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Abstract
Missing values constitute an important challenge
in real-world machine learning for both prediction
and causal discovery tasks. However, only few
methods in causal discovery can handle missing
data in an efficient way, while existing imputation
methods are agnostic to causality. In this work we
propose VICAUSE, a novel approach to simultane-
ously tackle missing value imputation and causal
discovery efficiently with deep learning. Particu-
larly, we propose a generative model with a struc-
tured latent space and a graph neural network-
based architecture, scaling to large number of
variables. Moreover, our method can discover
relationship between groups of variables which
is useful in many real-world applications. VI-
CAUSE shows improved performance compared
to popular and recent approaches in both missing
value imputation and causal discovery.

1. Introduction
The causal structure of data is a powerful source of infor-
mation for real-world decision making, and it can improve
and complement other learning tasks. However, historically
causality and machine learning research have evolved sep-
arately. The last years have witnessed a growing interest
in integrating causality techniques to specific tasks such
as classification (Fatemi et al., 2021; Kyono et al., 2020),
time-series prediction (Kipf et al., 2018; Löwe et al., 2020),
and model explainability (Schwab & Karlen, 2019). One of
the main challenges in real-world machine learning is the
presence of missing data (Mohan & Pearl, 2014; Nabi et al.,
2020; Rubin, 1976). We hypothesize that causal discovery
can help the task of missing value imputation, since the
relationships between variables are paramount for such task.
To address this, several important aspects need to be con-
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sidered. First, the number of possible causal graphs grows
super-exponentially with the number of variables (Peters
et al., 2017), so that scalable approaches to causal discovery
are required. Second, we aim to perform causal discovery in
the presence of missing values, which is not considered in
standard approaches (Peters et al., 2017; Strobl et al., 2018;
Tu et al., 2019a). Third, we seek to model complex rela-
tionships between variables, so that flexible deep learning
models are required.

Moreover, many real-world applications require discovering
causal relationships between groups of variables, which is
challenging. Standard algorithms find relationships between
the fully observed individual variables. However, this is
neither efficient nor meaningful enough when dealing with
datasets that contain a large number of variables (Wang
& Drton, 2019). Instead, the variables may be grouped
in a smaller number of semantically coherent pre-defined
groups. One setting in which such a need arises is in the
education domain (Wang et al., 2021; 2020). Education data
can contain student responses to thousands of individual
questions, where each question belongs to a broader topic.
It is insightful to find relationships between topics instead of
individual questions to help teachers adjust the curriculum.
For instance, if there exists a causal relationship from one
topic to another, the former should be taught earlier in the
curriculum. Also, educational data is inherently sparse,
since it is not feasible to ask every question to every student.

In this work we propose VICAUSE (missing value
imputation with causal discovery), a novel approach to si-
multaneously tackle missing data imputation and causal
discovery (Sec. 2). VICAUSE provides two outputs in one
framework. This is accomplished by inferring a generative
model that leverages a structured latent space and a decoder
based on Graph Neural Networks (GNN) (Gilmer et al.,
2017; Scarselli et al., 2009). Namely, the structured latent
space endows each variable with its own latent subspace,
and the interactions between the subspaces are regulated
by a GNN whose behavior depends on the graph of causal
relationships, see Fig. 1(a). VICAUSE satisfies all the de-
sired properties: it leverages continuous optimization of the
causal structure to achieve scalability (Zheng et al., 2018;
2020), it can be used in the presence of missing data, and
it makes use of deep learning architectures for increased
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flexibility. Moreover, the causal structure can be learned
at different levels of granularity when the variables are or-
ganised in groups (Sec. 2.4). We evaluate VICAUSE in
both synthetic (Appx. B) and two real-world applications
(Sec. 3.1 and 3.2) that cover different types of variables
(continuous or discrete), number of variables (i.e., graph
sizes), and granularity of the causal discovery (i.e. variable-
level or group-level causal structure discovery). VICAUSE
shows improved performance in both missing data imputa-
tion and causal discovery when compared to popular and
recent approaches for each task.

2. Model Description
2.1. Problem setting

Our goal is to develop a model that jointly learns to im-
pute missing values and finds causal relationships between
variables. The input to VICAUSE is a N ×D training set
X = {xn}Nn=1 with N data points and D variables, which
may contain missing values. The observed and unobserved
training values are denoted XO and XU , respectively. In
this work, we assume data are either missing completely at
random (MCAR) or missing at random (MAR). The output
of VICAUSE is i) a model that is able to impute missing
values for a previously unseen test sample x̃ ∈ RD, and ii) a
directed graph representing the causal relationships between
the D variables. The graph is represented by its adjacency
matrix G, i.e. a D ×D matrix whose element Gij is 1 if
there exists a causal relationship from the i-th variable to
the j-th, and is 0 otherwise.

VICAUSE aims to discover the underlying causal relation-
ships given partially observed data, and the learned model
can also be used to impute missing data for test samples. We
use a score-based approach for causal discovery. Inspired
by (Heckerman et al., 2006), our score is defined as the
posterior probability of G given the partially observed train-
ing data, subject to the constraint that G forms a directed
acyclic graph (DAG). Thus, our objective is:

G? =argmaxG∈DAGs p(XO|G)p(G). (1)

To optimize over the causal structure with the DAG con-
straint in Eq. 1, we resort to recent continuous optimiza-
tion techniques (Kyono et al., 2020; Zheng et al., 2018;
2020). Namely, it has been shown that G represents a
DAG if and only if the non-negative quantity R(G) =
tr(eG�G) − D − 1 equals zero (Zheng et al., 2018). To
leverage this DAG-ness characterisation, we follow (Kyono
et al., 2020; Yu et al., 2019) and introduce a regulariser
based onR(G) to favour the DAG-ness of the solution, i.e.

G? = argmaxG (p(XO|G)p(G)− λR(G)) . (2)

The model used to compute the score needs to handle partial
observations. In addition, with the learned model we can

impute missing values given any observations. Thus, given
a test sample x̃ ∈ RD with partially observed variables,
we can estimate the distribution over x̃U (the unobserved
values) given x̃O (the observed ones) using the learned
model (Eq. 10).

2.2. Generative model and amortized inference

Generative model. We assume that the observations in
X are generated given the relationships G and exogenous
noise Z. Fig. 1(b) illustrates this generative process.Thus,
we can write the probabilistic model as

p (X,Z,G) = p(G)
∏
n p(xn|Zn,G)p(Zn). (3)

We use deep learning, in particular a Graph Neural Network
(GNN) for fθ, to provide a highly flexible model of the
generative process.

Amortized variational inference. The true posterior dis-
tribution over Z and G cannot be obtained in closed form
in Eq. 3, since we use a deep learning architecture. There-
fore, we resort to efficient amortized variational inference
as in (Kingma & Welling, 2013; Kingma et al., 2019; Zhang
et al., 2018). Here, we consider a fully factorized vari-
ational distribution q(Z,G) = q(G)

∏N
n=1 qφ(Zn|xn),

where qφ(Zn|xn) is a Gaussian whose mean and (diagonal)
covariance matrix are given by the encoder. For q(G) we
consider the product of independent Bernoulli distributions
over the edges, that is, each edge is present with a probabil-
ity Gij ∈ (0, 1) to be estimated. With this formulation, the
evidence lower bound (ELBO) is

ELBO =
∑
n

{
Eqφ(Zn|xn)q(G) log p(xn|Zn,G)

− KL[qφ(Zn|xn)||p(Zn)]− KL[q(G)||p(G))]
(4)

Next, we dive into our choice of generator, which uses
a GNN to regulate the interactions between the variables.
Then, we focus on the inference network, which respects
the variable-wise structure of the latent space.

Generator. The generator (also known as decoder) takes
Zn and G as input, and outputs the reconstructed x̂n =
fθ(Zn,G), where θ are the decoder parameters. We parti-
tion the exogenous noise Zn into D parts, where zn,d is the
exogenous noise for each variable d = 1, . . . , D. Notice
that this defines a variable-wise structured latent space, see
Fig. 6(a) in the Appendix for an illustration. Intuitively, the
decoder regulates the interactions between variables with
a GNN whose behavior is determined by the relationships
in G. Specifically, this is done in two steps: GNN mes-
sage passing layers and a final read-out layer yielding the
reconstructed sample.

GNN message passing in the generator. In message pass-
ing, the information flows between nodes in T consecu-
tive node-to-edge (n2e) and edge-to-node (e2n) operations
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Figure 1: (a) Graphic representation of VICAUSE. (b) Probabilistic graphical model for VICAUSE.

(Gilmer et al., 2017; Kipf et al., 2018). At the t-th step,
each edge i→ j has a representation (or embedding) hi→j
summarizing the information sent from node i to node j.
Since we are interested in the imputation task, where we
may want to predict the value of the parents from their chil-
dren only, we also introduce the backward embedding. This
is denoted hbi→j , and codifies the information that the i→ j
edge lets flow from the j-th to the i-th node (for symmetry,
the “standard” embedding is called here forward embedding
and denoted hfi→j). Specifically, the n2e and e2n operations
used in VICAUSE are

n2e : h
(t),f
i→j = MLPf

([
z
(t−1)
i , z

(t−1)
j

])
, (5)

h
(t),b
i→j = MLPb

([
z
(t−1)
i , z

(t−1)
j

])
, (6)

e2n : z
(t)
i = MLPe2n

(∑
k 6=iGik ·

{
h
(t),f
k→i + h

(t),b
i→k

})
.

