pessimistic annotation ω, even
if usage information would contribute to the precision of the analysis. Secondly, dif-
ferent components that happen to have the same variable type (such as the binders
and the bound variables of Term) are not distinguished, even if they are used differ-
ently (consider a renaming function, which uses each binder multiple times but each
bound variable once).

The cost is tightly bounded: there are exactly as many usage parameters as there
are type parameters, and so types at worst double in size. Thus using the scheme
(�-Data-Clean) gives predictable and small cost, and good precision on some com-
mon data types, but for many other data types the results are poor. The fact that es-
sentially this rule is used for uniqueness typing in the language Clean suggests that
it probably works fairly well in practice.

15The Clean rule also descends into nontrivial types, which we do not attempt.
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5.4.4.4 Restricted

The (�-Data-Clean) annotation scheme may be viewed as an attempt to limit the
cost of (�-Data-Full) by placing a restriction on the number of usage parameters
and choosing annotations for each component, according to some rule, from the
parameters or ω. We may generalise this approach by restricting the number of
parameters in some other way, say to an arbitrary small integer N . This approach
will have the cost advantages of (�-Data-Clean), but will deal well both with
ground component types as found in, e.g., Customer and with distinct components
sharing a type as found in, e.g., Term.

The rule is the same as that for (�-Data-Full), but if the resulting number of
parameters is greater than the limit, we perform unification until it is within the
limit. For example, we may take the original parameters in order and map them
to the cyclic list of available parameters, or we may start the cycle again for each
constructor, or we may assign all annotations for a single constructor the same usage
parameter. We hope that experimentation will suggest effective schemes.

As an optimisation, we may observe that one need not distinguish the use of a
data type with a single component (i.e., one unary constructor) from the use of its
component. Thus we may annotate its declaration data (T α)u = K τu rather than
data (T u1 α)u = K τu1 .

σij =




(�tij�ωτ )u, if i = j = n = m = 1
(T ul αk)u, if tij = T αk

(�tij�ωτ )u′
, otherwise, u′ fresh

all i, j

fresh ul

S some appropriate mapping from fuv(σij) \ {u} onto ul

σ′
ij = Sσij all i, j

(�-Data-Restr)
� data T αk = Ki tij � data (T ul αk)u = Ki σ′

ij

For simple data types, this approach is identical to (�-Data-Full), with its ex-
cellent precision; but we have the added assurance that the cost cannot expand
beyond a fixed bound. With an appropriate bound, this approach is probably the
best to choose.

5.4.4.5 Discussion

Of the four annotation schemes considered above, (�-Data-Full) (or, for efficiency,
some restriction of it) is probably the best for use in practice.

In terms of precision, the implementation experience (Section 6.8.2) suggests
that while (�-Data-Full) is sufficient for most programs there are several cases
where even more precision is required. This is likely to be because of the use of dic-
tionaries, which are data structures that store functions. For good results the usage
annotation structure on these functions should not be lost when placed in the dictio-
nary; this entails an annotation scheme more along the lines of (�-Data-All-Bad),
although of course dealing appropriately with recursion.

In terms of efficiency, it is clear that some restriction must be imposed to avoid
ludicrous numbers of usage arguments. The restriction we used is described in Sec-
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tion 6.4.11, but this is rather ad hoc and further investigation would be well worth-
while.

In the next section we discuss how we might better deal with recursive data types,
another issue which in the implementation we deal with in a fairly ad hoc manner.

5.4.5 Recursion

The rules above deal only with the simplest form of recursion, namely direct self-
recursion. It is possible to treat more complex forms of recursion in a principled way,
and we attempt to outline one such method in this section. We do not work out all
the details, or deal with all expressible forms of recursion. This is an area of current
research, and needs further work to yield a good general annotation scheme.

Much of the power of user-defined algebraic data types comes from their un-
restrained ability to refer (potentially recursively) to each other and themselves.
Any annotation scheme must take this into account, at the very least ensuring well-
definedness on all legal data type declarations, and preferably yielding good solu-
tions with respect to the issues of Section 5.4.3 even for complex recursive patterns.

The annotation scheme developed in this section is intuitively reasonable, and
well-defined for all expressible data type declarations, but it is not the only possible
scheme. Other schemes may do better in specific cases or even in general, but this
one is sufficient for our purposes.

5.4.5.1 Direct self-recursion

Consider one of the simplest, self-recursive data types:

data List α = Nil | Cons α (List α)

For a first attempt at parameterising this along the lines of (�-Data-All-Bad), we
might place one annotation, u1, on the α and another, u2, on the (List α). Thus List
will take two usage arguments. Or will it? The recursive occurrence of List must take
two usage arguments also, u3 and u4; now List must take four usage arguments. But
this means the recursive occurrence must take six. . . and so on:

data (List u1 u2 u3 u4 u5 u6 . . . )u = Nil | Cons αu1 (List u3 u4 u5 u6 . . . α)u2

We are attempting here to give a separate usage annotation to every possible list
element and list cell; since there are an infinite number of these we are doomed to
fail. In order to stop this infinite unfolding, we must identify the usage arguments of
the recursive instance of List with those of the List being defined, thus:

data (List u1 u2)u = Nil | Cons αu1 (List u1 u2 α)u2
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This is now a well-defined fixed point. However, if we unfold the definition a few
times we can see an asymmetry:

(List u1 u2)u ! Nilu

| Consu αu1 Nilu2

| Consu αu1 (Consu2 αu1 Nilu2)
| Consu αu1 (Consu2 αu1 (Consu2 αu1 Nilu2))
| Consu αu1 (Consu2 αu1 (Consu2 αu1 (Consu2 αu1 Nilu2)))
| . . .

Notice that while u1 is used to annotate every list element, u2 annotates every list
cell but the first, for which u is used. It seems more natural and symmetrical to use u
(“the usage of the list”) for all list cells, and so we revise the declaration as follows:

data (List u1)u = Nil | Cons αu1 (List u1 α)u

This also saves a usage argument, reducing the cost by around half, by losing preci-
sion only in cases where the first cell of a list is treated distinctly from all other cells,
presumably an unlikely case.

A similar pair of arguments applies to the data type of trees

data Tree α = Leaf | Node (Tree α) α (Tree α)

which would otherwise lead to a veritable sorcerer’s apprentice16 of usage argu-
ments. It would not be especially useful to have different usage annotations for
the left and right halves of the tree while within those halves annotations were all
identical, and so we translate the declaration to:

data (Tree u1 α)u = Leaf | Node (Tree u1 α)u αu1 (Tree u1 α)u

Another way of seeing that this is the natural annotation pattern is to consider
the declarations of the above data types by explicit recursion:

data (List u1 α)u = µσ . 1 + αu1 × σ

data (Tree u1 α)u = µσ . 1 + σ × αu1 × σ

This view extends to some of the more complex forms of recursion considered below,
but not to all – the algebraic data type declaration mechanism is more general than
this form of explicit recursion.

In general, then, for data types involving direct self-recursion we recurse at ex-
actly the type being declared (the type to the left of the equals sign). This means
that:

Isomorphic portions of the data structure
are given equal usage annotations.

16This expression derives “from Goethe’s Der Zauberlehrling via Paul Dukas’s L’apprenti sorcier in the
film Fantasia.” [R+01]
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We can visualise this in graphical form:

List α

Cons

Cons

α

Node Tree α

Node

Node

α

Each type is represented by a node, and each component of each constructor is rep-
resented by an arc. Each constructor maps the constructed data type to the types of
each component. The unfolding of this finite graph is the regular tree containing one
node for each element of the data type.

5.4.5.2 Direct mutual recursion

The same intuition can be extended to directly mutually-recursive data type declara-
tions, such as the types of odd and even lists:17

data Odd α = OCons α (Even α)
data Even α = ENil | ECons α (Odd α)

Odd α
OCons

OCons

α

Even α
ECons

ECons

α

The naïve approach would use four usage parameters, one for each arg of OCons
and ECons; but this suffers from a similar asymmetry to that we encountered when
we gave two usage parameters to List above. On the other hand, annotating all in-
stances of types in the mutually-recursive group with the same topmost annotation u,
leaving just two usage parameters, arguably loses more precision than necessary. Fol-
lowing again the dictum “isomorphic portions of the data structure have equal usage
annotation” we obtain:18

data (Odd u1 u2 u3 α)u = OCons αu1 (Even u1 u2 u α)u3

data (Even u1 u2 u α)u3 = ENil | ECons αu2 (Odd u1 u2 u3 α)u

The name of the topmost annotation is arbitrary; we have named that of Even u3

rather than u for clarity.
17Of course, we must extend the annotation scheme to translate an entire mutually recursive group

of data type declarations ([BB85] suggests the term “data system”) simultaneously, rather than one
declaration at a time.

18To obtain exactly this, when computing the isomorphic portions we must distinguish the two α
occurrences; yet we must not distinguish the left and right subtrees in the declaration of Tree. This is
achieved by distinguishing each component of each constructor of each data type (by means of a tag,
(T, i, j)), except in the case that the type is one of those being defined in the present mutually-recursive
group (in which case we omit the tag). We can identify isomorphic portions of the infinite expansion
of the data structure by using an algorithm similar to that of [AC93], or use techniques from [BH98].
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5.4.5.3 Indirect recursion

Up to this point we have considered only direct recursion, i.e., that in which the type
being recursed upon appears as one of the tijs. But indirect recursion is also possible,
in which the type being recursed upon appears as a strict subterm of one of the tijs.
A standard example is the type of trees of variable arity, a.k.a. rose trees:

data Rose α = RLeaf α | RNode (List (Rose α))

Rose α

RLeaf
RNode

Cons

List (Rose α) Cons

α

Each node of the rose tree contains a List of the zero or more subtrees of that node;
each element of the list is itself a rose tree. Thus the recursion passes through an-
other type constructor, that of lists. In annotating this data type, we must provide
usage annotations for the intervening List type constructor as well as for the recursive
instance and the leaf component α.

Our guiding principle tells us we wish the subtrees (that is, the elements of the
list) to have exactly the same type as the tree itself. Since the usage argument to List
annotates the elements, this requires that argument to be u; the enclosed Rose type
constructor will take the same arguments as the defined type. The list as a whole will
be given a distinct usage argument, as will the leaf component. These considerations
yield:

data (Rose u1 u2 α)u = RLeaf αu1 | RNode (List u (Rose u1 u2 α))u2

It is also possible for the type being recursed upon to appear under the arrow
type constructor, in which case similar considerations apply. For example, consider
a formulation of lazy lists (these are not useful in Haskell, but become so in strict
languages such as ML):

data LazyList α = LNil | LCons α (Unit→ (LazyList α))

The corresponding usage annotation would be:

data (LazyList u1 u2 u3 α)u = LNil | LCons αu1 (Unitu2 → (LazyList u1 u2 u3 α)u)u3

This distinguishes the usage of the list itself, the head element, and the function
yielding the tail; the tail itself has the same usage as the whole list. It also unfortu-
nately distinguishes the usage of the unit component (which is certainly not used in
any reasonable implementation); this is an unfortunate consequence of the general-
ity of our system.

One potential problem with this form of recursion occurs when the type being
recursed upon appears in a negative position in one of the tij . Negative recursion
arises in a number of places.19 Parsers and other continuation-passing styles are one

19Thanks for these examples to members of the Haskell list haskell@haskell.org, 4 July, 2001:
Sebastien Carlier, Koen Claessen, Ralf Hinze, Lars Mathiesen, and Mark Shields.
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example: an LR parser might use a data type like the following:

data State = MkState (Sym

—
ne

xt

→ List (Pair State Sym)

—
st

ac
k

→ List Sym

—
in

pu
t

→ Sym

—
re

su
lt

)

Another example is Fix, used to encode the Y-combinator in Haskell [MH95]:

data Fix α = F (Fix α→ α)
fix :: (α→ α)→ α

fix f = (λ(F x) . f (x (F x))) (F (λ(F x) . f (x (F x))))

Other examples come from object encodings, higher-order abstract syntax, and do-
main encodings.

In all these cases, a naïve analysis will result in all usage arguments becom-
ing bivariant (both covariant and contravariant), and hence non-subtypeable. The
resulting poisoning will almost invariably force its usage arguments to ω. Follow-
ing [MH95], such cases could be recognised and the usage arguments duplicated,
with one set used for positive occurrences and others negatively.

5.4.5.4 Non-uniform recursion

Another standard tricky example is twist-lists, with elements of two alternating types.
Here the recursive instance of the type has different parameters from the initial in-
stance, but the resulting tree is still regular:

data Twist α β = TNil | TCons α (Twist β α)

Twist α β
TCons

TCons

α

Twist β α
TCons

TCons

β

Once again, this is straightforwardly handled by our dictum; observe that we alter-
nate between types Twist α β (with head type α) and Twist β α (with head type β),
and hence may give each a different usage annotation:

data (Twist u1 u2 u3 α β)u = TNil | TCons αu1 (Twist u2 u1 u β α)u3

A particularly elegant combination of negative and non-uniform recursion occurs
in hyperfunctions, used in [LKS00] for zip fusion:

data H α β = Cont (H β α→ β)

Here α occurs only negatively and β only positively, thus sidestepping the usual
problems of bivariance in negatively-recursive data types.
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5.4.5.5 Non-regular recursion

Unfortunately, there is one form of recursion where our techniques fail. All the ex-
amples we have considered so far have involved regular recursion: the tree obtained
by unfolding the declaration, while infinite, has only finitely many different subtrees
(i.e., it is regular). However, algebraic data types may also be non-regular, having a
tree with infinitely many different subtrees. Such data types (also known as nested
data types [BM98]) were not thought useful until recently, and indeed while they are
definable in Standard ML it is not possible to use them, due to the absence of poly-
morphic recursion [Myc84, Hen93]. There is no such restriction in Haskell, however,
and Okasaki’s work in particular [Oka98, Oka97, Oka99] has shown that such data
types are indeed very useful.

To understand the difficulty of translating such a data type, consider the type
of balanced binary trees (we here assume a type (P α) of uniform pairs with ele-
ments (MkP α α), which we abbreviate as (α, α)):

data Bal α = BZero α | BSucc (Bal (P α))

The unfoldings of this data type are as follows:

Bal α ! BZero α
| BSucc (BZero (α, α))
| BSucc (BSucc (BZero ((α, α), (α, α))))
| BSucc (BSucc (BSucc (BZero (((α, α), (α, α)), ((α, α), (α, α))))))
| . . .

The subterms of these components all have distinct types, which get larger with
each unfolding; hence there is no regular tree representing this type. Naïve usage
annotation (a distinct usage annotation for each distinct subtree) would give an
infinite vector of usage parameters.

It is clear that at this point our analysis must bail out somehow. Pending fur-
ther results on the behaviour of such data types, on detecting non-regular recur-
sion we bail out and use a simpler annotation scheme for the data type (in fact,
(�-Data-Equal), defined in Section 5.4.4.1).

5.5 Usage inference in the full language

Once again, the final part of our type-based analysis is the inference algorithm IT2,
which must compute the best valid FLIX2 typing for any FL0 program. That is,
when presented with an FL0 program, the algorithm must infer an equivalent FLIX2

program which is well-typed according to the rules of Sections 5.2 and 5.3; and if
there is more than one such, it should choose the one that is the ‘best’ in some
appropriate sense.

Since FLIX2 is merely an extension of the previous language LIX2, the inference
algorithm IT2 is also an extension of the previous algorithm described in Section 4.4.
Four new rules are added in order to handle the four new language constructs. Only
phase 1 of the inference, �2, is extended, as described below in Section 5.5.1. The
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Figure 5.9 Type inference rules from FL0 to FLIX2 (extends Figures 4.6 and 4.7).
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(q.v. Figures 4.6 and 4.7),
with the addition of:

Γ, α �2 M � e : τκ; C; V α /∈ ftv(Γ)
(�2-TyAbs)

Γ �2 Λα . M � Λα . e : (∀α . τ)κ; C; V

Γ �2 M � e : (∀α . τ1)κ; C; V τ2 = �t�freshτ
(�2-TyApp)

Γ �2 M t � e τ2 : (τ1[τ2/α])κ; C; V
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ij | ≤ v}

where data (T ul αk)u = Ki σij (�2-Con)
Γ �2 Ki tk Aj � Kv,v†

i vl τk aj : (T vl τk)v; C1 ∧ C2;
⊎

j Vj

Γ �2 M � e : (T κl τk)κ; C1; V
σ◦

ij = σij [κ/u, κl/ul
, τk/αk

] for all i, j

Γ, xij : σ◦
ij �2 Mi � ei : σi; Ci

2; Vi for all i

C2 =
∧

i C
i
2 (C3, σ) = FreshLUB(σi)

C4 =
∧

ij{Vi(xij) > 1⇒ |σ◦
ij | = ω}

where data (T ul αk)u = Ki σij (�2-Case)
Γ �2 case M : T tk of Ki xij →Mi

� case e : (T κl τk)κ of Ki xij → ei : σ;
C1 ∧ C2 ∧ C3 ∧ C4; V � (

⊔
i Vi \ {xij})
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pessimisation step described in Section 4.4.3 is trivially altered in the obvious way to
handle type-polymorphic types and type constructors, and phase 2 of the inference
remains exactly as described in Section 4.4.4. As before, the combination of these
three parts yields the complete inference:

IT2(Γ, M) � (CS ◦ Pess ◦�2)(Γ, M) = (e, σ)

where e : σ is the best well-typed FLIX2 term corresponding to M .
Note that for the purposes of the present section we assume that all data type

declarations have been annotated already, possibly along the lines suggested in Sec-
tion 5.4. The inference algorithm is parameterised on these annotations.

5.5.1 Inference phase 1

The first phase of the inference algorithm, �2, takes an FL0 term and yields an
equivalent FLIX2 term, along with an appropriate constraint on its free variables.
This phase is defined in Figure 5.9. The figure defines a relation

Γ �2 M � e : σ; C; V

which may be read “In the FLIX2 type environment Γ, the FL0 term M translates to
FLIX2 term e, which has type σ, generated constraints C, and free term variables V .”

We obtain an inference algorithm for FLIX2 exactly as before (Sections 3.5.2
and 4.4.1); subsumption is restricted to the arguments of (�2-Con) and the branches
of (�2-Case), and the inference rules follow directly from the corresponding well-
typing rules of Figure 5.6. The side condition in (�2-TyAbs) may be satisfied by α-
conversion if necessary. Rule (�2-Case), like (�1-If0), makes use of the FreshLUB
operator defined in Section 3.5.2. The result is a syntax-directed rule set, and hence
an algorithm.

5.6 Proofs

Below we give the various proofs that support the full-language usage analysis. The
results we prove are all analogous to those of Chapters 2 and 4, and so we simply
list them without comment, referring the reader to their earlier expositions.

5.6.1 Well-typing rules

Firstly, the results about FLIX0 and �0 follow those for LIX0 and �0 in Section 2.5.
IT0 (Section 2.3.3) is extended to the full language in the obvious way, setting update
flags on constructors also to !. T0 is again defined by type erasure: T0 = � ◦ IT0. The
well-typing rules �0 are sound for FLIX0 with respect to the operational semantics.

Lemma 5.1 (Progress)
For all FLIXC0 configurations C, if �0 C : t then either (i) C ∈ Value ∪ BlackHole
or (ii) ∃C ′ . C � C ′ and C � C ′ ⇒ �0 C ′ : t.
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Lemma 5.2 (Instrumented soundness for FL0, �0, IT0)
For all FL0 terms M , if ∅ �0 M : t then

(i) (IT0�M �)〈;;〉 is well-defined.

(ii) �0 (IT0�M �)〈;;〉 : t.

(iii) If (IT0�M �)〈;;〉 ↓ C ′ then C ′ ∈ Value ∪ BlackHole.

Lemma 5.3 (Correspondence)
The functions 〈; ; 〉 and � are well-defined on FLX and FLXC (as well as FLIX0 and
FLIXC0), and make the following two diagrams commute:

FLIX0

�

〈;;〉
FLIXC0

�

FLX
〈;;〉

FLXC

FLIXC0

�

�
FLIXC0

�

FLXC
�

FLXC

Theorem 5.4 (Soundness for FL0, �0, T0)
For all FL0 terms M , if ∅ �0 M : t then

(i) (T0�M �)〈;;〉 is well-defined.

(ii) If (T0�M �)〈;;〉 ↓ C ′ then C ′ ∈ Value ∪ BlackHole.

5.6.2 Well-typing rules

The operational semantics we use for FLIX2 has been presented in Section 5.1.4.
Using this semantics, we prove the soundness and correctness results analogous to
those for LIX2 in Section 4.6. We list these below. The well-typing rules �2 are sound
for FLIX2 with respect to the operational semantics, and on well-typed programs the
operational semantics is correct with respect to the FL0 operational semantics. All
FL0 programs have an FLIX2 typing.

Theorem 5.5 (Type soundness)
For all e ∈ FLIX2, if ∅ �2 e : σ and there exists a configuration C ′ such that (e)〈;;〉 ↓
C ′, then C ′ ∈ Value ∪ BlackHole.

Theorem 5.6 (Correctness)
For all FLIX2 target programs e, where ∅ �2 e : σ, let M be the corresponding FL0

source program (e)�. Then we have

(i) (e)〈;;〉 ↓ ⇔ (T0�M �)〈;;〉 ↓
( i.e., the FLIX2 program e terminates iff the FL0 program M does); and

(ii) If (e)〈;;〉 ↓ C ′ and (T0�M �)〈;;〉 ↓ C ′′, then all the following hold:

(a) C ′ ∈ BlackHole⇔ C ′′ ∈ BlackHole
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(b) C ′ ∈ Value⇔ C ′′ ∈ Value
(c) C ′ = 〈H; n; ε 〉 ⇔ C ′′ = 〈H ′; n; ε 〉

( i.e., if the two programs terminate, they both terminate in the same way, viz.,
black hole, non-ground value, or the same ground value).

Theorem 5.7 (Nonrestrictivity)
For all FL0 environments Γ, terms M , and types t, if Γ �0 M : t then there exists an
FLIX2 environment Γ′, term e, and type σ such that (Γ′)� = Γ, (e)� = M , (σ)� = t,
and Γ′ �2 e : σ.

The proof of nonrestrictivity (Theorem 5.7) is an extension of that for Theo-
rem 3.3, but it requires a certain property of the annotation scheme used for data
type declarations. While the well-typing rules (�2-Con) and (�2-Case) are sound
no matter what annotation scheme is used for each data type declaration, not all
annotation schemes permit all FL0 programs to be typed. As seen in Section 5.4.3,
typeability requires that no 1-annotations appear anywhere in the types of the compo-
nents in the data type declaration. This requirement, satisfied by all the annotation
schemes of Section 5.4.4, is sufficient to establish nonrestrictivity. It is sufficient
because it guarantees that the translation (Ki ω �tk�ωτ �ej�ω) of a constructor appli-
cation will permit any use of its components, which after deconstruction by case will
have types σ◦

ij = �tij�ωσ .

5.6.3 Inference phase 1

Phase 1 of the FLIX2 inference is sound with respect to the well-typing rules.

Theorem 5.8 (Soundness of inference phase 1)
For all Γ, e, σ in FLIX2 such that Γ �2 e : σ,

(i) �2 (Γ, (e)�) = (e′, σ′, C, V ) is well defined20

( i.e., the algorithm �2 is deterministic and does not fail);

(ii) (e′)� = (e)� and (σ′)� = (σ)�

( i.e., the inference algorithm merely annotates the source term, and does not
alter it or its source type);

(iii) ∀S . �e SC ⇒ Γ �2 Se′ : Sσ′

( i.e., all solutions of the resulting constraint are well-typed); and

(iv) ∃S . �e SC
( i.e., the resulting constraint has at least one solution).

5.6.4 Inference phase 2

Phase 2 of the FLIX2 inference is identical to that of LIX2 and LIX1, and so the
proofs already presented in Section 3.6.3 apply unchanged.

20It is well defined modulo the names of fresh variables; we have already noted that we are omitting
the details of fresh variable management.
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5.6.5 Overall results

Combining the above results, we have that the entire FLIX2 inference is sound
with respect to the well-typing rules, and the inference has complexity bounded
by O(nm2) under the same assumptions as previously.

Theorem 5.9 (Inference soundness)
For all M in FL0, if (CS◦ �2)(∅, M) = e : σ then ∅ �2 e : σ and (e)� = M .

Theorem 5.10 (Inference complexity)
If we assume that nesting of conditionals, abstractions, and case statements is lim-
ited to a constant depth, data type declarations are limited to a constant size, types
annotating letrec bindings are limited to a constant size, and a linear algorithm ex-
ists for union-find, then the complexity of the inference IT2 is bounded by O(nm2),
where n is the size of the program and m is the size of the largest binding group (set
of expressions ei bound by a letrec) in the program.

Proof The proof directly extends that of Theorem 4.7, under the new assumptions
on case (treated like if0) and data type declarations. �

5.7 Related work

Most related work has already been considered, either in the relevant sections or
in previous chapters. Below we address the relationship between our treatment of
algebraic data types and that of Gustavsson (Section 5.7.1), and we examine work
related to our definition of subtyping (Section 5.7.2).

5.7.1 Gustavsson

Gustavsson rightly observes [Gus99, §7.1] that the type system of our paper [WPJ99]
is less expressive for data structures than his or that of [TWM95a]. However, this
is merely a result of the particular annotation scheme used there, one equivalent to
(�-Data-Equal). In the present thesis we parameterise the type system, allowing
us to use different schemes with greater expressive power such as one equal to the
treatment of lists by Gustavsson. He briefly suggests a general scheme for user-
defined algebraic data types [Gus99, §8.2.2] which seems to be equivalent to one
of the schemes we work out in detail in Section 5.4, namely (�-Data-Full). This
scheme is the one Gustavsson and Svenningsson describe in their later (constrained-
polymorphic) analysis [GS00b] as “the most aggressive” of those listed in our earlier
work [WPJ98].

Gustavsson and Svenningsson are however mistaken, we believe, in their asser-
tion that

[I]n a system with simple usage polymorphism the usage of the spine [of
a list] must be unified with the usage of the elements. . . [GS00b, §4,
emphasis mine]
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from which they conclude that our system cannot discover that an intermediate list
has a spine used at most once but elements each used many times. In [WPJ98]
we certainly rejected a system capable of just this; but in fact as we have seen in
the present chapter the lack of bounded or constrained polymorphism in our type
language does not prevent the use of bounds or constraints in the well-typing rules
for particular syntactic forms, such as (�2-Con) (the relevant constraint is discussed
in Section 5.3.2). Thus their criticism that this is likely to “have a significant effect
on the accuracy of the analysis” refers only to a system using (�-Data-Equal),
not one using (�-Data-Full) or one of the other annotation schemes discussed in
Section 5.4.

The idea of describing the treatment of user-defined data types by providing a
way to translate source data type declarations into target data type declarations ap-
peared as a suggestion for future work in [Gus99, §8.2.2], but the parameterisation
of the type system is not worked out and the idea of varying the annotation scheme
does not appear.

5.7.2 Subtyping of data types

The only work addressing the problem of subtyping algebraic data types of which
we were aware at the time of writing down the subtype relation of Section 5.3.4
(in [WPJ98, WPJ99]) was that of Hosoya, Pierce, and Turner [HPT98]. Their work
is based on kernel Fω

≤ [SP94], and includes the following rule for type-constructor
application:

Γ � R ∈ K Γ � T ∈ K
Γ �L R � T Γ �L S � T Γ �L T � S

(S-App)
Γ �L R(S) � T (U)

This states that, e.g., C τ � D τ ′ iff C � D and τ " τ ′; that is, subtyping applies
to the data type constructors but not to its arguments. This is in direct contrast with
the system we develop, which requires the data type constructors to be equal and
subtypes the arguments. For a truly “full account. . . of the integration of data types
with. . . subtyping” [HPT98], both systems should be combined.

Much later we encountered the work of Nordlander on O’Haskell [Nor98], dis-
cussed in Section 4.8.2. Nordlander encountered the same issue, namely how to
deal with subtyping of Haskell user-defined algebraic data types, and gave the same
solution [Nor98, §§3.1, 5], which he calls depth subtyping. His rule (DEPTH) corre-
sponds to (�-TyCon) (Figure 5.7). Nordlander also points out that (�-Arrow) is
subsumed by this rule; → is just a binary type constructor whose first argument is
negative and whose second is positive. A similar subtyping rule appears in [BM97]
[BM96, §2], motivated by object oriented programming.

The infinite-tree model of subtyping used in Section 5.4.5 and implicitly in Sec-
tion 5.3.4 originated in the seminal paper of Amadio and Cardelli [AC91, AC93], and
was reinterpreted in a coinductive framework by Brandt and Henglein [BH98]. An
excellent and accessible overview of the current state of the art is given by Gapeyev,
Levin, and Pierce in [GLP00]. All of these algorithms apply only to the case of regu-
lar data types, and the extension to non-regular data types is an important area for
future research.
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Implementation

In the preceding chapters we have developed a usage analysis which is capable of
handling the wide range of constructs found in real functional languages, and which
we claim is powerful enough to yield good results in practice. This chapter presents
evidence to support our claim. We have implemented the analysis in the Glasgow
Haskell Compiler, and performed an extensive series of tests to determine its perfor-
mance. The results are encouraging, but future work remains.

The implementation is a key contribution of this thesis. Firstly, we have im-
plemented the analysis developed in earlier chapters in a production compiler, and
measurements have been obtained of its effectiveness on a large set of real programs.
Secondly, in scaling up the analysis we encountered a number of interesting imple-
mentation issues, and we discuss these below.

We begin in Section 6.1 with a brief discussion of the Glasgow Haskell Com-
piler, in which the analysis was implemented. After outlining the implementation
in Section 6.2, we examine some design choices in Section 6.3, and then explain
how the many non-FL0 language constructs were handled in Sections 6.4 and 6.5.
Section 6.6 discusses how we made use of the results of the analysis, Section 6.7
describes the ways in which we measured its performance, and in Section 6.8 we
present the results we obtained. The results are examined through two case studies
in Section 6.9, and we conclude in Section 6.10.
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6.1 The Glasgow Haskell Compiler

The Glasgow Haskell Compiler (GHC) has been described in Section 1.2.5. We chose
to implement our analysis in GHC for a number of reasons.

• GHC is a typed compiler, with a typed intermediate language, and so should
readily support a type-based analysis.

• GHC is an optimising compiler, implementing most known optimisations for
Haskell, and so we can easily use our analysis to guide existing optimisations
as well as obtaining realistic information on the benefits of using usage analysis
in conjunction with existing analyses, not just in place of them.

• GHC is designed in part as a testbed compiler for new analyses, and so it is
structured with modularity and extensibility in mind.

• GHC is open source, and well-supported by an active development group. In
fact, the author’s supervisor is the chief architect, and most of the development
team are nearby.

Core, the intermediate language of GHC, is essentially a System Fω polymorphic
lambda calculus with letrec and case. (The term and type languages are given at the
end of the chapter, in Figures 6.13 and 6.14 respectively). Identifiers are internally
annotated with types (and type variables with kinds). Variables may be identifiers
or type variables, and the Lam and App productions are shared between types and
terms, as in the lambda cube [PJM97, Bar92]. Case statements bind the result of
evaluating the scrutinee to a variable that scopes over all the alternatives, and may
have a DEFAULT pattern. Constructors are simply special identifiers, and are not
represented in the grammar. Notes may be placed on a term at any point. Types
are straightforward Fω types with type constructors, but classes [WB89, PJJM97],
implicit parameters [LSML00], and newtypes [PJH+99, SM01] each have a special
representation.

Most of this is a reasonably close fit with the language FL0 we have considered
thus far. Points of difference will be considered as they are encountered.

6.2 Implementing the analysis

The implementation was a major effort, involving a number of important design
decisions. After a chronology of the implementation, we consider the overall struc-
ture of our implementation. Specific treatment of the various constructs of Core is
deferred to Sections 6.4 and 6.5.

6.2.1 A chronology

The present implementation of the analysis is the last and by far the most successful
of several implementations performed over the course of this research.
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Prototype. Initially, a prototype of the monomorphic analysis of Turner, Mossin, and
Wadler [TWM95a] was written, and its behaviour observed for small terms.
From this experience the poisoning problem became obvious, as well as the
need to deal with type polymorphism and more general data types.

Monomorphic analysis. A version of the monomorphic analysis was then imple-
mented in GHC (then version 4.02). This was the analysis described in our
POPL paper [WPJ99], using a rule equivalent to (�-Data-Equal) for alge-
braic data types, and incorporating subsumption to control poisoning, and type
polymorphism. The final results were extremely disappointing, however: just
two thunks in the entirety of the standard libraries was annotated •. The rea-
son for this severe scaling problem was soon discovered to be the lack of usage
polymorphism, as described in Sections 3.7 and 4.1.

Polymorphic analysis. To address this, the polymorphic analysis of Chapter 4 was
designed and refined. A new implementation effort was embarked upon, and
this time the analysis was properly wired into the type system of the compiler.
The monomorphic version had simply used the intermediate language’s op-
tional TyNote type annotations (see Figure 6.14) to carry usage annotations,
but it was hard to ensure the annotations were correctly preserved and ma-
nipulated, and it seemed unwise to have a binder, the usage-forall, in such a
fragile location. Directly implementing the σ- and τ -types in the compiler in
place of the existing t-types meant that their correct use was statically checked,
but it also meant that essentially the whole compiler had to be examined, and
coercions �·�ωσ , �·�ωτ , #·$, (·)ω, and τκ �→ τ inserted in hundreds of places.
These modifications were particularly fiddly in the typechecker, where im-
ported types (with true usage annotations that had to be preserved) jostled
with user-supplied source types (with dummy usage annotations inserted to
pacify the static checking). Although the analysis is defined on Core, the modi-
fication of the compiler’s data type of types had effects much more far-reaching
than the intermediate language, from the renamer, typechecker, and desugarer
right through to the translation to STG and interface-file generation. Classes
and dictionaries, type synonyms, rules, foreign functions, and many other fea-
tures had to be dealt with in detail.

Unsurprisingly, this effort became bogged down: initial results were obtained,
but many bugs remained, and extending the analysis further was out of the
question. And extension seemed necessary, for the results that were obtained
(and published in extremely preliminary form in [WPJ00]) appeared to show
that, again, very little performance was being gained. This time the results
were not all zero, but they were very nearly so, despite the encouragement of
finding all the library functions being given the expected, very general usage
types. Detailed analysis of the analysis output suggested that usage specialisa-
tion and finer treatment of algebraic data types should together provide better
results. Another implementation was begun.

Data structures. For this implementation, intended to feature usage specialisation
and general annotation schemes along the lines of Section 5.4, usage types re-
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Figure 6.1 Usage projection types for GHC.

Usage schemes s ::= (∀uk; ul . t)κ

Usage-annotated types u ::= t
κ

Unannotated types t ::= u→ u function type
| T κl tk type constructor
| � base type

Usage annotations κ and usage variables u as before.

Figure 6.2 The default projection – safely annotating with ω.
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{|T tk|} = T ω {|tk|} (may be unsaturated)
{|α|} = �
{|∀α . t|} = {|t|} (type generalisation ignored)
{|t1 t2|} = � (higher kinds beyond scope of analysis)
{|ttynote|} = {|t|} (annotations)

mained embedded in the type language of the compiler, but a slightly closer
fit to the existing code was chosen. Instead of new productions for usage
lambdas, foralls, variables, and applications, usage variables were treated as
type variables of usage kind. This greatly simplified the implementation, as
kinded type variables are already handled correctly throughout, allowing the
new features to be added. Usage specialisation was added, manually gener-
ating specialisations but using the rules mechanism (Section 6.5.3) to invoke
them. Preliminary measurements showed little benefit of specialisation alone,
and so we pressed on.

Adding finer treatment of data types proved to be another major alteration.
Type constructors now took usage arguments as well as type arguments, not
a major difficulty, but the corresponding data constructors often took different
arguments, violating an assumption made many times in the compiler. Dealing
correctly with this proved to be another quagmire. Correctly computing the
annotations of recursive data type declarations also proved nontrivial. This
implementation was never completed.
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Projection types. The approach of directly implementing the σ- and τ - types of the
analysis had proven too ambitious several times. For the final implementation,
we decided instead to use a much simpler scheme, usage projection types. The
final implementation is based on GHC version 5.03.20020220, and is described
in the remainder of this chapter.

6.2.2 Usage projection types

The final implementation stores a projection of the usage information as an annota-
tion alongside the source type; the combination of these can be used to recover the
intended usage type. The impact of this system upon the rest of the compiler is much
smaller (existing type-manipulation code remains unchanged), but the accuracy of
the usage information is no longer enforced (so the results may be less reliable).
Based on our experience, this tradeoff is a wise one.1

As an example of usage projection types, consider the type of map from Fig-
ure 4.1:

map : (∀u1, u2 . ∀α, β . (αu1 → βu2)ω → ((List α)u1 → (List β)u2)ω)ω

The source-type and usage-type projections of this type are as follows:

∀α, β . (α→ β)→ (List α)→ (List β)
(∀u1; u2 . (�u1 → �u2)ω → ((T u1 �)1 → (T u2 �)u2)ω)ω

It is clear that the two representations convey exactly the same information, with
only a small amount of redundancy in the the projection-type representation.

The projection types are described in full in Figure 6.1, and Figure 6.2 describes
how to obtain a pessimistic usage projection, analogous to �·�ωτ , from a source type.
The inference as described in Chapter 5 infers only rank-1 usage polymorphism, and
it is convenient to enforce this syntactically by defining a sort of usage schemes s.
The generalised variables are divided into two classes, the interesting and the bor-
ing usage variables (defined in Section 6.3.3.3), for the benefit of the specialisation
algorithm. Usage-annotated types u are as before. For unannotated types t, no
type information is stored, but we duplicate the minimum amount of type structure
necessary to provide a framework for the annotations. Thus for function types, the
arrow remains; for type constructors we store the usage arguments and the usage-
projection of the type arguments, but not the type constructor itself;2 and for type
variables and primitive types only a placeholder � is stored. Type generalisation
∀α . t has no representation in the usage projection.

Notice that since type variables are a type-level entity and not a usage-level one,
substitution of a (projection) type for a type variable in a (projection) type cannot
be performed using only the projections, but must refer also to the source type, as in

1An example of a transformation which will frequently invalidate usage information is common
subexpression elimination, which transforms letrec x = e in letrec y = e in e′ to letrec x = e in e′[y/x].

2In fact the implementation does store the type constructor here also, but purely for efficiency; the
external format omits it and it is reconstructed again on input.
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the following:
(α→ δ)[β → γ/δ] = α→ β → γ

(�ω → �1)[�1 → �ω
/δ] = �ω → (�1 → �ω)1

The placeholder � is also used to represent types that are not directly handled
by the analysis, such as type applications (t1 t2). In GHC this requires some special
handling during manipulation, as we describe in Section 6.5.1.

6.2.3 Implementing the inference itself

The inference itself essentially follows the algorithm developed in Chapters 4 and 5
and summarised in Figure B.11. It comprises around 600 lines of code for the in-
ference itself (not including comments or blank lines), 180 lines for the specialiser,
500 lines for the constraint solver, and 1300 lines of support code. Significant code
was also required for elaborating the usage annotation scheme for each data type
declaration, and for interfacing the inference with the remainder of the compiler. By
way of comparison, the compiler as a whole (not including the RTS etc.) is around
70 000 lines.

Implementation in Haskell was straightforward, using a monad to thread the
fresh name supply, annotated-variable environment, constraint set, call sites map
and interesting variable set (Section 6.3.3), and compiler options through the code.
The monad definition is as follows:

newtype USPInfM a = USPInfM (UIMInp -> UIMOut a)

data UIMInp = UIMInp { usi :: UniqSupply, -- unique supply in
sub :: VarEnv Var, -- unannot->annot varenv
subfuv :: UVarSet, -- fuv(type(rng(sub)))
dflags :: DynFlags -- command-line options

}
data UIMOut a = UIMOut { res :: a, -- result

uco :: UConSet, -- final constraints
uso :: UniqSupply, -- unique supply out
cso :: CallSites, -- callsites of annot vars
ivo :: UVarSet -- set of interesting uvars

}

instance Monad UspInfM where ...

An action in the monad takes an input fresh name supply usi, a substitution
from unannotated to annotated bound variables sub (variables are annotated at their
binding site, and bound occurrences share this same copy of the variable), a set
of the free usage variables of the range of this substitution subfuv (this is fuv(Γ),
used in computing the closure), and a set of compiler flags dflags (used to control
generalisation etc.). It returns a result res, a constraint set uco (constraint sets from
each action are combined together and propagated upwards), the output fresh name
supply uso (after use by the action), a set of discovered call sites cso and a set of
interesting usage variables ivo (see Sections 6.3.3.1 and 6.3.3.3 respectively).

Given this, implementation was largely a matter of transcribing the inference
rules of Figure B.11. The deviations almost all relate to differences between Core
and and the source language FL0 studied in this thesis.
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6.3 Design choices

We now consider two important design choices: the location of the inference pass
in the optimiser pipeline, and the restriction of generalisation in view of the trade-
off between generalisation and accurate annotation. We also discuss an additional
means of addressing the difficulties of generalisation: specialisation.

6.3.1 Locating the inference

Usage inference is treated as a Core-to-Core optimisation pass, along with other
major passes such as strictness analysis, specialisation, floating out, floating in, oc-
currence analysis, common subexpression elimination, and so on. The list of these
is quite long, and sequencing can be critical. The optimum location in this list for
usage inference can only be determined through experience, so our present choices
can be only provisional.

Usage inference, as we shall see below, informs the rest of the compiler in two
ways. Firstly, it causes generated thunks to be marked • or ! by the code generator
as appropriate (Sections 6.6.1). Secondly, it marks certain lambdas as used once,
allowing inlining and other optimisations to be more aggressive (Section 6.6.2). For
the first, it is absolutely essential that the usage information is correct at code gener-
ation time, or else the generated code might enter a black hole. For the second, usage
information must be available to as many of the optimisations as possible, although
its accuracy is not quite so critical.

The minimum useful approach, therefore, is to run the usage inference twice:
once fairly early on in the Core-to-Core sequence, and once as late as possible, cer-
tainly after any code motion transformations. We perform the earlier inference after
the desugarer, initial simplification, specialisation of overloaded operations, initial
floating outwards and inwards, and next simplification have done their job. This is
before two further simplifications, strictness, worker-wrapper generation, full float-
ing outwards and inwards, and the final cleanup simplification, leaving plenty of
opportunity for the results to inform the optimiser.

We also tried running the inference much more frequently, to see whether adding
extra passes is worthwhile. This is controlled by the -fusage-heavy flag. The results
appear in Sections 6.8.2 and 6.8.3 below.

6.3.2 Restricting generalisation

We observed in Section 4.7.3 that generalisation and usage analysis in fact work
against each other to a significant degree. There is a tradeoff between using a most-
general type so as not to poison use sites, and using a monomorphic type so as to
maximise the number of thunks in the function itself that can be marked used-once.
We introduced a flag -fusagesp-moden to investigate several different choices:

-fusagesp-mode0 bindings are never generalised
-fusagesp-mode1 only exported bindings are generalised
-fusagesp-mode2 only toplevel bindings are generalised
-fusagesp-mode3 all bindings are generalised
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Based on the results obtained in Section 6.8, the default is -fusagesp-mode1. An-
other way of addressing this problem is by usage specialisation.

6.3.3 Usage specialisation

Usage specialisation is an attempt to address the problem that while generalisation
of a function reduces poisoning at call sites, it greatly reduces the benefit of usage
analysis in the function itself, since thunks annotated with a generalised variable
must be marked updatable !. If we generate several cloned versions of a generalised
function, each specialised to a specific vector of usage arguments, then a call site may
choose the appropriate one and not be poisoned, and yet code may be generated for
the (clone of the) function knowing that certain thunks will be used at most once and
can be marked non-updatable •. Thus we hope to achieve the best of both worlds.

Usage specialisation is performed immediately after the final usage inference, just
before interface files are generated and the Core program is tidied and translated
into STG. The algorithm used is due entirely to Simon Peyton Jones, although the
implementation is the author’s.

6.3.3.1 Call sites

The algorithm is centred around a notion of call sites. During usage inference, when-
ever a usage-polymorphic term variable vorig is instantiated with a fresh vector ul

of usage variables by rule (�2-Var), the occurrence of the variable is replaced by
a fresh, uniquely-named clone vsite of the variable and the triple (vorig , vsite , ul) is
recorded (recall that in the projection-based implementation, usage applications are
not recorded in the term itself, so without this step this information would be lost).
The variable binding for vorig is left untouched. For example,

let g : (∀u1, u2 . Intu1 → (Intu2 → . . . )u1)ω = . . .
in . . . g 6 7 . . . g (1 + 2) . . .

where the first occurrence of g is instantiated at 〈u3 1〉 and the second at 〈ω 1〉, is
transformed to

let g : (∀u1, u2 . Intu1 → (Intu2 → . . . )u1)ω = . . .
in . . . g′ 6 7 . . . g′′ (1 + 2) . . .

, {(g, g′, 〈u3 1〉), (g, g′′, 〈ω 1〉)}

Once inference is complete and the final usage substitution decided upon, this substi-
tution is applied to the set of triples as well as to the term; for example, if S(u3) = 1
then the set above becomes {(g, g′, 〈1 1〉), (g, g′′, 〈ω 1〉)}.

6.3.3.2 Using specialisations

We now have access to the actual usage arguments passed to each instance of every
variable used in the program. If usage specialisation is disabled, we may restore the
program to coherence by using the set of call-site triples to substitute the correct
original variable for each site variable. However, if for a particular vsite the corre-
sponding vorig has one or more usage specialisations available, it may be the case
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that one of them matches the particular vector of usage arguments used at this site
(if more than one specialisation match, the best one – that with the most 1s – is
chosen). If there is a match, the occurrence of vsite is replaced by an occurrence of
the appropriate vspec. In our example, if there is a version g1 of g specialised to the
arguments 〈1 1〉, the call-site set contains enough information to compute the substi-
tution S = {g′ �→ g1, g

′′ �→ g}, which makes use of the specialisation for the first call
site and the original version for the second.

6.3.3.3 Interesting variables

Not all usage parameters of a usage-generalised function are worth specialising. Only
those that will lead to the generation of a used-once thunk are worth the effort of
duplicating the code for the function body. We therefore partition the parameters of
a usage type scheme s into interesting and boring variables.

• Interesting usage variables are those that appear as the topmost annotation
on the type of a let-binding, or as the topmost annotation of the type of an
argument that will likely be let-bound by the A-normal form conversion, or as
an interesting argument to another function.

• Boring usage variables are those that are not interesting.

It is only the interesting portion of the vector of usage arguments supplied at a call
site that we record in the call-site triple and consider further, and it is only the inter-
esting usage variables that we consider generating specialisations for. Furthermore,
we only consider specialising them to 1 – for the purposes of execution, and hence
of choosing a specialisation to use, the constant usage ω and a variable usage u are
equivalent, requiring in both cases an updatable thunk to be generated.

6.3.3.4 Generating specialisations

It remains to generate the specialisations we have used above. Certainly some in-
vestigation is needed into how many and which specialisations should be generated,
and for which variables. For the present, we generate one specialisation for every
top-level variable that stands to benefit from it, i.e., that has at least one interest-
ing usage argument. The specialisation we generate is simply the one that sets all
(interesting) usage arguments to 1. We have not tried the alternative of generat-
ing all possible specialisations, which would appear likely to lead to an exponential
code explosion; several people have suggested to us that in practice the number of
specialisations would be manageable.

A specialisation is generated as follows. First we create a fresh clone of the
original variable, and give it a new name: f at 1, 1, u3, 1 (i.e., with arguments 1, 2,
and 4 forced to 1 and argument 3 left free) would be named $U11u1f. Then we
make a copy of its right-hand side, making the appropriate substitutions throughout
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for the arguments we are instantiating:

f : (∀u1, u2, u3, u4 . τ)ω

f = Λu1, u2, u3, u4 . e

$U11u1f : (∀u3 . τ [1/u1
, 1/u2

, 1/u4
])ω

$U11u1f = Λu3 . e[1/u1
, 1/u2

, 1/u4
]

Thunks in f annotated by u1, u2, or u4 will be given the annotation 1 in $U11u1f.
A subtlety is that specialisations may cascade; that is, call sites in the right-hand

side of a specialisation may themselves be able to be specialised due to being passed
arguments that have been instantiated: if f invokes g at 〈u1 u2〉 then $U11u1f should
invoke $U11g instead. We take special care when generating a clone body to select
specialisations for call sites based on an extended substitution incorporating the ac-
tual known values of the usage arguments.

A further subtlety is that if a specialisation is required for a function in a mutually-
recursive binding group, we must in fact specialise the entire group as one, replacing
recursive calls in the specialised RHSs with references to the specialised variables.
Since the resulting group is mutually recursive within itself but not with the original
group, the two groups may be added to the list of binds (Section 6.4.1) in either
order.

6.3.3.5 Discussion and related work

To guide future investigations into which specialisations should be generated, we
generate trace output noting when a specialisation is generated, when a specialisa-
tion is used, and when a specialisation could usefully have been used had it been
available.

It is important that specialisations are only generated and used at the very end
of the optimisation cycle, when there is no chance of the terms being manipulated in
any way that might invalidate the results of the analysis. It is not allowed even to run
the usage analysis again afterwards, as the right-hand sides of specialised versions
differ from those of the original functions only in usage annotations, and these are
thrown away when re-inferring – the result would be two identical functions with
identical, fully-general usage type schemes, not the desired behaviour at all!

Interestingly, Goldberg, presenting the earliest usage analysis of which we are
aware (Section 1.3.5) advocates specialisation, generating a different set of super-
combinators for each application of the function. He believes that

[a]lthough this creates a potential for code explosion, it is probably a
reasonable thing to do, for two reasons. First, the sharing properties typ-
ically do not vary much, and thus code explosion is not a problem. Sec-
ond, in some sense it is unreasonable to penalize a programmer’s use of
a function in one place because of a use of the same function somewhere
else. [Gol87, p. 424]

Gustavsson also proposes usage specialisation (“annotation polyvariance”) as future
work, in [Gus98, §11.1] [Gus99, §8.2.5], as do Turner et al.[TWM95a, §4.5]. We
however believe we are the first to actually implement it.
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6.4 Inference for Core constructs

There are a number of constructs in Core that go beyond the FL0 language we have
considered in previous chapters. In implementing the analysis in GHC we have had
to consider how to perform inference for all of these. Many of these constructs are
likely to occur in other compiler intermediate languages, and so we describe our
solutions in this section. Those that seem to us more GHC-specific are deferred to
Section 6.5.

6.4.1 Binds

A Core let expression has the form let bind in e, where bind is either a nonrecur-
sive binding for a single variable, or a set of mutually recursive bindings for one or
more variables. Binds are broken into strongly-connected components and nested in
dependency order on translation into Core from Haskell, and the simplifier acts to
ensure these properties hold throughout compilation. The inference rule for nonre-
cursive let is trivially derived from that for recursive letrec.

6.4.2 Modules

A module is simply a list of bindings b1, b2, . . . , bn which are interpreted as nested
in sequence: let b1 in let b2 in . . . let bn in [·]. A program is made up of one or
more modules, and the bindings from each are concatenated; the hole [·] of the
resulting expression is filled by the variable main from module Main, yielding a
Core expression to be evaluated. Apart from allowing the code of a program to be
divided into separate files, the only significance of modules is that each has a separate
namespace, and provision is made in the source language for hiding and exposing
names from other modules.

6.4.3 Unsaturated constructors

In Core it is not necessarily the case that constructor applications are saturated,
although the action of the simplifier ensures that they often are. For the present we
do not attempt to yield sensible results for unsaturated constructor applications, but
instead return the safe but uninformative default projection of the returned source
type, with ω-annotations everywhere (Figure 6.2).

6.4.4 Beyond A-normal form

Expressions in Core are not restricted to A-normal form (this was relaxed in GHC
version 4.01), and so constructor and application arguments need not be atomic.
When Core is converted into STG prior to code generation, nontrivial arguments are
bound by fresh let expressions, thus converting to A-normal form (in fact, arguments
that are demanded strictly are bound by case expressions for efficiency).

Usage inference is not affected by this: in rules (�2-App) and (�2-Con), the
recursive inference of the arguments can as well be of e as of a. But it is critical
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that the fresh let bindings are given accurate usage annotations, since very often it
is these anonymous arguments (the thunk for (g x) in f (g x), for example) that are
used just once. Thus when inferring an application of either a constructor or some
other function, we annotate each nontrivial argument with a new Note, a TopUsage,
containing the topmost usage of that argument. This is inspected by the A-normal
form converter and used to give the fresh let binder a usage projection type of �κ,
where κ is the annotation from the TopUsage note. In fact STG requires the function
(if not a constructor) to be atomic also, but in this case inspection of the type rule for
(�2-App) reveals that the function is always used at most once. By building this into
the converter (i.e., always using the projection �1 for such binders) we avoid having
to place a TopUsage note on nontrivial functions.

6.4.5 Case expressions

For case expressions, Core adds an optional DEFAULT pattern which matches if
none of the other patterns match, and binds the result of evaluating the scrutinee to
a variable that may be used in any branch of the case:

case e0 of x0 : t0 〈
DEFAULT→ e′ ;
Ki xij → ei ;
. . . → . . .;
〉

To accommodate this, we treat DEFAULT as a nullary constructor, and occurrences
of x0 in the alternatives are counted as additional uses of the scrutinee. If x0 is used
more than once, including its implicit use for deconstruction by the case statement
itself, then the topmost annotation of the type of x0 (and the scrutinee) must be ω.
We omit the full rule.

A special case of this form gives Core a form of strict let, known as polymorphic
case. This is a case expression of the form

case e0 of x0 : t0 〈
DEFAULT→ e;

〉

where e0 can have any type at all, even a polymorphic or function type. The oper-
ational meaning is to evaluate e0 to WHNF and then bind the result to x0 in e. The
inference rule for this construct is

σ0 = �t0�freshσ

Γ �2 M0 � e0 : σ′
0; C1; V1

C ′
1 = C1 ∧ {σ′

0 � σ0}
Γ, x0 : σ0 �2 M � e : σ; C2; V2

C3 = {V2(x0) + 1 > 1⇒ |σ0| = ω}
(�2-PolyCase)

Γ �2 case M0 of x0 : t0 〈DEFAULT→M〉
� case e0 of x0 : σ0 〈DEFAULT→ e〉 : σ;

C ′
1 ∧ C2 ∧ C3; V1 � (V2 \ {x0})
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where even though no deconstruction is performed on the scrutinee, we must still
count one demand for the case statement itself, since at runtime it makes the demand
that reduces it to WHNF. Note that here and in the general form of case above, the
type σ0 on the scrutinee binder refers only to the usage made of x0 itself by the case
body; this will usually differ from the usage made of scrutinee, as recorded by rule
(�2-Case) in Figure 5.6.

Two further Core features make case statements interesting: primitive types and
existential constructors. A case performed at a primitive type rather than an alge-
braic one has literals as patterns; these are treated as nullary constructors and the
primitive type constructor is treated as a nullary algebraic data type constructor. Ex-
istential constructors are treated in Section 6.5.4.

6.4.6 Type coercions

To support Haskell newtype declarations,3 and the bottom-propagation transform
that floats upwards bottoming expressions such as (error “fail”) that always yield ⊥,
e.g.,

case error “fail” of alts =⇒ error “fail”

in a type-safe way, the Core language includes coercions. The expression

Note (Coerce tto tfrom) M

represents the term M , but treated as if it had type tto, even though it actually
has type tfrom. Such coercions break the flow of usage information for the present
type-based analysis, since they direct the compiler to ignore the existing type for an
expression and use instead an arbitrarily unrelated one. We must therefore handle
them carefully to avoid introducing unsoundness.

The overall (topmost) usage annotation can safely be propagated over the co-
ercion, since it is not dependent on the structure of the term’s type. The outside
type (tto) is annotated everywhere with ω: the positive annotations since we have no
reason to restrict the term’s use, and the negative annotations since we do not know
how the term will use its arguments. The inside type (tfrom) is pessimised, since we
do not know how it will be used, but the negative annotations need not be touched
(and indeed should not be, since this would break the property that result types are
only ever constrained via the subtype relation, see footnote 13 on page 99). Thus
the inference rule is

Γ �2 M � e : τfrom
κ; C1; V

C2 = Pess+(τfrom)
τto = �tto�ωτ (�2-Coerce)

Γ �2 Note (Coerce tto tfrom) M
� Note (Coerce τto

κ τfrom
κ) e : τto

κ;
C1 ∧ C2; V

3Coercions are in fact used only for recursive newtypes; the mechanism for non-recursive newtypes

is described in Section 6.5.1.
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6.4.7 Unboxed data types

In GHC, primitive data types are unboxed; this means that they can reside in registers
and on the stack, but cannot reside in the heap because they have no tag to identify
them. This means that an unboxed value can never be represented by a thunk; its
value is always computed strictly. In consequence, usage annotations on such types
are irrelevant: an unboxed value is never entered, so whether it is used at most once
or not is irrelevant. We build this into our implementation of the subtyping relation,
by simply ceasing comparison whenever a type of the form (T . . . )κ, T unboxed, is
encountered.

In fact the system in GHC is a little more complicated. A type is unlifted if it
does not have ⊥ as an element. All unboxed types are unlifted; but some types are
boxed but unlifted, for example byte arrays, which must live in the heap for space
reasons but are otherwise just values. For these too we ignore usage annotations. On
the other hand, unboxed pairs are themselves unlifted but may contain lifted objects
inside. Ignoring these usage annotations would be therefore be unsound. We define
a deeply unlifted type to be one which does not contain an object of lifted type, i.e.,
that cannot be or contain a pointer to a thunk.

In one specific case we must cheat. A stable pointer gives an integer name to
a Haskell pointer. The name is itself unboxed, and may be freely passed in and
out of the Haskell system, yet it can be dereferenced to obtain the original Haskell
pointer. Since we cannot control the usage of an unboxed integer (indeed, it may be
duplicated outside the Haskell system entirely), the only way to preserve soundness
is to define stable pointer creation in such a way as to ensure that all objects having
stable pointers are annotated ω. This allows us to treat stable pointers as deeply
unlifted.

6.4.8 Primops

The world may rest on the back of four elephants, standing on an infinite chain of
turtles each supporting the one above,4 but compilers cannot rely on such infinite
regress. The fundamental operations of arithmetic and logic, as well as interaction
with other programs and the outside world, are implemented by primitive operations,
or primops, the irreducible building blocks from which programs are built by means
of functional glue. These primops mediate between the typed functional intermedi-
ate language on one side and the untyped imperative implementation language on
the other; each has a type describing its low-level imperative behaviour in high-level
functional terms. Since the type system now includes usage annotations, we must
extend these to include correct usage projection types for each operation.

For the vast majority of primops, usage annotation is trivial. Primops are al-
4“A well-known scientist (some say it was Bertrand Russell) once gave a public lecture on astron-

omy. He described how the earth orbits around the sun and how the sun, in turn, orbits around the
center of a vast collection of stars called our galaxy. At the end of the lecture, a little old lady at the
back of the room got up and said: ‘What you have told us is rubbish. The world is really a flat plate
supported on the back of a giant tortoise.’ The scientist gave a superior smile before replying, ‘What is
the tortoise standing on?’ ‘You’re very clever young man, very clever,’ said the old lady, ‘but it’s turtles
all the way down!’ ” [Haw88, p. 1].
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ways saturated (partial applications are handled by providing eta-expanded wrapper
functions), and usually take unlifted arguments and yield unlifted results. Thus their
types are of the form

+# : (Int#✗ → (Int#✗ → Int#✗ )1)ω

where ✗ stands for a don’t-care annotation (see Section 6.4.7), in practice replaced
by 1 in negative positions and ω in positive ones.

The exceptions are primops that handle lifted arguments: the mutable array op-
erations, mutable variables, MVars, exception raising, catching, blocking, and un-
blocking, weak and stable pointers and stable names, fork and kill, seq# and par#,
touch#, and dataToTag# and tagToEnum#. For these, sensible annotations must
be provided: if the primop may demand the argument more than once, or store it
such that it may later be retrieved, then the argument must be annotated ω or us-
age polymorphism used to ensure the usage propagates appropriately; if it enters its
argument at most once, or not at all (e.g., sameMutVar#), then it should be anno-
tated 1.

The statefulness of some primops can present traps for the unwary: one of our
earlier implementations gave writeMutVar# the incorrect type

writeMutVar# : (∀u . (MutVar# s a)u → (au → ((State# s)1 → (State# s)ω)1)1)ω

in an attempt to unify the usage of the object with the usage of the MutVar#. This
type is unsound, because all occurrences of u are in negative positions, meaning that
it is equivalent to

writeMutVar# : ((MutVar# s a)1 → (a1 → ((State# s)1 → (State# s)ω)1)1)ω

which has as one of its instances the clearly incorrect type

writeMutVar# : ((MutVar# s a)ω → (a1 → ((State# s)1 → (State# s)ω)1)1)ω

(this would allow an object of type a1, permitted to be used at most once, to be
written into a MutVar# permitted to be used many times). This error was only
detected during testing. The correct type has ω-annotations on both MutVar# and a,
pessimistically ensuring soundness.

6.4.9 Variance analysis

The variances (co- and/or contra-) of the usage and type arguments of each data
type constructor are computed when processing the declaration, and stored with it
for later use by the subtyping algorithm. The algorithm computes the fixpoint of the
equations in Figure 5.8 by iteration, as described in Section 5.3.4.3. A few primitive
types have the variance of their arguments hardwired into the compiler.

6.4.10 Unnecessary constructor usage arguments

In Core, data type constructors are merely special identifiers, and do not have their
own production in the grammar. Constructor arguments, both types and terms, are
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supplied by normal function application. For the usage analysis, we add a vector
of usage arguments to these, representing both the topmost annotation κ and the
type constructor arguments κ. Thus the FL2 constructor instance Ku1

1 1 u1 Int (1 +
2) would be represented in Core by K1 〈u1 1 u1〉 Int (1 + 2). In fact, the final
implementation elides usage applications and abstractions from terms and types,
but they are still implicit in the inference design.

The full story is a little more complicated, however, since we want to minimise the
number of usage arguments to each constructor for efficiency reasons (to minimise
the number of usage variables introduced at each instantiation site, and to minimise
the size of printed terms). Firstly, the initial usage argument may be omitted if the
constructor has no other usage arguments; second, only the tycon usage arguments
that are relevant to this particular constructor need be supplied. Consider the data
type of lists:

data (List u1 α)u = Nil | Cons αu1 List u1 αu

There is no need to write Nil u u1 α : (List u1 α)u; simply Nil α : (List ω α)ω

is sufficient. The constructor is manifestly a value containing no arguments that
might not be values, thus its usage is irrelevant and may be assumed ω, and the u1

argument restricting the usage of elements of the list is also irrelevant because there
are no elements.

If usage variables were supplied for these arguments they would simply assume
whatever values were required by the context; we therefore let them take the most
general values, here ω and ω because both occur only positively. For any data type
declaration, the topmost annotation is required always to occur only positively, and
so is always ω if omitted; the remaining annotations may occur with any variance
and should be given appropriate values when omitted: ω if positive, 1 if negative,
either if nonvariant, and never omitted if bivariant.

Recall from Section 5.4.3 that only variable and ω annotations are permitted
anywhere in the σij of the data type declaration. Thus if a constructor has no usage
arguments other than the topmost, it follows that all relevant annotations are ω.
In this case, the constructor cannot contain any single-entry thunks, and so may
be freely duplicated; thus there is no need to restrict its usage and the topmost
annotation may be omitted also.

In fact the implementation so far makes the (false) assumption that all usage
arguments are positive, and thus assumes ω everywhere for irrelevant arguments.
This can cause the result types of case expressions to be excessively restrictive, as
the lub is taken of each branch; it is not unsound but can lead to untypeability of
programs involving operations such as primops lacking maximally-applicable types.
Removing this assumption would be straightforward.

6.4.11 Elaborating data type annotation schemes

Elaborating data type annotation schemes and computing the correct vector of us-
age arguments for each type and data constructor is not trivial in the presence of
mutually-recursive groups of declarations.

The algorithm proceeds as follows. For each argument of each constructor of
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each data type in each group, an annotation category is chosen. This is one of the
following, where u is the overall-usage annotation of the data type:

Category Operation on argument t

AnnMany �t�ωσ
AnnOver ∗ (�t�ωτ )u

AnnOver n (�t�freshτ )u, n fresh usage variables required
AnnFresh ∗ (�t�ωτ )u1 , u1 fresh
AnnFresh n �t�freshσ , n + 1 fresh usage variables required

That is, AnnMany places ω everywhere on the type of the constructor argument;
AnnOver uses the overall-usage annotation on top of the argument and optionally
annotates deeply inside it; and AnnFresh uses a fresh annotation on top of the argu-
ment and optionally annotates deeply inside it.

Occurrences of type constructors in the same recursive group are not annotated
with fresh usage variables, but with a recursively-supplied copy of the same vector
as that computed for the whole group. If they occur at the top of a constructor
argument they should be given the category AnnOver 0 so that the topmost usage of
the recursive instance is the same as the usage of the original.

The four annotation schemes we provided are as follows:

-fusagesp-dconmode1 Use AnnMany for all arguments.
Corresponds to (�-Data-Many).

-fusagesp-dconmode2 Use AnnOver ∗ for all arguments.
Corresponds to (�-Data-Equal), as used in [WPJ99].

-fusagesp-dconmode3 Use AnnOver 0 for directly (mutually) recursive arguments,
AnnMany for deeply-unlifted arguments, and otherwise AnnFresh n as appro-
priate. Corresponds roughly to (�-Data-All-Bad) (Section 5.4.2), but well-
defined.

-fusagesp-dconmode4 As -fusagesp-dconmode3, but if n is greater than a limit m
set by -fusagesp-dconmaxcountm, use AnnFresh ∗ instead of AnnFresh n.
With m = 0 corresponds to (�-Data-Full), and with other settings allows
some control over the number of annotations used. With m = 10 we refer to
this as (�-Data-All).

Control is essential: with -fusagesp-dconmode3, the dictionary data type for class
RealFloat is given 1780 usage arguments, and a data type in one of the libraries
(Edison’s Assoc.FiniteMap) was given 8941! Such large numbers of usage vari-
ables greatly slow down the inference, presumably without commensurate impact
on the effectiveness of the analysis. By using -fusagesp-dconmode4 with -fusagesp-
dconmaxcount10, the default settings, these are reduced to just 57 and 5 respec-
tively, with a consequent dramatic improvement in inference time.

Once the annotation category has been chosen for each constructor argument,
the number of usage arguments required for the whole constructor can be computed.
Each constructor then computes its initial and final variable indices in the vector for
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the whole group: if it is the first constructor of the first data type in the group, the
initial index is zero; if it is the first constructor of a data type other than the first,
the initial index is one greater than the final index of the final constructor of the
previous data type; otherwise the initial index is one greater than the final index of
the previous constructor. In all cases the final index is simply one less than the sum
of the initial index and the number of usage arguments for this constructor.

The final index of the final constructor of the final data type in the group is
then examined, and a vector of the appropriate length passed in recursively to the
constructors. The constructors each select out the appropriate subvector to use in
annotating their arguments, and elaboration is complete.

The recursion involved is a little tricky, but in a lazy language quite manageable.
Care must be taken not to examine the supplied usage arguments too early; it turned
out to be easiest to obtain the fresh variable counts required by the annotation cate-
gory in a separate counting pass, rather than attempting to perform just a single pass
over the arguments. This should not be too inefficient relative to the remainder of
the compiler.

6.4.12 Intermodule analysis

The Glasgow Haskell Compiler performs separate compilation of modules, using in-
terface files to convey type and pragma information from each module to those im-
porting from it. The pragmatic information includes information on strictness, arity,
specialisations, unfoldings, rules, and so on.

To support separate compilation in the usage analysis, little more is required
than to pessimise functions that are exported as described in Section 4.4.3 and to
add usage projection types to the pragmatic information attached to binders in in-
terface files. Care must be taken that all binders appearing in the interface file are
pessimised, not just those the user has declared as exported. Identifiers occurring
in unfoldings (function bodies, used to perform cross-module inlining) may be in-
lined and then the call context transformed arbitrarily during optimisation of the
importing module, potentially leading to usage different from that appearing in the
exporting module; similarly for identifiers appearing in the right-hand side of a rule.

On the other hand, pessimisation is to be avoided where possible, and so the
number of exported binders should be kept to a minimum. By default in Haskell, if
an export list is not declared explicitly all top-level binders are exported; we devi-
ated from this for module Main, exporting by default only the binding main. This
improved the performance of the analysis on a number of single-module benchmarks,
by not pessimising auxiliary functions that were never actually used by another mod-
ule. It is important to remember that to get the best performance from the usage
analysis, export lists should be regularly pruned to the minimum necessary.

6.5 Inference for GHC-specific constructs

A number of the constructs we dealt with are GHC-specific. The interested reader
may discover how we dealt with these below; others may skip to Section 6.6.
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6.5.1 Substitution and Type invariants

The data type of Types in Core is not a free algebra. Certain type applications (func-
tions and newtypes) have special forms when saturated, and the integrity of the
compiler depends upon these special forms being used when they are applicable.
It is therefore necessary to take extreme care when performing operations such as
substitution that may cause type applications to become saturated, as the shape of
the type may change: we must ensure the shape of the projection changes to match.
Consider the following two examples:

(α γ)[(→) β/α] = β → γ
�[�/α] = �ω → �ω

(α β)[ST σ/α] = State# σ → (# State# σ, β #)
�[�/α] = (T �)ω → (T ω ω (T �) �)ω

In the first example an application of the function type constructor (→) β becomes
saturated and turns into an arrow type β → γ, and in the second an application of
a nonrecursive newtype constructor becomes saturated and is expanded out.5 That
this is the desired behaviour is not immediately obvious!

The general rule is this (reverting to the notation of Figure 6.14): if the function
of an AppTy is substituted with a TyConApp, and the tycon of the TyConApp is FunTy-
Con, and there would now be two arguments, then it becomes a function type, FunTy.
If the tycon is a nonrecursive newtype type constructor and it would now become sat-
urated, then it becomes transparent and we must use its expanded form. In both
cases, the new, unknown usage annotations are assumed safely to be ω. Otherwise
we simply add the new argument to the list of arguments of the TyConApp.

6.5.2 Storing usage projection types

It is sufficient for the purposes of the analysis to store usage projections only of
the types of all identifiers; we do not store usage projections of other types, such
as those appearing in type applications. In GHC an identifier is represented by a
rather complicated record, into which we added an extra field of UsageInfo. This
comprises three parts: the usage signature, or usage scheme projected from the type
of the variable; the lambda usage, the usage annotation of the lambda binding this
variable, if this variable is bound by a lambda; and any available usage specialisations
for this variable.

It turns out to be much more convenient to record the usage of the lambda on the
variable it binds, rather than on the lambda. In many places the compiler takes apart
a function by collecting its value and type binders and returning these in a list along
with the remaining body; the original term can be reconstructed simply by inserting
appropriate value and type lambdas, since the binders all carry their own type or
kind as an annotation. By recording the lambda usage in the binder also, we preserve

5In fact the type becomes SourceTy (NType ST [σ, β]). We show instead the expansion of this into
a normal type, since usage projections look through SourceTys when determining the shape of a type.
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the ability to reconstruct a function from its body and a list of binders, without any
additional information. Whenever we want to inspect the topmost annotation of a
lambda, it is relatively simple to descend an extra node into the term to inspect the
appropriate info field of the lambda’s binder.

The list of specialisations of a variable (Section 6.3.3.4) is stored as part of the
usage info, as a list of pairs of usage argument vectors and corresponding specialised-
variable names, and this is written out to the interface file for use by importing mod-
ules; an occurrence in this list is sufficient to cause the signature of each mentioned
specialised variable to be exported in the interface file.

6.5.3 Rules

A novel feature of the Glasgow Haskell Compiler is rules [PJTH01]. These allow the
programmer to specify rewrites to be applied to the program by the simplifier. A rule
has the form

“rule name” (after phase p): ∀αβ . . . γxy . . . z . f e1 . . . en =⇒ e′

where α, β, . . . , γ are type variables, x, y, . . . , z are term variables, (f e1 . . . en)
is the LHS or rule head made up of the specialised identifier f and the template
arguments ei, and e′ is the RHS. If the simplifier is running in phase p′ > p and
encounters an application of f to at least n arguments, and the first n arguments
can be unified with the ei (given the type and term variables specified), then the
instance of the LHS is replaced by the corresponding instance of the RHS. Amongst
other things, this feature can be used to implement the foldr/build rule of Gill et al.
[GLPJ93, Gil96].

Earlier attempts at a usage analysis in which types carried usage information di-
rectly had to handle rules with some care, to ensure that usages matched sufficiently
often that rule matching was not adversely affected, and to ensure that usage typing
was preserved after a rule firing. The present implementation is not so ambitious; af-
ter simplification the result is a different program, and usage analysis of the program
before simplification provides no guarantees that usage information in the program
afterwards remains correct.

Since rules are merely guides to the simplifier, and do not themselves generate
code, it is not necessary to perform usage inference on the rules themselves. How-
ever, to guarantee typeability in the presence of separate compilation, we must allow
for occurrences that may be introduced by rules when computing variable occur-
rences. To this end, we consider all the rules within the scope of all the binds in scope
in the current module, and count the free variable occurrences in the right-hand side.
From this we subtract the occurrences on the left-hand side, and delete any occur-
rences of the parameter variables; this is then doubled (equivalent to multiplying
by ω) and added to any other occurrences in scope for the purposes of computing
whether or not to annotate a variable on top with ω.
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6.5.4 Existential constructors

An existential data constructor [OL96] has type arguments as well as value argu-
ments; these can simply be ignored when inferring the usage type of the constructor
arguments, since they are statically unknown and hence approximated by �.

6.6 Using the results of the analysis

The results of the usage analysis are used to guide the compiler in two ways: to tell
the code generator when to avoid generating code to update a thunk, and to tell the
simplifier (and other optimisation passes) when a lambda is applied at most once.

6.6.1 Update avoidance

Using the results for update avoidance is straightforward. The STG machine has
three kinds of closure: re-entrant, updatable, and single-entry. Re-entrant closures
are used for functions, which are already values and are never updated. The re-
maining two are for thunks: updatable thunks push an update frame when they are
entered and thereby update themselves when evaluated, whereas single-entry thunks
do not. We must simply mark all non-reentrant, used-1 thunks as single-entry, and
the runtime system will do the rest.

Achieving this is a matter of a few lines in CoreToStg, the module that translates
from A-normal-form-converted Core into STG code. When a closure is created, we
test if it should be marked re-entrant. If not, but the binder has a usage projection
type attached with topmost annotation 1, and the closure is not at the top level,
we mark it single-entry; otherwise, we mark it updatable. The RTS appears to have
some difficulty with single-entry CAFs (top-level thunks), and so we avoid generating
them. The cost of this omission should not be significant, as there can only be a small
finite number of CAFs in a program (unlike dynamically-allocated thunks, of which
an unbounded number may be created).

This pass depends on the modification already discussed (Section 6.4.4) to the A-
normal-form converter, ensuring that binders created in this process bear the correct
usage information.

6.6.2 Informing the simplifier

Santos’ thesis [San95] lists several optimisations that can benefit from usage infor-
mation. In almost all cases, the actual information that is required is the number
of times a particular lambda expression is applied; i.e., the usage annotation on the
lambda. As we have seen, the latter is stored in the binder as part of the lambda us-
age portion of the usage information. To enable this information to propagate to the
optimiser (primarily the simplifier), we provide a boolean function isOneShotLambda
that tests whether a binder is bound by a lambda that is used (applied) at most once.
This function is used by the optimiser in the following places:

Eta-expansion. When the simplifier is eta-expanding an expression, it takes care
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not to duplicate work: let z = e in λx . e′ and (λx . e′) e, which per-
form allocation, and case e of 〈K1 → λx . e1; K2 → λx . e2〉, which evalu-
ates e, are not normally expanded if e is non-trivial. However, if the lambda is
known to be one-shot, then in these cases the whole expression must be one-
shot, and even after eta-expansion e will be evaluated at most once. Thus in
this case the above are translated (assuming e has arity 1) to, respectively,
λy1 . λy2 . let z = e in (λ1x . e) y1 y2 and λy1 . (λ1x . e′) e y1 and
λy1 . λy2 . case e of 〈K1 → (λ1x . e1) y1 y2; K2(λ1x . e2) y1 y2. Subsequent
β-reduction will bring all the lambdas in these expressions to the front, making
their arity manifest; this makes for efficient STG code, and also enables further
optimisations.

Floating. The floating-in transformation floats bindings in through one-shot lamb-
das, but not through ordinary lambdas (or type lambdas, for reasons of the
interaction with floating out).

The floating-out transformation does not count one-shot lambdas or type lamb-
das as major levels for the purposes of selecting drop points for floating; instead
bindings float right past them without noticing their presence.

Inlining. Variable occurrences under a one-shot lambda do not count as occurrences
that are “inside a lambda and therefore dangerous to duplicate”. This causes
both ordinary conditional inlining (callSiteInline) and unconditional inlining
(preInlineUnconditionally) to inline more eagerly – in the latter case, a variable
that occurs just once and not “inside a lambda” is always inlined, even if the
occurrence is under a one-shot lambda.

However, our usage analysis is not the only source of one-shotness information.
A number of other sources exist:

Manifest functions. The occurrence analyser (which informs the inliner) knows
that in applications of manifest functions, such as (λx . λy . e) a1 a2, the
lambdas are one-shot.

Join points. When the simplifier builds a case join point, it sets all the lambdas of its
right-hand side to one-shot, since the join point will always be saturated, and
invoked at most once.

The build hack. The occurrence analyser also knows about four very special func-
tions, chiefly related to the foldr/build fusion machinery of Gill et al.[GLPJ93,
Gil96]. It knows that the sole argument of build is fully applied, just once, to
two arguments (and so both lambdas are one-shot), that the first argument
of augment is ditto, that the first argument of foldr is always fully applied to
two arguments (and so the argument’s second lambda is one-shot), and that
the sole argument of runSTRep is applied just once (and so the argument’s
lambda is one-shot).

The ST hack. A particularly gruesome hack is that any lambda whose binder is of
type State# σ for some σ is treated as one-shot. (This type indicates the use
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of state threads [LPJ95], which are used amongst other things to implement
I/O.) This is very often true; such lambdas often arise from monadic code of
the form

a &= λs .
e &= λs′ .
e′ . . .

which contains many one-shot lambdas.

The configuration option -fusagesp-oneshotmoden controls the source of infor-
mation for isOneShotLambda:

-fusagesp-oneshotmode0 always false
-fusagesp-oneshotmode1 uses the build and ST hacks only
-fusagesp-oneshotmode2 uses usage analysis result only
-fusagesp-oneshotmode3 true if the hack or the analysis say so

6.6.3 Configuration

To enable us to perform a range of measurements, and to tune the implementation
without having to rebuild the compiler each time, a number of compiler flags have
been introduced. We summarise them here.

-fusagesp
turns the analysis on and off.

-fusagespec
turns usage specialisation on and off (both gen-
eration of new specialisations and use of existing
ones), as described in Section 6.3.3.

-fusagesp-moden
selects the generalisation mode used by the analy-
sis, as described in Section 6.3.2. This allows the
L1 (monomorphic) analysis to be simulated, and
permits investigating the tradeoffs involved in gen-
eralising bindings.

-fusage-heavy
turns on several extra passes of the usage analysis,
as described in Section 6.3.1.

-fusagesp-dconmoden
-fusagesp-dconmaxcountn select the annotation scheme to use for data type

declarations, as described in Section 6.4.11.

-fusagesp-oneshotmoden
controls the function isOneShotLambda, as de-
scribed in Section 6.6.2.
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6.7 Measuring performance

We measured performance on the NoFib test suite, both by profiling the number
of used-once thunks identified and by recording run times, allocations, and other
standard metrics.

6.7.1 The NoFib test suite

NoFib6 is a suite of around seventy Haskell programs designed to be used for com-
piler benchmarking and testing. Most of them were written to solve real problems be-
fore being donated to the suite. The programs are mostly medium in size (between a
few hundred and two thousand lines) and computationally intensive, and have been
collected over a period of over ten years from a wide range of problem domains. The
exception is a number of tiny traditional benchmarks such as the n-queens problem
and Eratosthenes sieve, which are included in the “imaginary” category. Overall the
suite exercises the compiler fairly thoroughly, and presents an analysis with a range
of styles of code and levels of complexity, and is arguably a representative sample
from the somewhat intangible category of all reasonable programs.

For the purposes of collecting a wide range of results, the NoFib suite is too large
to use in its entirety. For most of our results, therefore, we use a subset of fifteen
programs. These were chosen as follows. We collected ticky-ticky profiles (see Sec-
tion 6.7.2 below) on a single run of each program in the NoFib suite, with the usage
analysis enabled and the default choice of settings. Then we ruled out any programs
that allocated less than 10 000 thunks during execution as being too trivial for con-
sideration. After ranking the remaining 57 programs in order of effectiveness of the
analysis, we selected every fifth, yielding a set of twelve. Finally, graphing effec-
tiveness against opportunity (Figure 6.4) suggested that our sampling had missed
some significant regions of the space, and so we chose three more by inspection of
this graph. The chosen programs are described briefly below, with authors where
known.

spectral/cryptarithm2. Solves the cryptarithm THIRTY+TWELVE+TWELVE+
TWELVE + TWELVE + TWELVE = NINETY. Andy Gill.

spectral/fft2. Performs a 512-point FFT of a ramp waveform in two different ways,
and then performs a Slow Cosine Transform of the same. Floating-point bench-
mark, Rex Page, Amoco Production Research.

imaginary/integrate. Extremely naïve numerical integration.

spectral/simple. Some kind of hydrodynamic simulation (weather?). Automati-
cally translated to Haskell from Id, with hand annotations. Kattamuri Ekanad-
ham and R. Paul. (additional selection)

spectral/multiplier. Simulation of a 16-to-32-bit binary multiplier circuit, run for
2000 clock cycles. John O’Donnell. (additional selection)

6NoFib [Par93] is available from http://cvs.haskell.org/cgi-bin/cvsweb.cgi/fptools/

nofib/ as part of the Glasgow fptools suite.
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spectral/clausify. Reduces (a = a = a) = (a = a = a) = (a = a = a) to clausal
form, seven times. Colin Runciman and David Wakeling.

real/cacheprof. Simulates execution and cache behaviour of Intel i386 processor.
Julian Seward.

real/bspt. BSP tree geometric modeller and renderer.

real/lift. Lambda-lifting program. Performs lambda-lifting, constant folding, and
full-laziness on a program with nine bindings. Simon L. Peyton Jones.

spectral/mandel. Renders the Mandelbrot set to a 150x150 pixel PPM file, with
limit 75 iterations. (additional selection)

real/reptile. Interactive program for designing and printing potato prints. Text ma-
nipulation. Sandra Foubister and Colin Runciman.

real/gamteb. Monte-Carlo particle simulation. Patricia Fasel, Los Alamos National
Laboratory.

spectral/puzzle. Brute-force solution to a puzzle (crossing the river?). Stephen El-
dridge.

imaginary/queens. 10-queens.

spectral/boyer. Rewriting-based theorem prover. Bob Boyer.

We examine two of these programs, queens and boyer, in more detail in Section 6.9.

6.7.2 Ticky-ticky profiling

The primary goal of the analysis is to identify those thunks that are demanded at
most once, so that they can be marked as single-entry rather than updatable. We
modified the runtime system so that it would collect statistics allowing us to deter-
mine whether the analysis succeeded in this goal.

The Glasgow Haskell Compiler has a feature, ticky-ticky profiling, that is intended
to collect statistics of this nature. When compiling with ticky-ticky profiling enabled,
the runtime system maintains a large set of counters, which are incremented appro-
priately whenever the program does something: enters a thunk, pushes an update
frame, squeezes an update frame, allocates memory for a 3-word constructor, per-
forms a garbage collection, returns an unboxed 5-tuple, performs a fast entry to a
function, etc..7

It was relatively straightforward to modify this system to collect the information
we desired.

Detecting single-entry violation. On entering a single-entry thunk, we blackhole
the thunk with a new kind of black hole, the SE_BLACKHOLE. If this black hole

7The name ticky-ticky alludes to the hypothetical sound of all the counters rapidly ticking over as
the program runs, not unlike a knitting machine or one of the early relay computers.
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is ever entered (i.e., the thunk is entered more than once), the RTS aborts with
the message “SE_BLACKHOLE at %p entered!”; for single-entry CAF thunks (not
generated; see Section 6.6.1) an SE_CAF_BLACKHOLE is used instead. To ensure
all such invalid enters are detected, eager blackholing is turned on.