(7)

Here, t refers to the t-th iteration of message passing (that
is, Z(0) = Zn, notice that we omit the subindex n for
simplicity). Finally, MLPf , MLPb and MLPe2n are MLPs
to be estimated. Interestingly, Eqs. (5)-(7) link together the
imputation and causal discovery tasks, since the information
flow between two nodes (i.e. variables) is proportional to
the weight of the corresponding edge.

Read-out layer in the generator. After T iterations of
GNN message passing, we have Z(T ). We then apply a
final function that maps Z(T ) to the reconstructed x̂, i.e.
x̂ = (g(zT1 ), . . . , g(z

T
D)), with g given by an MLP. Notice

that the decoder parameters θ include the parameters of four
neural networks: MLPf , MLPb, MLPe2n and g.

Inference network. As in standard VAEs, the encoder
maps a sample xn to its latent representation Zn. In VI-
CAUSE, we additionally ensure that the encoder respects
the structure of the latent space. As discussed before, Zn is
partitioned in D parts, one for each variable. To obtain the
mean and variance of Zn, we utilize a multi-head approach
with shared parameter φ = {φµ, φσ} for all the variables:

µn =
(
µφµ(xn,1), . . . , µφµ(xn,D)

)ᵀ
, (8)

σn = (σφσ (xn,1), . . . , σφσ (xn,D))
ᵀ
.

Here, µφµ and σφσ are given by neural networks. When
missing values are present, we replace them with a constant
as in (Nazabal et al., 2020). A graphic representation on
how the encoder respects the structure of the latent space is
provided in the Appendix, Fig. 7(a).

2.3. Training VICAUSE

Given the model in Sec. 2.2, we have the final objective to
minimize w.r.t. θ, φ and G:

LVICAUSE(θ, φ,G) = −ELBO+ λEq(G) [R(G)], (9)

where ELBO is given by Eq. 4 and the DAG regulariser
R(G) is defined in Sec. 2.1.

Evaluating the training loss LVICAUSE. VICAUSE can
work with any type of data. The log-likelihood term (the first
term in Eq. 4) is defined according to the data type. We use a
Gaussian likelihood for continuous variables and a Bernoulli
likelihood for binary ones. The standard reparametriza-
tion trick is used to sample Zn from the Gaussian distribu-
tion qφ(Zn|xn) (Kingma & Welling, 2013; Kingma et al.,
2019). To backpropagate the gradients through the dis-
crete variable G, we resort to the Gumbel-softmax trick
to sample from q(G) (Jang et al., 2017; Maddison et al.,
2017). The KL[qφ(Zn|xn)||p(Zn)] term can be obtained
in closed-form, since both are Gaussian distributions. The
KL[q(G)||p(G))] term can also be obtained in closed-form,
since both are the product of independent Bernoulli distribu-
tions over the edges. Notice that this term allows for speci-
fying prior knowledge on the causal structure (e.g. sparsity).
Finally, the DAG-loss regulariser in Eq. 9 can be computed
by evaluating the functionR on a Gumbel-softmax sample
from q(G). To make the model adapt to different sparsity
levels in the training data X, during training we drop a ran-
dom percentage of the observed values. The full training
procedure for VICAUSE is summarised in Algorithm 1.

Two-step training. Although important for the imputation
task, the use of both forward and backward MLPs introduces
a symmetry that hampers the correct identification of the
causal direction. Namely, if the forward and backward
MLPs are similar models, thenA→ B andB → A produce
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Algorithm 1 Training VICAUSE.
Input :Training dataset X, possibly with missing values.
foreach batch of samples {xn}n∈B do

Drop a percentage of the data for each sample xn.
Encode xn through the reparametrization trick to sample
Zn ∼ N (µφ(xn), σ

2
φ(xn)).

Use the Gumbel-softmax to sample G from the posterior
q(G).

Use the decoder to calculate the reconstructed sample x̂n =
fθ(Zn,G).

Calculate the training loss LVICAUSE (Eq. 9).
Gradient step w.r.t. φ (encoder parameters), θ (decoder param-

eters) and G (posterior edge probabilities).
Output :Encoder parameters φ, decoder parameters θ, and poste-

rior probabilities over the edges G.

exactly the same information flow when the two MLPs are
swapped. To overcome this issue, we propose a two-step
training scheme. In the first stage, the backward MLP is
disabled so that the symmetry is broken and the algorithm
can learn the causal structure. In the second stage, we
fix the graph structure (i.e. the variational parameter G)
and continue to train the model with backward MLP. This
two-stage training process allows VICAUSE to leverage the
backward MLP for the imputation task without interfering
with the causal discovery.

Revisiting the learning objectives. The optimal graph of
relationships, which was denoted G? in Sec. 2.1, is given
by the posterior graph of probabilities G (it gives the best
score as it maximizes the posterior). Similar to (Ma et al.,
2019; Nazabal et al., 2020), the trained model can impute
missing values for a test instance x̃ as

p(x̃U |x̃O,X) =
∫
p(x̃U |Z,G)qφ(Z|x̃)q(G)dZdG

= Eqφ(Z|x̃)q(G)p(x̃U |Z,G). (10)

Therefore, the distribution over x̃U (the missing values) is
obtained with x̃ as input.

2.4. Extension to relationship discovery between
groups of variables

Thus far, we have assumed that the relationship between
individual variables are of interest. As discussed in Sec. 1,
finding the relationships between groups of variables is
needed in many real-world applications. Here, we extend
VICAUSE to discover relationships between (pre-defined)
groups of variables.

Problem definition. We assume that the D variables in
X are organized in M � D groups. For each group
m = 1, . . . ,M , we write Im for the variables associated to
that group (i.e. Im = {4, 5, 6} means that the m-th group
contains the 4th, 5th and 6th variables). The goal is to learn
to impute missing values for test samples x̃ ∈ RD, and learn
causal relationships between the M groups of variables. In

particular, the shape of the learned parameter G is now
M ×M . Also, the structured latent representation Z is split
in M parts, each one corresponding to a different group, see
Fig. 6(b) in the Appendix for an illustration.

VICAUSE for groups. The formulation of Sec. 2.2 can be
naturally generalised to this setting. The generative model is
analogous, but each node must be thought now as a group of
variables (instead of a single variable). The main difference
lies in the mappings that connect the sample xn and its
latent representation Zn. Specifically, there are two such
mappings: the encoder and the read-out layer in the decoder.
Unlike before (Eq. 8), the same neural network cannot be
used now for all the latent subspaces, since different groups
of variables may have different dimensionalities (namely,
them-th group has a dimensionality of |Im|, i.e. the number
of variables in that group). To overcome this, we propose to
use a group-specific neural network for each latent subspace.
Specifically, the encoder computes the mean of the latent
variable as

µn =
(
µ1
φ1
(χ1), . . . , µ

M
φM (χM )

)ᵀ
, (11)

where χm includes all the variables in the m-th group (i.e.,
χm = [xi]i∈Im ), and µ1

φ1
, . . . , µMφM are M different MLPs.

The expressions for the variance and for the read-out layer
within the decoder are analogous. Fig. 7(b) in the Appendix
shows a graphical representation of Eq. 11. The rest of
training for VICAUSE is identical to the case of variables,
recall Algorithm 1.

3. Experiments
We evaluate the performance of VICAUSE in a synthetic
experiment where the data generation process is controlled
(Appx. B), a semi-synthetic problem (simulated data from a
real-world problem) with many more variables (Sec. 3.1),
and the real-world problem that motivated the development
of the group-level extension (Sec. 3.2).

Baselines. For the causal discovery task, we consider five
baselines. PC (Spirtes et al., 2000) and GES (Chickering,
2002) are the most popular methods in constrained-based
and score-based causal discovery approaches, respectively.
We also consider three recent algorithms based on contin-
uous optimization and deep learning: NOTEARS (Zheng
et al., 2018), the non-linear (NL) extension of NOTEARS
(Zheng et al., 2020), and DAG-GNN (Yu et al., 2019). Un-
like VICAUSE, these causality baselines cannot deal with
missing values in the training data. Therefore, in Appx. B
and Sec. 3.1 we work with fully observed training data. In
contrast, the real-world data in Sec. 3.2 comes with par-
tially observed training data, and the goal is to discover
group-wise relationships. Thus the causality baselines can-
not be used there, as they deal with variable-wise rela-
tionship only. For the missing data imputation task, we
also consider five baselines. Mean Imputing and Major-
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Accuracy AUROC AUPR

Majority vote 0.9268±0.0003 0.5304±0.0003 0.3366±0.0025
Mean imputing 0.9268±0.0003 0.8529±0.0012 0.3262±0.0034

MICE 0.9469±0.0007 0.9319±0.0010 0.6513±0.0046
Missforest 0.9305±0.0004 0.8915±0.0093 0.5227±0.0033

PVAE 0.9415±0.0003 0.9270±0.0007 0.5934±0.0046
VICAUSE 0.9471±0.0006 0.9392±0.0008 0.6597±0.0053

Table 1: Imputation results for neuropathic pain dataset
(mean and standard error over five runs).

ity Vote are popular techniques used as reference, Missfor-
est (Stekhoven & Bühlmann, 2012) and MICE (Buuren &
Groothuis-Oudshoorn, 2010) are two of the most widely-
used imputation algorithms, and PVAE (Ma et al., 2019) is
a recent algorithm based on amortized inference.