Counting entries. Normally, when the RTS encounters an update frame on the stack
(or the code generator knows the present result is to be used to update a thunk)
it updates the relevant thunk with an indirection node pointing to the new
value. Subsequent accesses to the thunk will follow the indirection to reach
the desired value.

In order to count the number of thunks entered more than once, we alter this
process slightly. When we update a thunk with an indirection, we use not a
normal indirection but another kind of indirection, a permanent indirection.8

We then arrange that when a permanent indirection is entered, it mutates into
a normal indirection node before performing the indirection. Thus the second
demand on the thunk will go via a permanent indirection, while all subsequent
demands will go via a normal indirection.

Obtaining accurate results. We disable a number of RTS optimisations that would
otherwise invalidate our statistics: update-in-place, update squeezing, and in-
direction shorting (avoided by the use of permanent indirections). We also
observe the number of selector thunks that are shorted, and verify it is not
large.

Implementing and checking. Several new counters had to be added, and a number
of cross-checks between them were used to ensure the validity of the results
(they were certainly invalid at first!).

Given these modifications, it is possible from the counters to compute the num-
bers of single-entry and updatable thunks that are entered zero times, once, and
more than once (the number of single-entry thunks entered more than once is al-
ways zero, since a second entry causes the program to abort). From these it is then
possible to compute two interesting measures: the opportunity, the percentage of all
thunks that are actually entered at most once, and the effectiveness, the percentage
of all thunks entered at most once that are identified as single-entry by the analysis.

Of course, the latter statistic is only interesting if the analysis has not yielded
its benefit by causing the simplifier to omit allocation of used-once thunks entirely,
through the one-shot lambda mechanism. Comparisons show (Section 6.8.4) that
in fact this mechanism sadly has little effect on the number of allocations made by
the program. We therefore did not attempt to include this in the effectiveness score,
although we do consider the two effects qualitatively in discussing the results.

8These are intended to assist the cost-centre profiling mechanism in its bookkeeping; this unrelated
use of them means that ticky-ticky profiling and cost-centre profiling cannot now coexist. If desired, it
would be fairly simple to create a new form of indirection and use it instead of permanent indirections.
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6.7.3 Timings

The NoFib infrastructure, in conjunction with the compiler, shell, and runtime sys-
tem, is capable of collecting module and executable binary size, compilation time,
bytes allocated, bytes garbage-collected, garbage collection time, mutator time,9 and
overall run time. We used this system to discover the bottom-line impact of the usage
analysis in practice.

6.8 Results

We now measure the performance of the analysis, in terms both of its effectiveness
at identifying used-once thunks and of its impact on run time and allocation. We
compare its performance with that of our other analyses, and we investigate the
effect of varying the analysis parameters. We also consider the costs of the analysis.

6.8.1 Effectiveness of the analysis

The results of the analysis are summarised in Figure 6.3. The programs in the NoFib
suite run across the x-axis. For each program, the opportunity, i.e., the percentage of
all thunks that are in fact entered at most once, is marked with a triangle, and the
effectiveness, i.e., the percentage of these thunks that are marked single-entry by the
analysis, is marked with a diamond. The effectiveness points are joined by a line,
and the area under the line corresponds to the average effectiveness of the analysis
on all programs in the suite. The programs have been ranked in order of decreasing
effectiveness for clarity, and to allow percentiles to be obtained.10

The effectiveness of the analysis in terms of identifying used-once thunks is re-
markably variable, but clearly significant for a significant proportion of programs
tested. For half of the programs tested, the analysis identifies over 3% of the thunks
entered at most once; in over a third of the programs over 10% are identified, and
for around 15% of the programs over half are identified. Sadly, in more than a third
of the programs less than 1% of the thunks entered at most once are identified, even
though in all of these programs more than 45% of thunks are in fact single-entry.

It is striking that Figure 6.3 does not show a direct correlation between effec-
tiveness and opportunity. To investigate this further, we plotted effectiveness against
opportunity using the same data, in Figure 6.4. The x-axis (opportunity) starts at
40% because the minimum opportunity, for gcd, is 46.9%. The fifteen programs
chosen for more detailed analysis are circled.11

This graph shows that the analysis tends to do either well or poorly: most points
lie in a cluster of points within 3% of the x-axis, but a number of points are much
higher. The higher points appear to show a positive correlation between opportunity

9That is, time spent executing the user program, rather than initialising or garbage collecting.
10Figure 6.3: results measured for all successfully-compiled programs in NoFib. Parameters: gener-

alisation mode 1, usage specialisation on, annotation scheme 4, max 10, one-shot mode 3, normal (not
heavy), for both libraries and programs.

11Figure 6.4: parameters identical to Figure 6.3.
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Figure 6.3 Effectiveness of usage analysis.
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Line is percentage of thunks in fact entered at most once that were marked by the analysis. Triangles
are the percentage of all thunks that were actually entered at most once.
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Figure 6.4 Effectiveness versus opportunity.
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Each marker shows the percentage of the thunks in fact used at most once in the program that were
marked by the analysis, against the percentage of all thunks in fact used at most once. Circled markers
correspond to the fifteen programs in the chosen subset.

and effectiveness: for programs with an opportunity of 50% the analysis detects no
thunks, but as the opportunity rises the effectiveness rises more rapidly, to around
65% effectiveness at 100% opportunity.

There is one clear outlier, the program cichelli, for which the analysis detects
58% of the single-entry thunks, even though these are only 52% of the whole. This
program invokes map many times in its inner loop, and the results are discovered by
the inference to be used at most once. Thus the calls are specialised to $U1map, and
many updates are saved.

6.8.2 Comparing the analyses

In order to compare the effectiveness of the different analyses developed in this
thesis, we ran the same test six times for different configurations of the analysis
parameter settings:

All. The simple polymorphic usage analysis used above, with (�-Data-All) used to
annotate data types inside as well as on top (restricted to 10 usage arguments
per data constructor, Section 6.4.11).

Full. The simple polymorphic usage analysis used above, with (�-Data-Full) used
to annotate data types on top only.
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Figure 6.5 Comparing the effectiveness of different usage analyses.
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Equal. The simple polymorphic usage analysis used above, with (�-Data-Equal)
used to annotate data types with one usage annotation on all constructor ar-
guments (as in [WPJ99], but with simple polymorphism).

Mono. The monomorphic analysis of Chapter 3, with (�-Data-Equal) (exactly the
analysis of [WPJ99]).

None. No usage analysis at all.

Heavy. As for All, but with additional inference passes performed, to enhance the
accuracy of usage information available to the simplifier.

The results are depicted in Figure 6.5.12 Only the top 50% of programs are shown
(ranked by effectiveness of All). Heavy and None are indicated by lines (the latter
is everywhere zero, and so lies on the x-axis). The remaining four are indicated
by shaded areas stacked in front of each other: All (dark grey) at the rear, then Full
(mid grey), then Equal (light grey), and finally Mono (white) at the front. Triangular
markers indicate the opportunity for each program (taken from the All run).

It is clear that the monomorphic analysis does very poorly, obtaining significant
results for only a handful of programs. This is as we expected (Section 3.7.1). Even
the polymorphic analysis does poorly if (�-Data-Equal) is used for data types,
i.e., if all constructor arguments are given the same usage. Finer treatment of data
types is clearly required, and (�-Data-Full) (one annotation per constructor ar-
gument) is sufficient to yield most of the benefit. For a few programs, however,
this is not sufficient; annotating inside constructor arguments with (�-Data-All)
(here restricted to a maximum of ten usage annotations per constructor argument)
improves programs like fft2, integrate, and constraints. The common thread of
these programs seems to be their use of dictionaries, which are represented by data
types containing methods; a method selected from a dictionary will be assumed to
use its arguments many times unless the annotation scheme descends inside its type.
Finally, running the analysis multiple times during optimisation slightly reduces the
measured effectiveness of the analysis; this is probably due to usage information
being used aggressively by the simplifier to remove thunks entirely, and does not
indicate inferiority of this analysis.

6.8.3 Run time and allocation

Does the analysis make programs run faster? Any answer must be only provisional
at this stage, as much work remains to be done in exploiting the usage information
appropriately (Section 6.10.3). But we are certainly omitting pushing and popping
of update frames, and updating thunks, and the benefit of this should be signifi-
cant even if (as seems possible) the abundance of usage information is fooling the
simplifier into making bad choices.

The programs in NoFib all ran too fast to make realistic measurements of run
times directly. To address this, we modified the programs to either to enlarge their

12Figure 6.5: parameters as stated, for both libraries and programs. One-shot mode 3, annotation
scheme 2, or 4 max 0, or 4 max 10. Generalisation mode 1. Usage specialisation on.
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Figure 6.6 Effect of analysis on run time.
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problem size or to perform multiple repetitions of the problem (taking care to pre-
vent sharing of solutions between repetitions!). We then performed run time mea-
surements for the modified programs. For three programs (cacheprof, reptile, and
lift) we were unable straightforwardly to increase the problem size, and so results
from these program are omitted.

The run time results are shown in Figure 6.6 (and in Table 6.2). Times are plotted
for All (the default setting) and Heavy (multiple inference passes) relative to None,
the compiler without usage analysis turned on.13

For most programs, execution times improve, often by as much as 5% or more,
although the average is around 2%. The programs that get faster are not always
those with many updates being avoided (e.g., mandel), suggesting that other usage-
enabled optimisations are an important component. For some programs execution
times improve dramatically (fft2), but a few get worse. This is likely to be because
the compiler is making poor inlining decisions; tradeoffs applicable when little usage
information was available (such as “always inline through a used-once lambda”) may
not be appropriate in the new setting. This appears to be the problem with boyer
and simple. On the other hand, puzzle is merely affected by the inaccuracy of usage

13Figure 6.6: parameters apply to both libraries and programs. Other parameters: generalisation
mode 1, usage specialisation on, annotation scheme 4, max 10, one-shot mode 3.
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Figure 6.7 Allocations with and without the analysis.
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cated during an extended execution of the program, for the conditions: without usage analysis, with
usage analysis, with heavy usage analysis. No result was recorded for cacheprof.

information when only a single early inference pass is made; when multiple passes
are made it improves.

Allocations are a frequent and relatively expensive operation during evaluation,
and are also easily measured. Allocation is one statistic we might hope an accu-
rate usage analysis to reduce, since one-shot lambdas are transparent to the floating
transformations that attempt to minimise it. We measured allocations for the same
extended runs, and show the results in Figure 6.7 (no measurement was collected
for cacheprof in the Heavy case).14

Allocations seem not to be much affected by usage information. However, they
are decreased in fft2, corresponding with its dramatic decrease in run time; but they
are increased in cryptarithm2 and simple. Since the former’s run time improved
slightly but a substantial number of updates were avoided, this suggests that extra al-
locations performed by misguided optimisation are masking run time improvements
due to update avoidance here.

A selection of the effectiveness, run time, and allocation results for the chosen
subset are also presented in Tables 6.1, 6.2, and 6.3 respectively (using programs

14Figure 6.7: parameters apply to both libraries and programs. Other parameters: generalisation
mode 1, usage specialisation on, annotation scheme 4, max 10, one-shot mode 3.



200 CHAPTER 6. IMPLEMENTATION

Table 6.1 Opportunity and effectiveness of usage analysis (2002-03-18i).
With All usage analysis
Program NumThks Num0/1 Opp NumSE Eff
spectral/boyer 138540109 114834097 (82.89%) 0 −
real/bspt 89006457 82063914 (92.20%) 4594989 (5.60%)
real/cacheprof 9188081 8226503 (89.53%) 385267 (4.68%)
spectral/clausify 92958053 90126008 (96.95%) 12831600 (14.24%)
spectral/cryptarithm2 92398443 89107603 (96.44%) 82983000 (93.13%)
spectral/fft2 72106558 70504863 (97.78%) 50397180 (71.48%)
real/gamteb 25270648 21381089 (84.61%) 952 (0.00%)
imaginary/integrate 33000051 31350037 (95.00%) 13650000 (43.54%)
real/lift 15627 13523 (86.54%) 361 (2.67%)
spectral/mandel 68665469 39396809 (57.37%) 493497 (1.25%)
spectral/multiplier 160187046 96737807 (60.39%) 21920860 (22.66%)
spectral/puzzle 88742980 71691273 (80.79%) 420 (0.00%)
imaginary/queens 9276092 9276075 (100.00%) 0 −
real/reptile 262944 254322 (96.72%) 3728 (1.47%)
spectral/simple 46398434 35407618 (76.31%) 15000598 (42.37%)

with extended run times). The opportunity and effectiveness percentages of Ta-
ble 6.1 are stay remarkably stable between the All and Heavy analyses, and (for
the opportunity) for no usage analysis as well. This is demonstrated in Tables 6.4
and 6.5.

Table 6.4, opportunity, does show some significant variations in the number
of thunks allocated under different analyses, but it appears that “NumThks” and
“Num0/1” vary together. This variation in allocation may be observed in graphical
form in Figure 6.7, albeit in total bytes, rather than number of thunks. This mat-
ters because allocations include constructors as well as thunks, and because not all
thunks are of the same size. However, the variation in number of thunks allocated
with the three different analyses (not shown) shows very similar percentage varia-
tions in all cases to those of Table 6.3/Figure 6.7 except for cryptarithm2, where
the number of thunks allocated for both All and Heavy is up 30.83%, against the
number of bytes allocated which is up 15.82%.

The remaining tables are deferred to the end of the chapter: binary size (Ta-
ble 6.6), mutator time, i.e., time spent executing code rather than garbage collecting
or in the operating system (Table 6.7), total garbage collected (Table 6.8), total size
of modules in program (Table 6.9), total compilation time for all modules in program
(Table 6.10), and opportunity and effectiveness for no analysis and the heavy usage
analysis (Tables 6.11 and 6.12 respectively).

6.8.4 Examining the effect of one-shot lambda information

In order to better understand the consequences of usage-enabled optimisations (as
opposed to simply update avoidance), we built a version of the libraries using only
the build and ST hacks for one-shot lambda information. We then built the fifteen
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Table 6.2 Run time (2002-03-18h,i,j).
Run time (sec)
Program None All Heavy
spectral/boyer 11.49 11.45 (−0.35%) 11.65 (+1.39%)
real/bspt 10.22 10.03 (−1.86%) 10.1 (−1.17%)
real/cacheprof 1.43 1.44 (+0.70%) −
spectral/clausify 16.41 16.22 (−1.16%) 16.15 (−1.58%)
spectral/cryptarithm2 11.01 10.46 (−5.00%) 10.43 (−5.27%)
spectral/fft2 16.45 14.71 (−10.58%) 12.06 (−26.69%)
real/gamteb 9.22 9.13 (−0.98%) 9.21 (−0.11%)
imaginary/integrate 6.98 6.48 (−7.16%) 6.44 (−7.74%)
real/lift 0 0 − 0 −
spectral/mandel 15.36 14.15 (−7.88%) 14.15 (−7.88%)
spectral/multiplier 15.18 14.85 (−2.17%) 14.85 (−2.17%)
spectral/puzzle 16.69 17.08 (+2.34%) 16.68 (−0.06%)
imaginary/queens 14.32 14.32 (+0.00%) 14.25 (−0.49%)
real/reptile 0.02 0.01 − 0.01 −
spectral/simple 13.8 14.76 (+6.96%) 14.81 (+7.32%)

Geometric mean: (−2.19%) (−4.07%)

Table 6.3 Bytes allocated (2002-03-18h,i,j).
Allocations (KB)
Program None All Heavy
spectral/boyer 2658317 2658317 (+0.00%) 2658317 (+0.00%)
real/bspt 2079925 2077276 (−0.13%) 2077351 (−0.12%)
real/cacheprof 218012 216772 (−0.57%) −
spectral/clausify 2505190 2505190 (+0.00%) 2505190 (+0.00%)
spectral/cryptarithm2 2540560 2942422 (+15.82%) 2942422 (+15.82%)
spectral/fft2 2229055 1903687 (−14.60%) 1507358 (−32.38%)
real/gamteb 1379477 1379489 (+0.00%) 1379490 (+0.00%)
imaginary/integrate 1309752 1307377 (−0.18%) 1304438 (−0.41%)
real/lift 390 389 (−0.26%) 390 (+0.00%)
spectral/mandel 2211441 2210654 (−0.04%) 2210654 (−0.04%)
spectral/multiplier 3599062 3599621 (+0.02%) 3601478 (+0.07%)
spectral/puzzle 2716233 2716233 (+0.00%) 2716233 (+0.00%)
imaginary/queens 1714215 1714215 (+0.00%) 1714215 (+0.00%)
real/reptile 7028 7027 (−0.01%) 7039 (+0.16%)
spectral/simple 1513394 1659026 (+9.62%) 1724393 (+13.94%)

Geometric mean: (+0.46%) (−0.83%)
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Table 6.4 Stability of opportunity percentage over analyses.
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Table 6.5 Stability of effectiveness percentage over usage analyses.
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chosen programs with all four possible settings: no one-shot lambda information
(None), hack one-shot lambda information (Hack), analysis one-shot lambda infor-
mation (Anal), and the logical OR of hack and analysis one-shot lambda information
(Hack+Anal).

The consequences for the allocation performed by the program is graphed in
Figure 6.8. Allocations were measured for the programs (without extending their
run time) for the four settings, and also for the compiler without usage analysis at
all. Values plotted are the change in allocations relative to this version. Points for
the same program are joined by lines as indicated in the legend.15

Observe that with only the hack turned on, allocations are almost identical to
those with the usage analysis turned off entirely; it is not clear why there is any
difference at all, as one-shot lambda information should be the only way in which
usage information affects the compiler. However, it is clear that the analysis has
very little effect on allocations, either with the hack off or with it on, and certainly
cannot be substituted for the hack. This is unfortunate. fft2 displays an interesting
interaction, where combining the two together yields significant benefit.

We expected the one-shot lambda information to have less direct effect on the
effectiveness measure (Figure 6.9). Each cluster corresponds to a program, and
contains bars for the four settings. Measurements were performed using All.16 Once
again, this graph clearly shows that the hack has a far greater effect than the analysis
on the transformation of the program.

6.8.5 Examining the effect of generalisation strategy

We also wanted to study the effects of altering how much generalisation was allowed,
and whether specialisation was performed. The libraries were built with generalisa-
tion of exported binders only (as for All) and usage specialisation on, and then the
chosen programs were measured for the four generalisation settings – no generali-
sation (as for Mono), exported binders only (as for All), top-level binders only, and
all binders – and two specialisation settings – on in the left half, and off (both use of
existing and generation of new) in the right.

The consequences of this on effectiveness for the chosen programs is shown in
Figure 6.10. Each line corresponds to a program in the chosen subset (note that
results were not collected for bspt with usage specialisation on). An enlargement of
the bottom 10% region is shown below the main graph.17

Although varying the generalisation parameters for the programs alone had little
effect on most programs (library functions were already generalised, and so pro-
grams making heavy use of these still reaped the benefits without themselves being

15Figure 6.8: only the programs were compiled with varying settings; the libraries were compiled
with the hack only. Other parameters: annotation scheme 4, max 10, normal (not heavy), no usage
specialisation, for both libraries and programs.

16Figure 6.9: only the programs were compiled with varying settings; the libraries were compiled
with the hack only. Other parameters: annotation scheme 4, max 10, normal (not heavy), no usage
specialisation, for both libraries and programs.

17Figure 6.10: parameters: annotation scheme 4, max 10, one-shot mode 3, normal (not heavy),
for both libraries and programs. Libraries compiled with generalisation mode 1, usage specialisation
on.
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Figure 6.8 Varying the analysis parameters: one-shot lambdas: allocations.

One-shot lambdas: hack versus analysis (2002-03-17a vs 16b,18d-f)
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Each line corresponds to a program in the chosen subset. Points are number of bytes allocated by the
program expressed as a percentage deviation from the no-usage-analysis case (with hack), against the
conditions: no one-shot lambda detection, hacks (build and ST) only, usage analysis only, both hacks
and analysis.

generalised), some trends can still be seen. Clearly, generalising more binders re-
duces the effectiveness of the analysis, just as predicted in Section 4.7.3, although
generalising just exported binders is better than generalising none at all (see bspt).
Turning usage specialisation off, as in the right half of the graph, also reduces the
effectiveness, sometimes dramatically (see multiplier), because specialisation is a
way of ameliorating the problems of generalisation (thunks in a specialised version
can be annotated 1 rather than u). For clausify effectiveness is only reduced when
non-exported toplevel binders are generalised; clearly this program has a toplevel
binder that is generalisable, but in fact used at only a single, used-once, type.

Again, allocations are also of interest, and these graphs appear in Figure 6.11.
Allocations are measured relative to the programs and libraries built with usage anal-
ysis switched off. The central region is enlarged below the main graph.18

Little effect of generalisation on allocations can be discerned, other than for
cryptarithm2 where clearly many specialised versions are being used of functions
that are top-level but not exported.

18Figure 6.11: parameters: annotation scheme 4, max 10, one-shot mode 3, normal (not heavy),
for both libraries and programs. Libraries compiled with generalisation mode 1, usage specialisation
on.
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Figure 6.9 Varying the analysis parameters: one-shot lambdas: effectiveness.

One-shot lambdas: hack versus analysis (2002-03-16b,18d-f)
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Each cluster corresponds to a program in the chosen subset. Bars are the effectiveness of the analysis,
for the conditions: no one-shot lambda detection, hacks (build and ST) only, usage analysis only, both
hacks and analysis.

6.8.6 Costs of analysis

The usage analysis comes with a cost: compile times are increased, and specialisation
and usage-enabled inlining means code sizes may increase also. In fact the code size
increase is not significant with the present approach: on average the total size of
object files for programs in our chosen set increased by 1.9%, rising to 4.6% with
heavy usage analysis. Binaries (i.e., including the linked libraries) increased by 0.4%
and 0.8% respectively (see Tables 6.9 and 6.6).

Compile times, however, do increase significantly. The average total compile time
for a program (possibly of multiple modules) in our chosen set increased by 70%,
or 135% with heavy usage analysis. This is a significant cost, and is especially con-
cerning because of its variation: simple took 271% longer to compile, while many
programs took between just 20% and 30% longer (see Table 6.10). We attribute
this cost to the inefficient implementation of the constraint solver in the present im-
plementation (see Section 6.10.3), and believe it could be substantially improved
without great difficulty.
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Figure 6.10 Varying the analysis parameters:
generalisation and specialisation: effectiveness.

Generalisation and specialisation (2002-03-13a,14a-g)
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Enlarged view of 0%–10% effectiveness section:
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Each line corresponds to a program in the chosen subset. Points are the effectiveness of the analysis,
against the conditions: generalisation mode 0 (no generalisation), 1 (exported binders only), 2 (all
top-level binders), 3 (all binders), and usage specialisation (on or off). Order in legend corresponds to
order in column “Exp+spec”. bspt failed to compile without [sic] usage specialisation.
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Figure 6.11 Varying the analysis parameters:
generalisation and specialisation: allocations.

Allocations: Generalisation and specialisation (2002-03-13a,14a-g)
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Enlarged view of −1%–+4% allocations section:

Allocations: Generalisation and specialisation (2002-03-13a,14a-g)
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Each line corresponds to a program in the chosen subset. Points are the effectiveness of the analysis,
against the conditions: generalisation mode 0 (no generalisation), 1 (exported binders only), 2 (all
top-level binders), 3 (all binders), and usage specialisation (on or off). Order in legend corresponds to
order in column “Exp+spec”. bspt failed to compile without [sic] usage specialisation.
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Figure 6.12 Main loop of queens after optimisation.

oneToTen : List Int = enumFromToInt 1 10
one : Int = 1

go : List (List Int)→ List (List Int)
= λqss0 : List (List Int) .

case qss0 of
Cons qs qss→ let rest : List (List Int) = go qss

in
letrec go1 : List Int→ List (List Int)

= λys0 : List Int .
case ys0 of

Cons y ys→ case safe y one qs of
True → let qs1 : List Int

= Cons y qs
qss1 : List (List Int)

= go1 ys
in
Cons qs1 qss1

False→ go ys
Nil → rest

in
go1 oneToTen

Nil → Nil

6.9 Case studies

We now examine two programs for which the analysis was unable to discover a single
used-at-most-once thunk. We find some clues toward designing a better analysis, and
reasons why in some cases the analysis cannot be improved.

6.9.1 Queens: a case study

The code for the main loop of queens, after optimisation, is shown in Figure 6.12.
The outer function, go, takes a list of board states and returns a list of board states
with an additional queen added in the first file. The inner function, go1, is called
for each of the input board states. It takes a list of queen positions to try in the new
file, and computes a list of the legal board states containing the additional queen;
it prepends this to the result of recursively calling go for the remaining input board
states. The main loop contains two dynamically-allocated thunks, rest and qss1 (the
remaining bindings are to values).

The main function simply counts the number of board states; thus it uses each
outermost cons-cell just once. One might therefore expect that the two thunks are
entered at most once. Indeed, this is the case, as can be verified by manually marking
these thunks single-entry, but the usage analysis is unable to discover it. Why is this?
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The function go1 is applied eleven times during a run, once for each node in the
list of queens. Since this is more than once, any free variables of the function must
be annotated ω, by rule (�2-Abs). This rule is clearly justified in general, as we saw
in Section 3.3.4. But rest is free in go1, yet is used just once. How?

The reason lies in the fact that rest occurs in only the case where ys0 is Nil.
Because go1 is a simple primitive recursion over a list, and all lists have at most one
Nil constructor, rest is in fact used just once. (The ω annotation of qss1 is an indirect
consequence of the annotation of rest.)

A way of recognising this case and dealing with it appropriately is not imme-
diately obvious. Consider these two points. Firstly, generalising this to other data
structures is not straightforward: a list has just one nil node, but a binary tree may
have many leaves. Secondly, the primitive recursion is beneath a case and a construc-
tor; in general, how can one recognise primitive recursion?

Certainly the code examined here is derived from an unfolding of foldr, and the
occurrence of this function surely indicates the use of primitive recursion. However,
the function no longer occurs at this point. We might consider preventing its un-
folding (and thus preventing a large number of important optimisations, not least
deforestation), or somehow leaving an indicator of its former presence (and ensur-
ing the simplifier preserves the primitive-recursive semantics of the expression so
indicated), but neither approach seems realistic.

6.9.2 Boyer: another case study

Another program in the NoFib test suite is boyer, a theorem prover written by Bob
Boyer. It attempts to prove a theorem by repeatedly applying a set of rewrite rules.
If the term can be unified with the left hand side of a rule, it is rewritten by applying
the unifying substitution to the right hand side. If no rule matches, rewriting has
completed and we may test if the result is the constant True or the constant False.

Of a total of 1 385 509 thunks allocated during the test run of boyer, 440 000
are never entered, 707 735 are entered exactly once, and only 237 152 are entered
more than once. Despite this, our analysis marks none of them single-entry. We show
below that in fact no analysis could conceivably mark more than 234 580 of these,
leaving 913 155 thunks that must be marked updatable even though they may not
in fact be used more than once. Given our belief that lazy languages are important
and useful in practice, it should not really be such a surprise that some thunks are
necessarily lazy.

Terms in boyer are represented by the following data structure.

data Term = Var Id | Fun Id (List Term) (List Lemma)

A Lemma is simply a pair of terms, representing a rewrite rule; the rewrite rules ap-
plying to each function are attached to occurrences of that function for convenience.
Unification of a term with the left-hand side of a rule proceeds in the usual way.
A variable in the rule matches anything in the term, and a function in the rule is
matched by a function in the term only if the functions are the same and also all the
arguments are unifiable.
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A crucial point is that the analysis in fact annotates bindings, not the runtime enti-
ties we call thunks. Top-level bindings indeed correspond one-to-one with thunks at
runtime, since they are allocated statically, but local bindings in fact allocate thunks
dynamically whenever they are executed.

The opportunity we have measured so far is the proportion of runtime thunks
that are entered at most once, but an inference may only annotate a binding • if all
thunks allocated by it are entered at most once. There is no contention for top-level
thunks, and indeed the analysis discovers rather many single-entry top-level thunks.
But these are not very interesting, since each corresponds to at worst a single update,
and there are never more than a hundred or so. For the much more significant local,
dynamically-allocated thunks, however, the distinction is very important.

In the core code of boyer there are eight thunk bindings. Four of these contain
intermediate results returned by the unifier when unifying two list of terms: for the
head and for the tail of the list, they store the (success flag, unifying substitution)
pair and the unifying substitution.

Considering the action of the unifier, we can see that these four thunks will very
often be used just once or not at all. If the heads of the lists do not match, then
we will enter the first thunk once to determine this, and the remaining three thunks
not at all. If the heads match but the tails do not, then we will enter the first twice,
the second possibly many times as the substitution is looked up repeatedly, but the
third only once. It is only when the lists match completely that the first and third
thunks are entered more than once. Since there are many rules but few matches,
most instances of these thunks will be entered zero or once.

But these thunks must be marked with • or ! statically. Thus for, say, the first
thunk considered above, any usage analysis must be able to assert that all instances
of this thunk will be entered at most once during execution in order to annotate it
single-entry. If even one instance is entered more than once, then a usage analysis
must mark it updatable. Sadly, in cases like the present one, sometimes the instances
are entered at most once, and other times they are entered many times. Without
altering the code in some way to separate the allocations of the instances that will
be entered at most once from those of instances that will be entered many times, no
analysis can possibly do better.

Worse, not even altering the code can solve the problem in general. Here the
usage of the thunks of interest depends on whether the input to the function matches
the current rule or not. That is, the usage of the thunk depends upon its value! This
certainly cannot be discovered in advance by any analysis. By manually altering the
behaviour of the compiler for specific thunks, we were able to confirm that in the
test run, all four of these thunks had in fact to be marked updatable.

Consequently, this example has shown that the counting of dynamic thunks in,
e.g., Figure 6.4 can be misleading when considering the effectiveness of the analysis.
Statistics on the number of code thunks that are always entered at most once should
be collected, to allow the detection of such cases.

The remaining four thunks were also investigated. Two contain the computed
boolean success flag returned by the unifier as part of the (success flag, unifying
substitution) pair, one contains the argument list of a function after applying a sub-
stitution, and one contains the argument list of a function after applying a rewrite.
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Of these, the last is actually used more than once during execution (as multiple rules
are matched against the function), but the other three are invariably used at most
once, despite the analysis being unable to discover this. Respectively, they are en-
tered 9880, 217 460, and 7240 times, thus getting these annotations correct would
save 17% of the updates performed during a run.

The first two thunks are each used in the same context by the unifier, as success
flags. The flag is placed inside an intermediate-result thunk along with the substitu-
tion, and we have seen that this thunk may be used more than once. By the sharing
condition of Section 5.3.2, this means that its contents are considered to be used
more than once, and thus the success flag thunk is annotated !. The analysis is un-
able to realise that since the first access to the intermediate-result thunk is to obtain
the success flag and the second is to obtain the substitution, there is no multiple use
of the arguments. We address this issue speculatively in the appendix, Section C.4.4.

The remaining thunk is allocated to hold the result of recursively invoking the
substitution function on the arguments of a Fun. It is marked ! because the result
of substitution is sometimes used twice: specifically, when substitution returns the
input term unchanged, the term has been scrutinised once and is then returned to
be used by the caller, and so must be annotated !. But the input term can only be
returned unchanged when it is a Var (and not in scope of the substitution), and in
this case there is no recursion and the thunk is not allocated! When the thunk is
allocated, the input term is a Fun, and it is never returned unchanged to the caller;
the scrutinisation is its only use. To correctly annotate this thunk, the analysis would
have to take account of the fact that multiple use occurs only for Vars, and that
this thunk occurs in a Fun branch. Presumably this would require usage types to
include partial information on the possible values, and a mapping from these to the
annotations to use in each case. Such a system would be complicated, and is beyond
the scope of this thesis.

6.10 Conclusion

In this chapter we have demonstrated that the simple-polymorphic usage analysis
we have designed can indeed be implemented in a production compiler for a full-
scale language. After several false starts we have found a practical way of doing
this, using usage projection types rather than embedding the analysis types directly
into the type language of the compiler. We have demonstrated that the analysis has
moderate benefit in practice. We also list a number of items of easy future work,
areas in which the implementation could be improved.

6.10.1 The implementation

Throughout the progress of this thesis we have found implementation experience to
be critical in guiding the development of the theory. Implementation has revealed
the areas in which previous analyses are deficient; it has inspired possible solutions;
it has identified errors in algorithms; it has forced the treatment of a full range of
language constructs; and it has provided solid evidence of the success of the final
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analysis.
A number of features of the compiler intermediate language and issues of im-

plementation had not been addressed earlier in the design. Of necessity we ad-
dressed these in the implementation, and our solutions have been described. Some
of these are of general import, such as issues relating to module structure, the pre-
cise treatment of data types, constructors, and case, and unboxed types and primitive
operations, while some were more specific to the compiler we used, such as rules,
existential constructors, and where usage projections were recorded.

Two extensions were required to obtain acceptable results. It is necessary to
restrict generalisation to exported binders only, because over-generalisation causes
too many thunks to be annotated u, requiring the flag !, rather than 1 (allowing •).
And usage specialisation allows generalised functions such as map and ++ to yield
good results when used in a 1-annotated context. The details of the specialisation
implementation in particular have been described.

6.10.2 Results obtained

In order to measure the performance of our analysis we used a substantial test suite,
NoFib, containing around seventy moderately-sized Haskell programs. These pro-
vided a balanced and substantial body of code, most of it written to solve real prob-
lems, enabling a realistic assessment of the analysis. We measured both the success
of our analysis at detecting used-once thunks (the immediate aim), and the impact
on run time and allocations (an indirect but desirable consequence). We also exam-
ined the cost of the analysis, in terms of code size and compilation time.

The Glasgow Haskell Compiler was a hard target: it aggressively performs a
wide range of transformations, in particular strictness analysis, unboxing, and in-
lining, which compete with usage analysis in reducing the costs of lazy evaluation.
Nonetheless, we obtained significant benefit from the usage analysis despite this
competition.19

The results suggest that the analysis is moderately effective, but surprisingly vari-
able. For a few programs it does extremely well, identifying over half of all single-
entry thunks in 15% of programs. But for many programs it does extremely poorly,
with a median of just 3% of all single-entry thunks identified. This wide variability
has not been successfully explained; it does not seem to be for lack of opportunity,
since in all but one program tested more than half of all thunks were entered at most
once. Some possible explanations are suggested by the case studies of queens and
boyer, programs on which the analysis does poorly. In particular, a special property
of primitive recursion on lists is not exploited by our (general) analysis, and zero-
usage is not tracked. However, the study of boyer indicated that some used-once
thunks are in principle unidentifiable by any analysis; these are inherently lazy, with
the number of uses being determined at runtime by the data they hold. This sug-
gests that more accurate measurements of the opportunity might be performed that
exclude such thunks.

19Furthermore, the programs in the NoFib test suite are also a hard target: the compiler has been
repeatedly tuned to perform well on these programs.
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Measurements of run time show improvements of between two and four percent
average, with over 26% recorded for fft2. Allocations are less affected, and some-
times worsen, although we conjecture that this is due to weaknesses in the way the
simplifier makes use of the additional usage information it is provided with by the
analysis.

Direct measurements of the effect of usage information on the simplifier showed
that in most cases it had little impact, although perhaps using different metrics (such
as run time) and more accurate usage information (the heavy analysis rather than
the standard one) might give better results. The strategy of restricting generalisation
to exported binders only (and certainly not allowing it for local bindings) is very
important; this is evident but not especially clear from the measurements, which
investigated varying this parameter for the compiled program only while leaving it
constant for the standard libraries. Specialisation, similarly, is important for some
programs, and occasionally yields a huge win (as with cichelli).

Varying the implementation parameters to simulate the several analyses of this
thesis reassuringly confirms our earlier results, that the monomorphic analysis is
quite inadequate, and that finer treatment of data structures is required than given
by (�-Data-Equal) of [WPJ99].

6.10.3 Easy future work

There are a number of improvements and additions to be made to the implementa-
tion that would be relatively straightforward, but that we simply did not have time
to implement. For the benefit of future workers, we list them here.

Improving the constraint solver. It was originally my intention to use the almost-
linear-time constraint solver described in Section 3.5.4. At the time of initially
coding the prototype, however, no Haskell implementation of union-find was
readily to hand, and the implementation of such a stateful algorithm did not
appeal; instead we omitted the optimisation for equality, treating it as two
inequality constraints, and used an O(log n) tree-based finite map implementa-
tion instead of O(1) array lookup. These two factors mean that the constraint
solver is much slower than it needs to be; optimising this would lead to very
significant improvements in compilation time.

Accurately measuring the static opportunity. In Section 6.9.2 we discovered that
the opportunity measurement can be misleading. The proportion of (static)
thunks in the program for which all instances are entered at most once should
be measured, rather than the proportion of (dynamic) thunk instances, so as
not to penalise the analysis for programs which involve necessary laziness.

Specialisation generation. The naïve generation of specialisations (always a single
specialisation, with all arguments 1) should be replaced by a better algorithm.

Update-frame check elision. Gustavsson [Gus98] is able to avoid certain update
marker checks by means of an interval analysis (Section 2.6); we believe it
should be possible for us to avoid some update marker checks by examining
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the usage annotations on values: a one-shot lambda, for example, will always
find its argument on the stack, never an update frame.

Improving the simplifier. We have not modified the simplifier at all; we have merely
informed it of more one-shot lambdas. Now that more usage information is
available, we should reconsider the heuristics used by the simplifier to decide,
e.g., when to performing floating transformations. Choices made when few
lambdas were one-shot may no longer be valid when many are. Additionally,
there are other optimisations, such as inlining of used-once thunks, that are
usage-specific and should be added (the simplifier does perform some inlin-
ing here, but directed by a syntactic analysis combined with one-shot lambda
information, rather than by the inferred usage information).

Deferring the final pass. The final pass of the inference should be run after con-
version to A-normal form, at the point where the choice of actually-exported
identifiers has been made. At present we pessimise only user-exported iden-
tifiers, which is over-optimistic in the presence of cross-module inlining and
subsequent optimisation. This is the cause of bspt and cacheprof sometimes
failing to compile during tests.

Unnecessary constructor arguments. Section 6.4.10 describes a false assumption
currently made about the variance of constructor arguments, which leads to
unnecessarily-pessimistic types for some functions. Variance of constructor us-
age arguments should be taken into account by this optimisation.

We expect that a number of these modifications will yield significant improvements
in the performance of the analysis.
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Figure 6.13 Core terms.

data Expr b -- "b" for the type of binders,
= Var Id
| Lit Literal
| App (Expr b) (Arg b)
| Lam b (Expr b)
| Let (Bind b) (Expr b)
| Case (Expr b) b [Alt b] -- Binder gets bound to value of scrutinee

-- DEFAULT case must be *first*,
-- if it occurs at all

| Note Note (Expr b)
| Type Type -- This should only show up at the top

-- level of an Arg

type Arg b = Expr b -- Can be a Type

type Alt b = (AltCon, [b], Expr b) -- (DEFAULT, [], rhs) is the
-- default alternative

data AltCon = DataAlt DataCon
| LitAlt Literal
| DEFAULT

deriving (Eq, Ord)

data Bind b = NonRec b (Expr b)
| Rec [(b, (Expr b))]

data Note
= SCC CostCentre

| Coerce
Type -- The to-type: type of whole coerce expression
Type -- The from-type: type of enclosed expression

| InlineCall -- Instructs simplifier to inline
-- the enclosed call

| InlineMe -- Instructs simplifer to treat the enclosed expr
-- as very small, and inline it at its call sites

And added for the usage analysis:

| TopUsage -- Records topmost usage annotation of this sub-
Usage -- expr for communicating to the A-nf converter

(from GHC version 5.03.20020220)
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Figure 6.14 Core types.

type SuperKind = Type
type Kind = Type

data Type
= TyVarTy TyVar

| AppTy
Type -- Function is *not* a TyConApp
Type

| TyConApp -- Application of a TyCon
TyCon -- *Invariant* saturated appliations of FunTyCon

-- and synonyms have their own constructors,
-- below.

[Type] -- Might not be saturated.

| FunTy -- Special case of TyConApp:
Type -- TyConApp FunTyCon [t1,t2]
Type

| ForAllTy -- A polymorphic type
TyVar
Type

| SourceTy -- A high level source type
SourceType -- ...can be expanded to a representation type...

| NoteTy -- A type with a note attached
TyNote
Type -- The expanded version

data TyNote
= FTVNote TyVarSet -- The free type variables of the noted expr

| SynNote Type -- Used for type synonyms
-- The Type is always a TyConApp, and
-- is the un-expanded form.
-- The type to which the note is attached
-- is the expanded form.

data SourceType
= ClassP Class [Type] -- Class predicate
| IParam (IPName Name) Type -- Implicit parameter
| NType TyCon [Type] -- A *saturated*, *non-recursive*

-- newtype application
-- [See notes at top about newtypes]

(from GHC version 5.03.20020220)
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Table 6.6 Binary size (2002-03-18h,i,j).
Binary size (KB)
Program None All Heavy
spectral/boyer 243 243 (+0.00%) 251 (+3.29%)
real/bspt 399 400 (+0.25%) 401 (+0.50%)
real/cacheprof 558 559 (+0.18%) −
spectral/clausify 227 227 (+0.00%) 227 (+0.00%)
spectral/cryptarithm2 242 245 (+1.24%) 245 (+1.24%)
spectral/fft2 358 359 (+0.28%) 360 (+0.56%)
real/gamteb 428 430 (+0.47%) 430 (+0.47%)
imaginary/integrate 327 329 (+0.61%) 329 (+0.61%)
real/lift 276 278 (+0.72%) 278 (+0.72%)
spectral/mandel 396 398 (+0.51%) 399 (+0.76%)
spectral/multiplier 232 233 (+0.43%) 233 (+0.43%)
spectral/puzzle 237 236 (−0.42%) 236 (−0.42%)
imaginary/queens 210 210 (+0.00%) 210 (+0.00%)
real/reptile 425 426 (+0.24%) 430 (+1.18%)
spectral/simple 515 521 (+1.17%) 526 (+2.14%)

Geometric mean: (+0.38%) (+0.82%)

Table 6.7 Mutator time (2002-03-18h,i,j).
Mutator time (sec)
Program None All Heavy
spectral/boyer 11.09 11.09 (+0.00%) 11.31 (+1.98%)
real/bspt 9.16 8.96 (−2.18%) 9 (−1.75%)
real/cacheprof 1.11 1.13 (+1.80%) −
spectral/clausify 16.34 16.12 (−1.35%) 16.09 (−1.53%)
spectral/cryptarithm2 10.86 10.38 (−4.42%) 10.35 (−4.70%)
spectral/fft2 14.44 12.69 (−12.12%) 10.02 (−30.61%)
real/gamteb 7.27 7.22 (−0.69%) 7.2 (−0.96%)
imaginary/integrate 4.74 4.44 (−6.33%) 4.55 (−4.01%)
real/lift 0 0 − 0 −
spectral/mandel 15.3 14.08 (−7.97%) 14.06 (−8.10%)
spectral/multiplier 14.92 14.65 (−1.81%) 14.68 (−1.61%)
spectral/puzzle 15.87 16.34 (+2.96%) 15.88 (+0.06%)
imaginary/queens 14.28 14.29 (+0.07%) 14.17 (−0.77%)
real/reptile 0.02 0 − 0.01 −
spectral/simple 10.52 10.96 (+4.18%) 10.82 (+2.85%)

Geometric mean: (−2.24%) (−4.54%)
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Table 6.8 Garbage collected (2002-03-18h,i,j).
Garbage collected (KB)
Program None All Heavy
spectral/boyer 15533 15533 (+0.00%) 15905 (+2.39%)
real/bspt 30589 30929 (+1.11%) 30639 (+0.16%)
real/cacheprof 18289 17346 (−5.16%) −
spectral/clausify 1744 1742 (−0.11%) 1742 (−0.11%)
spectral/cryptarithm2 1610 1270 (−21.12%) 1270 (−21.12%)
spectral/fft2 97871 96941 (−0.95%) 96411 (−1.49%)
real/gamteb 106632 106552 (−0.08%) 106553 (−0.07%)
imaginary/integrate 61058 54789 (−10.27%) 54848 (−10.17%)
real/lift 5 5 (+0.00%) 5 (+0.00%)
spectral/mandel 1093 1110 (+1.56%) 1110 (+1.56%)
spectral/multiplier 11602 11674 (+0.62%) 11923 (+2.77%)
spectral/puzzle 35878 35878 (+0.00%) 35878 (+0.00%)
imaginary/queens 97 97 (+0.00%) 97 (+0.00%)
real/reptile 24 24 (+0.00%) 24 (+0.00%)
spectral/simple 158766 166165 (+4.66%) 172795 (+8.84%)

Geometric mean: (−2.19%) (−1.48%)

Table 6.9 Total size of modules (2002-03-18h,i,j).
Total size of modules (KB)
Program None All Heavy
spectral/boyer 34 34 (+0.00%) 41 (+20.59%)
real/bspt 148 150 (+1.35%) 150 (+1.35%)
real/cacheprof 255 256 (+0.39%) −
spectral/clausify 14 14 (+0.00%) 15 (+7.14%)
spectral/cryptarithm2 18 20 (+11.11%) 20 (+11.11%)
spectral/fft2 19 19 (+0.00%) 19 (+0.00%)
real/gamteb 49 50 (+2.04%) 51 (+4.08%)
imaginary/integrate 6 6 (+0.00%) 6 (+0.00%)
real/lift 56 58 (+3.57%) 58 (+3.57%)
spectral/mandel 12 13 (+8.33%) 13 (+8.33%)
spectral/multiplier 19 19 (+0.00%) 19 (+0.00%)
spectral/puzzle 23 23 (+0.00%) 23 (+0.00%)
imaginary/queens 1 1 (+0.00%) 1 (+0.00%)
real/reptile 140 140 (+0.00%) 145 (+3.57%)
spectral/simple 144 148 (+2.78%) 153 (+6.25%)

Geometric mean: (+1.92%) (+4.57%)
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Table 6.10 Total compilation time (2002-03-18h,i,j).
Program compile time (KB)
Program None All Heavy
spectral/boyer 3.9 9.4 (+141.03%) 19.5 (+400.00%)
real/bspt 30.48 68.01 (+123.13%) 127.06 (+316.86%)
real/cacheprof 33.18 88.25 (+165.97%) −
spectral/clausify 2.7 3.43 (+27.04%) 4.39 (+62.59%)
spectral/cryptarithm2 4.12 5.8 (+40.78%) 7.94 (+92.72%)
spectral/fft2 5.46 7.82 (+43.22%) 9.03 (+65.38%)
real/gamteb 17.04 25.39 (+49.00%) 27.8 (+63.15%)
imaginary/integrate 1.61 2.13 (+32.30%) 2.43 (+50.93%)
real/lift 10.52 29.47 (+180.13%) 53.05 (+404.28%)
spectral/mandel 4.05 5.58 (+37.78%) 6.55 (+61.73%)
spectral/multiplier 2.98 3.64 (+22.15%) 5.03 (+68.79%)
spectral/puzzle 3.83 4.99 (+30.29%) 6.77 (+76.76%)
imaginary/queens 1.07 1.31 (+22.43%) 1.46 (+36.45%)
real/reptile 24.66 34.58 (+40.23%) 48.59 (+97.04%)
spectral/simple 18.05 66.96 (+270.97%) 160.39 (+788.59%)

Geometric mean: (+69.85%) (+134.78%)

Table 6.11 Opportunity and effectiveness without usage analysis (2002-03-18h).
Without usage analysis
Program NumThks Num0/1 Opp NumSE Eff
spectral/boyer 138540109 114834097 (82.89%) 0 −
real/bspt 89006457 82059522 (92.20%) 0 −
real/cacheprof 9139983 8178409 (89.48%) 0 −
spectral/clausify 92958053 90126008 (96.95%) 0 −
spectral/cryptarithm2 70625043 67334203 (95.34%) 0 −
spectral/fft2 88838722 87241123 (98.20%) 0 −
real/gamteb 25270212 21380554 (84.61%) 0 −
imaginary/integrate 33150051 31500037 (95.02%) 0 −
real/lift 15627 13523 (86.54%) 0 −
spectral/mandel 68660344 39391684 (57.37%) 0 −
spectral/multiplier 160137603 96688364 (60.38%) 0 −
spectral/puzzle 88743820 71692113 (80.79%) 0 −
imaginary/queens 9276092 9276075 (100.00%) 0 −
real/reptile 262913 254291 (96.72%) 0 −
spectral/simple 39832540 28847121 (72.42%) 0 −
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Table 6.12 Opportunity and effectiveness of heavy usage analysis (2002-03-18j).
With heavy usage analysis
Program NumThks Num0/1 Opp NumSE Eff
spectral/boyer 138540134 114834285 (82.89%) 0 −
real/bspt 89009295 82056539 (92.19%) 4595063 (5.60%)
real/cacheprof 0 0 − 0 −
spectral/clausify 92958053 90126008 (96.95%) 12831600 (14.24%)
spectral/cryptarithm2 92398443 89107603 (96.44%) 82983000 (93.13%)
spectral/fft2 55345733 53727652 (97.08%) 33603580 (62.54%)
real/gamteb 25270616 21381040 (84.61%) 813 (0.00%)
imaginary/integrate 32850051 31200037 (94.98%) 13500000 (43.27%)
real/lift 15556 13452 (86.47%) 291 (2.16%)
spectral/mandel 68665469 39396809 (57.37%) 493510 (1.25%)
spectral/multiplier 160267112 96897933 (60.46%) 21920860 (22.62%)
spectral/puzzle 88742620 71690913 (80.79%) 60 (0.00%)
imaginary/queens 9276092 9276075 (100.00%) 0 −
real/reptile 263382 254684 (96.70%) 3898 (1.53%)
spectral/simple 47769166 36780388 (77.00%) 15000599 (40.78%)
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Chapter 7.

Ω Conclusion and

Future Work

In the preceding chapters we have motivated and developed our simple polymorphic
usage analysis, measured its effectiveness, and considered one possible future exten-
sion. We now summarise the argument of the thesis, make some observations on the
development of the analysis and implementation, enumerate several future research
directions, and conclude.

7.1 The problem

Implementations of lazy functional languages must spend much time allocating, eval-
uating, and updating thunks, the delayed and shared computations that give these
languages their name. These activities are expensive, both in time and in heap allo-
cation. Therefore, an analysis that identifies where such activities are unnecessary
would enable lazy functional programs to run faster and use less heap space. This
is the essential observation with which we began our research. Specifically, if one
knows that a thunk will never be used more than once, it need not be updated once
evaluated, and in certain circumstances the allocation can be avoided entirely by
simply inlining the computation where it is used. Our measurements have confirmed
that there is significant potential for such an analysis.

223
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7.2 The solution

In this thesis, we have designed a sound, practical, type-based usage analysis that
achieves acceptable results on a range of programs. The analysis handles all the
features of real functional languages, including type polymorphism and general al-
gebraic data types. We have designed a novel form of polymorphism, simple polymor-
phism, and sought to understand its power. To justify the analysis we have written
an obviously-correct operational semantics and proven soundness with respect to
it. Finally, we have implemented the analysis in a production compiler, and made
comprehensive measurements of its performance in this environment, and we have
examined cases where it performs poorly and explained the reasons why. One inter-
esting direction has been explored speculatively.

The analysis was developed incrementally. First, subsumption was added to an
existing monomorphic analysis in order to address the problem of poisoning. Im-
plemention results suggested that polymorphism was required, but we believed the
obvious constrained polymorphism to be too expensive. Therefore, secondly, we de-
veloped simple polymorphism, adding it to the well-typing rules and designing a
sound inference algorithm for it. Thirdly, we added in two key features of real func-
tional languages, type polymorphism and general algebraic data types. Type poly-
morphism was relatively easily added, but its incorporation into the semantics and
proofs underlying our analysis involved some subtlety. Algebraic data types opened
up a wide design space, which we were able to codify and explore by means of an-
notation schemes. These abstracted the selection of a point in this design space from
the workings of the well-typing rules, inference (and implementation) and sound-
ness proofs.

Simple polymorphism is a new point on the power/complexity curve for type sys-
tems, used in this thesis for usage analysis but certainly applicable more widely. We
have given (trivial) type rules and (non-trivial) inference rules for simple polymor-
phism, including a novel approximating closure algorithm used when generalising a
term. Practical experience shows that it works fairly well. Theoretically, we have
shown soundness of the well-typing rules and of the inference, and proven a com-
plexity result. We have given some intuition for the behaviour of the algorithm and
its choice of generalised type, and suggested directions for understanding it more
formally both directly and as a restriction of constrained polymorphism, but we have
not given simple polymorphism a truly formal foundation.

The operational semantics encodes our notion of usage. It is presented in such a
way as to clearly distinguish the outputs of a usage analysis (update flags) from the
intermediate values used in computation (usage annotations): other presentations,
such as [TWM95a], have confused the two, giving for example an operational se-
mantics that depends on types despite intending a type-erasure implementation. For
the purposes of proof, we also give a version of the semantics which preserves types
while retaining exactly the behaviour of a type-erasure semantics; this is significant
because a naïve typed semantics would lose sharing in the presence of polymor-
phism.

Implementing the analysis has been central to our entire programme. The devel-
opment has been a process of refinement, with theory enabling implementation but
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implementation guiding, extending and verifying theory. While the implementation
has been a huge effort, without it we would not have seen the need for simple poly-
morphism, for the finer treatment of algebraic data types, for usage specialisation, or
for handling the constructs considered in Sections 6.4 and 6.5. Without implemen-
tation, the original Once Upon a Type analysis seemed sufficient, and indeed better
than work that had gone before [TWM95a, §1.1]. With implementation, all these
issues and more were forced upon us.

7.3 The development

We based our work on that of Turner, Mossin, and Wadler [TWM95a, TWM95b],
but soon observed the limitations of their system: the problem of poisoning, where
a function applied to an argument used many times would force its arguments at
other call sites also to be treated as used many times even if the function in fact used
them only once, and the restriction to a toy language. The problem of poisoning was
easily addressed by use of subsumption. The extension to a full language was a more
significant consideration, and became one of the major themes of this thesis.

The Glasgow Haskell Compiler – open-source and well-supported – was close
at hand when we were considering this extension. A successful implementation in
GHC would be solid proof that the analysis was applicable to a real, full-featured
functional language and compiler, and it would give us the ability to measure the
performance of the analysis on real code rather than the traditional nfib and queens
benchmarks. Further, GHC already implements a large set of powerful optimisations,
and we would be able to see the marginal benefit of usage analysis in the presence
of these, rather than an unrealistic measurement of its performance on otherwise-
unoptimised code. The output of usage analysis could also be used to guide the many
optimisations already known to be able to make use of usage information.

7.3.1 Usage analysis

Obtaining good (or even just mediocre) results from a type-based usage analysis
turned out to be much harder than we had expected. As already noted, we discovered
that the lack of subsumption proved fatal to the analysis of Turner et al.[TWM95a,
TWM95b]. But even with subsumption, we discovered that just two thunks in the
entire standard libraries of GHC were marked as used at most once! This disappoint-
ing result set us on the quest for a more powerful analysis, during which we made a
number of important contributions.

An obvious extension to our analysis would have been to add full constrained
polymorphism to the types used to describe usage. This powerful technique would
likely have yielded good results (although the data type considerations below would
still apply), but at considerable cost. At the time we were designing the analysis, a
large body of work demonstrated that type inference in the presence of subtyping and
polymorphism was expensive and unmanageable in practice. In our quest, therefore,
we sought a balance between power and practicality, and constrained polymorphism
was considered impractical.
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The rejection of constrained polymorphism led us to consider a more restricted
form, since polymorphism was plainly required in order to give the terms we were
examining reasonable types. Naturally for us, but apparently novelly, we chose to
consider simple polymorphism: polymorphism without constraints, yet in a type sys-
tem with subsumption. Insights derived from implementation were critical in the
development of simple polymorphism, testing the correctness of the algorithm and
providing motivating examples.

Examination of analysed programs still showed disappointing results, however,
and focussed our attention on better handling of data structures, and the use of spe-
cialisation. Specialisation proved relatively straightforward to implement. Algebraic
data types of the Haskell/ML variety, however, turned out to have had rather little
attention since around 1978, and we were unable to discover much published on the
matter of subtyping for such types. We also realised that there was a wide design
space in terms of the level of detail with which data types were treated by the anal-
ysis. We already had a preliminary approach to this in place for our monomorphic
implementation [WPJ99], but it was not until much later that we invented the an-
notation schemes used in Chapter 5 to abstract out the entire design space from the
remainder of the analysis; these are part of a development of algebraic data types
that should be applicable in a range of settings.

7.3.2 Implementing a type-based analysis

Not only is usage analysis a harder problem than we expected; implementing the
usage analysis in GHC was surprisingly difficult. Adding a type-based analysis to a
typed compiler intentionally designed as a testbed for new analyses seemed like a
straightforward enough task, but in practice a number of issues meant that it was
not at all straightforward.

The obvious course when implementing a type-based analysis in a typed compiler
is to embed the types of the analysis into the type language of the compiler. This has
the great attractions of simplicity and directness: there is no need to find somewhere
to affix the annotations, and the theoretical inference and the practical implementa-
tion are near-identical. It also has the allure of correctness: well-typedness, and thus
the accuracy of the analysis and of transformations with respect to the analysis, will
be verified and preserved by all the mechanisms already present in the compiler to
ensure accuracy of ordinary type information. We discovered over the course of this
thesis that these benefits are much harder to grasp than they appear.

Embedding the types of the analysis into the type language of the compiler means
changing the data type of types in the compiler. Types are wired very deeply into a
type-based compiler: a large proportion of its actions are directed toward generating,
interpreting, and preserving them. A change to the data type that represents them
will therefore require alterations to a large fraction of the code in the compiler. While
many of these changes will be minor, even such minor changes require the relevant
code to be read and understood. The crucial issue, therefore, is that embedding the
types of the analysis into the type language of the compiler requires understanding
and modifying most of its code. For a compiler of reasonable size, this is a large task.
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Furthermore, embedding the types of the analysis into the type language of the
compiler not only aids correctness, it enforces correctness. Incorrect usage informa-
tion does not merely cause a potential space leak or poor transformation; it is a type
error. Since compilation involves multiple transformations of the code, each must
either be understood in enough detail to discern its usage behaviour and enable cor-
rect annotations to be inserted, or be followed immediately by a clean-up inference
pass to recalculate correct usage information. Since the latter is costly in terms of
compile time, we wish to take the former route as often as possible. So embedding
the types of the analysis into the type language of the compiler means understanding
every transformation it performs, including working out its usage behaviour.

Of course, these activities will lead to interesting discoveries: the analysis design
will cover in great detail all of the features of the language compiler, and many of
these may not have received theoretical treatment before. Some of these will lead
to elegant theoretical developments that would have been unlikely to be discovered
any other way. The rest will, at the very least, provide an acid test for the theory: is
it useful in practice, or does it break down? Theories may seem elegant and power-
ful without practical experience to reveal hidden limitations; practical experience is
certainly capable of inspiring new, motivated theory.

Implementing an analysis involves more than just implementing the inference
for the intermediate language. In order to use the results of the inference in GHC,
the translation into low-level intermediate code (STG) had to be modified to mark
the appropriate thunks single-entry, the code generator had to be modified to obey
these marks, and the runtime system had to be modified to handle the new situa-
tion. Empirical verification and performance measurement required further changes
to the code generator and runtime system. At the other end, because GHC performs
typechecking of the user program in the source language rather than the intermedi-
ate language, correctly handling separate compilation required modification to the
source language representation and the typechecker.

Having engaged in all of the activities above, we can state from experience that,
even for a type system as simple as simple polymorphism, embedding the types of
the analysis into the type language of a production compiler is not a good idea. The
impact is just too great, and the effort involved in making it all work is more than
we were able to supply, even after in some cases months of work. Instead, a less
ambitious plan succeeded, using a type system alongside the existing one, attaching
these types as annotations to language terms, trading correctness for implementabil-
ity. The analysis types are checked only by the analysis itself, and are preserved only
by transformations that have been appropriately extended; other transformations,
and unhandled type and term forms, are simply approximated or allowed to corrupt
the analysis. Inference is repeated where necessary to ensure correctness where it
counts. This is the analysis as finally implemented in Chapter 6.

An alternative would have been to implement a new compiler from scratch, with
the types of the analysis built in. This approach can be very successful, as for example
in the regions inference of the ML Kit [BTV96]. But apart from being rather too large
a project to undertake in a single thesis, this approach would not have achieved the
goals stated at the head of this section, of demonstrating applicability to a real, full-
featured lazy functional language and compiler and in conjunction with most other
known optimisations for such languages.
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7.4 Future work

Much work remains to be done in the areas of simple polymorphism and usage anal-
ysis.

Simple polymorphism. Simple polymorphism has been motivated by practical con-
siderations, and the intuition and algorithm are both very intensional. Theo-
retically, we have very little understanding of what it is and how it behaves.
Following on from the suggestions in Sections 4.5 and 4.8.4, we would like to
be able to give a concise and extensional description of the type chosen by the
closure algorithm and its relationship to the most general constrained polymor-
phic type for the same term. We would like to investigate the possible benefits
of applying the heuristics of Section 4.7.2 when generalising.

The inference should also be related to the approximating inference of Nord-
lander (Section 4.8.2), and the use of non-rank-1 polymorphism (Section 4.7.4)
and polymorphic recursion (Section 4.4.2) considered.

Constrained polymorphism. The recent work of Rehof and Fähndrich [RF01] and
of Gustavsson and Svenningsson [GS01b], described in Section 4.8.1.6, sug-
gests that full constrained polymorphism may not necessarily be as expensive
as was thought. It would be extremely interesting to modify the type system
and inference of the present analysis to incorporate one or other of these ap-
proaches, and to investigate the power and cost of the analysis in the context of
our full implementation. It seems likely that most of the content of this thesis,
for example the extension to general algebraic data types and type polymor-
phism, and the proof techniques and much of the soundness proofs themselves,
would carry over directly.

Algebraic data types. Annotation schemes have been developed as a notation to
capture the wide design space for annotation of algebraic data types. But only
a few points in this space have been investigated. More annotation schemes
should be designed and their effectiveness measured in practice; our design
framework and implementation is general enough to allow this to be done
without difficulty. The most interesting issue is how best to limit the number of
usage arguments given to a data type or constructor, and how a limited number
of arguments should be distributed over the available annotation positions.
The present implementation uses an extremely ad hoc (albeit rather effective)
approach; a more principled and less wasteful approach would be better. For
example, in

data Shape = Square Id (Int, Int) Int
| Triangle Id (Int, Int) (Int, Int) (Int, Int)

it is likely that the Id fields will be used identically, whether the object is a
Square or a Triangle, and so they could share the same annotation.
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Implementation. It is said that no program is ever complete, and this is certainly
true in this case.

• A major issue to investigate is how best to make use of usage information
within GHC. The evidence of Chapter 6 suggests that, while the simplifier
is making use of the information provided by the analysis, the choices it
is making are not always optimal, meaning that allocations and run time
sometimes increase when usage analysis is enabled. This is not surprising,
since until the analysis was implemented very little usage information was
available to the simplifier, and tradeoffs made when one-shot lambdas
were rare are likely to look different now they are much more common.
These tradeoffs need to be revisited, and specifically the programs that run
slower or use more heap as a result of usage analysis must be investigated
and the causes traced.

• Similarly, more investigation should be performed with regard to the ef-
fectiveness of the analysis in detecting thunks used at most once. Why is
it that for some programs the analysis detects as many as 93% of all used-
once thunks, while for over a third of programs tested less than 1% are
found? Whatever the answer, it is likely that improvements to the analysis
will be discovered in the course of the investigation.

• Usage specialisation is important for obtaining good results from the anal-
ysis, but the way in which it is implemented at present is quite minimal.
The choice of which specialisations to generate at the moment is simply to
generate one specialisation with all arguments specialised to 1. Instead,
the choice should be informed by the known uses of the function, and if
appropriate, more than one specialisation should be generated. The right
specialisations to generate should be investigated, in view of the tradeoff
between code size and accuracy. Again, the implementation is sufficiently
general to allow this without difficulty.

• A number of smaller points that were left unimplemented merely for lack
of time have been listed in Section 6.10.3.

Analysis. The analysis currently addresses only usage, i.e., used-at-most-once. In
Appendix C we consider extending the analysis to include annotations taken
from P(N), subsuming not only usage but strictness and absence as well. This
system should be proven sound, but in addition an inference for it should be de-
signed and shown strictly to generalise our existing usage analysis. It should be
implemented, and its power compared with more traditional strictness and ab-
sence analyses. A unified usage, strictness, and absence analyser along the lines
of the usage analysis presented could be placed within the Glasgow Haskell
Compiler and subsume the existing strictness and absence analyser.
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7.5 Concluding remarks

In this thesis we have demonstrated that simple usage polymorphism is a practical
and reasonably effective analysis for inferring usage information for lazy functional
languages, enabling optimisations that reduce the cost of lazy evaluation. While the
results obtained are not dramatic, they are significant, and it seems likely that further
investigation will lead to greater gains.

Of making many books there is no end,
and much study is a weariness of the flesh.

The end of the matter;
all has been heard.1

1Ecclesiastes 12:12b–13a (New Revised Standard Version).



Appendix A.

Index of Notation

A.1 Basic notation

Vectors. xi denotes the vector (ordered sequence) x1 x2 . . . xn. This notation is also
used for more complex structures, such as bindings, case branches, etc..

Substitution. M [A/x] denotes the result of substituting A for every occurrence of
the variable x in M . M [Ai/xi

] denotes the simultaneous substitution of Ai

for xi. φ = [Ai/xi
] names the given substitution, and M [φ] applies the named

substitution to M .

Definition. A � B defines A to be equal to B.

A.2 Languages

L0 toy source language. p. 26.

LX toy executable language. p. 31.

LXC set of configurations for LX. p. 31.

LIX0 toy source-instrumented executable language. p. 29.

LIXC0 set of configurations for LIX0. p. 30.

LIX1 toy monomorphic usage-annotated instrumented exe-
cutable language. p. 42.
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LIX2 toy polymorphic usage-annotated instrumented executable
language. p. 78.

FL0 full source language. p. 129.

FLIX0 full source-instrumented executable language. p. 132.

FLIXC0 set of configurations for FLIX0. p. 132.

FLIX2 full polymorphic usage-annotated instrumented executable
language. p. 136.

A.3 Alphabetic notation

A source- or executable-language atom. p. 26.

a usage-typed atom. p. 43.

α, β, γ, δ type variable. p. 129.

annε(σ) set of ε-ve annotations of σ. p. 291.

BadBinding set of binding update-flag error configurations. p. 34.

BadValue set of value update-flag error configurations. p. 34.

BlackHole set of black hole configurations. p. 34.

C abstract machine configuration. p. 33.

C constraint. p. 55.

χ update flag variable. p. 29.

Clos closure operation. p. 87.

CS constraint solver. p. 57.

DEFAULT default branch of a case statement. p. 178.

demanded demands during evaluation. p. 50.

dom(Γ) domain (bound variables) of type environment. p. 28.

dom(H) domain (bound variables) of heap. p. 33.

dom(S) domain (bound variables) of stack. p. 33.

E non-shallow evaluation context (composition of Rs).
p. 277.

e usage-typed expression. p. 43.

ε empty stack. p. 30.

ε polarity (variance) variable. p. 44, p. 78.

F forbidden usage variables. p. 102.

f, g, h term variable (function). p. 26.

FreshLUB least upper bound. p. 55.

ftvε(ψ) free ε-ve type variables of ψ. p. 146.

fuvε(ψ) free ε-ve usage variables of ψ. p. 78, p. 146.
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G (polarised) usage variables to generalise. p. 102.

Γ type environment. p. 28.

gfp greatest fixed point operator. p. 102.

H heap. p. 33.

i, j, k, l, m index variable.
IT0 trivial instrumented translation (from L0 or FL0 to LIX0 or

FLIX0). p. 31.

IT1 monomorphic usage analysis (translation from L0 or FL0

to LIX1 or FLIX1). p. 53.

IT2 polymorphic usage analysis (translation from L0 or FL0 to
LIX2 or FLIX2). p. 86.

Ki data constructor. p. 129.

κ usage annotation. p. 43.

M source- or executable-language term. p. 26.

m, n index bound.
µα . t recursive type definition. p. 154.

n integer. p. 26.

occur syntactic occurrences of a variable in an expression. p. 48.

ω usage annotation “possibly used many times”. p. 43.

PClos closure operation proper. p. 102.

Pess pessimisation. p. 56, p. 92.

ψ either τ - or σ-type. p. 43.

R shallow evaluation context. p. 30.

R[M ] filled shallow evaluation context. p. 32.

rng(Γ) range (binder types) of type environment. p. 56, p. 92.

S stack. p. 33.

S substitution. p. 55.

s usage projection type schemes. p. 170.

σ usage type with topmost annotation. p. 43.

T type constructor. p. 129.

t unannotated usage projection type. p. 170.

T placeholder for type constructor (usage projection types).
p. 170.

t source type. p. 26.

T0 trivial uninstrumented translation (from L0 or FL0 to LXor
FLX). p. 37, p. 161.

τ usage type without topmost annotation. p. 43, p. 80.

trans translation of configuration to term. p. 37.

TransitiveClosure constraint solver. p. 102, p. 105.
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TrivClos trivial (non-)closure algorithm. p. 101.

U set of equivalence classes of usage variables. p. 102.

u annotated usage projection type. p. 170.

u, v, w, x usage variable. p. 80.

V source- or executable-language value. p. 30.

V multiset of free term variables in inference. p. 55.

v usage-typed value. p. 43.

Value set of value configurations. p. 34.

Wrong set of type-error configurations. p. 34.

x, y, z term variable. p. 26.

A.4 Nonalphabetic notation

g ◦ f function composition, i.e., g(f(·)).
S �T S and T disjoint, i.e., S ∩ T = ∅. p. 33

(c ? e1 : e2) conditional, i.e., if c then e1 else e2.
•, ! update flags: “not updatable/copyable” and “updat-

able/copyable”. p. 29.

1, ω usage annotations (“used at most once” and “possibly used
many times”). p. 43.

� stripping (mapping from instrumented executable lan-
guage to source language). p. 29.

� erasure (mapping from instrumented to uninstrumented
executable language). p. 29.

κ† update flag corresponding to usage annotation. p. 47, p. 83.

|V | update flag of a value. p. 32, 5.4.

〈H; M ; S 〉 abstract machine configuration. p. 33.

[·] hole. p. 30.

x = e binding. p. 26.

x : t x has type t. p. 26.

#x update frame. p. 33.

∅ empty set.
∅ empty heap. p. 30.

∅ trivial constraint. p. 55.

�� empty multiset. p. 55.

�·� multiset brackets. p. 55.

V1 � V2 multiset union. p. 55.

V1 � V2 multiset lub. p. 55.
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V \A deletion of set from multiset. p. 55.

Λu . e usage abstraction. p. 81.

Λα . e type abstraction. p. 129.

e κ usage application. p. 81.

e τ type application. p. 129.

∀u . τ usage-generalised type. p. 78.

∀α . τ type-generalised type. p. 129.

� typing judgement. p. 28, p. 47, p. 83, p. 130, p. 137.

�b constrained-polymorphic well-typing rules. p. 123.

�1 usage inference phase 1, in LIX1 or FLIX1. p. 53.

�2 usage inference phase 1, in LIX2 or FLIX2. p. 87, p. 159.

� data type annotation scheme. p. 148.

y ∈ Γ y is a variable bound by Γ, i.e., y ∈ dom(Γ). p. 46.

Γ, Γ′ union of type environments. p. 28.

� goodness ordering on types and solution sets. p. 52.

� guard. p. 51.

〈; ; 〉 initial configuration operator. p. 34.

� small-step transition relation. p. 32.

�∗ reflexive, transitive closure of �. p. 34.

�δ primitive reduction relation. p. 32.

↓ terminates (with configuration). p. 34.

≤ primitive usage annotation ordering. p. 43, p. 86.

� (usage) subtyping relation. p. 49, p. 86, p. 135.

� semantic subtyping relation. p. 95.

�σ � denotation of σ. p. 95.

�t�ωσ annotate t everywhere with ω, yielding a σ-type. p. 43.

�t�ωτ annotate t everywhere with ω, yielding a τ -type. p. 43.

�t�freshσ annotate t everywhere with fresh usage variables, yielding
a σ-type. p. 55.

�t�freshτ annotate t everywhere with fresh usage variables, yielding
a τ -type. p. 55.

+,− polarities: positive/covariant, negative/contravariant.
p. 44, p. 78.

ε̄ sign negation. p. 78, p. 145.

ε · ε′ sign multiplication. p. 145.

〈κ ≤ κ′〉 primitive inequality constraint. p. 52.

〈κ = κ′〉 primitive equality constraint. p. 52.

{P ⇒ C} C if P holds, ∅ otherwise. p. 55.

C �e D constraint C entails constraint D. p. 52.
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�e SC constraint C is solved by substitution S. p. 52.

∧ constraint combination. p. 55.

≤C ,≤ε
C partial order induced by constraint C (flipped if ε = −).

p. 101.

R±∗ reflexive, symmetric, transitive closure, i.e., (R ∪ R−1)∗.
p. 102.

A/R quotient of set by relation. p. 102.

[a]R equivalence class of a under equivalence relation R. p. 102.

A \B set subtraction. p. 102.

S|A restriction: substitution S restricted to domain A. p. 108.

A ! a is contained in, i.e., a ∈ A. p. 154.

� placeholder for trivial or unknown type (usage projection
types). p. 170.

{|t|} the default projection: computing a safe usage projection
type. p. 170.

⊥ bottom: no information or non-termination. p. 179.
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The Full Type System

In this appendix we collect all the definitions, well-typing rules, and inference rules
for the full languages FL0, FLX, and FLIX2.
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Figure B.1 The full source language FL0.

Terms M ::= A atom
| n literal (integer)
| Ki tk Aj constructor
| λx : t . M term abstraction
| M A term application
| Λα . M type abstraction
| M t type application
| case M : T tk of Ki xij →Mi case expression
| M1 + M2 primop (addition)
| if0 M then M1 else M2 zero-test conditional
| letrec xi : ti = Mi in M recursive let binding

Atoms A ::= x term variable
| A t atom type application

t-types t ::= t1 → t2 function type
| Int primitive type (integers)
| T tk algebraic data type
| ∀α . t type-generalised type
| α type variable

Decls T : data T αk = Ki tij algebraic data type declaration
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Figure B.2 Well-typing rules for the source language FL0.
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(�0-Var)
Γ, x : t �0 x : t

(�0-Lit)
Γ �0 n : Int

Γ �0 M : Int Γ �0 Mi : t i = 1, 2
(�0-If0)

Γ �0 if0 M then M1 else M2 : t

Γ �0 Mi : Int i = 1, 2
(�0-PrimOp)

Γ �0 M1 + M2 : Int

Γ, x : t1 �0 M : t2
(�0-Abs)

Γ �0 λx : t1 . M : t1 → t2

Γ �0 M : t1 → t2 Γ �0 A : t1
(�0-App)

Γ �0 M A : t2

Γ, xj : tj �0 Mi : ti for all i
Γ, xj : tj �0 M : t

(�0-LetRec)
Γ �0 letrec xi : ti = Mi in M : t

Γ, α �0 M : t α /∈ ftv(Γ)
(�0-TyAbs)

Γ �0 Λα . M : ∀α . t

Γ �0 M : ∀α . t1
(�0-TyApp)

Γ �0 M t2 : t1[t2/α]

t◦ij = tij [tk/αk
] all j

Γ �0 Aj : t◦ij all j

where data T αk = Ki tij (�0-Con)
Γ �0 Ki tk Aj : T tk

Γ �0 M : T tk

t◦ij = tij [tk/αk
] all i, j

Γ, xij : t◦ij �0 Mi : t all i

where data T αk = Ki tij (�0-Case)
Γ �0 case M : T tk of Ki xij →Mi : t
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Figure B.3 The polymorphically usage-typed language FLIX2.

Terms e ::= a atom
| n literal (integer)
| Kκ,χ

i κl τk aj constructor
| λκ,χx : σ . e term abstraction
| e a term application
| Λα . e type abstraction
| e τ type application
| Λu .e usage abstraction
| e κ usage application
| case e : (T κl τk)κ of Ki xij → ei case expression
| e1 + e2 primop (addition)
| addn e partially-saturated primop
| if0 e then e1 else e2 zero-test conditional
| letrec xi : σi =χi ei in e recursive let binding

Atoms a ::= x term variable
| a τ atom type application
| a κ atom usage application

τ -types τ ::= σ1 → σ2 function type
| Int primitive type (integer)
| T κl τk algebraic data type
| ∀α . τ type-generalised type
| α type variable
| ∀u . τ usage-generalised type

σ-types σ ::= τκ usage-annotated type

Decls T : data (T ul αk)u = Ki σij data type declaration

Usage κ ::= 1 used at most once
annotations | ω possibly used many times

| u, v usage variable

Update χ ::= • not updatable/copyable
flags | ! updatable/copyable
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Figure B.4 The executable language FLIX2 and configurations FLIXC2.

Terms e ::= R[e] filled evaluation context
| letrec xi : σi =χi ei in e recursive let binding
| Λα . e type abstraction
| Λu .e usage abstraction
| a atom
| V value

Shallow R ::= [·] a term application
evaluation | [·] τ type application
contexts | [·] κ usage application

| case [·] : (T κl τk)κ of
Ki xij → ei

case expression

| [·] + e primop (addition)
| addn [·] partially-saturated primop
| if0 [·] then e1 else e2 zero-test conditional

Atoms a ::= x term variable
| a τ atom type application
| a κ atom usage application

Values V ::= n literal (integer)
| Kκ,χ

i κl τk ak constructor
| λκ,χx : σ . e term abstraction
| Λα . V type abstraction of value
| Λu . V usage abstraction of value

Configurations C ::= 〈H; e; S 〉 where dom(H) �dom(S)

Heaps H ::= ∅
| H, x : σ =κ,χ e where x /∈ dom(H)

Stacks S ::= ε
| R, S
| #x : σ, S where x /∈ dom(S)
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Figure B.5 The full operational semantics of FLIXC2.
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〈H; M ; S 〉

〈H; R[e]; S 〉 �αl,um 〈H; e; R, S 〉 (�-Unwind)
〈H; V ; R, S 〉 �αl,um 〈H; e; S 〉 (�-Reduce)

if R[V ] �δ e

〈H; letrec xi : σi =χi ei in e; S 〉 (�-LetRec)
�αl,um 〈H, yi : ∀um . ∀αl . σi =χi Λum . Λαl . ei[φ]; e[φ]; S 〉

where yi �dom(H) ∪ dom(S)
φ = [yi um αl/xi

]

〈H; Λα . e; S 〉 �αl,um 〈H ′; Λα′ . e′; S′ 〉 (�-TyLam)
if 〈H; e[α

′
/α]; S 〉�αl,α′,um 〈H ′; e′; S′ 〉

α′ fresh

〈H; Λu . e; S 〉 �αl,um 〈H ′; Λu′ . e′; S′ 〉 (�-ULam)
if 〈H; e[u

′
/u]; S 〉�αl,um,u′ 〈H ′; e′; S′ 〉

u′ fresh

〈H, x : σ =• e; x; S 〉 �αl,um 〈H; e; S 〉 (�-Var-Once)
〈H, x : σ =! e; x; S 〉 �αl,um 〈H; e; #x : σ, S 〉 (�-Var-Many)
〈H; V ; #x : σ, S 〉 �αl,um 〈H, x : σ =! V ; V ; S 〉 (�-Update)

where |V | = • ⇒ x /∈ fv(H, V, S)

where |n| = ω
|Kκ,χ

i κl τk aj | = κ
|λκ,χx : σ . e| = κ
|Λα . V | = |V |
|Λu . V | = |V |

R

—
ev

al
co

nt
ex

t

[V

—
va

lu
e

] �δ M

—
re

su
lt

(λκ,χx : σ . e) a �δ e[a/x] (�δ-App)
(Λα . e) τ �δ e[τ/α] (�δ-TyApp)
(Λu . e) κ �δ e[κ/u] (�δ-UApp)
n + e �δ addn e (�δ-PrimOp-L)
addn1 n2 �δ n3 if n3 = n1 + n2 (�δ-PrimOp-R)
case Kκ,χ

i κl τk aj : (T κ′
l τ ′

k)
κ′

of Ki xij → ei (�δ-Case)
�δ ei[aj/xij

]
if0 n then e1 else e2 �δ ei if i = (n = 0 ? 1 : 2) (�δ-If0)
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Figure B.6(a) Well-typing rules for FLIX2.
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(�2-Var)
Γ, x : σ �2 x : σ

(�2-Lit)
Γ �2 n : Intω

Γ �2 e : Int1 Γ �2 ei : σ i = 1, 2
(�2-If0)

Γ �2 if0 e then e1 else e2 : σ

Γ �2 ei : Int1 i = 1, 2
(�2-PrimOp)

Γ �2 e1 + e2 : Intω

Γ �2 e : Int1
(�2-PrimOp-R)

Γ �2 addn e : Intω

Γ, x : σ1 �2 e : σ2

occur(x, e) > 1⇒ |σ1| = ω
occur(y, e) > 0⇒ |Γ(y)| ≤ κ for all y ∈ Γ

(�2-Abs)
Γ �2 λκ,κ†

x : σ1 . e : (σ1 → σ2)κ

Γ �2 e : (σ1 → σ2)1 Γ �2 a : σ1
(�2-App)

Γ �2 e a : σ2

Γ, xj : σj �2 ei : σi for all i
Γ, xj : σj �2 e : σ(
occur(xi, e) +

∑n
j=1 occur(xi, ej)

)
> 1⇒ |σi| = ω for all i

(�2-LetRec)
Γ �2 letrec xi : σi =|σi|† ei in e : σ
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Figure B.6(b) Well-typing rules for FLIX2.

Γ �2 e : σ′ σ′ � σ
(�2-Sub)

Γ �2 e : σ

Γ, u �2 e : τκ u /∈ (fuv(Γ) ∪ fuv(κ))
(�2-UAbs)

Γ �2 Λu . e : (∀u . τ)κ

Γ �2 e : (∀u . τ)κ

(�2-UApp)
Γ �2 e κ′ : (τ [κ

′
/u])κ

Γ, α �2 e : τκ α /∈ ftv(Γ)
(�2-TyAbs)

Γ �2 Λα . e : (∀α . τ)κ

Γ �2 e : (∀α . τ1)κ

(�2-TyApp)
Γ �2 e τ2 : (τ1[τ2/α])κ

σ◦
ij = σij [κ/u, κl/ul

, τk/αk
] all j

Γ �2 aj : σ◦
ij all j

|σ◦
ij | ≤ κ all j

where data (T ul αk)u = Ki σij (�2-Con)
Γ �2 Kκ,κ†

i κl τk aj : (T κl τk)κ

Γ �2 e : (T κl τk)κ

σ◦
ij = σij [κ/u, κl/ul

, τk/αk
] all i, j

Γ, xij : σ◦
ij �2 ei : σ all i

occur(xij , ei) > 1⇒ |σ◦
ij | = ω all i, j

where data (T ul αk)u = Ki σij (�2-Case)
Γ �2 case e : (T κl τk)κ of Ki xij → ei : σ

where 1† � •
ω† � !
u† � !

Figure B.7 Translation function and well-typing rule for FLIXC2 contexts.

∅ �2 trans〈H; e; S 〉 : σ
(�2-Config)

�2 〈H; e; S 〉 : σ

trans〈H; e; R, S 〉 = trans〈H; R[e]; S 〉
trans〈H; e; #x : σ, S 〉 = trans〈H, x : σ =! e; x; S 〉
trans〈H; e; ε 〉 = letrec H in e
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Figure B.8 The subtype (�) and primitive (≤) orderings over FLIX2.