Metrics. Imputation performance is evaluated with standard
metrics such as RMSE (for continuous variables) and accu-
racy (for categorical variables). For categorical variables,
we also provide the area under the ROC and the Precision-
Recall curves (AUROC and AUPR, respectively), which
are especially useful for imbalanced data (such as that in
Sec. 3.1). Regarding causal discovery, we consider both
adjacency and orientation metrics as is common practice
(Glymour et al., 2019; Tu et al., 2019a). Whereas the for-
mer do not take into account the direction of the edges, the
latter do. For each metric (adjacency and orientation) we
compute recall, precision and F1-score. We also provide
causal accuracy, a popular metric introduced in Claassen &
Heskes (2012) that takes into account edge orientation.

3.1. Neuropathic pain dataset

Motivation and dataset description. This experiment ex-
tends the previous one in three directions. First, the rela-
tionships used are not synthetic, but instead come from a
well-studied medical setting (Tu et al., 2019b). Second,
the number of variables considered is 222 — significantly
larger than before. Third, the variables are binary, rather
than continuous. The dataset contains records of different
patients regarding the diagnosis of symptoms associated to
neuropathic pain. The train and test sets have 1000 and 500
patients respectively, for which 222 binary variables have
been measured (the value is 1 if the symptom is present for
the patient and 0 otherwise). The data was generated with
the Neuropathic Pain Diagnosis Simulator, whose proper-
ties have been evaluated from the medical and statistical
perspectives (Tu et al., 2019b).

Imputation performance. VICAUSE shows competitive
or superior performance when compared to the baselines,
see Table 1. Notice that AUROC and AUPR allow for an
appropriate threshold-free assessment in this imbalanced
scenario. Indeed, as expected from medical data, the major-
ity of values are 0 (no symptoms); here it is around 92% of
them in the test set. Interestingly, it is precisely in AUPR

where the differences between VICAUSE and the rest of
baselines are larger (except for MICE, whose performance
is very similar to that of VICAUSE in this dataset).

Causality results. As in the synthetic experiment, VI-
CAUSE outperforms the causal discovery baselines, see
Table 2. Notice that NOTEARS (NL) is slightly better in
terms of adjacency-precision, i.e. the edges that it predicts
are slightly more reliable. However, this is at the expense of
a significantly lower capacity to detect true edges, see the
recall and the trade-off between both (F1-score).

3.2. Eedi topics dataset

Motivation and dataset description. This experiment ex-
tends the previous ones in three directions. First, we tackle
an important real-world problem in the field of AI-powered
educational systems (Wang et al., 2021; 2020). Second, we
are interested in relationships between groups of variables
(instead of individual variables). Third, the training data
is very sparse, with 25.9% observed values. The dataset
contains the responses given by 6147 students to 948 math-
ematics questions. The 948 variables are binary (1 if the
student provided the correct answer and 0 otherwise). These
948 questions target very specific mathematical concepts,
and they are grouped within a more meaningful hierarchy of
topics, see Fig. 4. Here we apply the extension introduced
in Sec. 2.4 to find relationships between groups (the top-
ics). Specifically, we group the topics at the third level of
the topic hierarchy (Fig. 4 in the appendix), resulting in 57
nodes in the GNN.

Imputation results. VICAUSE achieves competitive or
superior performance when compared to the baselines (Ta-
ble 4). Although the dataset is relatively balanced (54%
of the values are 1), we provide AUROC and AUPR for
completeness. Notice that this setting is more challenging
than the previous ones, since we learn relationships between
groups of variables (topics). Indeed, whereas the group
extension in Sec. 2.4 allows for more meaningful relation-
ships, the information flow happens at a less granular level.
Interestingly, even in this case VICAUSE obtains similar or
improved imputation results compared to the baselines.

Causal discovery results between groups. Most of the
baselines used so far cannot be applied here because i) they
cannot learn relationships between groups of variables and
ii) they cannot deal with partially observed training data.
DAG-GNN is the only one that can be adapted to satisfy
both properties. For the first one, we adapt DAG-GNN
following the same strategy as in VICAUSE, i.e. replac-
ing missing values with a constant value. For the latter,
notice that DAG-GNN can be used for vector-valued vari-
ables according to the original formulation (Yu et al., 2019).
However, all of them need to have the same dimensionality.
To cope with arbitrary groups, we apply the group-specific
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Adjacency Orientation Causal
AccuracyRecall Precision F1-score Recall Precision F1-score

PC 0.046±0.001 0.375±0.006 0.082±0.001 0.024±0.001 0.199±0.011 0.044±0.002 0.058±0.003
GES 0.110±0.001 0.436±0.008 0.176±0.002 0.082±0.001 0.323±0.009 0.131±0.003 0.121±0.001

NOTEARS (L) 0.006±0.000 0.011±0.001 0.008±0.000 0.001±0.000 0.001±0.001 0.001±0.000 0.001±0.000
NOTEARS (NL) 0.011±0.001 0.644±0.025 0.022±0.002 0.006±0.001 0.354±0.018 0.012±0.001 0.006±0.001

DAG-GNN 0.129±0.028 0.272±0.101 0.128±0.027 0.051±0.010 0.126±0.059 0.050±0.007 0.051±0.010
VICAUSE 0.261±0.006 0.637±0.009 0.370±0.005 0.236±0.007 0.573±0.005 0.334±0.006 0.245±0.006

Table 2: Causal discovery results for neuropathic pain dataset (mean and std error over five runs).

VICAUSE Number Algebra Geometry

Number 30 4 3
Algebra 2 6 0

Geometry 0 0 5

DAG-GNN Number Algebra Geometry

Number 8 3 6
Algebra 1 5 2

Geometry 14 7 11

Random Number Algebra Geometry

Number 7 4 6
Algebra 8 1 6

Geometry 6 3 9

Table 3: Distribution of the relationships across level 1 topics (Number, Algebra, and Geometry). The item (i, j) refers to
edges in the direction i → j. The proportion of relationships inside level 1 topics is 82%, 42% and 34% for VICAUSE,
DAG-GNN and Random, respectively.

Accuracy AUROC AUPR

Majority vote 0.6260±0.0000 0.6208±0.0000 0.7465±0.0000
Mean imputing 0.6260±0.0000 0.6753±0.0000 0.6906±0.0000

MICE 0.6794±0.0005 0.7453±0.0007 0.7483±0.0010
Missforest 0.6849±0.0005 0.7219±0.0007 0.7478±0.0008

PVAE 0.7138±0.0005 0.7852±0.0001 0.8204±0.0002
VICAUSE 0.7147±0.0007 0.7815±0.0008 0.8179±0.0006

Table 4: Imputation results for Eedi topics dataset (mean
and standard error over five runs).

Adjacency Orientation

Expt 1 Expt 2 Expt 1 Expt 2

Random 2.04 2.08 1.44 1.40
DAG-GNN 2.04 2.32 1.68 1.68
VICAUSE 3.60 3.70 2.76 2.60

Table 5: Average expert evaluation of the topic relationships.
Cohen’s κ inter-annotator agreement is 0.72 for adjacency
and 0.76 for orientation (substantial agreement).

mappings described in Sec. 2.4 (Eq. 11). Finally, to have
an additional reference, we also compare with randomly
generated relationships, which we will refer to as Random.

Importantly, this is a real-world dataset with no ground truth
on the true relationships. Therefore, we asked two experts
(experienced high school teachers working with the Eedi
dataset) to assess the validity of the relationships found by
VICAUSE, DAG-GNN and Random. For each relationship,
they evaluated the adjacency (whether it is sensible to con-
nect the two topics) and the orientation (whether the first
one is a prerequisite for the second one). They provided
an integer value from 1 (strongly disagree) to 5 (strongly
agree), i.e. the higher the better. The complete list of rela-
tionships and expert evaluations for VICAUSE, DAG-GNN
and Random can be found in the appendix, see Table 11,
Table 12 and Table 13, respectively. As a summary, Table 5
shows here the average evaluations: we see that the rela-
tionships discovered by VICAUSE score much more highly

across both metrics than the baseline models.

Another interesting aspect is how the relationships found
between level-3 topics are distributed across higher-level
topics (recall Fig. 4). Intuitively, it is expected that most
of the relationships happen inside higher-level topics (e.g.
Number-related concepts are more probably related to each
other than to Geometry-related ones). Table 3 shows such
a distribution for the compared methods. Indeed, notice
that there are more inside-topic relationships for VICAUSE
(82%) and DAG-GNN (42%) than for Random (34%). An
analogous analysis for the 25 level-2 topics is provided in
the appendix, see Table 14 (VICAUSE), Table 15 (DAG-
GNN), and Table 16 (Random).