ψ � ψ

κ1 ≤ κ2 τ1 � τ2
(�-Annot)

τ1
κ1 � τ2

κ2

τ1 � τ2
(�-All-U)

∀u . τ1 � ∀u . τ2

(�-Lit)
Int � Int

σ3 � σ1 σ2 � σ4
(�-Arrow)

σ1 → σ2 � σ3 → σ4

τ1 � τ2
(�-All)

∀α . τ1 � ∀α . τ2
(�-TyVar)

α � α

αk ∈ ftvε(σij)⇒ τk �ε τ ′
k for all k, ε, i, j

ul ∈ fuvε(σij)⇒ κl ≤ε κ′
l for all l, ε, i, j

where data (T ul αk)u = Ki σij (�-TyCon)
T κl τk � T κ′

l τ ′
k

κ ≤ κ

1

➵

ω

ω ≤ κ κ ≤ 1 u ≤ u
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Figure B.9 Positive and negative free occurrences.

ftvε(ψ) fuvε(ψ)

ftvε(τu) = ftv(τ) fuvε(τu) = fuv(u) ∪ fuv(τ)
ftvε(Int) = ∅ fuvε(Int) = ∅

ftvε(σ1 → σ2) = ftvε̄(σ1) ∪ ftvε(σ2) fuvε(σ1 → σ2) = fuvε̄(σ1) ∪ fuvε(σ2)
ftvε(∀α . τ) = ftvε(τ) \ {α} fuvε(∀α . τ) = fuvε(τ)
ftvε(∀u . τ) = ftvε(τ) fuvε(∀u . τ) = fuvε(τ) \ {u}

ftv+(α) = {α} fuvε(α) = ∅
ftv−(α) = ∅ fuv+(u) = {u}
ftvε(u) = ∅ fuv−(u) = ∅

ftvε(T κl τk) =
{

α |
∨

k,ε′

(
α ∈ ftvε·ε′(τk) ∧ αk ∈

⋃
ij ftvε′(σij)

)}

fuvε(T κl τk) =


u |

∨
l,ε′

(
u ∈ fuvε·ε′(κl) ∧ ul ∈

⋃
ij fuvε′(σij)

)
∨

∨
k,ε′

(
u ∈ fuvε·ε′(τk) ∧ αk ∈

⋃
ij ftvε′(σij)

)



where data (T ul αk)u = Ki σij

Figure B.10 Annotations.

annε(ψ)

ann+(τκ) = ann+(τ) ∪ {κ}
ann−(τκ) = ann−(τ)
annε(Int) = ∅

annε(σ1 → σ2) = annε̄(σ1) ∪ annε(σ2)
annε(∀α . τ) = annε(τ)
annε(∀u . τ) = annε(τ) \ {u}

annε(α) = ∅
annε(T κl τk) =

{
κ |

∨
l,ε′

(
κ ∈ annε·ε′(κl) ∧ ul ∈

⋃
ij annε′(σij)

)}

where data (T ul αk)u = Ki σij
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Figure B.11(a) Type inference rules from FL0 to FLIX2.
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fresh vi τ a usage-monotype
(�2-Var)

Γ, x : (∀ui .τ)κ �2 x � x vi : (τ [vi/ui
])κ; ∅; �x�

(�2-Lit)
Γ �2 n � n : Intω; ∅; ��

Γ �2 M � e : Intκ; C; V
Γ �2 Mi � ei : σi; Ci; Vi i = 1, 2
(C3, σ) = FreshLUB(σ1, σ2) (�2-If0)

Γ �2 if0 M then M1 else M2 � if0 e then e1 else e2 : σ;
C ∧ C1 ∧ C2 ∧ C3; V � (V1 � V2)

Γ �2 Mi � ei : Intκi ; Ci; Vi i = 1, 2
(�2-PrimOp)

Γ �2 M1 + M2 � e1 + e2 : Intω; C1 ∧ C2; V1 � V2

σ1 = �t1�freshσ fresh v
Γ, x : σ1 �1 M � e : σ2; C1; V
C2 = {V (x) > 1⇒ 〈|σ1| = ω〉}
C3 =

∧
y∈Γ{V (y) > 0⇒ 〈|Γ(y)| ≤ v〉}

(�2-Abs)
Γ �1 λx : t1 . M � λv,v†

x : σ1 . e : (σ1 → σ2)v; C1 ∧ C2 ∧ C3; V \ {x}

Γ �2 M � e : (σ1 → σ2)κ; C1; V1

Γ �2 A � a : σ′
1; C2; V2

C3 = {σ′
1 � σ1} (�2-App)

Γ �2 M A � e a : σ2; C1 ∧ C2 ∧ C3; V1 � V2

Γ, α �2 M � e : τκ; C; V α /∈ ftv(Γ)
(�2-TyAbs)

Γ �2 Λα . M � Λα . e : (∀α . τ)κ; C; V

Γ �2 M � e : (∀α . τ1)κ; C; V τ2 = �t�freshτ
(�2-TyApp)

Γ �2 M t � e τ2 : (τ1[τ2/α])κ; C; V
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Figure B.11(b) Type inference rules from FL0 to FLIX2.

τi
vi = �ti�freshσ for all i

Γ, xj : τj
vj �2 Mi � ei : σ′

i; Ci
1; Vi for all i

C1 =
∧

i

(
Ci

1 ∧ {σ′
i � τi

vi}
)

(C ′
1, uk, S) = Clos(C1, Γ, τi

vi)

Γ, xj : (∀uk . Sτj)vj �2 M � e : σ; C2; V

C3 =
∧

i{
(
V (xi) +

∑
j Vj(xi)

)
> 1⇒ vi = ω}

(�2-LetRec)

Γ �2 letrec xi : ti = Mi in M

� letrec xi : (∀uk . Sτi)vi =v†
i Λuk .Sei[(xj uk)/xj

] in e : σ;

C ′
1 ∧ C2 ∧ C3; (

⊎
i Vi � V ) \ {xi}

τk = �tk�freshτ for all k fresh v, vl

σ◦
ij = σij [v/u, vl/ul

, τk/αk
] for all i

Γ �2 Aj � aj : σ′
j ; Cj

1 ; Vj for all j

C1 =
∧

j

(
Cj

1 ∧ {σ′
j � σ◦

ij}
)

C2 =
∧

j{|σ◦
ij | ≤ v}

where data (T ul αk)u = Ki σij (�2-Con)
Γ �2 Ki tk Aj � Kv,v†

i vl τk aj : (T vl τk)v; C1 ∧ C2;
⊎

j Vj

Γ �2 M � e : (T κl τk)κ; C1; V
σ◦

ij = σij [κ/u, κl/ul
, τk/αk

] for all i, j

Γ, xij : σ◦
ij �2 Mi � ei : σi; Ci

2; Vi for all i

C2 =
∧

i C
i
2 (C3, σ) = FreshLUB(σi)

C4 =
∧

ij{Vi(xij) > 1⇒ |σ◦
ij | = ω}

where data (T ul αk)u = Ki σij (�2-Case)
Γ �2 case M : T tk of Ki xij →Mi

� case e : (T κl τk)κ of Ki xij → ei : σ;
C1 ∧ C2 ∧ C3 ∧ C4; V � (

⊔
i Vi \ {xij})
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Figure B.12 The trivial non-closure operation.

TrivClos(C, Γ, τi
κi) � (C, [ ], [ ])

Figure B.13 The closure operation.
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) where

G0 = {uε | u ∈ fuvε(τi)}
F0 = fuv(κi) ∪ fuv(Γ)

(C, S0) = TransitiveClosure(C0)
G = G0 \ dom(S0)
F = F0 \ dom(S0)

Φ(A) = G ∩ {u−, v+ | u ≤C v ∧ u− ∈ A ∧ v+ ∈ A}
∩ {uε | uε ∈ A ∧ ¬∃x ∈

(
F ∪ {v | vε̄ ∈ (G \A)}

)
. x ≤ε

C u}
G′ = gfp(Φ)

(∼) = {(u, v) | u ≤C v ∧ u− ∈ G′ ∧ v+ ∈ G′}±∗

where R±∗ � (R ∪R−1)∗

U = {u | uε ∈ G′} / (∼)

ui = a vector containing one representative

from each equivalence class in U
S = {(x �→ ui) | ∃u− ∈ G′ . u ≤C x ∧ ∃v+ ∈ G′ . x ≤C v ∧ ui ∈ [u](∼)}

∪ {(x �→ ω ) | ¬∃u− ∈ G′ . u ≤C x ∧ ∃v+ ∈ G′ . x ≤C v}
∪ {(x �→ 1 ) | ∃u− ∈ G′ . u ≤C x ∧ ¬∃v+ ∈ G′ . x ≤C v}
where x ∈ (fuv(C) \ dom(S0))

C ′ = SC
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Figure B.14 Stripping � and erasure � for FLIX2.
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(addn e)� = addn (e)�

(if0 e then e1 else e2)� = if0 (e)� then (e1)� else (e2)�

(letrec xi : σi =χi ei in e)� = letrec xi =χi (ei)� in (e)�



Appendix C.

Extending the Lattice

Compilers for lazy functional languages usually perform strictness analysis to iden-
tify thunks and function arguments that are certainly used, enabling optimisations
such as call-by-value evaluation, unboxing, and so on. Instead of treating strictness
independently, however, it may be seen as a usage property: to say that an argument
is strict is simply to say that it is used at least once.

Motivated by this observation, the present appendix considers extending our
type-based usage analysis to a more detailed annotation domain that is capable
of expressing strictness (and absence) in addition to used-at-most-once-ness. Such
an analysis could subsume existing separate, non-type-based analyses, reducing the
number of analysis passes and enabling optimisations to be directed simply by the
computed usage types. The details of the analysis have not been fully worked out
and so this appendix is somewhat speculative, documenting the current progress
toward the goal.

We begin in Section C.1 by motivating the inclusion of a zero annotation to indi-
cate “not used”. Section C.2 shows that incorporating the strict primitive seq into the
language necessitates a distinction between the notions of demand and use, which
have so far been considered identical. Having completed these explorations, in Sec-
tion C.3 we present a language and an operational semantics to define the meaning
of demand and use in this new context. Finally, Section C.4 sketches a demand/use
type system for this language. We discuss the results of the appendix in Section C.5,
and conclude with related work in Section C.6.

251
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C.1 Absence, usage, and zero usage

Absence analysis (discovering whether an argument or a thunk is not used) clearly
requires a 0-annotation, denoting “not used”. Consider the following expression:

letrec a = e1

b = e2

in
letrec p1 = λx . λy . x
in
(p1 a b)

The usage type system so far described (�2, Chapter 5) observes that a and b each
occur once in their scope and assumes they will therefore be demanded at most once,
annotating them with 1. In fact, however, p1 ignores its second argument, and so b’s
thunk is not used at all. It would therefore be safe to avoid passing b to p1 and to
omit binding b entirely, thus:

�

letrec a = e1

in
letrec p1 = λx . x
in
(p1 a)

This optimisation is called the absent argument transformation, and to enable us to
discover opportunities for it we must have an annotation 0 that may be inferred for
absent arguments like y and dead bindings like b. While such code is not often writ-
ten directly by programmers, it occurs frequently in the output of the worker/wrapper
transformation which is used in GHC to exploit the results of strictness analysis, as
discussed in [PJS98a, §6.4].

But it is not only the absent argument transformation that can benefit from a 0-
annotation. The following extension of the example above shows that a 0-annotation
can also improve the accuracy of simple update avoidance:

letrec a = e1

b = e2

t = Pair a b
in
letrec p1 = λt . case t of Pair x y → x

p2 = λt . case t of Pair x y → y
in
(p1 t) + (p2 t)

Now t occurs twice, but its components a and b are each used only once. To infer
this (and avoid updating their thunks) we must sum the uses arising from the two
function applications, where p1 uses the first component of its argument once and
the second zero times, and p2 uses the first component of its argument zero times
and the second once. With a distinct annotation 0 the sum is (1, 0) ⊕ (0, 1) = (1, 1),
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but with only 1 and ω annotations, the sum is (1, 1) ⊕ (1, 1) = (ω, ω). Therefore to
infer accurate annotations for such examples we must allow a zero annotation.

As an aside, we observe from these examples that in the presence of zero-use
arguments we can no longer rely on a purely syntactic occurrence function (occur,
Section 3.3.3): the number of syntactic occurrences is no longer even a lower bound
on the number of uses. Instead, we incorporate explicit linear-style environment
manipulation in our well-typing rules (Section C.4; see also Section 3.9.7).

C.2 Strictness and the demand/use distinction

Strictness analysis determines whether a function’s arguments will certainly be used,
and may therefore be evaluated eagerly before the call. To perform this so-called
call-by-value optimisation as a source-to-source transformation, the language must
provide a means of forcing evaluation. This may be either a strict-let construct, or
the seq primitive. We here follow Haskell [PH+96] and use seq.

The binary primitive seq strictly evaluates its first argument to weak head normal
form, ignores the result, and returns its second argument. This introduces the possi-
bility that a function-valued variable may be demanded but not used.1 Consider this
fragment:

letrec f = (letrec z = e1 in λx . x + z)
in seq f (f 10)

On execution, this first allocates a thunk for f . It then evaluates the seq, which begins
by evaluating f . This allocates a thunk for z and returns the function (λx . x + z),
updating the thunk for f with the function. The returned function is ignored, and
(f 10) is evaluated. Once again f is required; this time no allocation is done and the
function is immediately applied to 10. This evaluation requires the value of z; after
the sum is computed the result is returned.

Notice that the value of f is demanded twice, but even though z is free in this
function, its value is demanded only once; the thunk for f must be annotated !, but
that for z may safely be annotated •. This is because even though f is demanded
twice, it is used only once. To obtain accurate results in the presence of seq, it is
necessary to distinguish between demand and use in the semantics. We see this
clearly when considering the strictness of the functions f1 and f2 in the following:

f1 = λx . letrec g = λy . x + y in (g 3)
f2 = λx . letrec g = λy . x + y in (seq g 3)

In both cases the value of g is demanded once, but whereas in f1 the function is also
used (applied) once, demanding the free variable x once and making f1 strict, in f2

the function is not used and x is not demanded, and so f2 is non-strict. Crucially, seq
demands its first argument but does not use it; without the distinction between the
two f2 would be annotated incorrectly, either marking f2 strict instead of non-strict

1This is certainly possible for non-functions also, but whereas only with seq are λx . ⊥ and ⊥
distinguishable, K ⊥ and ⊥ are already distinguishable in FLX, with case. Thus for us the interesting
behaviour of seq relates chiefly to functions.
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or marking g dead when it is live. Both would lead to incorrect transformations and
runtime errors.2

In summary,

• The concept demand applies to heap bindings (and function arguments); a heap
binding for x is demanded whenever x appears in evaluation position during
evaluation; its value is looked up in the heap at this point.

• The concept use applies to values (and generalises to expressions, where it
applies to the ultimate value of the expression). A value may be either a literal,
an abstraction or a constructed value. A literal is used when it is given as
argument to a primop or conditional. An abstraction is used when it is applied;
i.e., by β-reduction. A constructed value is used when it is deconstructed; i.e.,
by case-reduction.

We are primarily interested in demand: if we know a certain heap binding is used in
a certain way we may optimise its generation and behaviour. But as we have seen,
in order to calculate this we must track use also. And as a bonus, knowing the use
facilitates certain program transformations too: for example, we may safely float a
binding through a used-once lambda (Section 1.3.4). Thus calculating both is both
useful and necessary. Below, in place of simple usage annotations κ we use pairs of
demand δ and use ν annotations.

C.3 An operational semantics

We have now developed some intuition for what is required to handle zero usage:

• an expanded annotation domain including at least zero as well as 1, ω;

• explicit environment management rather than syntactic occurrence counting;

• a distinction between demand and use.

We may therefore proceed to give an consistent and intuitive operational semantics.

C.3.1 The language

We begin by modifying the full language FLX, which we defined in Section 5.1.4, to
incorporate the new usage annotations. Figure C.1 gives the new language, which

2Although it yields a convenient example, seq is not in fact necessary to demonstrate the distinction:
the pathological case of short-circuit letrec bindings exposes related behaviour. Consider the program
fragment:

letrec f = g
g = (letrec z = e1 in λx . x + z)

in (f 3) + (f 4)

Here the function g will be demanded only once (after the first application, f will be updated with its
value), but its value will be used twice. Thus f and z must be annotated !, but g may be annotated •.
Such short-circuit bindings are pathological, however, because they will be quickly removed by the
simplifier in most cases.
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Figure C.1 The extended-annotated executable language ELX.

Terms M ::= A atom
| nν literal (integer)
| Kν

i Ak constructor
| λνx . M term abstraction
| M A term application
| case M of Ki xij →Mi case expression
| M1 + M2 primop (addition)
| addn M partially-saturated primop
| if0 M then M1 else M2 conditional
| seq M1 M2 strict sequencing
| letrec xi =δi,νi Mi in M recursive let binding

Atoms A ::= x term variable

Demands δ ∈ D permitted demand

Uses ν ∈ D permitted use

we call ELX (Extended eXecutable Language). We consider the uninstrumented
language directly, without types, to avoid clutter and because these are irrelevant to
our purposes here.

The primitive strict sequencing operation seq M1 M2 evaluates M1 to a value,
ignores it, and returns the result of evaluating M2.

Demand annotations are denoted δ and usage annotations ν. Both are taken
from an annotation domain D to be defined below (Section C.3.2), and together
they replace the update flags χ ∈ {•, !}.

Demands appear only on bindings, because they only apply to thunks. Usages
appear on all values, unlike FLX where they appear on abstractions only, so that all
usages may be tracked. Usages also appear on bindings; these apply to the values of
the bindings. The annotations describe the demand and/or use that the annotated
object permits; the operational semantics will be arranged so that an attempt to
demand/use the object other than as permitted by the annotation is an error.

Otherwise the language is identical to FLX.

C.3.2 The annotation domain and operations

The most immediately obvious domain for our annotations is P(N). Usage and
demand operationally occur a natural number of times, and we take the powerset to
handle the (static) nondeterminism introduced by conditional and case expressions.
An annotation x ∈P(N) permits use m times iff m ∈ x. Infinite subsets are required
to annotate recursive functions.
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Figure C.2 The annotation domain and operations.

Symbol Name Definition Intended meaning: permits. . .
D P(N) (annotation domain)
⊥ bottom N any use
� zero {0} exactly zero use
� one {1} exactly one use
� top ∅ (overconstrained, impossible)

x⊕ y plus {m + n | m ∈ x ∧ n ∈ y} x then y
x( y minus

⋂
n∈y{m− n | m ∈ x ∧ m ≥ n} remaining of x after y

x ≤ y permits x ⊇ y (true if x permits exact use y)
−−−−−−−−−−−−−−−−−−−−−−
x · y times {

∑m
i=1 ni | m ∈ x ∧ ∀i . ni ∈ y} x copies of y

x ∧ y and x ∪ y x and y
x � y guard

⋃
m∈x(m = 0 ? {0} : y) � if x ≤ � and

y if x permits non-zero

This is not the only possible annotation domain, however, and so we present the
annotations and the operations over them as an algebra, with P(N) as one model.
We do not give the equations, and so the algebra itself is only sketched; the model is
however fully defined. The operational semantics and type system are defined over
this algebra, allowing the model to be changed without affecting correctness.

The constants and operations are given in Figure C.2, along with the definitions
for the P(N) model. Operations below the dashed line are required only for the
well-typing rules, and are not used in the operational semantics. We now consider
the operations in detail.

• D,⊥, �, �,� are straightforward.

• Addition x⊕ y permits any possible use in x followed by any possible use in y.
It is modelled by a summed cross-product of possible uses from x and y.

• Subtraction x( y denotes the number of uses that are certainly permitted of x
after y uses have occurred. It is modelled by subtracting each use permitted
by y from x, and then taking the intersection of the resulting sets.

• The relation x ≤ y holds if x permits use y, that is, if every use in y is also in x.
It is modelled by the superset relation.

Note that “x ≤ y” is not the same as “x(y is not equal to �”; the former means
that (exactly y and no more) is permitted, whereas the latter means that (y and
possibly some more use) is permitted.

• Product x · y denotes a sum of x copies of use y. Notice that this is in general
asymmetric.
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• Conjunction x ∧ y permits use x and permits use y.3 This is the union of the
possibilities offered by x and y.

• Guard x � y permits zero use if x permits zero use, and permits use y if x
permits non-zero use.

The algebra admits models other than P(N). For example, the system of the rest
of the thesis may be obtained by setting D = {1, ω} and making the obvious remain-
ing identifications: ⊥ = ω, � = � = 1, etc..4 � has no model in this domain, but
since it never occurs in well-typed or well-annotated terms, this causes no difficulty
(it may be added without affecting the system of the rest of the thesis). The defini-
tion of the operations for {1, ω} is left as an easy exercise. Notice that ≤ is just the
familiar primitive ordering ω ≤ 1 from Section 3.3.5.

Another possible model is the Bierman lattice [Bie91, Bie92], which represents
affine (used at most once), strict (used at least once), and absent (not used) usage
in a single annotation domain.

� – overconstrained

= 0
affine

= 1 > 1
strict

≤ 1 �= 1 ≥ 1

⊥ – not known/no information

The Bierman lattice is attractive from an implementation point of view because it
is small and finite (only seven non-� annotations), and yet it distinguishes all the
useful usage-like behaviour of a binding or expression. One hope for the future of
our work is that a Bierman-lattice-based usage analysis will replace GHC’s present
backwards strictness/absence analyser.

C.3.3 The operational semantics

The operational semantics is based on the FLX semantics of earlier chapters, but we
replace the coarse {•, !} distinction with annotations from D.

For the purposes of the operational semantics, we set up syntactic categories as
before, as shown in Figure C.3 (cf. Figures 2.3 and 5.3). The new primitive seq
introduces a new shallow evaluation context seq [·] M , which defers the second
argument while evaluating the first. Heap bindings and update frames take demand
and usage annotations; the annotations on update frames are those that will apply

3Dually, this could have been called “or” because it permits use x or y; we call it “and” because the
decision is made by the user, not by the annotation. Perhaps x & y (linear “with”) would be a better
notation.

4The operational semantics (Figure C.4) must be changed slightly to omit pushing an update frame
if the allowable demand or use would be �.
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Figure C.3 Syntactic categories for the ELX operational semantics.

Terms M ::= R[M ]
| letrec xi =δi,νi Mi in M
| A
| V ν

Shallow R ::= [·] A

evaluation | case [·] of Ki xij →Mi

contexts | [·] + M
| addn [·]
| if0 [·] then M1 else M2

| seq [·] M

Atoms A := x

Values V ν ::= nν

| Kν
i Ak

| λνx . M

Demands δ ∈ D

Uses ν ∈ D

Configurations C ::= 〈H; M ; S 〉 where dom(H) �dom(S)

Heaps H ::= ∅
| H, x =δ,ν M where x /∈ dom(H)

Stacks S := ε
| R, S
| #δ,νx, S where x /∈ dom(S)
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to the updated binding (as distinct from those that applied to the binding before
lookup). The remainder should be entirely unsurprising.

The operational semantics itself appears in Figure C.4. It consists of a transi-
tion relation C � C ′ from configurations to configurations, defined in terms of a
primitive transition relation R[V ] �δ M which performs the basic computations.
To capture ill-annotated terms, we replace the failure configuration sets BadBinding
and BadValue with the new configuration sets BadDemand and BadUsage, which
denote an incorrect demand annotation and an incorrect usage annotation, respec-
tively.5 The primitive transition relation is unchanged from previously, apart from
the addition of the obvious rule for seq. The new notation ⊥ is used instead of ω
to annotate the result of a primop application (�-PrimOp-R). Of the transition
rules, (�-Unwind) and (�-LetRec) are unchanged. The heart of the demand-
and-use story is contained in the three rules (�-Lookup) (combining the former
(�-Var-Once) and (�-Var-Many)), (�-Update), and (�-Reduce). We con-
sider these one at a time. Recall that in a configuration 〈H; M ; S 〉 the term M is
called the control (Section 2.4.1).

• Rule (�-Lookup) describes what happens when a binding is demanded. The
variable x is used to look up the binding in the heap, and its right-hand side is
placed in the control. Simultaneously, an update frame is pushed on the stack
which will reinstate the binding once it is reduced to a value. The demand and
usage annotations on the binding are updated by computing the new values
and placing these on the update frame.

It is the looking-up of a binding that constitutes a demand; thus we subtract
exactly one demand from the permitted demand δ of the binding: δ(�, where
� is the “exactly one” element of D.

We must also remove the usage of the value retrieved from the usage anno-
tation ν. The value has been placed in the control of the configuration, and
so we may determine its usage by examining the stack. This is the purpose
of the auxiliary function use(S): if a shallow evaluation context R is on top,
the usage is given by use(R) and the remainder of the stack is irrelevant; if
an update frame is on top then the usage it will allow to the heap binding is
added and the usage of the remainder of the stack determined recursively; and
if the stack is empty, no usage is made at all.6 The usage that will be made of
the value is removed from the initial permitted usage ν to give the remaining
usage permitted to the updated binding.

5Value, BlackHole, and Wrong are just as in Section 2.4.3, mutatis mutandis. The remaining stuck
configurations are defined as follows. If a configuration C′ is of the form 〈H, x =δ,ν M ; x; S 〉 where
δ � � = �, or of the form 〈xi =δi,νi Mi; V ν ; ε 〉 where it is not the case that for all i, δi ≤ �, then
C′ ∈ BadDemand (this indicates an incorrect demand annotation). If a configuration C′ is of the form
〈H, x =δ,ν M ; x; S 〉 where ν�use(S) = �, or of the form 〈H; V ν1 ; #δ2,ν2x, S 〉 where ν1�ν2 = �,
or of the form 〈H; V ν ; R, S 〉 where ¬(ν ≤ use(R)), or of the form 〈xi =δi,νi Mi; V ν ; ε 〉 where
either ¬(ν ≤ �) or it is not the case that for all i, νi ≤ �, then C′ ∈ BadUsage (this indicates an
incorrect usage annotation).

6It is assumed that the toplevel makes no use of the final result of a program; this is reasonable
because a realistic program will communicate its result to the outside world by means of side-effects
beyond the scope of this semantics.
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Figure C.4 The operational semantics of ELX with auxiliary functions use(S),
use(R).

〈H; M ; S 〉� 〈H; M ; S 〉

〈H; R[M ]; S 〉 � 〈H; M ; R, S 〉 (�-Unwind)

〈H; V ν ; R, S 〉 � 〈H; M ; S 〉 (�-Reduce)
if ν ≤ use(R) and R[V ν ] �δ M

〈H; letrec xi =δi,νi Mi in M ; S 〉 (�-LetRec)
� 〈H, yi =δi,νi Mi[φ]; M [φ]; S 〉

where yi � (dom(H) ∪ dom(S))
φ = [yi/xi

]
〈H, x =δ,ν M ; x; S 〉 � 〈H; M ; #δ�,νuse(S)x, S 〉 (�-Lookup)

if δ ( � �= � and ν ( use(S) �= �
〈H; V ν1 ; #δ2,ν2x, S 〉 � 〈H, x =δ2,ν2 V ν2 ; V ν1ν2 ; S 〉 (�-Update)

if ν1 ( ν2 �= �

R[V ν ] �δ M

(λνx . M) A �δ M [A/x] (�δ-App)
case Kν

k Aj of Ki xij →Mi �δ Mk[Aj/xkj
] (�δ-Case)

nν + M �δ addn M (�δ-PrimOp-L)
addn1 n2

ν �δ n3
⊥ if n3 = n1 + n2 (�δ-PrimOp-R)

if0 nν then M1 else M2 �δ Mi if i = (n = 0) ? 1 : 2 (�δ-If0)
seq V ν M �δ M (�δ-Seq)

use(S) = ν

use(#δ,νx, S) = ν ⊕ use(S)
use(R, S) = use(R)
use(ε) = �

use(R) = ν

use([·] A) = �

use(case [·] of Ki xij →Mi) = �

use([·] + M) = �

use(addn [·]) = �

use(if0 [·] then M1 else M2) = �

use(seq [·] M) = �
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Either of these subtractions may fail; if the demand or use annotations δ, ν
do not permit the demand/use attempted then the rule may not fire, and the
configuration is left in a BadDemand or BadUsage state respectively.

This is why we do not need to remove used-once bindings after they have been
used; instead they remain, but have δ = � and are therefore unusable.

• Rule (�-Update) always fires with a value in the control, and all values have
a usage annotation. The update frame records the usage that will be permitted
by the new binding. This usage is subtracted from the permitted usage of the
value in the control, leaving the remaining usage. The demand of the new
binding is simply taken from the update frame.

Again, the subtraction may fail, leaving the configuration in a BadUsage state.

• Rule (�-Reduce) performs a basic computation by using the primitive tran-
sition relation �δ. The relevant usage checking is performed by (�-Reduce)
rather than by the �δ rules.

The primitive transition will make usage use(R) of the value, and consume it.
Thus the value must permit this usage. This requires ν ≤ use(R) rather than
ν ( use(R) �= �, because there will be no further uses (we could write instead
(ν ( use(R)) ≤ �). If this test fails, the configuration is left in a BadUsage state
to indicate an incorrect usage annotation.

There is a further termination condition:

• If the configuration terminates in a state 〈xi =δi,νi Mi; V ν ; ε 〉, then we must
have ν ≤ � and for all i, δi ≤ � and νi ≤ �; if this holds we are in Value,
otherwise we are in BadDemand or BadUsage as appropriate.

C.3.4 Example of behaviour

We now work through an example evaluation, demonstrating the way in which exact
uses and demands of each thunk are tracked. The example is not short, but we work
through it in some detail in order to demonstrate clearly how the model works, and
to convince the reader of its intuitive correctness.

We take a program based on the example of Section C.1 but using a pair type
defined by data P α = MkP α α. We write � for the demand/use annotation �⊕ �.

letrec a =�,� e1

b =�,� e2

q =�,� (MkP a b)�

in
letrec fst =⊥,⊥ λ⊥p . case p of MkP x y → x

snd =⊥,⊥ λ⊥p . case p of MkP x y → y
in
fst q + snd q

The annotations require that a and b are each demanded and used exactly once,
that q is demanded and used exactly twice, and that fst and snd may be demanded
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and/or used any number of times. We abbreviate the right-hand side of fst, λ⊥p .
case p of MkP x y → x, by F , and λ⊥p . case p of MkP x y → y by S.

We begin after the five bindings are placed on the heap by (�-LetRec).

〈 a =�,� e1, b =�,� e2, q =�,� (MkP a b)�, fst =⊥,⊥ F, snd =⊥,⊥ S;
fst q + snd q;
ε 〉

�2 { (�-Unwind), (�-Unwind) }

〈 a =�,� e1, b =�,� e2, q =�,� (MkP a b)�, fst =⊥,⊥ F, snd =⊥,⊥ S;
fst;
[·] q, [·] + snd q 〉

� { (�-Lookup); use(S) = �, ⊥( � = ⊥, ⊥( � = ⊥. }

〈 a =�,� e1, b =�,� e2, q =�,� (MkP a b)�, snd =⊥,⊥ S;
λ⊥p . case p of MkP x y → x;
#⊥,⊥fst, [·] q, [·] + snd q 〉

� { (�-Update); ⊥(⊥ = ⊥ }

〈 a =�,� e1, b =�,� e2, q =�,� (MkP a b)�, fst =⊥,⊥ F, snd =⊥,⊥ S;
λ⊥p . case p of MkP x y → x;
[·] q, [·] + snd q 〉

Since F is already a value, the lookup is immediately followed by a matching
update. The demand made by this is of course exactly one; the use is also one in this
case because on top of the stack is an application frame, and this makes one use of
the function in the control. Subtracting one demand and one use from ⊥,⊥ leaves
the annotations untouched, both on the binding and on the abstraction value.

� { (�-Reduce) by (�δ-App); use([·] q) = � and ⊥ ≤ � }

〈 a =�,� e1, b =�,� e2, q =�,� (MkP a b)�, fst =⊥,⊥ F, snd =⊥,⊥ S;
case q of MkP x y → x;
[·] + snd q 〉

The application can go ahead because the application frame [·] q on the stack
makes exactly one use of the function in the control, and the function permits use ⊥,
which strictly permits one usage.

� { (�-Unwind) }

〈 a =�,� e1, b =�,� e2, q =�,� (MkP a b)�, fst =⊥,⊥ F, snd =⊥,⊥ S;
q;
case [·] of MkP x y → x, [·] + snd q 〉
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� { (�-Lookup); use(S) = �, �( � = �, �( � = �. }

〈 a =�,� e1, b =�,� e2, fst =⊥,⊥ F, snd =⊥,⊥ S;
(MkP a b)�;
#�,�q, case [·] of MkP x y → x, [·] + snd q 〉

The lookup of q removes one demand and one use; this time the use will be made
by a case frame. Notice all the permitted uses are left on the expression in the control
until it is reduced to a value; once this is done (�-Update) will remove those uses
that are to remain on the binding.

� { (�-Update); �( � = �. }

〈 a =�,� e1, b =�,� e2, q =�,� (MkP a b)�, fst =⊥,⊥ F, snd =⊥,⊥ S;
(MkP a b)�;
case [·] of MkP x y → x, [·] + snd q 〉

In this case, the expression was already a value. We are now left with just one
use on the value in the control, exactly that required by the stack. The remaining
use is on the value in the binding. Notice that for this to work, we require that
∀x, y . x( (x( y) ≤ y.

� { (�-Reduce) by (�δ-Case); use(case [·] of MkP x y → x) = � and � ≤ � }

〈 a =�,� e1, b =�,� e2, q =�,� (MkP a b)�, fst =⊥,⊥ F, snd =⊥,⊥ S;
a;
[·] + snd q 〉

� { (�-Lookup); use(S) = �, �( � = �, �( � = �. }

〈 b =�,� e2, q =�,� (MkP a b)�, fst =⊥,⊥ F, snd =⊥,⊥ S;
e1;
#�,�a, [·] + snd q 〉

�∗ { evaluate e1, yielding n1 }

〈 b =�,� e2, q =�,� (MkP a b)�, fst =⊥,⊥ F, snd =⊥,⊥ S;
n1

�;
#�,�a, [·] + snd q 〉

� { (�-Update); �( � = �. }

〈 a =�,� n1
�, b =�,� e2, q =�,� (MkP a b)�, fst =⊥,⊥ F, snd =⊥,⊥ S;

n1
�;

[·] + snd q 〉

This lookup and update uses a up completely, leaving no permitted demands or
uses. Any further attempts will get stuck, indicating an incorrect annotation.
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�∗ { and do the same for b }

〈 a =�,� n1
�, b =�,� n2

�, q =�,� (MkP a b)�, fst =⊥,⊥ F, snd =⊥,⊥ S;
n2

�;
addn1 [·] 〉

� { (�-Reduce) by (�δ-PrimOp-R); use(addn1) = � and � ≤ � }

〈 a =�,� n1
�, b =�,� n2

�, q =�,� (MkP a b)�, fst =⊥,⊥ F, snd =⊥,⊥ S;
n3

⊥;
ε 〉

� { In Value, because ⊥ ≤ � and δi, νi ≤ �. }

During execution, we verify that none of the annotations are too small: if we
attempt to demand a thunk that has already had all its demands used up, it is an
error. Once the program has terminated, however, we must still verify that none of
the annotations were too large: the value in the control must permit zero use, and all
the thunk annotations must permit both zero demand and zero use. This is indeed
the case here, and so the annotations on the original program were correct.

C.4 A type system

We now wish to design a type system that is sound with respect to this operational
semantics, and captures as much of it as possible. We design a monomorphic type
system for now, leaving the extension to simple polymorphism (or otherwise) to
future work.

C.4.1 The type language

The new term and type languages are presented in Figure C.5.7 There are few
changes to the term language. Lambda abstractions are decorated with the type of
their argument. letrec bindings are decorated with their types; the demand and use
of the binding are simply the topmost annotations from this type and so are omitted.
For algebraic data types, constructors take vectors of usage arguments νl and type
arguments αk as well as their component value arguments, and case expressions are
annotated with the type of their scrutinee; algebraic data types are discussed further
in Section C.4.4.

The type language is more interesting. We have three kinds of type:

• τ -types are unannotated;

• σ-types have a usage annotation ν, and are used to type expressions and values,
which are simply used; and

7As we do not intend to give an inference algorithm or polymorphic type system here, we omit the
former distinction (Section 3.2.2) between operational-semantic- and type- annotations. For present
purposes, the two are identical, and are both denoted by δ for demands and ν for uses.
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Figure C.5 The typed language EL1.

Terms e ::= a atom
| nν literal (integer)
| Kν

i νl τk ak constructor
| λνx : ρ . e term abstraction
| e a term application
| case e : T νl τk of Ki xij → ei case expression
| e1 + e2 primop (addition)
| addn e partially-saturated primop
| if0 e then e1 else e2 conditional
| seq e1 e2 strict sequencing
| letrec xi : ρi = ei in e recursive let binding

Atoms a ::= x term variable

τ -types τ ::= ρ→ σ function type
| Int primitive type (integer)
| T νl τk algebraic data type

σ-types σ ::= τν value type

ρ-types ρ ::= σδ thunk type
(also written τ δ,ν)

Demands δ ∈ D permitted demand

Uses ν ∈ D permitted use

Decls T : data T ul αk = Ki �ij data type declaration

The restricted thunk type � is defined in the text.
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• ρ-types have both a usage annotation ν and a demand annotation δ, and are
used to type thunks and variables, which are both used and demanded.

The kinding of the arrow constructor, namely ρ → σ, may be surprising. Since
we work in A-normal form (Section 2.2), a function argument is always a variable.
Thus it is meaningful to talk about the number of times the argument is demanded,
and to record it in the type. The result of a function application however is a value,
and demand is irrelevant for values.

Demands and uses are both taken from the same domain D. Algebraic data
type demand/use parameters are denoted ν by convention. To simplify their inter-
pretation, the component types �ij in a data type declaration are restricted: usage
variables ul may occur only as topmost annotations or usage arguments to embedded
data type constructors; they may not annotate arguments or results of arrow types,
nor may they appear inside type arguments of embedded data type constructors.
Section C.4.4 elaborates.

C.4.2 Lifting the annotation operations to types and environments

For use in the well-typing rules, we lift some of the annotation operations of Fig-
ure C.2 to types and then to environments. The liftings to ρ-types are as follows:

(ρ→ σ)δ,ν ⊕ (ρ→ σ)δ′,ν′
= (ρ→ σ)δ⊕δ′,ν⊕ν′

Intδ,ν ⊕ Intδ
′,ν′

= Intδ⊕δ′,ν⊕ν′

(ρ→ σ)δ,ν ∧ (ρ→ σ)δ′,ν′
= (ρ→ σ)δ∧δ′,ν∧ν′

Intδ,ν ∧ Intδ
′,ν′

= Intδ∧δ′,ν∧ν′

ν · (ρ→ σ)δ′,ν′
= (ρ→ σ)ν·δ′,ν·ν′

ν · Intδ
′,ν′

= Intν·δ
′,ν·ν′

ν � (ρ→ σ)δ′,ν′
= (ρ→ σ)ν�δ′,ν�ν′

ν � Intδ
′,ν′

= Intν�δ′,ν�ν′

(T νl τk)δ,ν ⊕ (T ν ′
l τk)δ′,ν′

= (T (νl ⊕ ν ′
l) τk)δ⊕δ′,ν⊕ν′

(T νl τk)δ,ν ∧ (T ν ′
l τk)δ′,ν′

= (T (νl ∧ ν ′
l) τk)δ∧δ′,ν∧ν′

ν · (T ν ′
l τk)δ′,ν′

= (T (ν · ν ′
l) τk)ν·δ′,ν·ν′

ν � (T ν ′
l τk)δ′,ν′

= (T (ν � ν ′
l) τk)ν�δ′,ν�ν′

The operations are lifted by applying them pointwise to topmost annotations and
usage arguments of type constructors, but not to functions or type arguments of
type constructors.8 Usage arguments of type constructors must be included to count
uses of individual components, as in the example from Section C.3.4. Section C.4.4
discusses the restrictions to data type declarations that allow us to define ⊕ etc. so
simply on type constructors. Liftings to σ-types simply omit the topmost δ and δ′

annotations.
We further lift these operations to environments: to compute Γ1 ⊕ Γ2, where

Γ1 = (x1 : ρ1, x2 : ρ2, . . . ) and Γ2 = (x′
1 : ρ′1, x

′
2 : ρ′2, . . . ), we add to Γ1 pairs of the

form x′
i : τ ′

i
�,� for each x′

i not already appearing in Γ1, and similarly for Γ2. We then

8Possibly ∧ could be redefined to descend inside function types, using ∧ at positive positions and
its dual ∨ at negative positions.



C.4. A TYPE SYSTEM 267

perform ⊕ pointwise on each variable. For example,

(x : Intδx,νx , y : Intδy ,νy)⊕ (x : Intδ
′
x,ν′

x , z : Intδz ,νz)

= (x : (Intδx,νx ⊕ Intδ
′
x,ν′

x), y : (Intδy ,νy ⊕ Int�,�), z : (Int�,� ⊕ Intδz ,νz))

= (x : Int(δx⊕δ′x),(νx⊕ν′
x), y : Int(δy⊕�),(νy⊕�), z : Int(�⊕δz),(�⊕νz))

= (x : Int(δx⊕δ′x),(νx⊕ν′
x), y : Intδy ,νy , z : Intδz ,νz)

We do the same for Γ1 ∧ Γ2; missing variables become conjunctions with zero use
and demand. ν · Γ and ν � Γ are simply computed pointwise on the variable types.

C.4.3 Well-typing rules

The well-typing rules for the language are given in Figure C.6. In the judgement form
Γ �E e : σ, the variables in the environment have ρ-types, since they denote thunks,
and the expression has a σ-type, since it is being evaluated to a value. As before,
environments are unordered; in addition, variables that are neither demanded nor
used may be arbitrarily added or removed. Thus (Γ1, Γ2) = (Γ2, Γ1, x : Int�,�), if
x /∈ dom(Γ1, Γ2).

Environments are treated linearly (as suggested in Section 3.9.7): the types in
the environment describe the exact uses and demands made in evaluating the ex-
pression to weak head normal form; where two environments must be combined
(as in (�E-PrimOp)), the demands and uses are added together.9 This replaces the
previous method of counting demands by searching for syntactic occurrences in the
terms with a principled, logical approach.

We now consider each rule in turn.
Using a variable demands it exactly once from the environment, and we encode

this in rule (�E-Var). Using a literal requires nothing from the environment, and
the resulting value may be used as many times as specified in the annotation.

The conditional if0 e then e1 else e2, rule (�E-If0), uses the value of the condition
exactly once, and then returns the value either of e1 or e2. The condition is always
computed, and so the environment required for this is always required by the con-
ditional; but only one branch is computed, and so we compute the and of the two
environments, yielding an environment that permits both uses.

Evaluating a primitive operation demands each argument exactly once, and yields
a result that may be used arbitrarily as indicated by ⊥.

Rule (�E-Abs) records the demands and uses ρ made of the argument x while
evaluating the body e, placing this information in the type and decorating the binder.
Demands and uses made of other variables during evaluation will be repeated every
time the function is used, and so the product operator · is used to multiply the de-
mands and uses in Γ by the use of the abstraction. Note specifically that if the
function is never used and ν = �, the demands and uses in Γ will never occur.

Rule (�E-App) depends on the A-normal form presentation; an argument to a
function is always a variable, and its demand is taken from the argument type ρ of

9That is, in the parlance of linear logic, such operators are “multiplicative”.
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Figure C.6 Well-typing rules for EL1 (cf. Figure 3.2.
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(�E-Var)
x : τ�,ν �E x : τν

(�E-Lit)
∅ �E nν : Intν

Γ �E e : Int� Γ1 �E e1 : σ Γ2 �E e2 : σ
(�E-If0)

Γ⊕ (Γ1 ∧ Γ2) �E if0 e then e1 else e2 : σ

Γ1 �E e1 : Int� Γ2 �E e2 : Int�
(�E-PrimOp)

Γ1 ⊕ Γ2 �E e1 + e2 : Int⊥
Γ �E e : Int�

(�E-PrimOp-R)
Γ �E addn e : Int⊥

Γ, x : ρ �E e : σ
(�E-Abs)

ν · Γ �E λνx : ρ . e : (ρ→ σ)ν

Γ �E e : (ρ→ σ)�
(�E-App)

Γ, x : ρ �E e x : σ

Γi, xj : σij
δij �E ei : σi for all i

Γ0, xj : σ0j
δ0j �E e : σ

σi
δi = σ0i

δ0i ⊕ (
⊕

j δj � σji
δji) for all i

(�E-LetRec)
Γ0 ⊕ (

⊕
j(δj � Γj)) �E letrec xi : σi

δi = ei in e : σ

Γ1 �E e1 : τ1
� Γ2 �E e2 : σ2

(�E-Seq)
Γ1 ⊕ Γ2 �E seq e1 e2 : σ2

Γ1 �E e : σ
(�E-Sub-L)

Γ1 ∧ Γ2 �E e : σ

Γ �E e : σ1 ∧ σ2
(�E-Sub-R)

Γ �E e : σ1

ρ◦ij = ρij [νl/ul
, τk/αk

] all j
(�E-Con)⊕

j xj : ρ◦ij �E Kν
i νl τk xj : (T νl τk)ν

Γ0 �E e : (T νl τk)�

ρ◦ij = ρij [νl/ul
, τk/αk

] all i, j

Γi, xij : ρ◦ij �E ei : σ all i
(�E-Case)

Γ0 ⊕ (∧i Γi) �E case e : T νl τk of Ki xij → ei : σ
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the function.10 The more obvious rule
Γ1 �E e : (σ1

ν1 → σ2)� Γ2 �E x : σ1
(�E-App-Wrong)

Γ1 ⊕ Γ2 �E e x : σ2

does not work because it always demands x exactly once, whatever the value of ν1.
Sequencing evaluates but does not use the first argument, and then evaluates the

second; the rule is obvious.
There are two forms of subsumption. If e may be evaluated to type σ while

making use of environment Γ1, then the same expression may be evaluated to the
same type while making use of environment Γ1 ∧ Γ2, a more general environment
which both permits use Γ1 and permits use Γ2. This is rule (�E-Sub-L). Further, if e
may be evaluated to type σ1 ∧ σ2 while making use of environment Γ, then e may be
evaluated to type σ1, a more specific type. This is rule (�E-Sub-R).

Rule (�E-Sub-L) is required in order to preserve subject reduction. Observe that
(in the P(N) model):

y : τ{0,1},{0,1}, z : τ{0,1},{0,1} �E if0 0 then y else z : τ{1},{1}

reduces to y, and (�E-Var) states that

y : τ{1},{1} �E y : τ{1}

In order to type y in the same context, we must use (�E-Sub-L), ∧-ing the context
z : τ{1},{1} to give

y : τ{0,1},{0,1}, z : τ{0,1},{0,1} �E y : τ{1},{1}

as expected.
Recursive letrec bindings are handled by the (�E-LetRec) rule. For each bind-

ing i, the demands and uses it makes of the environment and of each other binding
in the recursive group are recorded in Γi and σij

δij respectively. Similar information
is recorded for the body in Γ0 and σ0j

δ0j . The results are then combined to yield
an overall environment demand/use and the overall demands/uses of each binding.
This combination makes critical use of the guard operator � in order to model the
laziness of the bindings: only if a binding j is actually demanded are its environment
demands Γj and binding demands and uses σji

δji included in the combination. The
equation is recursive because the expression is recursive; in the non-recursive case
all the σij

δij are τ�,� and thus for all i, σi
δi = σ0i

δ0i; however, the environments are
still guarded by their demands.

These rules are very similar to those of FLIX1, replacing 1 with � and ω with⊥. In
(�E-Abs), the use of · has the same effect as the |Γ(y)| ≤ κ constraint in (�1-Abs):
if the abstraction is used 1, the constraint has no effect (just as � · ν = ν); if the
abstraction is used ω, the constraint forces all annotations in the environment to ω
(just as ⊥ · ν = ⊥). The side condition in (�E-LetRec) has already been explained
in footnote 9, Section 3.3.6. The subtyping relation in (�1-Sub) has been subsumed
by conjunction ∧, except that this does not descend into the type (perhaps it should;
adding this would not be difficult for ∧, although its meaning for ⊕ is less clear!).
The remaining rules are identical.

10Even though the argument’s type is taken directly from Γ, subsumption may still be applied. One
must simply apply (�E-Sub-L) below it, rather than (�E-Sub-R) above it.
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C.4.4 Data structures

For data structures we use essentially the same scheme as Chapter 5. There are some
crucial differences, however.

Firstly, in Chapter 5 every occurrence of a variable is at the same type; specifically,
if a data structure is bound then every use of that data structure is at the same type.
This is no longer the case in the system of the present appendix; instead, the types of
each occurrence are added together to determine the type at the binding site. This
means, inter alia, that in (�E-Case) the topmost annotation of the scrutinee carries
no useful information; it is simply always �. Thus we cannot easily pass the binding
site’s topmost annotation to recursive instances as we did before.

We resolve this by ignoring the topmost annotation altogether; instead we must
use the scheme rejected in Section 5.4.5.1, using an extra usage argument for the
usage of the recursive instance.

The annotations on the types of the components of a datum when it is constructed
refer to the total use and demand of those components, not the use and demand per
use of the datum as in some other systems. Consequently, there is no need for a
sharing constraint relating the use of the datum with the use of the components, as
was required in Section 5.3.2. The quasi-linear type system of Kobayashi [Kob99,
§3.1] has the same property, as does the usage type system of Mogensen [Mog97b].

Secondly, we desire that the example of Section C.1 works correctly: the sum
of a use of the left component of a pair and a use of the right component should
be one use of each, and two uses of the pair itself. This means we must descend
inside algebraic data types when computing ⊕. For algebraic data types that are
purely sums of products, possibly with more such algebraic data types embedded and
recursion, we have the property that each usage argument to the type constructor
annotates a component (or components) of a data structure. Thus for such data types
we may simply add the arguments pointwise. Functions and non-regular recursion
would violate this story, and so pending further work we restrict the annotations of
such types in data type declarations to usage/demand constants, not variables.

C.4.5 Weakening and contraction

Rule (�E-Sub-L) is a form of weakening, but it is not quite the same as the weak-
ening of intuitionistic logic. In fact, the explicit counting in the environment makes
both weakening and contraction appear rather different.

• Contraction in intuitionistic logic is normally present to permit multiple refer-
ences to a single variable; in the present system multiple references are com-
bined, and the uses added by the operator ⊕.

• Weakening in intuitionistic logic is normally present to permit not referring to a
variable; in the present system this is an equivalence on environments, where
no mention is equivalent to a mention with demand and use �.

The need for weakening, at least, arises from uncertainties in the number of uses
of a variable. This is catered for in the present system by keeping sets of annotations,
rather than single annotations. Thus a notion of weakening that claims 3 uses may
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be weakened to 4 uses makes no sense; instead, we say 3 uses may be weakened to
3 or 4 uses.

Contraction seems to have different character; it is merely about multiple uses,
and involves no uncertainty. In the present system, 3 uses and 1 use may be ‘con-
tracted’ to 4 uses, and this happens automatically inside the ⊕ operator, used in the
appropriate places. In a linear system, though, contraction does introduce uncer-
tainty: one cannot determine whether the variable was actually used just once, or
more than once.

C.4.6 Sample typing

As an example, here is a well-typed use of the factorial function, assuming sub-
traction, multiplication, and case on integers with the obvious semantics and P(N)
annotations:

∅ �E letrec f : (Int{1,3},{1,3} → Int{1})δf ,νf

= λ{1,3}n : Int{1,3},{1,3} . case n of

0→ 1{1}

_→ letrec n′ : Int{1,3},{1,3} = n− 1{1}

in n ∗ f n′

ten : Int{1,3},{1,3}

= Int{1,3}

in f ten : 10{1}

The values of δf , νf must satisfy the following equation from (�E-LetRec):

δf = {1} ⊕ (νf · {0, 1}) = νf

to which the only non-� solution is N \ {0} = {1, 2, . . . }.

C.4.7 Proof of soundness

A proof of soundness has not been completed, but a sketch including key lemmas
appears in Appendix D.6.

C.5 Discussion

The work of extending the analysis of the rest of this thesis to deal with strictness and
absence is not yet complete. We have given an operational semantics that we believe
captures our intuitive understanding of demand and use (and hence strictness and
absence). Crucially, in the development of the operational semantics we discovered
that it is necessary to distinguish the notions of demand and use. Further, we have
designed a type system and well-typing rules that appear sufficiently powerful to
capture most of the behaviour of the operational semantics, and are conjectured to
be sound. In order to implement the analysis fully, an inference algorithm must be
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designed also. As we saw in Chapter 4, it is also likely that the type system will need
to be extended with some form of polymorphism to obtain good results.

Designing an inference algorithm should not be unduly difficult. The constraints
would be significantly complicated by the additional operators, especially product
and guard, but the fact that all of the operators used in the well-typing rules are
monotonic – there are no negative constraints – should ensure the system is well-
behaved. The constraints on annotations in (�E-LetRec) are recursive and would
require a fixed-point computation in the inference, but if we assume the use of a
finite domain such as the Bierman lattice, simple iteration would suffice to find the
solution. It is less clear how fast such an inference algorithm would run.

Simple polymorphism of the sort discussed in Chapter 4 could be added to the
type system without difficulty (yielding a language ELIX2), but inferring such types
is quite another question. As we have already noted (footnote 15 in Section 4.5.3)
moving from the simple two-point lattice to a larger annotation domain would in-
crease the number of cases to be considered by the closure algorithm, and it re-
mains entirely unclear whether the algorithm of Section 4.5.4 could be generalised
to ELIX2, or if it could, whether it would yield useful results.

Were these all to be developed, extending an FLIX2 implementation to ELIX2

would be a major undertaking. The language ELIX2 has additional structure within
its types, distinguishing ρ as well as σ and τ ; the inference algorithm would have to
be entirely new, since environments are manipulated in a different manner; and an
entirely new constraint solver would also be required. We therefore leave all this to
future work.

C.6 Related work

It is important to note that the usage property discovered by the analysis of this
appendix differs from that discovered by the previous analyses. Recall from Sec-
tion 1.3.4 that Gustavsson and Sands [GS01a] showed that their use-once-don’t-
drag property is sufficient to prove work- and space-safety of the inlining transfor-
mation, but the weaker use-once property is not. Although the analyses T1 and T2
have the use-once-don’t-drag property (Section 3.6.1), the analysis of the present ap-
pendix has only the use-once property: Gustavsson and Sands’ example letrec x =•

1 + 2 in x + (λy . 1) x is well-typed in �E, but not in �2.
Sestoft [Ses91, c.5] gives a “usage interval analysis”, a single analysis which sub-

sumes strictness analysis and “sharing” (i.e., usage) analysis. However, his anno-
tations are intervals over the set {Zero,One,Many} rather than over the naturals;
thus they are equivalent to the Bierman lattice (Section C.3.2) without the middle
element �= 1. His analysis is a flow analysis, rather than a type-based analysis.

Mogensen [Mog98] extends the analysis of [TWM95a] to the annotation domain
{0, 1,∞} (1 denotes a value used at most once). He considers 0 to be necessary to
give a good treatment of data structures. Use and demand are not distinguished;
in our system guards occur only in (�E-LetRec), but without a separate demand
annotation guards must appear in the rules for constructors also. Recursion is treated
much more conservatively. Otherwise the rules are very close to those of Figure C.6.



C.6. RELATED WORK 273

No semantics or proof of soundness is given.
Our treatment of uses ν in rules (�-Update) and (�-Reduce) bears a striking

resemblance to the corresponding rules in the operational semantics with update
marker check intervals given by Gustavsson [Gus98, §4.2]. Although the two are
clearly not the same, this suggests a close relationship that may be worthy of further
investigation.

Wright’s later analysis [Wri96], also linear-style and for call-by-name, is param-
eterised by an annotation algebra and may be instantiated as a linearity analysis,
a strictness analysis, or one of three flavours of usage analysis (affine, affine-plus-
linear, and linear with zero).

Marlow’s analysis [Mar93], already described in Section 1.3.5, is an abstract
interpretation that tracks the use made by an expression of each of its free vari-
ables both during evaluation to WHNF and (separately) during subsequent applica-
tion/deconstruction. This separation corresponds roughly to our separation of de-
mand and use above, except that the latter is represented merely by a set of closures
that are referenced by this object, and does not distinguish, e.g., one application from
two (curried) applications.

Strictness analysis has been widely studied, especially using abstract interpreta-
tion. The earliest type-based strictness analysis was that of Kuo and Mishra [KM89].
Jensen [Jen91] compares the two approaches and shows that they are equivalent.
He discusses a more complex type-based strictness analysis in [Jen98], including
polymorphism and conditional types, and considers constraint simplification and so-
lution in this context. The Glasgow Haskell Compiler’s old abstract-interpretation
based strictness (and absence) analysis is described in [PJP93, PJS98a].

Much other related work has already been noted in Section 1.3.5.
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Appendix D.

Proofs

In this appendix we give proofs of theorems and lemmas presented without proof in
the main text. Since similar proofs are required for each of the five main languages
LIX0, LIX1, LIX2, FLIX0, FLIX2, where appropriate we give a full proof for only
the most complicated language; proofs for the others may be obtained by omitting
the irrelevant cases.

For reference, the relevant rules etc. are all collected in Appendix B.

D.1 Type soundness

We begin by proving type soundness for FLIX2.
We make use of some special notation to abbreviate and clarify the proofs, as

follows. The symbols Γ and H denote respectively xi : σi and xi : σi =χi ei; that is,
Γ is the type environment arising from the heap H, whose variables are xi. Similarly
for Γ′, H ′, x′

i, σ
′
i, χ

′
i, e

′
i and Γ′′, H ′′, x′′

i , σ
′′
i , χ′′

i , e
′′
i . Indices start from 1, so “for all i”

does not include i = 0; we often use e0 to denote the control of a configuration. We
write V for values, rather than v as elsewhere. We often write “by I.H.” to abbreviate
“by the inductive hypothesis”.

In this section (D.1), Γ �2 e : σ denotes a slightly weaker typing judgement than in
Figure B.6 and the main text: we allow any update flag to be !, even if it would nor-
mally be •. This is necessary to allow Usage Substitution Lemma D.7 to go through.
Since the standard (stronger) form implies the weaker form, Theorem D.11 holds as
stated under either interpretation.

Our first lemma shows that any type derivation can be converted into a type
derivation with exactly one instance of (�2-Sub) at the bottom (and possibly others
higher up), with a non-(�2-Sub) rule above it.

This allows us to work with general type derivations more easily, since in general
there may be zero or more (�2-Sub)s before we get to the real goods.

275
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Lemma D.1 (Root-normal subsumption)
For all Γ, e, σ, if Γ �2 e : σ then there exists a so-called root-normal proof tree, of
the form

...
(not (�2-Sub))

Γ �2 e : σ′ σ′ � σ
(�2-Sub)

Γ �2 e : σ

Proof If Γ �2 e : σ, then there exists a proof tree with this conclusion. We proceed
by induction on the structure of this proof tree. If the bottom rule in the tree
is not (�2-Sub), we may append an instance of (�2-Sub) at σ′ = σ, since �
is reflexive, and we are done. If the bottom rule is already (�2-Sub), with
antecedent Γ �2 e : σ′′ where σ′′ � σ, remove the bottom rule and by the
inductive hypothesis, find a root-normal proof tree for the remainder. Now
since � is transitive, σ′ � σ′′ and σ′′ � σ imply that σ′ � σ, and we may
replace the two (�2-Sub) instances with one, and we are done. �

(In FLIX1, Lemma D.1 is of course a corollary of Lemma D.16).
Our next lemma says that given a well-typed shallow context, the expression in

the hole must be well-typed, and can be replaced with another well-typed expression
of the same type without affecting the type of the expression as a whole.

Lemma D.2 (Typed hole)
For all Γ, R, e, σ, if Γ �2 R[e] : σ then there exists σ′ such that Γ �2 e : σ′ and for all
e′, it is the case that Γ �2 e′ : σ′ ⇒ Γ �2 R[e′] : σ.

Proof By Lemma D.1, Γ �2 R[e] : σ implies that there is a non-(�2-Sub)-rooted
proof tree for Γ �2 R[e] : σ′′ for some σ′′ such that σ′′ � σ. We proceed by
cases on R.

case [·] a

We have Γ �2 e a : σ′′; only one rule other than (�2-Sub) applies here
and hence by (�2-App) we have that Γ �2 e : σ′ where σ′ = (σ1 → σ′′)1,
and Γ �2 a : σ1; hence by (�2-App) we have Γ �2 e′ a : σ′′.

case [·] τ

We have Γ �2 e τ : σ′′, where σ′′ = τ ′′κ′′
; hence by (�2-TyApp) we

have that Γ �2 e : σ′ where σ′ = (∀α . τ ′)κ′′
and τ ′′ = τ ′[τ/α]; hence by

(�2-TyApp) we have Γ �2 e′ τ : σ′′.

case [·] κ

We have Γ �2 e κ : σ′′, where σ′′ = τ ′′κ′′
; hence by (�2-UApp) we have

that Γ �2 e : σ′ where σ′ = (∀u . τ ′)κ′′
and τ ′′ = τ ′[κ/u]; hence by

(�2-UApp) we have Γ �2 e′ κ : σ′′.

case case [·] : (T κl τk)κ of Ki xij → ei

We have Γ �2 case e : (T κl τk)κ of Ki xij → ei : σ′′; hence by (�2-Case)
we have that σ′ = (T κl τk)κ, Γ �2 e : σ′, and other clauses not involv-
ing e; hence by (�2-Case) we have Γ �2 case e′ : (T κl τk)κ of Ki xij → ei :
σ′′ as required.
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case [·] + e

We have Γ �2 e + e2 : σ′′; hence by (�2-PrimOp) we have that σ′′ = Intω,
σ′ = Int1, Γ �2 e : σ′, Γ �2 e2 : Int1; hence by (�2-PrimOp) we have
Γ �2 e′ + e2 : σ′′ as required.

case addn [·]
We have Γ �2 addn e : σ′′; hence by (�2-PrimOp-R) we have that σ′′ =
Intω, σ′ = Int1, Γ �2 e : σ′; hence by (�2-PrimOp-R) we have Γ �2

addn e′ : σ′′ as required.

case if0 [·] then e1 else e2

We have Γ �2 if0 e then e1 else e2 : σ′′; hence by (�2-If0) we have that
σ′ = Int1, Γ �2 e : σ′, Γ �2 e1 : σ′′, Γ �2 e2 : σ′′; hence by (�2-If0) we
have Γ �2 if0 e′ then e1 else e2 : σ′′ as required.

Thus in all cases we have Γ �2 R[e′] : σ′′, and by (�2-Sub) we therefore have
Γ �2 R[e′] : σ as required. �

The following lemma is useful for establishing the premises required to invoke
inductive hypotheses. It is convenient to write it in the form of a rule; whenever
(�2-Weak) is invoked, it should be treated as an appeal to Lemma D.3.

Lemma D.3 (Environment weakening)
The following rule is admissible:

Γ �2 e : σ Γ′ �Γ
(�2-Weak)

Γ, Γ′ �2 e : σ

Proof By inspection of the well-typing rules. �

Our next lemma says that the control is well-typed if the configuration is, in a
certain environment, and that the environment may be extended and the expression
replaced if certain conditions are followed. This allows us to perform each evalu-
ation step of the operational semantics while preserving well-typedness. Recall the
definition of trans from Figure B.7, which takes a configuration to an equivalent ex-
pression, and the derived typing rule (�2-Config) for configurations, which makes
use of it. We denote by E a (non-shallow) evaluation context, defined by

E ::= [·] | R[E]

Lemma D.4 (Kitchen sink)
For all S, there exist k ∈ Bool, H ′, E, x′, σ′, e, such that dom(H ′) = dom(S) and for
all H, e0 with dom(H) �dom(S), we have:

(i)

trans〈H; e0; S 〉 =




letrec H, H ′ in E[e0] where H ′ = ∅ if k = true
(letrec H, H ′ in e if k = false

where H ′ contains x′ : σ′ =! E[e0]
)
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(ii) If αl, um �2 〈H; e0; S 〉 : σ then there exists σ0 such that the following all hold:

(a) Γ, Γ′, αl, um �2 ei : σi for all i,
(b) Γ, Γ′, αl, um �2 e′i : σ′

i for all i,
(c) Γ, Γ′, αl, um �2 e0 : σ0, and
(d) For all H ′′, e′′0 with dom(H ′′) � (dom(H) ∪ dom(S)), it is the case that if

Γ, Γ′, Γ′′, αl, um �2 e′′i : σ′′
i for all i and Γ, Γ′, Γ′′, αl, um �2 e′′0 : σ0, then

αl, um �2 〈H, H ′′; e′′0; S 〉 : σ.

In (i), the two cases correspond to the presence or absence of update frames
in S: if k is true, S contains no update frames, and if k is false, S contains one or
more update frames. The result Γ, Γ′, αl, um �2 e0 : σ0 states that in either case, e0

is typeable in the context provided by the original heap H extended by the pending
updates H ′. Clause (iid) states that e′′0 may be substituted for e0, where e′′0 requires
the context provided by an additional heap fragment H ′′, provided the configuration
is extended with the additional heap fragment.

Proof The proof is by induction on the length of S.

case S = ε

Let k = true, H ′ =, E = [·]. (i) follows trivially from the definition of trans.
For (ii), we have

αl, um �2 〈H; e0; ε 〉 : σ

⇐⇒ { by (�2-Config) }

αl, um �2 letrec H in e0 : σ

⇐⇒ { by Lemma D.1 }

Γ, αl, um �2 ei : σi all i
Γ, αl, um �2 e0 : σ′′

(�2-LetRec)
αl, um �2 letrec H in e0 : σ′′ σ′′ � σ

(�2-Sub)
αl, um �2 letrec H in e0 : σ

=⇒ { where σ0 = σ }

Γ, αl, um �2 e0 : σ′′ σ′′ � σ
(�2-Sub)

Γ, αl, um �2 e0 : σ

Finally, for (iid), for all H ′′, e′′0 with dom(H ′′) � (dom(H) ∪ dom(ε)) we have:

Γ, Γ′′, αl, um �2 e′′i : σ′′
i for all i

Γ, Γ′′, αl, um �2 e′′0 : σ0

from (ii)

Γ, αl, um �2 ei : σi for all i Γ′′ �Γ
(�2-Weak)

Γ, Γ′′, αl, um �2 ei : σi for all i
(�2-LetRec)

αl, um �2 letrec H, H ′′ in e′′0 : σ
(�2-Config)

αl, um �2 〈H, H ′′; e′′0; ε 〉 : σ

as required.
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case S = #x : σx, S′′′

By the inductive hypothesis, for S′′′ there exists k′′′, H ′′′, E′′′, x′′′, σ′′′, e′′′. Let
k = false, H ′ = (H ′′′, x : σx =! e0), E = [·], x′ = x, σ′ = σx, e = (k′′′ ? E′′′[x] :
e′′′). Then, for all H, e0:

(i):

trans〈H; e0; #x : σx, S′′′ 〉

= { by definition of trans }

trans〈H, x : σx =! e0; x; S′′′ 〉

= { by I.H. }




letrec H, x : σx =! e0, H
′′′ in E′′′[x] if k′′′ = true(

letrec H, x : σx =! e0, H
′′′ in e′′′ if k′′′ = false

where H ′′′ contains x′′′ : σ′′′ =! E′′′[x]
)

=

letrec H, H ′ in e

as required.

(ii):

αl, um �2 〈H; e0; #x : σx, S′′′ 〉 : σ

⇐⇒ { by (�2-Config) and definition of trans }

αl, um �2 〈H, x : σx =! e0; x; S′′′ 〉 : σ

=⇒ { by I.H. }

Γ, x : σx, Γ′′′, αl, um �2 ei : σi for all i
Γ, x : σx, Γ′′′, αl, um �2 e0 : σx

Γ, x : σx, Γ′′′, αl, um �2 e′′′i : σ′′′
i for all i

Γ, x : σx, Γ′′′, αl, um �2 x : σ0

=⇒ { by definition, and (�2-Var) }

Γ, Γ′, αl, um �2 ei : σi for all i
Γ, Γ′, αl, um �2 e′i : σ′

i for all i
Γ, Γ′, αl, um �2 e0 : σ0 where σ0 = σx

as required.

(iid): We have by assumption that
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Γ, Γ′, Γ′′, αl, um �2 e′′i : σ′′
i for all i

Γ, Γ′, Γ′′, αl, um �2 e′′0 : σ0

⇐⇒

Γ, x : σx, Γ′′′, Γ′′, αl, um �2 e′′i : σ′′
i for all i

Γ, x : σx, Γ′′′, Γ′′, αl, um �2 e′′0 : σ0

=⇒ { by I.H., using Γ, x : σx, Γ′′′, αl, um �2 x : σ0 from above, and
(�2-Weak), at H ′′

↓ = (H ′′, x : σx =! e′′0) }

αl, um �2 〈H, x : σx =! e′′0, H
′′; x; S′′′ 〉 : σ

⇐⇒ { by (�2-Config) and definition of trans }

αl, um �2 〈H, H ′′; e′′0; #x : σx, S′′′ 〉 : σ

as required.

case S = R, S′

By the inductive hypothesis, for S′′′ there exists k′′′, H ′′′, E′′′, x′′′, σ′′′, e′′′. Let
k = k′′′, H ′ = H ′′′, E = E′′′[R[·]], x′ = x′′′, σ′ = σ′′′, e = e′′′. Then, for all H,
e0:

(i):

trans〈H; e0; R, S′ 〉

= { by definition of trans }

trans〈H; R[e0]; S′ 〉

and the result follows.

(ii):

αl, um �2 〈H; e0; R, S′ 〉 : σ

⇐⇒ { by (�2-Config) and definition of trans }

αl, um �2 〈H; R[e0]; S′ 〉 : σ

=⇒ { by I.H. }

Γ, Γ′, αl, um �2 ei : σi for all i
Γ, Γ′, αl, um �2 e′i : σ′

i for all i
Γ, Γ′, αl, um �2 R[e0] : σ′′′

0

=⇒ { by Lemma D.2 }
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Γ, Γ′, αl, um �2 ei : σi for all i
Γ, Γ′, αl, um �2 e′i : σ′

i for all i
∃σ0 . Γ, Γ′, αl, um �2 e0 : σ0

as required.

(iid): We have by assumption that

Γ, Γ′, Γ′′, αl, um �2 e′′i : σ′′
i for all i

Γ, Γ′, Γ′′, αl, um �2 e′′0 : σ0

=⇒ { by Lemma D.2 }

Γ, Γ′, Γ′′, αl, um �2 R[e′′0] : σ′′′
0

=⇒ { by I.H. }

αl, um �2 〈H, H ′′; R[e′′0]; S′ 〉 : σ

⇐⇒ { by (�2-Config) and definition of trans }

αl, um �2 〈H, H ′′; e′′0; R, S′ 〉 : σ

as required. �

Our next lemma says that an atom of the same type as a variable may be sub-
stituted for it. This allows us to perform atomic (i.e., A-normal form) β-reduction.
Thanks to the A-normal form restriction, this is fairly easy.

Lemma D.5 (Substitution)
For all Γ, e, xi, ai, σi, σ, if Γ �2 ai : σi for all i, and Γ, xi : σi �2 e : σ, then
Γ �2 e[ai/xi

] : σ.

Proof Proof is by induction on the structure of e. (In retrospect, this would prob-
ably have been easier on the structure of the typing proof tree.) For each case,
by Lemma D.1, we may assume that the proof tree of Γ, xi : σi �2 e : σ is of the
form

...
(not(�2-Sub))

Γ, xi : σi �2 e : σ′′ σ′′ � σ
(�2-Sub)

Γ, xi : σi �2 e : σ

and we need only prove Γ �2 e[ai/xi
] : σ′′, since the desired result follows from

(�2-Sub).

case a

An atomic expression must have one of the following forms:

case xi

By (�2-Var), σ′′ = σi, and by definition xi[ai/xi
] = ai. By assump-

tion Γ �2 ai : σi, and we are done.
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case x, where x /∈ xi

Here x[ai/xi
] = x, and by (�2-Var) our result follows.

case a τ
By inspection of the type rules, the proof tree must be of the form

Γ, xi : σi �2 a : (∀α . τ ′′)κ′′

(�2-TyApp)
Γ, xi : σi �2 a τ : σ′′

where σ′′ = (τ ′′[τ/α])κ′′
. By definition, (a τ)[ai/xi

] = a[ai/xi
] τ , and

by the the inductive hypothesis and (�2-TyApp) again our result
follows.

case a κ
Similar to the a τ subcase.

case n

n[ai/xi
] = n, and by (�2-Int) the result follows.

case Kκ,χ
i κl τk aj

By inspection of the type rules, the proof tree must be of the form

σ◦
ij = σij [κ/u, κl/ul

, τk/αk
] all j

Γ �2 aj : σ◦
ij all j

|σ◦
ij | ≤ κ all j

where data (T ul αk)u = Ki σij (�2-Con)
Γ �2 Kκ,χ

i κl τk aj : σ′′

where σ′′ = (T κl τk)κ and χ = κ†. By definition

(Kκ,χ
i κl τk aj)[ai/xi

] = Kκ,χ
i κl τk aj [ai/xi

]

and by I.H. and (�2-Con) the result follows.

case λκ,χx : σx . e, where (wlog) x /∈ xi, x /∈ dom(Γ), x /∈ fv(ai)
By inspection of the type rules, the proof tree must be of the form

Γ, xi : σi, x : σx �2 e : σ′

occur(x, e) > 1⇒ |σx| = ω
occur(y, e) > 0⇒ |Γ(y)| ≤ κ all y ∈ Γ
occur(xi, e) > 0⇒ |σi| ≤ κ all i

(�2-Abs)
Γ, xi : σi �2 λκ,χx : σx . e : σ′′

where σ′′ = (σx → σ′)κ and χ = κ†. By (�2-Weak) we may establish
the preconditions for applying the I.H., yielding Γ, x : σx �2 e[ai/xi

] :
σ′. Since x is fresh with respect to the substitution, the first occur is
unaffected. For the second, note that (since y /∈ xi)

occur(y, e[ai/xi
]) = occur(y, e) +

∑
i

(occur(y, ai) · occur(xi, e))
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Thus occur(y, e[ai/xi
]) > 0 either means occur(y, e) > 0, in which case

we’re fine, or that for some i, occur(y, ai) = 1 and occur(xi, e) > 0, in
which case |Γ(y)| = |σi| ≤ κ and we’re also fine. Finally, for the third,
note that the number of occurrences may only decrease, not increase,
and thus we may derive by (�2-Abs) the desired result.

case e a

By inspection of the type rules, the proof tree must be of the form

Γ, xi : σi �2 e : (σ1 → σ′′)1 Γ, xi : σi �2 a : σ1
(�2-App)

Γ, xi : σi �2 e a : σ′′

By definition, (e a)[ai/xi
] = e[ai/xi

] a[ai/xi
], and by two applications of

the inductive hypothesis and (�2-App) again our result follows.

case Λα . e where (wlog) α /∈ ftv(ai)i
By definition, if α fresh then (Λα . e)[ai/xi

] = Λα . e[ai/xi
], and the result

follows by I.H. and (�2-TyAbs).

case e τ

Identical to the a τ subcase of the a case.

case Λu . e

Similar to the Λα . e case.

case e κ

Identical to the a κ subcase of the a case.

case case e : (T τk)κ of Ki xij → ei, where (wlog) xij �xi, xij �dom(Γ)
By inspection of the type rules, the proof tree must be of the form

Γ, xi : σi �2 e : (T τk)κ

Γ, xi : σi, xij : tij [tk/αk
] �2 ei : σ′′ all i

occur(xij , ei) > 1⇒ κ = ω all i, j
(�2-Case)

Γ, xi : σi �2 case e : (T τk)κ of Ki xij → ei : σ′′

We apply the inductive hypothesis to e, and to each of the ei (using

(�2-Weak) to establish Γ, xl : σl, xij : tij [tk/αk
] �2 al : σl in each case).

The occur clause is unchanged due to the freshness of the xij . By (�2-Case)
then we are done.

case e1 + e2

By I.H. twice and (�2-PrimOp).

case addn e2

By I.H. and (�2-PrimOp-R).

case if0 e then e1 else e2

By I.H. three times and (�2-If0).
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case letrec x′
i : σ′

i =χi ei in e where (wlog) x′
i �xi, x′

i �dom(Γ), x′
i � fv(ai).

By inspection of the type rules, the proof tree must be of the form

Γ, x′
j : σ′

j �2 ei : σ′
i for all i

Γ, x′
j : σ′

j �2 e : σ′′(
occur(x′

i, e) +
∑n

j=1 occur(x′
i, ej)

)
> 1⇒ |σ′

i| = ω for all i
(�2-LetRec)

Γ �2 letrec x′
i : σ′

i =χi ei in e : σ′′

where χi = |σ′
i|† for all i. By (�2-Weak) and I.H. we may establish the

first two clauses; the third is unchanged due to the freshness of the xi.
By (�2-LetRec), then, we are done.

�

We also prove similar results for type and usage substitution.

Lemma D.6 (Type substitution)
For all Γ, α, e, τ1

κ, τ , if Γ, α �2 e : τ1
κ, then Γ �2 e[τ/α] : (τ1[τ/α])κ.

Proof By induction on the structure of the proof tree of Γ, α �2 e : τ1
κ. �

Lemma D.7 (Usage substitution)
For all Γ, u, e, τκ1 , κ, if Γ, u �2 e : τκ1 where u /∈ (fuv(Γ) ∪ fuv(κ)), then Γ �2 e[κ/u] :
(τ [κ/u])κ1 .

Proof By induction on the structure of the proof tree of Γ, α �2 e : τ1
κ. The

only interesting case is in (�2-Abs), (�2-LetRec), and (�2-Con), where a
usage annotation κ0 is used to compute an update flag χ = κ†

0. If κ0 ∈ {1, ω}
then the substitution causes no change, but if κ0 = u then κ0[κ/u] = κ. Now
when κ = 1 the weakened form of the typing judgement (Section D.1, p. 275)
becomes necessary, for we require 1† = !. �

Lemma D.8 (Pruning)
If Γ, x0 : σ0 �2 e : σ and occur(x0, e) = 0 and occur(x0, ei) = 0 for all i, then Γ �2 e :
σ.

Proof Proof is by induction on the structure of the proof tree of Γ, x0 : σ0 �2 e : σ.
Assume for contradiction that the mapping for x0 is required. Only (�2-Var)
inspects the environment, and if this refers to x0 then x0 occurs once in that
expression. By the definition of occur, this propagates upwards, and so at least
one of occur(x0, e), occur(x0, ei) is non-zero, which is a contradiction. �

Our next lemma says that a well-typed shallow context containing a value is
always reducible and the result is always well-typed. This allows us to perform
reductions.

Lemma D.9 (Delta progress)
For all R, V , Γ, σ, if Γ �2 R[V ] : σ then there exists e such that R[V ] �δ e, and
Γ �2 e : σ.
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Proof By cases on R. As in the proof of Lemma D.5, we use Lemma D.1 to assume
that the root of the proof tree of Γ �2 R[V ] : σ is not an instance of (�2-Sub);
we leave this step implicit below to avoid clutter.

case [·] a

We have Γ �2 V a : σ; hence by (�2-App) we have that Γ �2 V : σ1 → σ
and Γ �2 a : σ1. By inspection of the type rules, V must be of the form
λκx : σ1 . e0, and by (�2-Abs) we have that Γ, x : σ1 �2 e0 : σ. Thus by
(�δ-App), e = e0[a/x], and by Lemma D.5 the result holds.

case [·] τ

We have Γ �2 V τ : σ; hence by (�2-TyApp) we have that Γ �2 V :
(∀α . τ1)κ and σ = (τ1[τ/α])κ. By inspection of the type rules, V must be
of the form Λα . V ′, and by (�2-TyAbs) we have that Γ, α �2 V ′ : τ1

κ.
Thus by (�δ-TyApp), e = V ′[τ/α], and by Lemma D.6 the result holds.

case [·] κ

Analogously, by (�2-UApp), (�2-UAbs), (�δ-UApp), and Lemma D.7.

case case [·] : (T τk)κ of Ki xij → ei

We have Γ �2 case V : (T τk)κ of Ki xij → ei : σ; hence by (�2-Case) we
have that Γ �2 V : (T τk)κ and Γ, xij : σ◦

ij �2 ei : σ. By inspection of
the type rules, V must be of the form Kκ,χ

i κl τk aj , and by (�2-Con)
we have that Γ �2 aj : σ◦

ij . Thus by (�δ-Case), e = ei[aj/xij
], and by

Lemma D.5 the result holds.

case [·] + e

We have Γ �2 V + e2 : σ; hence by (�2-PrimOp) we have that σ = Int,
Γ �2 V : Int, and Γ �2 e2 : Int. By inspection of the type rules, V
must be of the form n. Thus by (�δ-PrimOp-L), e = addn e2, and by
(�2-PrimOp-R) the result holds.

case addn [·]
We have Γ �2 addn V : σ; hence by (�2-PrimOp-R) we have that σ = Int,
Γ �2 V : Int. By inspection of the type rules, V must be of the form n′.
Thus by (�δ-PrimOp-R), e = n3 where n3 = n + n′, and by (�2-Lit)
the result holds.

case if0 [·] then e1 else e2

We have Γ �2 if0 V then e1 else e2 : σ; hence by (�2-If0) we have that
Γ �2 V : Int, Γ �2 e1 : σ, Γ �2 e2 : σ. By inspection of the type rules, V
must be of the form n. Thus by rule (�δ-If0), if n = 0 then e = e1 else
e = e2; in either case the result holds. �

The next result is the key lemma. It says that a well-typed configuration is either
reducible to a well-typed configuration, or terminal or a black hole. This allows us
to prove the desired result by simple induction on the length of the computation.

Lemma D.10 (Progress)
For all FLIXC2 configurations C, if αl, um �2 C : σ then either (i) C ∈ Value ∪
BlackHole, or (ii) ∃C ′ . C �αl,um C ′ and C �αl,um C ′ ⇒ αl, um �2 C ′ : σ.
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Proof By induction on the number of outermost type and usage abstractions in the
control of the configuration C, and then by cases on C.

case 〈H; R[e]; S 〉
〈H; R[e]; S 〉 �αl,um 〈H; e; R, S 〉; typing follows immediately by
definition of trans.

case 〈H; letrec H ′ in e; S 〉
〈H; letrec H ′ in e; S 〉�αl,um 〈H, H◦′; e; S 〉. By Lemma D.4, there ex-
ists H ′′, σ0 such that Γ, Γ′′, αl, um �2 letrec H ′ in e : σ0, and by (�2-LetRec)
we have Γ, Γ′, Γ′′, αl, um �2 e′i : σ′

i for all i and Γ, Γ′, Γ′′, αl, um �2 e : σ0.
Now choose α◦

l , u
◦
m fresh, and let Γ◦′ = x◦′

j : ∀u◦
m . ∀α◦

l . σ′
j and e◦′j =

Λu◦
m . Λα◦

l . e′j [x
◦′
i α◦

l u◦
m/x′

i
] and e◦ = e[x◦′

i α◦
l u◦

m/x′
i
]. By (�2-UApp) and

(�2-TyApp) we have Γ, Γ′′, αl, um, Γ◦′, α◦
l , u

◦
m �2 x◦′

i α◦
l u◦

m : σ′
i, and by

(�2-Weak) we have Γ, Γ′, Γ′′, αl, um, Γ◦′, α◦
l , u

◦
m �2 e′j : σ′

j for all j, and
Γ, Γ′, Γ′′, αl, um, Γ◦′, α◦

l , u
◦
m �2 e : σ0. Then by Substitution Lemma D.5

we have that Γ, Γ′′, αl, um, Γ◦′, α◦
l , u

◦
m �2 e′j [x

◦′
i α◦

l u◦
m/x′

i
] : σ′

j for all j,

and Γ, Γ′′, αl, um, Γ◦′, α◦
l , u

◦
m �2 e[x◦′

i α◦
l u◦

m/x′
i
] : σ0. By (�2-UAbs) and

(�2-TyAbs) we then have Γ, Γ′′, αl, um, Γ◦′ �2 e◦′ : σ◦′ for all j. Finally,
by Lemma D.4 we have that αl, um �2 〈H, H◦′; e◦; S 〉 : σ as required.

case 〈H; Λα . e; S 〉
〈H; Λα . e; S 〉�αl,um 〈H ′; Λα′ . e′; S′ 〉 if 〈H; e[α′

/α]; S 〉�αl,α′,um

〈H ′; e′; S′ 〉, α′ fresh, e not a value. Apply I.H.; if a value then C is a
value, if a black hole then C is a black hole. Otherwise, typing follows by
(�2-TyAbs).

case 〈H; Λu . e; S 〉
Similar to previous case.

case 〈H, x0 : σ0 =• e; x0; S 〉
〈H, x0 : σ0 =• e; x0; S 〉 �αl,um 〈H; e; S 〉. By Lemma D.4 we know
that there exists H ′, E, x′, σ′, e′ such that either
αl, um �2 letrec H, x0 : σ0 =• e, H ′ in E[x0] : σ where H ′ = ∅, or
αl, um �2 letrec H, x0 : σ0 =• e, H ′ in e′ : σ where H ′ contains the bind-
ing x′ : σ′ =! E[x0]. By (�2-LetRec) we have that Γ, x0 : σ0, Γ′, αl, um �2

e : σ0, and so by Lemma D.4 we have that αl, um �2 〈H, x0 : σ0 =• e; e0; S 〉 :
σ. Now by (�2-LetRec) we also know that, respectively, (occur(x0, E[x0])+∑n

j=1 occur(x0, ej)+occur(x0, e)+
∑n′

j=1 occur(x0, e
′
j)) ≤ 1 or (occur(x0, e

′)+∑n
j=1 occur(x0, ej) + occur(x0, e) +

∑n′

j=1 occur(x0, e
′
j)) ≤ 1 where one of

the e′j is E[x0]. In either case, we know that occur(x0, E[x0]) ≥ 1, and so
all the other occur(x0, ·) are zero. Thus by the Pruning Lemma D.8 we
may omit the binding for x0, obtaining the desired result.

case 〈H, x0 : σ0 =! e; x0; S 〉
〈H, x0 : σ0 =! e; x0; S 〉 �αl,um 〈H; e; #x0 : σ0, S 〉; typing follows
immediately by definition of trans.
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case 〈H; x0; S 〉 where x0 /∈ dom(H) but x0 ∈ dom(S)
C ∈ BlackHole.

case 〈H; x0; S 〉 where x0 /∈ dom(H) ∪ dom(S)
By Lemma D.4 and (�2-LetRec) we have that x0 ∈ dom(H, H ′); but
since by the lemma we also have dom(H ′) = dom(S), we have a contra-
diction, and so this case does not occur.

case 〈H; V ; #x0 : σ0, S 〉
By Lemma D.4, (�2-LetRec), and definition of trans we have that one
of the bindings in H ′ is x0 : σ0 =! V .
If |σ0| is ω or u for some usage variable u, then by (�2-LetRec) and
(�2-Sub) the topmost annotation of the type of V must also be ω or u;
and by (�2-Lit), (�2-Con), (�2-Abs), (�2-TyAbs), (�2-UAbs) we have
that |V | must be !, satisfying the side condition of (�-Update).
Alternatively, if |σ0| is 1, then by the same argument as case (�-Var-Once)
above, there is no reference to x0 in the configuration apart from the up-
date frame. This also satisfies the side condition of (�-Update).
Hence in either case,1 〈H; V ; #x0 : σ0, S 〉 �αl,um 〈H, x0 : σ0 =!