4. Conclusions
We introduced VICAUSE, a novel approach that simulta-
neously performs causal discovery and learns to impute
missing values. Both tasks are performed jointly: imputa-
tion is informed by the discovered relationships and vice-
versa. This is achieved through a structured latent space
and a GNN-based decoder. Namely, each variable has its
own latent subspace, and the interactions between the la-
tent subspaces are governed by the GNN through a (global)
graph of relationships. Moreover, motivated by a real-world
problem, VICAUSE is extended to learn the causal rela-
tionships among groups of variables (rather than variables
themselves). VICAUSE fosters further research. In terms
of causality, it would be interesting to carry out a theoret-
ical analysis on identifiablilty, sample complexity etc. In
terms of missing values imputation, our work assumes that
the data are missing at random. It would be interesting to
explore how VICAUSE can be extended to missing not at
random scenario.
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A. Related Work
Since VICAUSE tackles missing value imputation and causal discovery simultaneously, we review the related work from
both fields. Moreover, we review recent works that utilize causality to improve the performance of another deep learning
task, similar to VICAUSE.

Causal discovery. Randomized controlled trials are often not possible in real-world. Causal discovery aims to find causal
relationships between variables from historical data without additional experiments (Glymour et al., 2019). There are
mainly three type of methods: constraint-based, score-based and functional causal models. Constraint-based ones exploit
(conditional) independence tests to find the underlying causal structure, such as PC (Spirtes & Glymour, 1991) and Fast
Causal Inference (FCI) (Spirtes et al., 2000). They have recently been extended to handle partially observed data through
test-wise deletion and adjustments (Strobl et al., 2018; Tu et al., 2019a). Score-based methods find the causal structure by
optimizing a scoring function, such as Greedy Equivalence Search (GES) (Chickering, 2002) and extensions (Chickering
& Meek, 2015; Chickering, 2020; Ramsey et al., 2017; Zheng et al., 2018; 2020). In functional causal models, the effect
variable is represented as a function of the direct causes and some noise term, with different assumptions on the functional
form and the noise (Hoyer et al., 2008; Monti et al., 2020; Shimizu et al., 2006; Zhang & Hyvärinen, 2009). Traditional
methods do not scale to large number of variables. Recently, continuous optimization of causal structures has become very
popular within score-based methods (Zheng et al., 2018; 2020). In particular, continuous optimization has been combined
with GNNs to improve the performance of structural equation models (SEMs) (Yu et al., 2019). VICAUSE also considers
non-linear relationships through a GNN architecture. However, since it jointly learns to impute missing values, VICAUSE
leverages a general GNN architecture based on message passing, which is not an extension of linear SEMs as in (Yu et al.,
2019). Moreover, VICAUSE treats the graph of relationships in a fully probabilistic manner, handles missing values in the
training data, and can deal with groups of variables of different sizes.

Causal deep learning. Continuous optimization of causal structures has been used to boost performance in classification.
In CASTLE (Kyono et al., 2020), structure learning is introduced as a regulariser for a deep learning classification model.
This regulariser reconstructs only the most relevant causal features, leading to improved out-of-sample predictions. In
SLAPS (Fatemi et al., 2021), the classification objective is supplemented with a self-supervised task that learns a graph of
interactions between variables through a GNN. However, these works are focused on the supervised classification task, and
they did not advance the performance of causal discovery methods. Causal discovery has also been used within models
that predict the dynamics of interacting systems with deep neural networks (Kipf et al., 2018; Löwe et al., 2020). Unlike
VICAUSE, these approaches are developed for time series with Granger causality.

Missing values imputation. The relevance of missing data in real-world problems has motivated a long history of research
(Dempster et al., 1977; Rubin, 1976). A popular approach is to estimate the missing values based on the observed ones
through different techniques (Scheffer, 2002). Here, we find popular methods such as missforest (Stekhoven & Bühlmann,
2012), which relies on Random Forest, and MICE (Buuren & Groothuis-Oudshoorn, 2010), which is based on Bayesian
Ridge Regression. Also, the efficiency of amortized inference in generative models has motivated its use for missing
values imputation. This is explored in Wu et al. (2018), although fully observed training data is required. This limitation is
addressed in both Nazabal et al. (2020), where a simple zero-imputation strategy is used for partially observed data, and
Ma et al. (2019), where a permutation invariant set encoder is utilized to directly handle missing values. VICAUSE also
leverages amortized inference, although the imputation is informed by the discovered causal relationships through a GNN.

B. Synthetic experiment
RMSE

Majority vote 0.5442±0.0032
Mean imputing 0.2206±0.0061

MICE 0.1361±0.0046
Missforest 0.1313±0.0025

PVAE 0.1407±0.0043
VICAUSE 0.1196±0.0024

Table 6: Imputation results for the
synthetic experiment. Mean and
standard error over fifteen datasets.

We simulate fifteen synthetic datasets. To understand how the number of variables
affects VICAUSE, we use D = 5, 7, 9 variables (five datasets for each value of
D). For each simulated dataset, we first sample the true causal structure G, see
Fig. 2(a) for an example. Then, the dataset samples are obtained. Each variable is
computed from its parents through a non-linear mapping based on the sin function,
see Sec. C.1 and Fig. 5 in the appendix for additional details and a visualisation of
the generated data, respectively. For each dataset, we simulate 5000 training and
1000 test samples.

Imputation performance. VICAUSE outperforms the baselines in terms of impu-
tation, and this is consistent across all datasets with different number of variables,
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Figure 2: (a): Causal structure simulated for one of the synthetic
datasets with 5 variables. (b): Graph predicted by VICAUSE (when
the one on the left is used as the true one). VICAUSE predicts all the
true relationships plus some additional ones (dashed edges).

1 2 3 4 5

1

2

3

4

5

0.00 0.14 0.93 0.86 0.92

0.12 0.00 0.93 0.88 0.94

0.15 0.13 0.00 0.92 0.94

0.10 0.12 0.79 0.00 0.72

0.13 0.15 0.94 0.90 0.00

Figure 3: Probability of edges obtained by VI-
CAUSE in the synthetic experiment. By using a 0.5
threshold, we get the predicted graph in Fig. 2(b).
The item (i, j) refers to the probability of the edge
i→ j.

Adjacency Orientation Causal
accuracy

Recall Precision F1-score Recall Precision F1-score

PC 0.422±0.056 0.634±0.067 0.495±0.056 0.218±0.046 0.328±0.061 0.257±0.051 0.33±0.046
GES 0.452±0.044 0.569±0.036 0.491±0.038 0.249±0.046 0.305±0.053 0.270±0.049 0.364±0.045

NOTEARS (L) 0.193±0.028 0.443±0.059 0.265±0.036 0.149±0.023 0.367±0.060 0.209±0.032 0.149±0.023
NOTEARS (NL) 0.328±0.039 0.489±0.051 0.387±0.044 0.277±0.032 0.417±0.043 0.327±0.035 0.277±0.032

DAG-GNN 0.443±0.064 0.509±0.062 0.464±0.061 0.352±0.050 0.415±0.052 0.373±0.049 0.352±0.050
VICAUSE 0.843±0.043 0.679±0.037 0.740±0.033 0.520±0.067 0.414±0.058 0.454±0.060 0.726±0.069

Table 7: Causal discovery results for synthetic experiment (mean and std error over fifteen datasets).

see Table 6. The results split by number of variables are in the appendix, Table 8. Therefore, in addition to predicting the
relationships between variables, VICAUSE exploits this information to obtain enhanced imputation.

Causal discovery performance. VICAUSE obtains better performance than the causality baselines, see Table 7. The
results split by number of variables are in the appendix, Table 10. Notice that NOTEARS (NL) is slightly better in terms of
orientation-precision, i.e. the orientation of the edges that it predicts is slightly more reliable. However, this is at the expense
of a significantly lower capacity to detect true edges, see the recall and the trade-off between both (F1-score). In this small
synthetic experiment, it is possible to visually inspect the predicted graph. Fig. 3 shows the posterior probability of each
edge (i.e. the estimated matrix G) for the simulated dataset that uses the true graph in Fig. 2(a). By using a threshold of 0.5,
we obtain the predicted graph in Fig. 2(b). We observe that all the true edges are captured by VICAUSE, which also predicts
some additional edges. Some of them can be explained by looking at the relationships between the corresponding variables,
recall Fig. 5 in the appendix. For instance, the one connecting the third and fifth variables can be explained through the
linear relationship that exist between both variables.

C. Experimental details
Here we specify the complete experimental details for full reproducibility. We first provide all the details for the synthetic
experiment (Sec. C.1). Then we explain the differences for the neuropathic pain and the Eedi topics experiments in Sec. C.2
and Sec. C.3, respectively.

C.1. Synthetic experiment

Data generation process. We first sample the underlying true causal structure. An edge from variable i to variable j is
sampled with probability 0.5 if i < j, and probability 0 if i ≥ j (this ensures that the true causal structure is a DAG, which
is just a standard scenario, and not a requirement for any of the compared algorithms). Then, we generate the data points.
Root nodes (i.e. nodes with no parents, like variables 1 and 2 in Fig. 2(a) in the paper) are sampled from N (0, 1). Any
other node vi is obtained from its parents Pa(i) as vi =

∑
j∈Pa(i) sin(3vj) + ε, where ε→ N (0, 0.01) is a Gaussian noise.

We use the sin function to induce non-linear relationships between variables. Notice that the 3-times factor inside the sin
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encourages that the whole period of the sin function is used (to favor non-linearity). As an example of the data generation
process, Fig. 5 shows the pair plot for the dataset generated from the graph in Fig. 2(a) in the paper.

Model parameters. We start by specifying the parameters associated to the generative process. We use a prior probability
pij = 0.05 in p(G) for all the edges. This favours sparse graphs, and can be adjusted depending on the problem at hand.
The prior p(Z) is a standard Gaussian distribution, i.e. σ2

z = 1. This provides a standard regularisation for the latent space.
The output noise is set to σ2

x = 0.02, which favours the accurate reconstruction of samples. As for the decoder, we perform
T = 3 iterations of GNN message passing. All the MLPs in the decoder (i.e. MLPf , MLPb, MLPe2n and g) have two linear
layers with ReLU non-linearity. The dimensionality of the hidden layer, which is the dimensionality of each latent subspace,
is 256. Regarding the encoder, it is given by a multi-head neural network that defines the mean and standard deviation
of the latent representation. The neural network is a MLP with two standard linear layers with ReLu non-linearity. The
dimension of the hidden layer is also 256. When using groups, there are as many such MLPs as groups. Finally, recall that
the variational posterior q(G) is the product of independent Bernoulli distributions over the edges, with a probability Gij to
be estimated for each edge. These values are all initialised to Gij = 0.5.

Training hyperparameters. We use Adam optimizer with learning rate 0.001. We train during 300 epochs with a batch
size of 100 samples. Each one of the two stages described in the two-step training takes half of the epochs (recall Sec. 2.3 in
the paper). The percentage of data dropped during training for each instance is sampled from a uniform distribution. When
doing the reparametrization trick (i.e. when sampling from Zn), we obtain 1 sample during training (100 samples in test
time). For the Gumbel-softmax sample, we use a temperature τ = 0.5. The rest of hyperparameters are the standard ones
in torch.nn.functional.gumbel_softmax, in particular we use soft samples. To compute the DAG regulariser
R(G), we use the exponential matrix implementation in torch.matrix_exp. This is in contrast to previous approaches,
which resort to approximations (Zheng et al., 2018; Yu et al., 2019). When applying the encoder, missing values in the
training data are replaced with the value 0 (continuous variables).

Baselines details. Regarding the causality baselines, we ran both PC and GES with the Causal Command tool of-
fered by the Center for Causal Discovery https://www.ccd.pitt.edu/tools/. We used the default param-
eters in each case (i.e. disc-bic-score for GES and cg-lr-test for PC). NOTEARS (L), NOTEARS (NL) and DAG-
GNN were run with the code provided by the authors in GitHub: https://github.com/xunzheng/notears
(NOTEARS (L) and NOTEARS (NL)) and https://github.com/fishmoon1234/DAG-GNN (DAG-GNN). In
all cases, we used the default parameters proposed by the authors. Regarding the imputation baselines, Majority
Vote and Mean Imputing were implemented in Python. MICE and Missforest were used from Scikit-learn library
with default parameters https://scikit-learn.org/stable/modules/generated/sklearn.impute.
IterativeImputer.html#sklearn.impute.IterativeImputer. For PVAE, we use the authors implemen-
tation with their proposed parameters, see https://github.com/microsoft/EDDI.

Other experimental details. VICAUSE is implemented in PyTorch. The code is available in the supplementary material.
The experiments were run using a local Tesla K80 GPU and a compute cluster provided by Azure Machine Learning
platform with NVIDIA Tesla V100 GPU.

C.2. Neuropathic pain experiment

Data generation process. We use the Neuropathic Pain Diagnosis Simulator in https://github.com/TURuibo/
Neuropathic-Pain-Diagnosis-Simulator. We simulate five datasets with 1500 samples, and split each one
randomly in 1000 training and 500 test samples. These five datasets are used for the five independent runs in Sec. 3.1 in the
paper.

Model and training hyperparameters. Most of the hyperparameters are identical to the synthetic experiment. However,
in this case we have to deal with 222 variables, many more than before. In particular, the number of possible edges is 49062.
Therefore, we reduce the dimensionality of each latent subspace to 32, the batch size to 25, and the amount of test samples
for Zn to 10 (in training we still use 1 as before). Moreover, we reduce the initial posterior probability for each edge to 0.2.
The reason is that, for 0.5 initialization, the DAG regulariserR(G) evaluates to extremely high and unstable values for the
222× 222 matrix. Since this is a more complex problem (no synthetic generation), we run the algorithm for 1000 epochs.
When applying the encoder, missing values in the training data are replaced with the value 0.5 (binary variables).

https://www.ccd.pitt.edu/tools/
https://github.com/xunzheng/notears
https://github.com/fishmoon1234/DAG-GNN
https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html#sklearn.impute.IterativeImputer
https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html#sklearn.impute.IterativeImputer
https://github.com/microsoft/EDDI
https://github.com/TURuibo/Neuropathic-Pain-Diagnosis-Simulator
https://github.com/TURuibo/Neuropathic-Pain-Diagnosis-Simulator
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Maths

Algebra Number Geometry and measure

... Solving equations ... ... Negative numbers ... ... Angles ...

... Quadratic equations ... ... Ordering ... ... Circle theorems ...

Level 0

Level 1

Level 2

Level 3

Figure 4: Hierarchy of topics in the Eedi topics dataset. All the questions are related to maths, which is the level 0 topic.
The number of topics at levels 1, 2 and 3 is 3, 25 and 57, respectively. Each question is associated to only one topic at level
3 (and therefore to only one topic at any higher level).

Number of variables Average
5 7 9

Majority vote 0.5507±0.0056 0.5391±0.0050 0.5427±0.0050 0.5442±0.0032
Mean imputing 0.2351±0.0104 0.2124±0.0112 0.2143±0.0064 0.2206±0.0061

MICE 0.1352±0.0044 0.1501±0.0095 0.1230±0.0025 0.1361±0.0046
Missforest 0.1279±0.0040 0.1403±0.0030 0.1258±0.0022 0.1313±0.0025

PVAE 0.1324±0.0048 0.1536±0.0095 0.1360±0.0019 0.1407±0.0043
VICAUSE 0.1146±0.0026 0.1251±0.0055 0.1191±0.0015 0.1196±0.0024

Table 8: Imputation results for the synthetic experiment in terms of RMSE (not aggregating by number of variables,
D = 5, 7, 9). The values are the mean and standard error over five different simulations.

C.3. Eedi topics experiment

Data generation process. The real-world Eedi topics dataset contains 6147 samples. We use a random 80%-10%-10%
train-validation-test split. The validation set is used to perform Bayesian Optimization (BO) as described below. The five
runs reported in the experimental section come from different initializations for the model parameters.

Model and training hyperparameters. Here, we follow the same specifications as in the neuropathic pain dataset.
The only difference is that we perform BO for three hyperparameters: the dimensionality of the latent subspaces, the
number of GNN message passing iterations, and the learning rate. The possible choices for each hyperparameter are
{5, 10, 15, 20, 25, 30, 35, 40, 45, 50}, {3, 5, 8, 10, 12, 14, 16, 18, 20}, and {10−4, 10−3, 10−2} respectively. We perform 39
runs of BO with the hyperdrive package in Azure Machine Learning platform https://docs.microsoft.com/
en-us/python/api/azureml-train-core/azureml.train.hyperdrive?view=azure-ml-py. We
use validation accuracy as the target metric. The best configuration obtained through BO was 15, 8 and 10−4, respectively.

Baselines details. As explained in Sec. 3.2 in the paper, in this experiment DAG-GNN is adapted to deal with missing
values and groups of arbitrary size. For the former, we adapt the DAG-GNN code to replace missing values with 0.5
constant value, as in VICAUSE. For the latter, we also follow VICAUSE and use as many different neural networks
as groups (recall Sec. 2.4 in the paper), all of them with the same architecture as the one used in the original code
(https://github.com/fishmoon1234/DAG-GNN).

Other experimental details. The list of relationships found by VICAUSE (Table 11) and DAG-GNN (Table 12) aggregates
the relationships obtained in the five independent runs. This is done by setting a threshold of 0.35 on the posterior probability
of edge (which is initialized to 0.2) and considering the union for the different runs. This resulted in 50 relationships for
VICAUSE and 57 for DAG-GNN. For Random, we simulated 50 random relationships. Also, the probability reported in the
first column of Table 11 is the average of the probabilities obtained for that relationship in the five different runs.