V ; x0; S 〉. Typing follows immediately by definition of trans.

case 〈H; V ; R, S 〉
Since trans〈H; V ; R, S 〉 = trans〈H; R[V ]; S 〉, by (�2-Config) and
Lemma D.4 there exists Γ′ such that Γ, Γ′, αl, um �2 R[V ] : σ0. Now by
Lemma D.9 there exists e such that R[V ] �δ e and Γ, Γ′, αl, um �2 e : σ0;
thus 〈H; V ; R, S 〉�αl,um 〈H; e; S 〉, and is well-typed by Lemma D.4
as required.

case 〈H; V ; ε 〉
C ∈ Value. �

Finally, we reach the theorem. This theorem states that a well-typed program
translates into an LX configuration which runs forever, or terminates in Value or
BlackHole; i.e., it never goes Wrong. This is the desired result, showing that “well-
typed programs do not go wrong”.

Theorem D.11 (Type soundness)
For all e ∈ FLIX2, if ∅ �2 e : σ and there exists a configuration C ′ such that (e)〈;;〉 ↓
C ′, then C ′ ∈ Value ∪ BlackHole.

Proof By trans and 〈; ; 〉 and (�2-Config) we have �2 (e)〈;;〉 : σ. We may proceed
by induction on the length of derivation of (e)〈;;〉 ↓ C ′. By Lemma D.10, the
type σ is preserved by reductions. At the final step, (ii) (of Lemma D.10) cannot
apply and so (i) implies C ∈ Value ∪ BlackHole. �

1The |σ0| = 1 case never occurs in FLIX1, because it arises only when a usage variable becomes
instantiated to 1.
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D.2 Correctness

Theorem D.12 (Correctness)
For all FLIX2 target programs e, where ∅ �2 e : σ, let M be the corresponding FL0

source program (e)�. Then we have

(i) (e)〈;;〉 ↓ ⇔ (T0�M �)〈;;〉 ↓
( i.e., the FLIX2 program e terminates iff the FL0 program M does); and

(ii) If (e)〈;;〉 ↓ C ′ and (T0�M �)〈;;〉 ↓ C ′′, then all the following hold:

(a) C ′ ∈ BlackHole⇔ C ′′ ∈ BlackHole

(b) C ′ ∈ Value⇔ C ′′ ∈ Value

(c) C ′ = 〈H; n; ε 〉 ⇔ C ′′ = 〈H ′; n; ε 〉

( i.e., if the two programs terminate, they both terminate in the same way, viz.,
black hole, non-ground value, or the same ground value).

Proof By Correspondence Lemma 5.3 we may ignore the instrumentation, and
consider the two FLX terms M2 = (e)� and M0 = (M)�. Call the configura-
tion (M2)〈;;〉 the initial left configuration, and (M0)〈;;〉 the initial right config-
uration. For the purposes of the proof, we allow update frames in the right
configuration to be optionally marked (thus each frame is either marked or
unmarked). By the Progress Lemma D.10 neither side ever gets stuck, so we
need consider only valid reductions, and Value and BlackHole. Furthermore,
reduction is deterministic up to the choice of fresh variables.

case “⇒”
Proof proceeds by induction on the length of the left reduction sequence,
and we will simulate each left reduction by one or more right reductions.
Reduction will preserve the invariants that the left and right configura-
tions differ only in that (i) some update flags on the left are • whereas on
the right they are all !, (ii) any marked update frames on the right are ab-
sent on the left, and (iii) the right heap may have bindings for variables
that are not bound in the left heap. Otherwise (iv) the heaps, controls,
and stacks are identical.
Initially, the invariants hold trivially.
If the left configuration can be reduced, we proceed by induction on the
structure of the derivation of the reduction. The reduction must be by
one of the following rules:

case (�-Unwind), (�-LetRec), (�-Var-Many)
In these cases, the same rule applies to the right configuration and
the invariants are all preserved.
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case (�-TyLam), (�-ULam)
In these cases, the result is established by the inductive hypothesis.
The same rule applies to the right configuration and the invariants
are all preserved.

case (�-Var-Once)
On the left the binding for x bears the flag •, but on the right it bears
the flag !. We reduce the right configuration by rule (�-Var-Many),
but mark the resulting update frame. This preserves the invariants
even though (�-Var-Once) does not push an update frame.

case (�-Update), (�-Reduce)
If there are any marked update frames on top of the right stack, we
perform an (�-Update) on the right configuration first, for each
one. The invariants still all hold; we simply have extra bindings in
the right heap. Now we perform the (�-Update) or (�-Reduce)
which was performed on the left, again preserving the invariants.

This simulates the left reduction by one or more right reductions, pre-
serving the invariants.
If the left configuration cannot be reduced, then since we cannot get
stuck, this must be because it is in either Value or BlackHole. If there
are any marked update frames on top of the right stack, we perform an
(�-Update) on the right configuration first, for each one. If the left
configuration is in Value, it is easy to see that the right configuration
must be also. If the left configuration is in BlackHole, then there is a
variable x in the control which appears in dom(S) but not in dom(H). In
the right configuration, by the invariants, the same variable must appear
in the control and in dom(S) (by Progress we know that we never get
two or more update frames for the same variable, marked or unmarked),
but not in dom(H) (by Progress we know that dom(H) � dom(S) is pre-
served); thus the right configuration is also in BlackHole. Finally, if the
left configuration is 〈H; n; ε 〉 then the invariants imply that the right
configuration is 〈H ′; n; ε 〉 as required.

case “⇐”
Proof proceeds by induction on the length of the right reduction se-
quence, and we will simulate each right reduction by zero or one left
reductions. Reduction will preserve the same invariants as before.
Initially, the invariants hold trivially.
If the right configuration can be reduced, we proceed by induction on the
structure of the derivation of the reduction. The reduction must be by
one of the following rules:

case (�-Unwind), (�-LetRec), (�-Reduce)
In these cases, the same rule applies to the left configuration and
the invariants are all preserved.

case (�-TyLam), (�-ULam)
In these cases, the result is established by the inductive hypothesis.
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The same rule applies to the right configuration and the invariants
are all preserved.

case (�-Var-Once)
This rule never occurs in the right reduction sequence.

case (�-Var-Many)
If the binding for x in the left configuration bears the flag •, mark
the frame pushed in the right configuration, and perform (�-Var-Once)
in the left configuration. This preserves the invariants even though
(�-Var-Once) does not push a frame.

case (�-Update)
The side condition |V | = ! is satisifed in the left configuration be-
cause otherwise the left configuration would become stuck, and we
know by Progress that this does not occur.
If the update frame is unmarked, perform the same update on the
left configuration. If the update frame is marked, do nothing to the
left configuration. This preserves the invariants.

This simulates the right reduction by zero or one left reductions, preserv-
ing the invariants.
If the right configuration cannot be reduced, the same argument as before
applies to show that both configurations agree on Value, BlackHole, and
literals, as required (this time there is no need to process marked update
frames in the right configuration, since none occur). �

D.3 Constraints

Constraints were informally introduced in Section 3.5.1. Informally, a constraint is
simply a set of equalities 〈κ = κ′〉 or inequalities 〈κ ≤ κ′〉 which constrain the valid
assignments to the variables. A solution to a constraint is an assignment that satisfies
all the equalities and inequalities.

We may define this more formally as follows. We are indebted to [OSW98] for
much of this formulation.

Let A be the set of constants {1, ω}. Let ≤ be the partial order defined in Fig-
ure 3.3, restricted to A × A. Let U be an infinite set of variables. We write κ to
denote an element of A ∪ U .

A substitution S is a total, idempotent function from U to A ∪ U , which is the
identity on all but a finite number of variables. For all κ ∈ A ∪ U , define Sκ = S(κ)
if κ ∈ U and κ otherwise.

An atomic constraint 〈κ ≤ κ′〉 is an element of the set Ω = (A ∪ U)× (A ∪ U). A
constraint C is an element of Pfin(Ω); i.e., a finite set of atomic constraints. We write ∅
to denote the empty constraint, and C ∧ D to denote the union of constraints C
and D; we confuse atomic constraints 〈κ ≤ κ′〉 with their singleton constraints {〈κ ≤
κ′〉}. Substitution is extended to constraints: SC = {〈Sκ ≤ Sκ′〉 | 〈κ ≤ κ′〉 ∈ C}.

The atomic entailment relation �e ∈ Pfin(Ω) × Ω is defined as follows: C �e

〈κ ≤ κ′〉 holds iff for all substitutions S we have (∀〈κ1 ≤ κ′
1〉 ∈ C . Sκ1 ≤ Sκ′

1) ⇒
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Sκ ≤ Sκ′. The entailment relation �e ∈ Pfin(Ω) ×Pfin(Ω) is defined as follows:
C �e D iff ∀〈κ ≤ κ′〉 ∈ D . C �e 〈κ ≤ κ′〉. We abbreviate ∅ �e C by �e C.
Constraints C and D are considered equal, denoted C =e D, iff C �e D and D �e C.

A constraint C induces a partial order on A∪U . We denote this partial order ≤C ,
defined by κ ≤C κ′ = C �e 〈κ ≤ κ′〉. For convenience, we sometimes write κ ≤+

C κ′

for κ ≤C κ′ and κ ≤−
C κ′ for κ′ ≤C κ.

A solution of a constraint C is a substitution S such that �e SC; i.e., for all
〈κ ≤ κ′〉 ∈ C it is the case that Sκ ≤ Sκ′. A constraint is satisfiable iff it has a
solution; it is unsatisfiable otherwise.

For notational convenience, we may write the constraint {〈κ ≤ κ′〉, 〈κ′ ≤ κ〉}
as 〈κ = κ′〉. If B is true (respectively false), then {B ⇒ C} denotes C (respectively
∅). Note that this is not a conditional constraint; B must statically be either true
or false. We may write {σ′

1 � σ1} to denote the least set of atomic constraints
such that σ′

1 � σ1 is derivable by the rules given in Figure 3.3 (reading 〈κ ≤ κ′〉
for κ ≤ κ′); note that this means that structure-mismatched constraints such as
{Intu1 � (Intu2 → Intu3)u4} are undefined.

D.4 Soundness of inference phase 1

We now prove some results about the inference.
We may define the annotations of a type in a similar manner to the free usage

variables (Figure 5.8). Define annε(σ) to be the set of ε-ve annotations of σ, as shown
in Figure B.10. We extend the definition of annε(·) to environments as follows:

annε(Γ) =
⋃
x∈Γ

annε(Γ(x))

If ε is omitted, we compute the union of the positive and the negative annotations.

Lemma D.13 (Closure operation)
For all C, Γ, σi such that ∃S′ . �e S′C ( i.e., C is satisfiable),

(i) The closure operation Clos(C, Γ, τi
κi) = (C ′, ui, S) is well-defined,

and we have the following results, where F0 � (fuv(Γ) ∪ fuv(κi)):

(ii) C ′ =e SC
( i.e., a solution of the residual constraint, applied to the substituted term, sat-
isfies all the original constraints);

(iii) ∃S′ . �e S′C ′

( i.e., the residual constraint is satisfiable);

(iv) For all substitutions S′, S′′ such that S′|U\ui
= S′′|U\ui

(where U is the set of
all usage variables), we have that �e S′C ′ ⇔ �e S′′C ′

( i.e., the ui may safely take any value; alternatively, the residual constraint is
independent of the values of the ui);
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(v) dom(S) ⊆ fuv(C) \ F0, and for all x ∈ F0 and κ ∈ {1, ω}, if ∃S′ . �e

S′(C ∧ 〈x = κ〉) then ∃S′ . �e S′(C ′ ∧ 〈x = κ〉).
( i.e., the substitution does not attempt to touch variables to which it is not
applied, and neither does C ′ constrain them further); and

(vi) ui ⊆ (fuv(Sτi) \ F0)
( i.e., the variables ui are all abstractable).

(vii) ∀u ∈ fuv+(τi) . Su �= 1
( i.e., no positive annotation is forced to 1).

Proof (i) holds by inspection of the algorithm (up to the choice of representative
of each equivalence class); the only possible source of failure is the invocation
of TransitiveClosure, but by assumption C is satisfiable.

Observe that C =e C0, since TransitiveClosure merely builds a data structure
to represent C0 and tests for satisfiability.

(ii) holds trivially, by definition.

For (iii) and (iv), since C ′ is simply C under the mapping S, it is sufficient to
show that (a) no constraint 〈x ≤ y〉 in C can be mapped by S to one of the
failure candidates 〈1 ≤ ω〉, 〈ui ≤ ω〉, 〈1 ≤ uj〉, or 〈ui ≤ uj〉 where i �= j, and
(b) that no variable is mapped to more than one variable or constant.

(b) holds because the conditions on x in the definition of S are mutually ex-
clusive, and if there are two pairs of variables u−

i , v+
i , i = 1, 2 such that ui ≤C

x ∧ x ≤C vi, it follows by transitivity that u1 ≤C v2 and thus u1 ∼ v2 ∼ u2,
and thus [u1](∼) = [u2](∼). Since we choose a single representative from each
class, x must be mapped to the same representative in each case.

We show (a) by cases, assuming each failure candidate and deriving a contra-
diction in each case.

case x �→ 1, y �→ ω and x �→ ui, y �→ ω

We have ∃u− ∈ G′ . u ≤C x and ¬∃u−
∗ ∈ G′ . u∗ ≤C y by definition of the

mapping. But u ≤C x ≤C y implies u ≤C y, a contradiction.

case x �→ ui, y �→ uj , i �= j

We have ∃u− ∈ G′ . u ≤C x, ∃u−
∗ ∈ G′ . u∗ ≤C y, ∃v+

∗ ∈ G′ . y ≤C v∗ by
definition of the mapping. But u ≤C x ≤C y ≤C v∗ implies u ≤C v∗, and
hence u ∼ v∗. But u∗ ≤C y ≤C v∗, and thus u∗ ∼ v∗ also; hence u ∼ u∗
and [u](∼) = [u∗](∼) and finally ui = uj , a contradiction.

case x �→ 1, y �→ uj

We have ¬∃v+ ∈ G′ . x ≤C v and ∃v+
∗ ∈ G′ . y ≤C v∗ by definition of the

mapping. But x ≤C y ≤C v∗ implies x ≤C v∗, a contradiction.

Since no constraint in C is mapped to 〈1 ≤ ω〉, no matter what value is given
to the ui, both (iii) and (iv) are satisfied.

For (v), observe that F0 \ F ⊆ dom(S0).
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For the first part, assume for contradiction that there is an x ∈ F0 that is also
in dom(S). If x ∈ dom(S0) then we directly contradict the definition of S, so
we may assume x ∈ F . Then by definition of S we have ∃u− ∈ G′ . u ≤C x.
But since G′ = gfp(Φ) we have that G′ = Φ(G′), and specifically from the third
clause of the definition of Φ that ¬∃x ∈ F . x ≤−

C u, i.e., ¬∃x ∈ F . u ≤C x, a
contradiction.

For the second part, assume for contradiction that there is an x ∈ F0 and a
κ ∈ {1, ω} such that ∃S′ . �e S′(C ∧ 〈x = κ〉) but ¬∃S′ . �e S′(C ′ ∧ 〈x = κ〉).
From the latter we may derive that C ′ �e 〈x = κ̄〉, where 1̄ = ω and ω̄ = 1.
Consider first the case where κ = ω and κ̄ = 1. For this to occur, a mapping
x′ �→ 1 must occur in the third conjunct of the definition of S, for some vari-
able x′ (possibly the same variable) with x′ /∈ dom(S0) and x′ ≤C x. Now if
x ∈ dom(S0) then C �e 〈x = ω〉, and so C �e 〈x′ = ω〉 also, and x′ ∈ dom(S0),
a contradiction. So x /∈ dom(S0). Furthermore, since u− ≤C x′ ≤C x, we
have x �→ 1 also. So we need only consider the case where x = x′. Now, by
definition of S, we have ∃u− ∈ G′ . u ≤C x. But since G′ = gfp(Φ) we have
that G′ = Φ(G′), and specifically from the third clause of the definition of Φ
that ¬∃x ∈ F . x ≤−

C u, i.e., ¬∃x ∈ F . u ≤C x, a contradiction. A symmetric
argument applies in case κ = 1 and κ̄ = ω.

For (vi), we prove firstly that each ui occurs at least once in SC or Sτi, and
secondly that no ui occurs in F0. Observe that each ui is the representative
element of the equivalence class [ui](∼), and by the definition of U we have
that for some ε, uε

i ∈ G′.

For the first, observe that by the second clause of the definition of Φ, for each ui

we have that there exists some vε
i ∈ G′ such that ui ≤ε̄

C vi. By the definition
of S, this implies that Sui = ui. Now by the first clause of the definition we
know G′ ⊆ G, and so ui ∈ G′ ⊆ G ⊆ G0 = fuv(τi). Since Sui = ui, we have
that ui ∈ fuv(Sτi) as required.

For the second, assume for contradiction that some ui ∈ F0. Since ui ∈ G′ ⊆
G = G0 \ dom(S0), ui ∈ dom(S0) leads to an immediate contradiction, and so
we need consider only ui ∈ F . Now observe that by the third clause of the
definition of Φ we have that ¬∃x ∈ F . x ≤ε

C ui. But by reflexivity of (≤C) and
the assumption, this is a contradiction.

Finally, for (vii), assume for contradiction that for some u∗ ∈ fuv+(τi) it is
the case that Su∗ = 1. Now clearly u+

∗ ∈ G0, and in fact (since it is in the
domain of S and hence not in the domain of S0), u+

∗ ∈ G. But by definition
of S, ∃u− ∈ G′ . u ≤C u∗ and ¬∃v+ ∈ G′ . u∗ ≤C v; specifically, since
u∗ ≤C u∗, we have u+

∗ /∈ G′. The third clause of Φ states that ∀uε ∈ G′ . ¬∃x ∈
(F ∪ {v | vε̄ ∈ (G \A)}) . x ≤ε

C u, and note that u+
∗ is in the set of possible

values for x. Since u∗ ≤−
C u, we have that u− /∈ G′, a contradiction. �

Theorem D.14 (Soundness of inference phase 1)
For all Γ in FLIX2 (possibly with free usage variables) and M, t in L0 such that
(Γ)� �0 M : t and 1 /∈ ann+(Γ), and all annotated data type declarations satisfying
1 /∈ ann(σij) (see Section 5.4.3),
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(i) �2 (Γ, M) = (e′, σ′, C, V ) is well defined2

( i.e., the algorithm �2 is deterministic and does not fail);

(ii) (e′)� = M and (σ′)� = t
( i.e., the inference algorithm merely annotates the source term, and does not
alter it or its source type);

(iii) ∀x ∈ Γ . V (x) = occur(x, e′)
( i.e., V correctly implements the occur function);

(iv) ∀S . �e SC ⇒ SΓ �2 Se′ : Sσ′

( i.e., all solutions of the resulting constraint are well-typed); and

(v) ∃S . �e S(C ∧
∧

u∈(fuv(Γ)∪fuv(σ′))〈u = ω〉) and 1 /∈ ann+(σ′)
( i.e., the resulting constraint has at least one solution, and permits all possible
future uses).

Proof

The proof proceeds by induction on the structure of M . Note that in each case,
at most one �0 rule and one �2 rule applies; thus the structure of the proof
trees for these relations is fixed by M . In every case, (ii) and (iii) are shown
trivially by inspection and the inductive hypothesis, and so we omit the details.

case A

case x
(i) Since (Γ)� �0 x : t, by (�0-Var) we have x : σ ∈ Γ where
(σ)� = t. In general, σ = (∀ui . τ)κ, τ a usage-monotype. Thus by
(�2-Var), the algorithm is deterministic up to fresh variables, and
does not fail.
(iv) Since C = ∅, we must show that for all S, SΓ �2 S(x vi) :
S(τ [vi/ui

])κ where Γ(x) = (∀ui . τ)κ; i.e., SΓ �2 x Svi : (Sτ [Svi/ui
])Sκ,

which holds by (�2-Var) and (�2-UApp).
(v) Let S = λu . ω; then �e S(

∧
u∈(fuv(Γ)∪fuv((τ [vi/ui

])κ))
〈u = ω〉);

since C = ∅, the first part follows. Since by assumption 1 /∈ ann+(Γ),
we have 1 /∈ ann+((∀ui . τ)κ), and so 1 /∈ ann+(τκ), and since vi

fresh, this implies 1 /∈ ann+((τ [vi/ui
])κ) as required.

case A t
(i) By (�2-TyApp), (�0-TyApp), and I.H.
(iv) By I.H. and definition of substitution, SΓ �2 Se : (∀α . Sτ1)Sκ.
By (�2-TyApp), SΓ �2 Se Sτ2 : (Sτ1[Sτ2/α])Sκ as required.
(v) By I.H., ∃S . �e S(C ∧

∧
u∈(fuv(Γ)∪fuv((∀α.τ)κ)〈u=ω〉)) and 1 /∈

ann+((∀α . τ)κ). Since ann(τ2) are all fresh usage variables, and

2It is well defined modulo the names of fresh variables; we have already noted that we are omitting
the details of fresh variable management. Here this also means that the list of usage variables in scope
occurs in Γ of Γ �2 e : σ but not in Γ of �2 (Γ, M), since in the latter the free usage variables are
managed separately.
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ann+((τ1[τ2/α])κ) ⊆ ann+((∀α . τ)κ) ∪ ann(τ2), we may form S′ =
S ∪ {ann(τ2) �→ ω}, establishing the desired results.

case n

All parts trivial by (�0-Lit), (�2-Lit), (�2-Lit).

case Ki tk Aj

(i) (�2-Con) applies. By (�0-Con) we have Γ �0 Aj : t◦ij where t◦ij =

tij [tk/αk
], enabling us to apply the I.H. By I.H.(ii) we have that (σ′

j)
� =

t◦ij , and since (σ◦
ij)

� = t◦ij the types are compatible in the subtype con-
straints of C1. Thus (�2-Con) is deterministic and does not fail.
(iv) By I.H. we have ∀S . �e SCj

1 ⇒ SΓ �2 Saj : Sσ′
j; since C �e SCj

1

we have �e SC ⇒ SΓ �2 Saj : Sσ′
j . We also have C �e {σ′

j � σ◦
ij} and

C �e {|σ◦
ij | ≤ v}. and by (�2-Con) and (�2-Sub) the result follows.

(v) By I.H., we have Sj such that �e S(Cj
1 ∧

∧
u∈(fuv(Γ)∪fuv(σ′

j))
〈u = ω〉)

and 1 /∈ ann+(σ′
j). Now since all the Sj agree on fuv(Γ), and (by in-

duction) dom(Sj) \ fuv(Γ) is fresh, we can form S =
⋃

j Sj ∪ {x �→ ω |
x ∈ fuv(τk, v, vl)} and this satisfies all the Cj

1 . Furthermore, it satisfies
C1 since all usage variables in σij are mapped to ω and 1 /∈ ann(σij)
by assumption (Section 5.4.3), and it satisfies C2 similarly. The result
follows.

case λx : t . M

(i) By (�2-Abs), (�0-Abs), and I.H.
(iv) By I.H. we have that for all S such that �e SC1, SΓ, x : Sσ1 �2 Se :
Sσ2. Now C2 �e {V (x) > 1⇒ 〈|σ1| = ω〉}, and
C3 �e

∧
y∈Γ{V (y) > 0⇒ 〈|Γ(y)| = ω〉}. So by (�2-Abs) we have SΓ �2

S(λv,v†
x : σ1 . e) : S((σ1 → σ2)v) as required.

(v) By I.H., ∃S . �e S(C ∧
∧

u∈(fuv(Γ,x:σ1)∪fuv(σ2))〈u = ω〉) and 1 /∈ ann+(σ2).
If we extend S to map v, fuv(σ1) to ω, we satisfy all the desired con-
straints, and since 1 /∈ ann+(σ2), 1 /∈ ann−(σ1), and 1 �= v, the result
follows.

case M A

(i) (�2-App) applies. By (�0-App) we have Γ �0 M : t1 → t2 and Γ �0

A : t1, enabling us to apply the I.H. By I.H.(ii) we have that (σ′
1)

� = t1
and ((σ1 → σ2)κ)� = t1 → t2, and so the types are compatible in the
subtype constraint C3. Thus (�2-App) is deterministic and does not fail.
(iv) Let S be a solution of C1 ∧ C2 ∧ C3. Then by I.H., SΓ �2 SM :
S((σ1 → σ2)κ) and SΓ �2 SA : S(σ′

1); we also have by C3 that Sσ′
1 �

Sσ1. Thus by (�2-Sub) and (�2-App), the result follows.
(v) By I.H., we have S1, S2 such that �e S(C1 ∧

∧
u∈(fuv(Γ)∪fuv((σ1→σ2)κ))〈u = ω〉),

�e S(C1 ∧
∧

u∈(fuv(Γ)∪fuv(σ′
1))
〈u = ω〉), and 1 /∈ ann+((σ1 → σ2)κ), 1 /∈

ann+(σ′
1). Now since both substitutions agree on fuv(Γ), and (by induc-

tion) dom(Si)\ fuv(Γ) is fresh, we can form S = S1∪S2, and this satisfies
C1 and C2. Assume (for contradiction) that it does not satisfy C3; that is,
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Sσ′
1 �� Sσ1. Then either at a positive position Sσ′

1 bears the annotation 1
and Sσ1 bears the annotation ω, or at a negative position Sσ′

1 bears the
annotation ω and Sσ1 bears the annotation 1. The former is not possible
because all free variables of σ′

1 are mapped to ω and 1 /∈ ann+(σ′
1). The

latter is also not possible because all free variables of σ1 are mapped to ω
and 1 /∈ ann−(σ1) ⊆ ann+((σ1 → σ2)κ). Thus we have a contradiction
and the result follows. That 1 /∈ ann+(σ2) also follows.

case Λα . M

(i) By (�2-TyAbs), (�0-TyAbs), and I.H.
(iv) By I.H. we have that for all S such that �e SC, SΓ, α �2 Se : S(τκ).
Hence by (�2-TyAbs) we may derive SΓ �2 S(Λα . e) : S((∀α . τ)κ) as
required.
(v) By I.H. and inspection.

case M t

As case A t of case A above.
case case M : T tk of Ki xij →Mi

(i) (�2-Case) applies. By (�0-Case) we have Γ �0 M : T tk and
Γ, xij : t◦ij �0 Mi : t where t◦ij = tij [tk/αk

], enabling us to apply the I.H.
By I.H.(ii) we have that the type returned from M is of the right shape,
and that (σi)� = t. This latter means that the types are compatible in the
FreshLUB of C3. Thus (�2-Case) is deterministic and does not fail.
(iv) Let S be a solution of C1 ∧ C2 ∧ C3 ∧ C4. By I.H. we have that
SΓ �2 Se : S((T κl τk)κ), and also SΓ �2 Sei : Sσi. Furthermore, C3 �e

Sσi � σ, and C4 �e {Vi(xij) > 1⇒ 〈S|σ◦
ij | = ω〉}. By (�2-Sub) we may

derive SΓ �2 Sei : Sσ, and by (�2-Case) we may obtain the desired
result.
(v) By I.H., we have S1 such that �e S1(C1 ∧

∧
u∈(fuv(Γ)∪fuv((T κl τk)κ))〈u = ω〉)

and Si
2 such that �e Si

2(C
i
2 ∧

∧
u∈(fuv(Γ,xij :σ◦

ij)∪fuv(σi))
〈u = ω〉). Observe

that these agree on fuv(Γ), and also on fuv(σ◦
ij), and on fuv((T κl τk)κ);

remaining variables are fresh by inductdion. So we may form S = S1 ∪⋃
i S

i
2 ∪ {fuv(σ) �→ ω}, and this satisfies C1 and C2. Furthermore, it sat-

isfies C3: if it did not, then there is an i and either a positive position
in which σi bears a 1 annotation and σ a ω, or a negative position in
which σi bears a ω annotation and σ a 1. The former case cannot hap-
pen since fuv(σi) �→ ω and 1 /∈ ann+(σi); in the latter case, by definition
of FreshLUB, if a negative position in σ bears a 1 annotation then all the
σi must have 1 there also, a contradiction. Finally, C4 follows from the
fact that |σ◦

ij | is a positive annotation, and by definition of fuvε(·), it must
come from a positive annotation in (T κl τk)κ, and all these are mapped
to ω by S. The result follows.

case M1 + M2

(i) (�2-PrimOp) applies. By (�0-PrimOp) we have Γ �0 Mi : Int, en-
abling us to apply the I.H. By I.H.(ii) we have that (σi)� = Int, and so
(�2-PrimOp) is deterministic and does not fail.
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(iv) Let S be a solution of C1 ∧ C2. Then by I.H., SΓ �2 SMi : S(Intκi).
Thus by (�2-Sub) and (�2-PrimOp), the result follows.
(v) By I.H., we have Si such that �e S(Ci ∧

∧
u∈(fuv(Γ)∪fuv(Intκi ))〈u = ω〉),

and 1 /∈ ann+(Intκi). Now since both substitutions agree on fuv(Γ), and
(by induction) dom(Si) \ fuv(Γ) is fresh, we can form S = S1 ∪ S2, and
this satisfies C1 and C2. By inspection, the result follows.

case if0 M then M1 else M2

Analogous to case case (but simpler). In (iv), we must insert a (�2-Sub)
above e as well as the two for the ei justifying the FreshLUB; this is
because if0 requires the condition to have type Int1, whereas case does
not restrict the annotation on its scrutinee.

case letrec xi : ti = Mi in M

(i) (�2-LetRec) applies. By (�0-LetRec) we have Γ, xj : tj �0 Mi : ti
and Γ, xj : tj �0 M : t, enabling us to apply the I.H. By I.H.(ii) we
have that (σ′

i)
� = ti = (�ti�freshσ )�, and so the types are compatible in the

subtyping constraint of C1. By I.H.(v) the Ci
1 are satisfiable and agree

on fuv(Γ, xj : τj
vj ), and so we may combine the substitutions; letting

fuv(τi
vi) �→ ω means that the substitution also entails σ′

i � τi
vi , for if

not, there is a positive annotation of σi that is 1, a contradiction. Hence
C1 is satisfiable, and by Lemma D.13 the Closoperation is well-defined.
Now by Lemma D.13(vii) we also have that 1 /∈ fuv+(Sτj) and hence
1 /∈ ann+((∀uk . Sτj)vj ). So by I.H., the body inference is well-defined,
and so (�2-LetRec) is deterministic and does not fail.
(iv) Let S′ be a solution of C ′

1 ∧C2 ∧C3. By Lemma D.13(ii) and I.H. we
have that S′Γ, xj : S′Sτj

S′Svj �2 S′Sei : S′Sσ′
i (note from Lemma D.13(v)

that S does not scope over Γ). Now C ′
1 �e Sσ′

i � Sτi
Svi , and so by

(�2-Sub) we have S′Γ, xj : S′Sτj
S′Svj �2 S′Sei : S′Sτi

S′Svi . Now by
Lemma D.13(vi) we may apply (�2-UAbs), deriving S′Γ, xj : S′Sτj

S′Svj �2

S′Λuk . Sei : S′∀uk . Sτi
S′Svi , and by weakening (lemma omitted) and

Lemma D.5 we have S′Γ, yj : (S′∀uk . Sτj)S′Svj �2 S′Λuk . Sei[yj uk/xj
] :

S′∀uk . Sτi
S′Svi . The result follows by (�2-LetRec).

(v) We have already shown in (i) that C1 is satisfiable; by Lemma D.13(iii)
this shows that C ′

1 is satisfiable; by (v) we have that fuv(Γ) may be
mapped to ω as required, as can vi. This substitution is S′

1. Again, in
(i) above we have shown that 1 /∈ ann+((∀uk . Sτj)vi). Thus by I.H. we
may obtain S2 satisfying C2 and mapping the appropriate variables to ω.
Since fuv((∀uk . Sτj)vi) ⊆ fuv(τj

vj ), it is clear that S′
1 and S2 agree on all

variables they have in common, and so we may combine them. Finally,
this substitution trivially satisfies C3. The result follows. �

We now prove a lemma about subtyping.

Lemma D.15 (Tycon subtyping)
Given a type ψ (either a τ - or a σ-type), two vectors of usage annotations κl and κ′

l,
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and two vectors of τ -types τk and τ ′
k such that

ul ∈ fuvε(ψ)⇒ κl ≤ε κ′
l for all ε, l

αk ∈ ftvε(ψ)⇒ τk �ε τ ′
k for all ε, k

we have that ψ[κl/ul
, τk/αk

] � ψ[κ′
l/ul

, τ ′
k/αk

].

Proof The proof is by induction on the structure of ψ.

case ψ = σ1 → σ2

We have by definition of ftvε(·) and assumptions, that αk ∈ ftvε(σ1) ⇒
αk ∈ ftvε̄(σ1 → σ2) ⇒ τ ′

k �ε τk and αk ∈ ftvε(σ2) ⇒ αk ∈ ftvε(σ1 →
σ2) ⇒ τk �ε τ ′

k for all ε and k, and similarly for usage. Thus, by induc-

tion we have that σ1[κ
′
l/ul

, τ ′
k/αk

] � σ1[κl/ul
, τk/αk

] and σ2[κl/ul
, τk/αk

] �
σ2[κ

′
l/ul

, τ ′
k/αk

]. Hence, by (�-Arrow) we have that (σ1 → σ2)[κl/ul
, τk/αk

] �
(σ1 → σ2)[κ

′
l/ul

, τ ′
k/αk

], as required.

case ψ = ∀α′ . τ

Assume (without loss of generality) that α′ is distinct from all the αk.
We have that αk ∈ ftvε(τ) ⇒ αk ∈ ftvε(∀α′ . τ) ⇒ τk �ε τ ′

k for all ε
and all k, and similarly for usage. Thus by induction, τ [κl/ul

, τk/αk
] �

τ [κ′
l/ul

, τ ′
k/αk

], and so by (�-ForAll) we have (∀α′ . τ)[κl/ul
, τk/αk

] �
(∀α′ . τ)[κ′

l/ul
, τ ′

k/αk
], as required.

case ψ = ∀u′ . τ

Similar to the ∀α′ . τ case.

case ψ = α

If α �= αk, all k, then the result is trivial. If α = αk for some k, then
clearly α ∈ ftv+(α), and thus τk � τ ′

k as required.

case ψ = τu

We have that αk ∈ ftvε(τ) ⇒ αk ∈ ftvε(τu) ⇒ τk �ε τ ′
k for all ε, k, and

similarly for usage. Thus by induction, τ [κl/ul
, τk/αk

] � τ [κ′
l/ul

, τ ′
k/αk

]. If
u �= ul, all l, then trivially u = u. If u = ul for some l, then clearly u ∈
fuv+(u), and thus κl ≤ κ′

l. In either case, u[κl/ul
, τk/αk

] � u[κ′
l/ul

, τ ′
k/αk

],

and so by (�-Annot) we have (τu)[κl/ul
, τk/αk

] � (τu)[κ′
l/ul

, τ ′
k/αk

], as
required.

case ψ = T κ�
l′ τ�

k′ where data (T u�
l′ α�

k′)u�
= Ki σ�

ij

For each k′, we have that if α�
k′ ∈ ftvε′(σ�

ij), then

• for each k, αk ∈ ftvε(τ�
k′ ) ⇒ αk ∈ ftvε·ε′(T κ�

l′ τ�
k′ ) by definition of

ftvε(·), and by the assumptions this in turn implies τk �ε·ε′ τ ′
k.

• for each l, ul ∈ fuvε(τ�
k′ ) ⇒ ul ∈ fuvε·ε′(T κ�

l′ τ�
k′ ) by definition of

fuvε(·), and by the assumptions this in turn implies κl ≤ε·ε′ κ′
l.
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Furthermore, for each l′, we have that if u�
l′ ∈ fuvε′(σ�

ij), then

• for each l, ul ∈ fuvε(κ�
l′ ) ⇒ ul ∈ fuvε·ε′(T κ�

l′ τ�
k′ ) by definition of

fuvε(·), and by the assumptions this in turn implies κl ≤ε·ε′ κ′
l.

• for each k, αk /∈ ftvε(κ�
l′ ) = ∅.

Hence by induction we have

• α�
k′ ∈ ftvε′(σ�

ij) ⇒ τ�
k′ [κl/ul

, τk/αk
] �ε′ τ�

k′ [κ
′
l/ul

, τ ′
k/αk

] for all ε′, k′,
and
• u�

l′ ∈ fuvε′(σ�
ij)⇒ κ�

l′ [κl/ul
, τk/αk

] ≤ε′ κ�
l′ [κ

′
l/ul

, τ ′
k/αk

] for all ε′, l′.

Finally by (�-TyCon) we have T κ�
l′ [κl/ul

, τk/αk
] τ�

k′ [κl/ul
, τk/αk

] �

T κ�
l′ [κ

′
l/ul

, τ ′
k/αk

] τ�
k′ [κ

′
l/ul

, τ ′
k/αk

] and thus (T κ�
l′ τ�

k′ )[κl/ul
, τk/αk

] �
(T κ�

l′ τ�
k′ )[κ

′
l/ul

, τ ′
k/αk

] as required. �
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Theorem D.17 (Soundness and completeness of monomorphic inference phase 1)
For all Γ in FLIX1 (necessarily without free usage variables) and M, t in FL0 such
that (Γ)� �0 M : t and 1 /∈ ann+(Γ), and all annotated data type declarations satisfy-
ing 1 /∈ ann(σij) (see Section 5.4.3),

(i) �1 (Γ, M) = (e′, σ′, C, V ) is well defined3

( i.e., the algorithm �1 is deterministic and does not fail);

(ii) (e′)� = M and (σ′)� = t
( i.e., the inference algorithm merely annotates the source term, and does not
alter it or its source type);

(iii) ∀x ∈ Γ . V (x) = occur(x, e′)
( i.e., V correctly implements the occur function);

(iv) ∀S . �e SC ⇒ SΓ �1 Se′ : Sσ′

( i.e., all solutions of the resulting constraint are well-typed); and

(v) ∃S . �e S(C ∧
∧

u∈(fuv(Γ)∪fuv(σ′))〈u = ω〉) and 1 /∈ ann+(σ′)
( i.e., the resulting constraint has at least one solution, and permits all possible
future uses).

(vi) For all e, σ such that (e)� = M , (σ)� = t, and Γ �1 e : σ, there exists a
substitution S such that �e SC and Se′ = e, Sσ′ = σ.
( i.e., all well-typed annotations of the source term are solutions of the resulting
constraint).

Proof Proofs of (i) through (v) are essentially the same as those of Theorem D.14
for FLIX2, except in the variable and letrec cases, which are similar but simpler.

Completeness, (vi), holds only for FLIX1.

Consider the proof tree of SΓ �1 Se′ : Sσ′ constructed by the proof of (iv) (in
fact, since fuv(Γ) = ∅, SΓ = Γ, and so it is a proof tree of Γ �1 Se′ : Sσ′). In the
case of FLIX1, this will contain no occurrences of (�2-UAbs) or (�2-UApp),
since FLIX1 has no usage polymorphism. Now observe that this proof tree is
in the canonical form defined in Lemma D.16: occurrences of (�1-Sub) are
restricted to certain specific locations.

We know that Γ �1 e : σ; thus we may apply Lemma D.16 to obtain a canonical
proof tree for this result. This proof tree will be of exactly the same shape as
that constructed by the proof of (iv) above, and thus of the same shape as the
inference proof tree of Γ �1 M � e : σ; C; V . That is, to each step of the
inference algorithm corresponds a non-(�1-Sub) node of the canonical proof
tree, possibly with instances of (�1-Sub) immediately above.