D. Complementary results and figures

https://docs.microsoft.com/en-us/python/api/azureml-train-core/azureml.train.hyperdrive?view=azure-ml-py
https://docs.microsoft.com/en-us/python/api/azureml-train-core/azureml.train.hyperdrive?view=azure-ml-py
https://github.com/fishmoon1234/DAG-GNN
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Figure 5: Pair-plot for the dataset generated from the graph in Fig. 2(a) in the paper. We observe different type of relationships
between variables, including non-linear ones.

Figure 6: Structured latent space. (a) At the level of variables. Each variable in xn (each color) has its own latent subspace,
which is given by a row in Zn. (b) At the level of groups of variables. Here, each group of variables (each color) has its own
latent subspace, which is given by a row in Zn.
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Figure 7: The encoder respects the structure of the latent space. (a) At the level of variables. All the variables use the same
encoding functions. (b) At the level of groups of variables. Each group of variables uses different encoding functions.

Index Topic name

1 Decimals
2 Factors, Multiples and Primes
3 Fractions, Decimals and Percentage Equivalence
4 Fractions
5 Indices, Powers and Roots
6 Negative Numbers
7 Straight Line Graphs
8 Inequalities
9 Sequences

10 Writing and Simplifying Expressions
11 Angles
12 Circles
13 Co-ordinates
14 Construction, Loci and Scale Drawing
15 Symmetry
16 Units of Measurement
17 Volume and Surface Area
18 Basic Arithmetic
19 Factorising
20 Solving Equations
21 Formula
22 2D Names and Properties of Shapes
23 Perimeter and Area
24 Similarity and Congruency
25 Transformations

Table 9: Mapping between indexes for row/column names in Table 14 and Table 16 and the actual level-2 topic names.
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Adjacency Orientation Causal

AccuracyRecall Precision F1-score Recall Precision F1-score

5

PC 0.464±0.099 0.610±0.117 0.526±0.107 0.364±0.098 0.490±0.127 0.416±0.111 0.436±0.076
GES 0.414±0.067 0.507±0.071 0.446±0.065 0.257±0.103 0.327±0.117 0.285±0.110 0.368±0.072

NOTEARS (L) 0.186±0.052 0.400±0.089 0.247±0.063 0.119±0.049 0.300±0.110 0.167±0.065 0.119±0.049
NOTEARS (NL) 0.331±0.057 0.470±0.078 0.384±0.065 0.264±0.047 0.370±0.053 0.304±0.049 0.264±0.047

DAG-GNN 0.381±0.130 0.433±0.121 0.399±0.127 0.231±0.067 0.283±0.073 0.249±0.068 0.231±0.067
VICAUSE 0.971±0.026 0.598±0.059 0.730±0.047 0.574±0.111 0.356±0.085 0.432±0.093 0.971±0.026

7

PC 0.396±0.110 0.639±0.154 0.468±0.112 0.113±0.043 0.193±0.083 0.134±0.050 0.324±0.088
GES 0.429±0.087 0.647±0.042 0.501±0.076 0.208±0.067 0.279±0.081 0.235±0.073 0.345±0.091

NOTEARS (L) 0.222±0.059 0.526±0.124 0.309±0.078 0.176±0.041 0.436±0.109 0.248±0.058 0.176±0.041
NOTEARS (NL) 0.315±0.094 0.513±0.119 0.382±0.104 0.269±0.074 0.453±0.105 0.330±0.084 0.269±0.074

DAG-GNN 0.396±0.109 0.539±0.123 0.446±0.111 0.318±0.082 0.445±0.102 0.361±0.085 0.318±0.082
VICAUSE 0.813±0.088 0.694±0.057 0.725±0.053 0.559±0.134 0.447±0.070 0.480±0.089 0.701±0.103

9

PC 0.406±0.072 0.654±0.053 0.491±0.060 0.176±0.020 0.302±0.045 0.219±0.024 0.229±0.041
GES 0.514±0.065 0.553±0.050 0.525±0.049 0.282±0.057 0.308±0.068 0.291±0.061 0.379±0.069

NOTEARS (L) 0.172±0.026 0.403±0.076 0.238±0.036 0.151±0.023 0.366±0.082 0.211±0.035 0.151±0.023
NOTEARS (NL) 0.338±0.042 0.485±0.053 0.394±0.045 0.297±0.034 0.429±0.044 0.347±0.036 0.297±0.034

DAG-GNN 0.551±0.067 0.554±0.053 0.547±0.057 0.508±0.061 0.516±0.054 0.508±0.055 0.508±0.061
VICAUSE 0.705±0.061 0.615±0.042 0.652±0.044 0.356±0.092 0.297±0.065 0.322±0.076 0.526±0.081

Table 10: Causality results for the synthetic experiment (not aggregating by number of variables, D = 5, 7, 9). The values are the mean and standard error over five
different simulations.
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Prob Topic 1 (from) Topic 2 (to) Adj1 Ori1 Adj2 Ori2

0.44 Adding and Subtracting Negative Numbers [Negative Numbers] [Number] Ordering Negative Numbers [Negative Numbers] [Number] 5 1 5 1
0.38 Mental Multiplication and Division [Basic Arithmetic] [Number] Multiples and Lowest Common Multiple [Factors, Multiples and Primes] [Number] 5 5 5 5
0.37 Mental Multiplication and Division [Basic Arithmetic] [Number] Factors and Highest Common Factor [Factors, Multiples and Primes] [Number] 5 5 5 5
0.37 Adding and Subtracting Negative Numbers [Negative Numbers] [Number] Multiples and Lowest Common Multiple [Factors, Multiples and Primes] [Number] 2 2 2 1
0.36 Adding and Subtracting Negative Numbers [Negative Numbers] [Number] Factors and Highest Common Factor [Factors, Multiples and Primes] [Number] 2 1 2 1
0.35 Mental Multiplication and Division [Basic Arithmetic] [Number] Place Value [Basic Arithmetic] [Number] 4 2 4 2
0.35 Mental Multiplication and Division [Basic Arithmetic] [Number] BIDMAS [Basic Arithmetic] [Number] 5 5 5 5
0.35 Adding and Subtracting Negative Numbers [Negative Numbers] [Number] Simplifying Expressions by Collecting Like Terms [Writing and Simplifying Expressions] [Algebra] 5 5 5 5
0.35 Adding and Subtracting Negative Numbers [Negative Numbers] [Number] BIDMAS [Basic Arithmetic] [Number] 4 4 4 3
0.35 Adding and Subtracting Negative Numbers [Negative Numbers] [Number] Multiplying and Dividing Negative Numbers [Negative Numbers] [Number] 4 4 5 4
0.35 Mental Multiplication and Division [Basic Arithmetic] [Number] Squares, Cubes, etc [Indices, Powers and Roots] [Number] 5 5 5 5
0.34 Factors and Highest Common Factor [Factors, Multiples and Primes] [Number] Mental Multiplication and Division [Basic Arithmetic] [Number] 5 1 5 1
0.34 Basic Angle Facts (straight line, opposite, around a point, etc) [Angles] [Geometry and Measure] Angle Facts with Parallel Lines [Angles] [Geometry and Measure] 4 4 4 4
0.34 Multiplying and Dividing Negative Numbers [Negative Numbers] [Number] Adding and Subtracting Negative Numbers [Negative Numbers] [Number] 4 2 5 2
0.34 Writing Expressions [Writing and Simplifying Expressions] [Algebra] Simplifying Expressions by Collecting Like Terms [Writing and Simplifying Expressions] [Algebra] 5 2 5 2
0.34 Adding and Subtracting Negative Numbers [Negative Numbers] [Number] Squares, Cubes, etc [Indices, Powers and Roots] [Number] 2 2 2 2
0.33 Ordering Negative Numbers [Negative Numbers] [Number] Adding and Subtracting Negative Numbers [Negative Numbers] [Number] 5 5 5 5
0.33 Basic Angle Facts (straight line, opposite, around a point, etc) [Angles] [Geometry and Measure] Measuring Angles [Angles] [Geometry and Measure] 3 2 5 2
0.33 Simplifying Expressions by Collecting Like Terms [Writing and Simplifying Expressions] [Algebra] Writing Expressions [Writing and Simplifying Expressions] [Algebra] 4 4 4 4
0.33 Measuring Angles [Angles] [Geometry and Measure] Basic Angle Facts (straight line, opposite, around a point, etc) [Angles] [Geometry and Measure] 3 3 5 3
0.33 Adding and Subtracting Negative Numbers [Negative Numbers] [Number] Place Value [Basic Arithmetic] [Number] 4 1 4 1
0.33 Adding and Subtracting Negative Numbers [Negative Numbers] [Number] Prime Numbers and Prime Factors [Factors, Multiples and Primes] [Number] 2 2 2 1
0.33 Multiplying and Dividing Negative Numbers [Negative Numbers] [Number] BIDMAS [Basic Arithmetic] [Number] 4 4 4 4
0.32 Factors and Highest Common Factor [Factors, Multiples and Primes] [Number] BIDMAS [Basic Arithmetic] [Number] 3 2 3 2
0.32 Mental Multiplication and Division [Basic Arithmetic] [Number] Prime Numbers and Prime Factors [Factors, Multiples and Primes] [Number] 5 5 5 5
0.32 Adding and Subtracting Negative Numbers [Negative Numbers] [Number] Mental Multiplication and Division [Basic Arithmetic] [Number] 2 1 2 1
0.32 Factors and Highest Common Factor [Factors, Multiples and Primes] [Number] Multiples and Lowest Common Multiple [Factors, Multiples and Primes] [Number] 3 3 3 3
0.32 Linear Equations [Solving Equations] [Algebra] Substitution into Formula [Formula] [Algebra] 4 2 4 2
0.32 Factors and Highest Common Factor [Factors, Multiples and Primes] [Number] Squares, Cubes, etc [Indices, Powers and Roots] [Number] 3 2 3 2
0.32 Angle Facts with Parallel Lines [Angles] [Geometry and Measure] Basic Angle Facts (straight line, opposite, around a point, etc) [Angles] [Geometry and Measure] 4 2 4 2
0.32 Simplifying Expressions by Collecting Like Terms [Writing and Simplifying Expressions] [Algebra] Substitution into Formula [Formula] [Algebra] 2 2 2 2
0.32 Writing Expressions [Writing and Simplifying Expressions] [Algebra] Substitution into Formula [Formula] [Algebra] 4 3 4 3
0.32 Mental Multiplication and Division [Basic Arithmetic] [Number] Time [Units of Measurement] [Geometry and Measure] 4 4 4 4
0.32 Multiplying and Dividing Negative Numbers [Negative Numbers] [Number] Ordering Negative Numbers [Negative Numbers] [Number] 4 2 4 2
0.32 Adding and Subtracting Negative Numbers [Negative Numbers] [Number] Substitution into Formula [Formula] [Algebra] 5 5 5 5
0.32 Multiplying and Dividing Negative Numbers [Negative Numbers] [Number] Prime Numbers and Prime Factors [Factors, Multiples and Primes] [Number] 2 1 2 1
0.31 Factors and Highest Common Factor [Factors, Multiples and Primes] [Number] Prime Numbers and Prime Factors [Factors, Multiples and Primes] [Number] 5 5 5 5
0.31 Basic Angle Facts (straight line, opposite, around a point, etc) [Angles] [Geometry and Measure] Types, Naming and Estimating [Angles] [Geometry and Measure] 4 2 5 2
0.31 Ordering Negative Numbers [Negative Numbers] [Number] Multiplying and Dividing Negative Numbers [Negative Numbers] [Number] 4 4 4 4
0.31 Substitution into Formula [Formula] [Algebra] Writing Expressions [Writing and Simplifying Expressions] [Algebra] 4 3 4 3
0.31 Adding and Subtracting Negative Numbers [Negative Numbers] [Number] Writing Expressions [Writing and Simplifying Expressions] [Algebra] 2 2 2 1
0.31 BIDMAS [Basic Arithmetic] [Number] Place Value [Basic Arithmetic] [Number] 4 2 4 1
0.31 Multiples and Lowest Common Multiple [Factors, Multiples and Primes] [Number] Mental Multiplication and Division [Basic Arithmetic] [Number] 4 2 4 2
0.31 Multiplying and Dividing Negative Numbers [Negative Numbers] [Number] Factors and Highest Common Factor [Factors, Multiples and Primes] [Number] 4 2 4 2
0.30 Simplifying Expressions by Collecting Like Terms [Writing and Simplifying Expressions] [Algebra] Multiplying and Dividing Negative Numbers [Negative Numbers] [Number] 2 2 1 1
0.30 Adding and Subtracting Negative Numbers [Negative Numbers] [Number] Time [Units of Measurement] [Geometry and Measure] 2 2 2 2
0.30 Ordering Negative Numbers [Negative Numbers] [Number] Substitution into Formula [Formula] [Algebra] 3 3 2 2
0.30 Adding and Subtracting Negative Numbers [Negative Numbers] [Number] Angles in Polygons [Angles] [Geometry and Measure] 1 1 1 1
0.30 Factors and Highest Common Factor [Factors, Multiples and Primes] [Number] Place Value [Basic Arithmetic] [Number] 3 2 3 1
0.28 Simplifying Expressions by Collecting Like Terms [Writing and Simplifying Expressions] [Algebra] Mental Multiplication and Division [Basic Arithmetic] [Number] 2 1 2 1

Table 11: Full list of relationships found by VICAUSE in the Eedi topics dataset. Each row refers to one relationship (one edge). From left to right, the columns are
the posterior probability of the edge, the sending node (topic), the receiving node (topic), and the adjacency and orientation evaluations from each expert. For each
topic, the brackets contain its parent level 2 and level 1 topics.