Now we may proceed by induction on the structure of these isomorphic proof
trees, that of Γ �1 M � e : σ; C; V on the left and that of Γ �1 e : σ on

3It is well defined modulo the names of fresh variables; we have already noted that we are omitting
the details of fresh variable management. Here this also means that the list of usage variables in scope
occurs in Γ of Γ �1 e : σ but not in Γ of �1 (Γ, M), since in the latter the free usage variables are
managed separately.
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the right. At each node we may augment the substitution so as to yield a proof
subtree from (iv) that is identical to the canonical proof subtree on the right;
this is possible because for each rule the conditions on the right are sufficient
to satisfy the constraints on the left, and fresh variables are always sufficiently
fresh that substitutions never interfere. The final result is a substitution S with
Se′ = e, Sσ′ = σ that satisfies the constraints, as required. �

D.5 Soundness and pseudo-completeness of inference phase 2

Lemma D.18 (Solver invariant)
Let the data structure of CS be interpreted as described in Section 3.5.4 and re-
peated below: Firstly, interpret each equivalence class having k members as a con-
junction of k − 1 atomic equality constraints forming a spanning tree of members
of the class. Secondly, interpret each mapping from a root variable ui to a con-
stant κ as an equality constraint 〈ui = κ〉. Thirdly, interpret each mapping from a
root variable ui to a pair of bounds (uk, vl) as a conjunction of inequality constraints∧

k〈uk ≤ ui〉 ∧
∧

l〈ui ≤ vl〉. The conjunction of these three sets of constraints is
the constraint denoted by the data structure. Algorithm failure is interpreted as the
unsatisfiable constraint 〈1 ≤ ω〉. Further input is permitted after failure, but yields
only repeated failure.

Now let C1, . . . , Cn be atomic constraints. After these are input to the algorithm,
the constraint denoted by the data structure is equal to

∧n
i=1 Ci.

Proof The proof proceeds by induction on n. (In fact, strong induction on the total
cost of the constraints C1, . . . , Cn as defined in the proof of Theorem 3.6 is
required. By storing $1 on each constant mapping, $2 on each variable except
the first in each equivalence class, and $2 on each variable in a bound, it is
possible to recreate an arbitrary data structure with the specified cost. This
allows the induction to go through. I have not worked out the full details
of this in the proof below; instead I have merely assumed that the algorithm
terminates and equivalently that the induction is well-founded.)

In the base case (n = 0), the data structure is empty and thus the resulting
constraint is simply ∅, as required.

For the inductive step, we may assume that n constraints have already been
input and the constraint denoted by the data structure is equal to

∧n
i=1 Ci; we

now input a further constraint Cn+1 and wish to establish the result.

As described in Section 3.5.4, the constraint Cn+1 must be either trivial and
we do nothing (in which case the result follows trivially), false and we fail
immediately (in which case again the result follows trivially), or equivalent to
one of four possibilities, which we now consider.

case 〈ui = 1〉 or 〈ui = ω〉
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If ui maps to 1 or ω respectively, then there is already a constraint 〈ui =
1〉 or 〈ui = ω〉, and we need do nothing. Conversely, if ui maps to ω
or 1 respectively, we have an unsatisfiable constraint and failure is the
correct behaviour. Otherwise we have

∧
k〈uk ≤ ui〉 ∧

∧
l〈ui ≤ vl〉, and

note that
∧

k〈uk ≤ ui〉 ∧
∧

l〈ui ≤ vl〉 ∧ 〈ui = 1〉 =e
∧

l〈vl = 1〉 ∧ 〈ui = 1〉
(similarly for ω respectively). The result follows by a nested induction
(well-founded by Theorem 3.6).

case 〈ui = uj〉
If ui maps to 1, then there is already a constraint 〈ui = 1〉. Observe that
〈ui = 1〉 ∧ 〈ui = uj〉 =e 〈ui = 1〉 ∧ 〈uj = 1〉, justifying the algorithm’s be-
haviour; the result follows by a nested induction. Proceed similarly for
ω, or for the mapping of uj . Otherwise we have∧

k

〈uk ≤ ui〉 ∧
∧
l

〈ui ≤ vl〉 ∧
∧
k

〈u′
k ≤ uj〉 ∧

∧
l

〈uj ≤ v′l〉

where ui and uj are in equivalence classes U1 and U2. Merging the equiv-
alence classes amounts to adding the single equality constraint 〈ui = uj〉;
the new mapping is simply a rearrangement of the large constraint al-
ready given.

case 〈ui ≤ uj〉
If ui maps to 1, then there is already a constraint 〈ui = 1〉. Since
〈ui = 1〉 ∧ 〈ui ≤ uj〉 =e 〈ui = 1〉 ∧ 〈uj = u0〉, the result follows by a nested
induction. If ui maps to ω, then there is already a constraint 〈ui = ω〉.
Since 〈ui = ω〉 ∧ 〈ui ≤ uj〉 =e 〈ui = ω〉, the result follows trivially. The
dual cases apply to uj . Otherwise we have∧

k

〈uk ≤ ui〉 ∧
∧
l

〈ui ≤ vl〉 ∧
∧
k

〈u′
k ≤ uj〉 ∧

∧
l

〈uj ≤ v′l〉 ∧ 〈ui ≤ uj〉

and the result follows by simple rearrangement.

This concludes the proof. �

Theorem D.19 (Soundness and pseudo-completeness of inference phase 2)
For all constraints C,

(i) Algorithm CS terminates.

(ii) If there exists an S such that �e SC, then CS succeeds.

(iii) If CS succeeds with substitution S, then �e SC, and for all S′ such that �e

S′C, S′ � S ( i.e., S is the best solution to C).

Proof (i) follows from Theorem 3.6. (ii) follows from Lemma D.18 and the ob-
servation that the derivation of S always succeeds. (iii) also follows from
Lemma D.18: for the first part, we can see by inspection of the data struc-
ture that the constraint is satisfied by S, and for the second part, assume for
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Figure D.1 Contexts.

C ::= [·] | x | n | λx : τd,u . C (D.1)

| C x | C1 + C2 | let! x : τd,u = C1 in C2 (D.2)

| letrec xi : τi
di,ui = Ci in C0 (D.3)

| Ci τk yj (D.4)

| case C0 of Ci xij : τij
dij ,uij Ci (D.5)

the sake of contradiction that there exists a substitution S′ satisfying C but
mapping a variable v to 1 that S maps to ω. Since S maps v to ω, C must
contain the constraint 〈v = ω〉; but then S′ cannot satisfy C and we have our
contradiction. Therefore S is indeed the best solution of C. �

D.6 Extended system

We believe the extended type system of Appendix C can be proven sound, along the
lines of a proof we have conducted for an earlier system. We sketch this earlier proof
here.

We define contexts and applicative contexts along the lines of Moran and Sands
[Mor98, MS99], and we define open evaluation for contexts (in fact this machinery
is not necessary for the present setting). Contexts are defined in Figure D.1.

Lemma D.20 (Trans)
For all heaps H, applicative contexts A, and stacks S, trans〈H; A; S 〉 is equal to
either

trans〈H; A
′; ε 〉

or

trans〈 (H,x1 : τ1
d1,u1 = A

′, x2 : τ2
d2,u2 = A1[x1], x3 : τ3

d3,u3 = A2[x2],

. . . , xn : τn
dn,un = An−1[xn−1]), An[xn], ε 〉,

for some A
′, n, xi : τi

di,ui , Ai, where if the annotations in S are non-empty then for all
i, di is nonempty and 0 /∈ di. Further, use(A, use(S, u0)) is equal to either use(A′, u0)
or use(A′, use(A1, use(A2, · · · use(An−1, use(An, u0)) · · · ))), respectively.

Proof By induction on S. �

Lemma D.21 (A)
For any applicative context A with hole type τ , and any expression e such that Γ �E′

e : τ�,use(A,u0), there exist τ0, u0, ∆ such that ∆⊕ Γ �E′ A[e] : τ0
�,u0 .

Proof By induction on A. �
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Lemma D.22 (Value)
For all values v such that Γ′ �E′ v : τ�,u′

, it is the case that there exist ∆′, Γ such that
Γ′ = ∆′ ∧ (u′ · Γ), and for all ∆, u, ∆′ ∧ (u · Γ) �E′ v : τ�,u.

Proof (omitted). �

Lemma D.23 (Paste)
If Γ �E′ C[e] : τ0

�,u0 and ∆ �E′ e : τ�,u, then ∆ �E′ e′ : τ�,u ⇒ Γ �E′ C[e′] : τ0
�,u0 .

Proof Proof is by induction over C. �

Lemma D.24 (Substitution)
If Γ, x : τd,u �E′ e : τ0

�,u0 then Γ⊕ y : τd,u �E′ e[y/x] : τ0
�,u0 .

Proof Trivial if y �dom(Γ); otherwise by induction on e. �

Theorem D.25 (Subject reduction)
If ∅ �E′ 〈H; e; S 〉 : τ0

�,u0 (and no d or u annotation in H, e, S is empty) and
〈H; e; S 〉� 〈H ′; e′; S′ 〉, then ∅ �E′ 〈H ′; e′; S′ 〉 : τ0

�,u0 and no d or u annotation
in H ′, e′, S′ is empty.

Proof By induction on the reduction sequence, by cases on each reduction step.

(details omitted). �

Theorem D.26 (Termination condition)
If ∅ �E′ 〈H; v; ε 〉 : τ0

�,u0 (and no d or u annotation in H, v is empty) then every d
and u annotation in H (at top level) contains a 0 (assuming u0 is zero).

Proof Use (trans), (�E′-LetRec), (Value), and fixpoint/monotonicity arguments
with d0j = � by (Value). �
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Page numbers in bold denote the primary or defining occurrence of the term. An appended
fn denotes an occurrence in a footnote. For notation, see also Appendix A.

A-normal form, 27, 34, 131, 141, 175,
177, 187, 215, 266, 267, 281

absence, 7, 14, 229, 251–253, 257
absent argument transformation, 252
abstract interpretation, 12, 13, 16, 123,

273
abstract machine, 6–9, 31, 39
abstraction, 45, 267
accounting method, 62, 308
accuracy

requires zero annotation, 253
addition ⊕, 256, 267, 269, 270
addn, 29
adjacent lambdas, 65, 65fn, 121
administrative operations, 81
affine linear logic, 14, 48, 71–72, 273
affine usage, 257
algebra, 256
algebraic data type, 14, 42, 77, 115, 128,

129, 135–147, 169, 214, 224,
226, 228, 264, 266, 270

declaration, 129, 131, 164, 266
mutually recursive, 156fn, 182

notation, see annotation scheme
properties of, 137
typical, 147

AlgorithmM, 128
AlgorithmW, 71, 117, 121, 128
All (analysis parameter setting), 195
all alike, see recursion, mutual
allocation, 19, 199–200, 205, 214
α-conversion, 27, 79, 81, 82, 86, 123,

129, 135, 161
Anal (analysis parameter setting), 204
analysis, 15

extending, 251–273
improvement of, 209

“and” function, 77
annotated data type declaration, 138,

139, 147–159, 161, 182

restriction on, 150, 153, 163
annotation, 11, 14–16, 18, 39, 45, 52, 71,

81, 93, 130, see also topmost
annotation, ground annotation,
usage annotation

ordering, see primitive ordering
static, 211
type, see type annotation

annotation algebra, 273
annotation category, 183
annotation domain, 11, 14, 15, 39, 58,

70, 100, 111, 254–257, 272
annotation lattice, 83
annotation position, 44, 56, 67, 148
annotation scheme, 78, 137, 148–159,

163–165, 169, 197, 224, 226,
228

elaboration of, 182
annotations

of a type, 291
too large, 264

application, 267
constructor, 149

constrained, 141
unsaturated, 177

function, 149
application site, 65, 74, 75, 77, 93, 109,

113, 117, 119, see also call site
applicative context, 310
approximation, 17, 48, 51, 89–91, 94,

105, 109, 111, 113, 115, 119,
121, 124–125, 149, 177, 224

desirable, 73
explicit, 123

apteryx australis, 62fn
are, see in a
arity, 184

of constructor, 131
arrow, 44, 266
asymmetry, 155, 156

331
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at most once, 10, 43, 47, 223, 229, 251,
see also thunk, single-entry

atom, 27, 81, 81, 131, 281
atomic, see A-normal form
atomic constraint, 290
augment, 77fn
AVL tree, 147, 152

Bad, 35
BadBinding, 35, 59, 106, 259
BadDemand, 259
BadUsage, 259
BadValue, 35, 59, 106, 259
bailing out, 159
balance, 225
balanced binary tree, 145fn, 159
Barendregt Variable Convention, 27
base types, 128
benchmark, see NoFib
benefit, 212, 213
best solution, see goodness ordering
β-reduction, 34, 83fn
Bierman lattice, 14, 257, 272
big-step semantics, 39
binary size, 200
binders

list of, 185
binding, 177, 211, 254, 255, 257, 269

avoiding, 130fn
usage of, 50, 68

binding group, 50, 83, 89, 110, 164, 176,
177, 269

binding-time analysis, 50, 111, 113, 123
bivariant, 103fn, 158, 182
black hole, 35, 173
BlackHole, 35, 59, 106, 259fn, 287
blackholing, 12, 34, 39, 191
book-keeping, 131
books, 230
boring, see usage variable,

boring/interesting
⊥, 180
bottom element, 83
bottom-line impact, 193
bottom-propagation, 179
bounded polymorphism, 116, 119, 123,

165
bowtie, 96
boyer, 191, 198, 210–213
branch, 130, 130fn, 142, 161, 212
bspt, 191, 204, 205, 215
build, 77fn

build hack, 188, 200

cacheprof, 191, 198, 199, 215
CAF, 187, 192, 211
call site, 172, 174, 176, see also

application site
call-by-name, 4, 6, 14
call-by-need, see lazy evaluation
call-by-value, 4, 6, 14, 15, 251, 253
candidate variable, 90, 99–101, 112
canonical proof tree, 55, 87, 300
capability ordering, 68
capture, 82
case, 7, 70, 128, 130fn, 131, 142, 161,

168, 177, 178, 182, 188, 270
case studies, 209–212
chief architect, 168
cichelli, 195, 214
clausify, 191, 205
Clean, 69, 123, 140, 141, 151
clean separation, 138
cloning, see specialisation
closed

heap binding, 82
type, 118

closure, see thunk
closure conversion, 83
closure operation, 89, 89, 94, 96, 100,

101–106, 108, 121, 121fn, 224,
228, 272, 291

trivial, 104
cluster, 90, 103, 105, 121
code generation, 81, 95, 115, 187, 227
code size, 77, 114
coercion, 50, 70, 123, 169, 179
coinduction, 117, 144, 165
common pattern, 78
common subexpression elimination,

171fn
compilation time, 200
compiler, 1, 4, 6, 12, 18, 51, 70, 81,

167–215, 226
compiler options, 172
completeness, 17, 18, 61, 66, 119

lack of, 108, 109
of inference, 307

complexity, 73, 77, 110, 164
amortized, 62
theorem, 63

component, 138–140, 142, 146, 266, 270
compose, 78, 114
computability, 17
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conditional, 27, 34
conditional constraint, 291
conditional type, 273
cones

upward and downward, 105
configuration, 33, 37, 259

remains closed, 59
stuck, 35
terminal, 35
value, 35

conjunction
of constraints, 108

conjunction ∧, 257, 267, 269
conservative extension, 78
const, 135
constrained polymorphism, 66, 69, 70,

74, 91, 94, 111, 113, 118, 123,
149, 165, 224, 225, 228

related work, 116–120
constraint, 14, 16, 52, 53, 55, 55, 56, 57,

61, 74, 78, 87, 89, 90, 92, 93,
96, 99, 101, 105, 117, 119–121,
140, 165, 290–291

covariant of, 52
insoluble, 121
of candidate, 100
residual, 90
unsatisfiable, 57

constraint abstraction, 120
constraint set, 172
constraint solver, 57–58, 61, 64, 69, 71,

214, 272, 308
implementation of, 206

constraint-based analysis, 16
constraints, 197
constructor, 68, 128, 129, 131, 141, 161,

168, 181, 200, see also datum
encoding of, 140

constructor argument, 177, 181, 182
constructor function, 78
context, see evaluation context
context sensitivity, 74
continuation-passing, 157
contraction, 270
contravariant, 44, 44fn, 50, 79, 143, 146
contributions, 1–3
control, 33, 39
copying, 131
Core, 7, 168, 177–184, 187, 216–217
correctness, 162, 173, 226, 288

theorem, 60

correlation between effectiveness and
opportunity, 193

Correspondence Lemma, 38, 107, 162,
288

cost, 149, 151, 153
of analysis, 206

cost-centre profiling, 192fn
covariant, 44, 44fn, 79, 118, 146
creation site, see usage propagation
cross-checks, 192
cryptarithm2, 190, 199, 200, 205
curried function, 64, 70, 74, 77, 78, 181,

273
cylindrical constraint system, 124

dangling pointer, 12
data, 129
data constructor, see constructor
data flow analysis, 15, 16
data system, 156fn
data type, see algebraic data type
data types, see algebraic data types
(�-Data-All), 183, 195, 197
(�-Data-All-Bad), 148, 153, 183
(�-Data-Clean), 152
(�-Data-Equal), 150, 159, 164, 169,

183, 197
(�-Data-Full), 151, 153, 183, 195, 197
(�-Data-Many), 148, 183
(�-Data-Restr), 153
datum, 128, 135fn, 138–142
dead binding, 34, 51
decidability, 77
deconstruction, 128, 130
deeply unlifted type, 180
DEFAULT, 168, 178
definition site, 65, 174
definitions, 237–250
deforestation, 5, 77fn, 138, 186, 188, 210
delta progress, 284
demand, 5, 9, 10, 36, 48–50, 65, 69, 83,

179, 181, 192, 254, 259, 272,
273

demand annotation, 255, 266
demand/use distinction, 254
dependency, 75, 77, 79, 95, 99, 100, 103,

111, 113, 121, 135, 181
depth subtyping, 165
derivation, 44, 87, 275
Design Patterns, 4
design space, 137, 138, 150, 173, 224
destruction, see deconstruction



334 INDEX

destructor function, 78
development, 225
dictionary, 153, 183, 197
direction of constraints, 99fn
dissertation, see OED, thesis, sense 5
dollar, see accounting method
don’t care, see usage annotation,

irrelevant
duality, 50
dummy usage annotation, 169
duplication, 182

Edison, 183
effect-based analysis, 16
effectiveness, 19, 115, 190, 192, 193,

200, 204, 213, 229
comparison of analyses, 195
fundamental limitation of, 211, 213

efficiency, 18
elephant, 180
ELIX2, 272
ELX, 255
encoding of constructor, see constructor,

encoding of
entailment, 55, 118, 119, 123, 291
environment, 28, 85, 90, 101, 172, 266,

267
initial, 89
manipulation of, 68, 72, 140fn, 253,

254, 267, 272
environment variable, 112
environments

separated, 72
equal

constraint, 55
Equal (analysis parameter setting), 197
equivalence class, 105
erasure, 31, 38, 44, 79, 81, 106fn, 131,

182
erasure semantics, 83, 224

without erasing the types, 81
eta-expansion, 187
evaluation

under abstractions, 82, 131
evaluation context, 26, 29, 33, 257, 276,

284, 310
evaluation order, 33, 34, 48, 48fn
evaluator, see abstract machine
example

of demand/use typing, 271
of exact use and demand, 261

executable language, 29

actual, 31
execution time, see run time
existential constructor, 187
existential quantifier, see hiding operator
explicit term form, 81
explicit typing, 27, 44, 141
export, 53, 56, 65, 92, 113
export list, 184
exported binding, 173, 204, 205,

213–215
expressivity, 164
extended type system, 310
extensions, 229, 251

required, 213

factorial, 271
false assumption, 182
fft2, 190, 197–199, 204, 214
final pass

deferring, 215
Fix, 158
fixed point, 104
FL0, 129, 168
flags, 189
flip, 78
FLIX0, 131
FLIX1, 269
floating, 199, 215, 254
floating in, 11
floating out, see full laziness
floating transformation, 8, 83, 173, 188
flow analysis, 13, 14, 117, 123, 272
foldr, 210
foldr/build, 186, 188
folklore, 10, 128
forbidden variable, 90, 94fn, 99–101,

103, 104fn, 112
forcing, 104, 105, 112, 121
free occurrence in abstraction, see

occurence, free in abstraction
free usage variable, 82
free variables, 48
fresh name supply, 172
fresh usage variable, 87, 174
fresh variable, 53, 56, 61fn, 108fn, 124,

163fn, 183, 294fn, 307fn
FreshLUB, 161
Full (analysis parameter setting), 195
full language, 83, 127, 225
full laziness, 7, 12, 13, 115
full source language, 129
full-scale language, 212
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function argument, 44, 67, 70, 266
function result, 44, 67, 266
function type, 44
functional language, see lazy functional

language
-fusage-heavy, 173, 189
-fusagesp, 189
-fusagesp-dconmaxcountn, 183, 189
-fusagesp-dconmoden, 183, 189
-fusagesp-moden, 173, 189
-fusagesp-oneshotmoden, 189
-fusagespec, 189
fusion, 158, see also deforestation
future use, 67fn, 99, 109
future work, 228

game tree, 5
gamteb, 191
garbage collection, 12, 13, 15, 16, 39,

118, 149, 191, 193, 200
generalisation, 89, 92, 92–106, 109, 111,

112, 114, 117, 121, 128, 174,
224, see usage abstraction

Damas–Milner, 89
effect of, 85
restriction of, 85, 173, 204, 213, 214

generalisation step, 89
generalised type, 135
generalised variables, 92
GHC, see Glasgow Haskell Compiler
Girard–Reynolds, see polymorphic lambda

calculus
Glasgow Haskell Compiler, 6, 13, 18, 19,

81fn, 83, 114, 115, 168, 184,
191, 213, 225, 226, 229, 252,
257, 273

specific constructs, 184–187
global analysis, 19, 21
global constraint set, 66
global property, 113
global well-formedness constraint, 141
“go wrong”, 4, 17, 31, 36, 60, 81, 107,

128, 130, 131, 287
“good programs have small types”, 110
goodness ordering, 18, 52, 53, 57, 58, 61,

66, 68, 69, 71, 87, 89, 92, 96,
101, 114, 118, 119, 159

covariant of, 52, 71
graph reduction, 8
GRIN, 13
ground annotation, 56, 95
ground variable, 100, 103

guard �, 257, 269, 272

Hack (analysis parameter setting), 204
Hack+Anal (analysis parameter setting),

204
Halting Problem, 17
Haskell, 3, 6, 65, 77, 128, 145, 157, 159,

190
Hasse diagram, 96, 105
heap, 9, 33, 34, 39, 82, 180, 254, 275
Heavy (analysis parameter setting), 197,

206
heuristic, 66, 104, 111, 228
hiding operator, 69, 124
HM(X), 123
hole, 177, 276
Holy Grail, 114
Hope, 128
HOT, 4, 16
hyperfunctions, 158

ideal, 95fn
identifier, 168
identity function, 65, 74, 77, 79
idInt, 93, 95
if0, 27, 34, 47, 48
I.H., 275
implementable, 19
implementation, 115, 167–215, 224, 226,

229, 257
chronology, 168–171
necessity of, 224

implementation experience, 212
implicit parameters, 168
implicit polymorphism, 89
imported types, 169
impredicativity, 89, 114
improvement

of implementation, 214
in a, see passages
incomparable, 74, 86
indirection, 192
induction, 144, 145
inference, 69, 93, 99fn, 117–119, 128,

150, 159, 163, 172, 173, 211,
225, 227, 309

extra passes of, 173
passes, 115
sequencing of, 173
type, 27

inference algorithm, 18, 53–58, 61, 71,
74, 86–92, 103, 224, 272
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inference rule, 67
infinite proof tree, 144
infinite regress, 180
information, 75, 85

loss, see approximation
information flow, see usage propagation
initial algebra semantics, 128
initial configuration, 34
inlining, 11, 12, 66, 115, 173, 188, 198,

206, 215, 223, 272
cross-module, 215

instances, 75, 95, 96, 181
instantiation, 66, 77, 79, 83fn, 87, 89, 91,

92, 95, 121, 174, 176, 182, see
usage application

implicit, 128
instantiation constraints, 120
instrumentation, 31, 81, 106, 131
instrumented executable language, 131
integrate, 190, 197
interesting, see usage variable,

boring/interesting
interface file, 184, 186
interleaving

constraint building, 89
intermediate code, 227
intermediate data structure, 138, 149,

151, 165
intermediate language, 4, 7, 177, 180

typed, 16
intermediate variable, 94fn
internal variable, 90, 94fn, 99, 100, 104,

105
interval annotation, 39, 69
intuitionistic, see linear
isomorphism, 145, 155, 156
ISWIM, 3
IT0, 31, 36, 161
IT1, 53, 94
IT2, 86, 159

join point, 188

kernel, 118
kind, see sort
kitchen sink, 277
kiwi, 62fn
Kleene–Mycroft iteration, see polymorphic

recursion

L0, 27, 36
lambda abstraction, 141

lambda calculus
Church’s, 3

lambda cube, 168
lambda usage, see usage, of function
languages, 231
lattice, 91, 95, 96, 100, 123
laziness, 184

necessary, 210, 213, 214
lazy constructor, 130, 135fn
lazy evaluation, 4, 8, 14, 39, 71
lazy functional language, 1, 3, 6, 70, 71,

223
“lazy” lambda calculus, 5fn
lazy list, 157
lazy state threads, 114
letrec, 7, 269
libraries, 193fn, 204, 204fn
library function, 77
lift, 191, 198
lifted type, 180
lifting, 85, 266
linear, 68, 72, 253, 267, see also affine
linear logic, 13, 48, 70, 270
linearity, 14, 273
LISP, 3
List, 154
list (algebraic data type), 137, 139, 141,

210, 213
literal, 29, 33, 47, 141, 179
LIX0, 29
LIX1, 42, 83
LIX2, 78
LIXC0, 33, 37
local analysis, 19
local property, 113
lowlighted text, 78
lowlighted text, 31
LX, 31

main, 177
mandel, 191, 198
manifest function, 188
many times, 10, 43, 47, see also thunk,

updatable
map, 171
maximal applicability, 21, 63, 67, 74, 77,

92, 93, 95, 96, 113, 150, 182
maximisation, 52, 53, 56, 68
maximum, 48
measurement, 9, 19–20, 69, 115, 176,

189–193, 213, 223, 224
misleading, 10, 211



INDEX 337

metric, see measurement
ML, 3, 16, 65, 85, 87, 89, 99, 110, 114,

117, 120, 128, 157, 159
type inference, 110

module, see separate compilation
monad, 172
Mono (analysis parameter setting), 197
monomorphic, 41–72, 81, 94, 128, 264
monomorphic analysis, 14, 169, 197,

214, 226
monomorphic language, 89
monomorphic type, 74, 89
monomorphic usage analysis, 74
monomorphism, 99, 113
monotonicity, 272
Moore family, 52
most general, see principal
multiple application, see adjacent

lambdas
multiplicative, 267fn
multiplier, 190, 205
multiset, 55fn
mutator time, 200

needed, 1
negative, see polarity
negative constraint, 272
negative occurrence, 79
nested data type, see non-regular data

type
nesting, 64, 110, 164
newtype, 168, 179, 185
nfib, 225
Nil, 210
NoFib, 10, 19, 115, 190, 193, 213

too fast, 197
non-regular data type, 145, 159, 165
None (analysis parameter setting), 197,

204
nonrestrictivity, 60, 107, 163
nonvariant, 182
not used, see zero usage
notation, 231–236
Note, 168, 178
nullary constructor, 178, 179, 182

O’Haskell, 115, 120, 165
object-oriented languages, 121
observability, 71
observational equivalence, 119
observational subtyping, 118
occurrence, 44, 50, 51, 68

free in abstraction, 47, 48, 68, 72,
83, 91, 135, 140, 188

in scope, 47, 48, 48, 55, 72, 83, 135,
138, 140, 142, 174, 178

positive (negative), see polarity, of
occurrence

syntactic approach insufficient, 253,
254, 267

occurrence analyser, 188
odd and even lists, 156
one-shot lambda, 11, 11, 29, 115, 173,

187, 192, 198–200, 215, 229,
254

open source, 168
operational semantics, 7, 17, 20, 31, 36,

39, 42, 59, 79, 81–83, 106, 131,
161, 162, 178, 224, 257–261

operational significance, 131, 135
opportunity, 190, 192, 193, 200, 211,

213
static, 214

optimisation, 6, 7, 10, 11, 83fn, 113, 153,
173, 184, 187–189, 192, 200,
225, 253

misguided, see simplifier, making bad
choices

optimisation pass
sequencing of, 173, 176

optimising compiler, 168
order of evaluation, 15
outermost annotation, see topmost

annotation
outlier, 195
overall usage, 139, 139, 140, 146, 148,

155, 183, see also topmost
annotation

pair (algebraic data type), 138, 143
parameterisation

of algebraic data type, 138, 139, 143
parametric polymorphism, 131
parametricity, 134
parsers, 157
partial application, see curried function
passages

twisty little
maze of, see all alike

passes
multiple, 197

pathological, 254fn
performance, 19, 64, 169, 183, 184,

190–215, 224, see also
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measurement
permanent indirection, 192
permits ≤, 256
pessimisation, 56, 63–65, 67, 87, 92,

161, 179, 184, 215
pessimistic annotation, 171, 181
placeholder, 171
plus3, 78, 96
pointer, 180
poisoning, 14, 15, 50, 65, 74, 112–114,

158, 173, 174, 224, 225
polarity, 44, 79, 95, 99, 99fn, 103, 105,

112, 118, 182
in environment, 101fn
of annotation position, 67, 75, 92,

93, 179
of occurrence, 139, 146, 158
of position, 148, 150, 181

polymorphic case, 178
polymorphic lambda calculus, 7, 116,

128, 168
polymorphic recursion, 91, 123, 159
polymorphic usage analysis, 65, 169
polymorphism, 16, 93, 106, 224

vs. subtyping, 77
beyond ML, 114
constrained, 14, 15
extra, 75
rank-1, 109, 114
rank-2, 114
redundant, 75
related work, 116
type, 14, 42, 128

polyvariance, 16, 117, 123, 176
positive, see polarity
positive occurrence, 79
possibly used many times, see many times
power, 224, 225, 229
powerset, 255
powertype, 95fn
pragma, 184
pragmatic subtyping, 120
precision, 149, 152, 153, 165
predicativity, 89
predictability, 66, 77
primitive operation, see primop
primitive ordering, 42, 43, 50, 68, 70,

257
primitive recursion, 210, 213
primitive reduction, 83
primitive transition relation, 259, see

transition relation, primitive

primitive type, 179
primop, 27, 29, 33, 34, 40, 47, 180–182

partially saturated, 29, 37
principal, 93, 95, 96, 113, 120
principal type, 18, 66, 68–70, 74, 75, 77,

149
principal type scheme, 128
principal typing, 18, 61
problem, 223

monomorphic analysis, 64, 74
problems, 115
product ·, 256, 267, 272
production compiler, 70, 167, 212, 224,

227
profiling, see ticky-ticky profiling
program analysis, 15
programs

all reasonable, 190
chosen, 190

progress, 20, 161, 285
Progress Lemma, 37, 59, 106
projection, see usage projection types
proof, 18, 20, 59–64, 81, 82, 106,

161–164, 275–311
pruning, 284
pseudo-completeness

of inference, 309
theorem, 63

puzzle, 191, 198

Qoheleth, 230
quadratic behaviour, 91fn
quasi-linear type, 15, 48fn, 270
queens, 149, 190, 191, 209–210, 213,

225

rank-1 usage polymorphism, 89, 171
reachability, 57fn, 120
real functional language, 224
recursion, 150, 151, 154–159, 184, 255,

272
indirect, 157
mutual, 27, 50, 156, see also you
negative, 157, 158
non-regular, 159, 270
non-uniform, 158
self-, 154
type, 139, 141, 143, 144

non-regular, 145
recursive binding group, see binding

group
recursive data type, 149, 170
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recursive occurrence, 99fn
reduction, see transition relation

deterministic, 288
redundant, 95
reference count, 69
regular data type, 145, 165
regular tree, 156, 158
regular tree grammar, 119
repetition, 198
representative variable, 104
reptile, 191, 198
restriction

of generalisation, see generalisation,
restriction of

of number of parameters, 183, 195,
197

of use of rule, 55
rule location in derivation, 87

results, 169, 193–214, 224, 225
Reynolds–Girard, see polymorphic lambda

calculus
ρ-type, 266
Rice’s Theorem, 17fn
root-normal proof tree, 276
rose tree, 147, 151, 152, 157
RTS, 187, 191, 192
rules, 184, 186, 237–250
run time, 19, 197–199, 214
runtime system, 227

satisfiable, 291
Scheme, 118
scoping, 79, 81, 85, 91
scrutinee, 130, 131, 142, 178, 270

annotation, 142
SECD, 39
selector thunk, 192
semantic subtyping, 118
semantics, 17
separate compilation, 19, 21, 21, 53, 56,

63, 64, 67, 74, 87, 177, 184,
200, 215

separation between creation and use,
137–139

seq, 36, 253, 255, 257, 269
set-based analysis, 118
sharing, 12–14, 48, 78, 137, 139–142,

198, 212, 224
of constraints, 120

sharing constraint, 140, 270
short-circuit binding, 254

σ-type, 43, 79, 85, 106, 134, 135, 169,
264

sign negation, 81
signature, 21, 63, 67
simple, 190, 198, 199, 206
simple polymorphism, 73, 75–77, 89, 96,

224, 226, 228, 264, 272
vs. O’Haskell, 120
applications, 111

simple-polymorphic language, 89
simple-polymorphic type, 121fn
simplification, 118
simplifier, 8, see also optimiser

making bad choices, 197–199, 214,
215, 229

Simula-67, 131
single component data type, 153
single pass, 91fn
size

of code, 206
of module, 200

small types, 110
small-step semantics, 20
soft typing, 20, 60, 93, 107, 150
solution, 52, 55, 57, 58, 61, 71, 87, 92,

109, 117, 124, 224, 291
solver, 103, 121
sorcerer’s apprentice, 155
sorts

two, 43, 79
soundness, 13–15, 18, 20, 35, 36, 49, 50,

59, 61, 69, 75, 81, 85, 91, 99,
106, 107, 119, 141, 142, 162,
164, 173, 179, 181, 182, 224,
271, 275, 287

lemma, 37
of inference, 293, 307, 309
theorem, 38, 59, 63

source language, 17, 27–28, 227
source polymorphism, see type

polymorphism
source type, 169, 171
space-safety, 12, 39, 272
specialisation, 7, 114, 121, 169, 171,

174–176, 184, 195, 204, 206,
213, 214, 226, 229

cascading, 176
versus generalisation, 205

splitting, see polyvariance
ST hack, 188, 200
stable pointer, 180, 181
stack, 9, 33, 39
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standard libraries, 115
state, 181
state threads, 189
STG, 8, 9, 115, 169, 177, 178, 187, 188,

227
strict let, 36, 178, 253
strictness, 4, 6, 7, 14, 48, 70, 119, 131,

177, 180, 184, 229, 253–254,
257

strictness analysis, 251, 272, 273
strictness/absence analyser, 257
stripping, 29, 37, 39, 44, 59, 131
strong typing, 3
strongly-connected component, 89fn, 177
structure

of typing, 89
stuck, 40
subject reduction, 20, see type

preservation
substitution, 142, 171, 174–176, 185,

275, 281, 284, 290
subsumption, 15, 45, 47, 48, 70, 75, 83,

86, 94, 99, 100, 116, 117, 225,
269, see also subtyping

subtract (, 256
subtype, 78, 117, 118, 179
subtype ordering, 105

contravariance of, 52, 71
subtyping, 14, 15, 49, 50, 64, 66, 68, 70,

86, 89, 119, 135, 180, 181, 269
vs. polymorphism, 77
algebraic data type, 143–147, 165
related work, 116
semantic vs. syntactic, 95
structural, 86, 95, 117
tree model of, 165
type constructor, 297

sum (algebraic data type), 143
sum of uses, 252, 270
sumdown, 100
supercombinators, 13
suspension, 9
syntactic occurrence, see occurrence, in

scope
syntactic proof, 20
syntax-directed, 56, 87, 161

not, 89
System F , see polymorphic lambda

calculus
System Fω, 168

T0, 38

tag, 128–130, 180
tagged sum, see tag
tail recursion, 340
target language, 18, 42, 81
τ -type, 43, 79, 85, 106, 134, 135, 139,

169, 264
term form, 85
terminal configuration, 26
termination, 34, 39, 59, 106
test suite, see NoFib
theorem prover, 210
theorems for free, 131
thesis

how to read, 22
thunk, 9, 44, 50, 81, 114, 115, 169,

173–176, 178, 180, 191, 200,
211, 225, 253, 255

consumer-updated, 50
dynamic, 211, 214
dynamically-allocated, 209
in datum, 135fn
manual marking of, 211
re-entrant, 187
removal of, 197
self-updating, 50
single-entry, 11, 29, 95, 187, 191,

192, 209–211
top-level, 211
updatable, 115, 187, 192
used at most once, 209
used-once, 19, 193, 215

ticky-ticky profiling, 191
tiered types, see sorts
TIM, 39
top level, 187
top-level binder, 173, 204, 205
topmost annotation, 43, 47, 48, 75, 79,

83, 85, 113, 138–141, 148, 150,
175, 178, 179, 182, 186, 270

tortoise, see turtle
toy language, 225
transition relation, 33, 259

primitive, 33, 34
transitive closure, 103
TransitiveClosure, 105, 292
translation of data type, see annotation

scheme
trivial bounds, 125
trivial translation, 31, 35, 39, 47
tuning, 189
turtle, 180, 180fn
twice, 96, 121
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twist-list, 158
TyNote, 169
type, 3, 27, 43, 47

erasure, see erasure
recursive, see recursion, type
uninhabited, 141

type abstraction, 128, 129, 134–135, 161
erasure of, 131

type annotation, 27, 120
type application, 128, 129, 135, 172, 185

erasure of, 131
type argument, 134, 141, 146
type class, 168
type constructor, 129, 145, 161, 165,

171, 181, 185, 266
type parameter, 129
type polymorphism, 77, 83, 123, 128,

129, 134–135, 161, 224
type preservation, 224, 269
type scheme, 87, 89, 117
type signature, 114
type system, 264–271
type variable, 129, 134–135, 171
type-based analysis, 16, 18, 18, 41, 111,

123, 226
type-directed, 7
type-erasure semantics, see erasure

semantics
typeability, 150, 163, 182
typecase, 131
typechecker, 169, 227
typed intermediate language, 77, 128,

168
typings

sample, 77

u in (T . . .)u, see overall usage
unary constructor, 153
unboxed data type, 180
unboxing, 251
undecidability, 17, 114
unfolding, 184

of datatype, 155
unification, 91, 99–101, 104, 105, 112,

117, 119–121, 151, 164, 181,
186

to resolve constraint, 78
union-find, 57, 63, 110, 164
uniqueness, 70
uniqueness annotation, 69
uniqueness propagation, 140
uniqueness type, 69

uniqueness typing, 123, 152
unlifted type, 180, 181
unsatisfiable, 57, 103
update, 9, 10, 34, 211, 253

avoidance, 9, 13, 19, 187, 197, 199,
200, 223, 252

in place, 13, 15, 69
measurement of, 9
wasted, 1, 9

update flag, 26, 29, 29, 35, 39, 43, 45,
47, 50, 52, 56, 81, 83, 87, 107,
131, 141, 161, 224, 275

update frame, 33, 34, 36, 39, 187, 191,
192, 197, 257

update marker, 68
update marker check avoidance, 15, 39,

214
update marker check intervals, 273
update-in-place, 192
usage, 10, 36, 40, 43, 44, 48, 50, 60, 83,

107, 179, 251, 272
vs. uniqueness, 70
inside datum, 135
of function, 178, 185, 187

usage abstraction, 78, 81, 81, 85, 87, 89,
106, 123

usage analysis, 1, 6, 11, 26, 39, 41, 113,
137, 176, 224, 273

related work, 12–15
simple polymorphic, 73

usage annotation, 43, 45, 72, 81, 89,
134, 138, 140, 169, 178, 180,
185, 187, 224, 255, 264

irrelevant, 180–182
static not dynamic, 211

usage application, 78, 81, 81, 85, 91,
106, 123

usage argument, 141, 153, 170, 174,
176, 182, 183, 270

usage generalisation, 87, 134
usage information, 214, 229

accuracy of, 199
exploiting, 197

usage interval analysis, 272
usage kind, 170
usage parameter, 139, 139, 148, 149,

151, 159
usage polymorphism, 77, 78, 121, 131,

181
arbitrary, 109
explicit, 81
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usage projection types, 171–172, 174,
185, 212

usage propagation, 53, 70, 75, 137, 138,
140, 141, 179, 181

usage quantification, 78, 79, 86
vs. subtyping, 95

usage scheme, 171
usage signature, 185
usage site, 149
usage specialisation, 185, see

specialisation
usage type, 79, 212

three-tier, 264
usage variable, 53, 55, 57, 74, 75, 79, 82,

83, 85, 86, 95
boring/interesting, 171, 175
in scope, 82

usage-interval analysis, 13
usage-monotype, 87
usage-variable-follows-type-variable, 114
use, 69, 178, 254, 261, 272, 273
use site, see usage propagation
use-once-don’t-drag, 12, 39, 40, 59, 70fn,

272
used at most once, see at most once
used many times, see many times
user-defined algebraic data types, see

algebraic data types

Value, 59, 106, 259fn, 287
value, 33, 40, 68, 82, 83, 254

inside datum, 135
usage of, 47

value annotation, 255
value argument, 141
(Value) rule, 141
variability, 193, 206, 213

of effectiveness, 229
variable

usage of, 47
variance, 44, 181, 215

weak head normal form, 178, 267, 273
weakening, 270, 277
weaker typing judgement, 275
well-annotation, 35, 69
well-founded induction, 308
well-typed, 78, 87
“well-typed programs do not. . . ”, see “go

wrong”
well-typing, 37, 114, 123, 131

well-typing rules, 16, 18, 28, 47, 52, 53,
83, 129, 135, 138, 141–143,
161, 162, 267–269

WHNF, see weak head normal form
work-safety, 12, 39, 272
worker/wrapper transformation, 7, 252
Wrong, 35, 59, 106, 259fn, 287

Y2K, 16
you, see are

Zed, 51fn
zero annotation, 252
zero usage, 11, 15, 36, 213
zero use, 257
zig-zag, 96, 112
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