Style
guide

for
the

N
A

C
IW

orkshop
atIC

M
L

2021
Topic 1 (From) Topic 2 (To) Adj1 Ori1 Adj2 Ori2

Missing Lengths [Perimeter and Area] [Geometry and Measure] Midpoint Between Two Co-ordinates [Co-ordinates] [Algebra] 4 4 4 5
Construct Triangle [Construction, Loci and Scale Drawing] [Geometry and Measure] Place Value [Basic Arithmetic] [Number] 1 1 1 1
Squares, Cubes, etc [Indices, Powers and Roots] [Number] Volume of Prisms [Volume and Surface Area] [Geometry and Measure] 4 5 5 4
Converting between Fractions and Percentages [Fractions, Decimals and Percentage Equivalence] [Number] Volume of Prisms [Volume and Surface Area] [Geometry and Measure] 1 1 1 1
Angles in Triangles [Angles] [Geometry and Measure] Parts of a Circle [Circles] [Geometry and Measure] 1 1 1 1
Types, Naming and Estimating [Angles] [Geometry and Measure] Angle Facts with Parallel Lines [Angles] [Geometry and Measure] 4 5 5 5
Mental Multiplication and Division [Basic Arithmetic] [Number] Measuring Angles [Angles] [Geometry and Measure] 1 1 1 1
Angles in Polygons [Angles] [Geometry and Measure] Compound Area [Perimeter and Area] [Geometry and Measure] 1 1 1 1
Squares, Cubes, etc [Indices, Powers and Roots] [Number] Solving Linear Inequalities [Inequalities] [Algebra] 2 1 3 1
Construct Triangle [Construction, Loci and Scale Drawing] [Geometry and Measure] Solving Linear Inequalities [Inequalities] [Algebra] 1 1 1 1
Written Multiplication [Basic Arithmetic] [Number] Translation and Vectors [Transformations] [Geometry and Measure] 1 1 1 1
Enlargement [Transformations] [Geometry and Measure] Reflection [Transformations] [Geometry and Measure] 5 2 5 3
Rotation [Transformations] [Geometry and Measure] Reflection [Transformations] [Geometry and Measure] 4 3 5 2
Construct Angle and Line Bisectors [Construction, Loci and Scale Drawing] [Geometry and Measure] Length Scale Factors in Similar Shapes [Similarity and Congruency] [Geometry and Measure] 1 1 2 1
Angles in Triangles [Angles] [Geometry and Measure] Properties of Quadrilaterals [2D Names and Properties of Shapes] [Geometry and Measure] 4 3 5 3
Naming Co-ordinates in 2D [Co-ordinates] [Algebra] Properties of Quadrilaterals [2D Names and Properties of Shapes] [Geometry and Measure] 1 1 3 1
Adding and Subtracting Negative Numbers [Negative Numbers] [Number] Properties of Quadrilaterals [2D Names and Properties of Shapes] [Geometry and Measure] 1 1 1 1
Construct Angle and Line Bisectors [Construction, Loci and Scale Drawing] [Geometry and Measure] Properties of Quadrilaterals [2D Names and Properties of Shapes] [Geometry and Measure] 1 1 1 1
Written Multiplication [Basic Arithmetic] [Number] Perimeter [Perimeter and Area] [Geometry and Measure] 2 1 2 1
Basic Angle Facts (straight line, opposite, around a point, etc) [Angles] [Geometry and Measure] Perimeter [Perimeter and Area] [Geometry and Measure] 2 1 4 1
Naming Co-ordinates in 2D [Co-ordinates] [Algebra] Area of Simple Shapes [Perimeter and Area] [Geometry and Measure] 1 1 1 1
Types, Naming and Estimating [Angles] [Geometry and Measure] Writing Expressions [Writing and Simplifying Expressions] [Algebra] 1 1 1 1
Substitution into Formula [Formula] [Algebra] Writing Expressions [Writing and Simplifying Expressions] [Algebra] 4 2 3 1
Naming Co-ordinates in 2D [Co-ordinates] [Algebra] Linear Equations [Solving Equations] [Algebra] 1 1 1 1
Multiples and Lowest Common Multiple [Factors, Multiples and Primes] [Number] Factorising into a Single Bracket [Factorising] [Algebra] 4 5 5 4
Linear Equations [Solving Equations] [Algebra] Factorising into a Single Bracket [Factorising] [Algebra] 4 3 5 3
Converting between Fractions and Decimals [Fractions, Decimals and Percentage Equivalence] [Number] BIDMAS [Basic Arithmetic] [Number] 1 1 1 1
Reflection [Transformations] [Geometry and Measure] Place Value [Basic Arithmetic] [Number] 1 1 1 1
Length, Area and Volume Scale Factors [Similarity and Congruency] [Geometry and Measure] Mental Multiplication and Division [Basic Arithmetic] [Number] 5 1 4 1
Naming Co-ordinates in 2D [Co-ordinates] [Algebra] Midpoint Between Two Co-ordinates [Co-ordinates] [Algebra] 5 5 5 5
Enlargement [Transformations] [Geometry and Measure] Time [Units of Measurement] [Geometry and Measure] 1 1 1 1
Rotational Symmetry [Symmetry] [Geometry and Measure] Midpoint Between Two Co-ordinates [Co-ordinates] [Algebra] 1 1 2 1
Factors and Highest Common Factor [Factors, Multiples and Primes] [Number] Horizontal and Vertical Lines [Straight Line Graphs] [Algebra] 1 1 1 1
Angles in Triangles [Angles] [Geometry and Measure] Simplifying Expressions by Collecting Like Terms [Writing and Simplifying Expressions] [Algebra] 1 1 1 1
Naming Co-ordinates in 2D [Co-ordinates] [Algebra] Simplifying Expressions by Collecting Like Terms [Writing and Simplifying Expressions] [Algebra] 1 1 1 1
Rotational Symmetry [Symmetry] [Geometry and Measure] Simplifying Expressions by Collecting Like Terms [Writing and Simplifying Expressions] [Algebra] 1 1 1 1
Types, Naming and Estimating [Angles] [Geometry and Measure] Simplifying Expressions by Collecting Like Terms [Writing and Simplifying Expressions] [Algebra] 1 1 1 1
Equivalent Fractions [Fractions] [Number] Converting Mixed Number and Improper Fractions [Fractions] [Number] 5 5 5 5
Multiplying and Dividing with Decimals [Decimals] [Number] Prime Numbers and Prime Factors [Factors, Multiples and Primes] [Number] 1 1 1 1
Construct Angle and Line Bisectors [Construction, Loci and Scale Drawing] [Geometry and Measure] Prime Numbers and Prime Factors [Factors, Multiples and Primes] [Number] 1 1 1 1
Construct Angle [Construction, Loci and Scale Drawing] [Geometry and Measure] Prime Numbers and Prime Factors [Factors, Multiples and Primes] [Number] 1 1 1 1
Types, Naming and Estimating [Angles] [Geometry and Measure] Prime Numbers and Prime Factors [Factors, Multiples and Primes] [Number] 1 1 1 1
Angle Facts with Parallel Lines [Angles] [Geometry and Measure] Factors and Highest Common Factor [Factors, Multiples and Primes] [Number] 1 1 1 1
Measuring Angles [Angles] [Geometry and Measure] Factors and Highest Common Factor [Factors, Multiples and Primes] [Number] 1 1 1 1
Simplifying Expressions by Collecting Like Terms [Writing and Simplifying Expressions] [Algebra] Adding and Subtracting Negative Numbers [Negative Numbers] [Number] 5 1 4 5
Squares, Cubes, etc [Indices, Powers and Roots] [Number] Adding and Subtracting Negative Numbers [Negative Numbers] [Number] 1 1 3 1
Multiplying and Dividing Negative Numbers [Negative Numbers] [Number] Adding and Subtracting Negative Numbers [Negative Numbers] [Number] 5 2 5 1
Ordering Negative Numbers [Negative Numbers] [Number] Adding and Subtracting Negative Numbers [Negative Numbers] [Number] 5 5 5 5
Rotation [Transformations] [Geometry and Measure] Adding and Subtracting Negative Numbers [Negative Numbers] [Number] 1 1 3 1
Reflection [Transformations] [Geometry and Measure] Adding and Subtracting Negative Numbers [Negative Numbers] [Number] 1 1 3 1
Perimeter [Perimeter and Area] [Geometry and Measure] Adding and Subtracting Negative Numbers [Negative Numbers] [Number] 1 1 1 1
Types, Naming and Estimating [Angles] [Geometry and Measure] Adding and Subtracting Negative Numbers [Negative Numbers] [Number] 1 1 1 1
Converting between Fractions and Percentages [Fractions, Decimals and Percentage Equivalence] [Number] Ordering Negative Numbers [Negative Numbers] [Number] 1 1 1 1
Construct Angle and Line Bisectors [Construction, Loci and Scale Drawing] [Geometry and Measure] Ordering Negative Numbers [Negative Numbers] [Number] 1 1 1 1
Perimeter [Perimeter and Area] [Geometry and Measure] Ordering Negative Numbers [Negative Numbers] [Number] 1 1 1 1
Construct Angle and Line Bisectors [Construction, Loci and Scale Drawing] [Geometry and Measure] Time [Units of Measurement] [Geometry and Measure] 1 1 1 1
Written Multiplication [Basic Arithmetic] [Number] BIDMAS [Basic Arithmetic] [Number] 5 4 5 3

Table 12: Full list of relationships found by DAG-GNN in the Eedi topics dataset. Each row refers to one relationship (one edge). From left to right, the columns are
the sending node (topic), the receiving node (topic), and the adjacency and orientation evaluations from each expert. For each topic, the brackets contain its parent
level 2 and level 1 topics.
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Topic 1 (From) Topic 2 (To) Adj1 Ori1 Adj2 Ori2

Midpoint Between Two Co-ordinates [Co-ordinates] [Algebra] Angles in Triangles [Angles] [Geometry and Measure] 1 1 1 1
Solving Linear Inequalities [Inequalities] [Algebra] Enlargement [Transformations] [Geometry and Measure] 1 1 1 1
Squares, Cubes, etc [Indices, Powers and Roots] [Number] Written Multiplication [Basic Arithmetic] [Number] 4 1 5 1
Substitution into Formula [Formula] [Algebra] Written Multiplication [Basic Arithmetic] [Number] 4 1 3 1
Linear Sequences (nth term) [Sequences] [Algebra] Mental Multiplication and Division [Basic Arithmetic] [Number] 5 1 5 2
Measuring Angles [Angles] [Geometry and Measure] Construct Angle [Construction, Loci and Scale Drawing] [Geometry and Measure] 5 5 5 5
Dividing Fractions [Fractions] [Number] Volume of Prisms [Volume and Surface Area] [Geometry and Measure] 2 2 2 2
Multiplying and Dividing Negative Numbers [Negative Numbers] [Number] Parts of a Circle [Circles] [Geometry and Measure] 1 1 1 1
Types, Naming and Estimating [Angles] [Geometry and Measure] Parts of a Circle [Circles] [Geometry and Measure] 2 2 2 1
Angles in Polygons [Angles] [Geometry and Measure] Basic Angle Facts (straight line, opposite, around a point, etc) [Angles] [Geometry and Measure] 5 1 5 1
Angles in Polygons [Angles] [Geometry and Measure] Compound Area [Perimeter and Area] [Geometry and Measure] 1 1 1 1
Length, Area and Volume Scale Factors [Similarity and Congruency] [Geometry and Measure] Linear Sequences (nth term) [Sequences] [Algebra] 1 1 2 1
Substitution into Formula [Formula] [Algebra] Rotation [Transformations] [Geometry and Measure] 1 1 1 1
Adding and Subtracting Negative Numbers [Negative Numbers] [Number] Gradient Between Two Co-ordinates [Co-ordinates] [Algebra] 5 5 5 5
Compound Area [Perimeter and Area] [Geometry and Measure] Reflection [Transformations] [Geometry and Measure] 1 1 1 1
BIDMAS [Basic Arithmetic] [Number] Reflection [Transformations] [Geometry and Measure] 1 1 1 1
Adding and Subtracting Negative Numbers [Negative Numbers] [Number] Properties of Quadrilaterals [2D Names and Properties of Shapes] [Geometry and Measure] 1 1 1 1
Compound Area [Perimeter and Area] [Geometry and Measure] Properties of Quadrilaterals [2D Names and Properties of Shapes] [Geometry and Measure] 3 1 3 1
Rotational Symmetry [Symmetry] [Geometry and Measure] Perimeter [Perimeter and Area] [Geometry and Measure] 3 1 3 1
Converting between Fractions and Percentages [Fractions, Decimals and Percentage Equivalence] [Number] Area of Simple Shapes [Perimeter and Area] [Geometry and Measure] 1 1 1 1
Angles in Triangles [Angles] [Geometry and Measure] Types, Naming and Estimating [Angles] [Geometry and Measure] 4 3 5 2
Length Scale Factors in Similar Shapes [Similarity and Congruency] [Geometry and Measure] Types, Naming and Estimating [Angles] [Geometry and Measure] 1 1 1 1
Factorising into a Single Bracket [Factorising] [Algebra] Types, Naming and Estimating [Angles] [Geometry and Measure] 1 1 1 1
Enlargement [Transformations] [Geometry and Measure] BIDMAS [Basic Arithmetic] [Number] 1 1 1 1
Linear Sequences (nth term) [Sequences] [Algebra] Time [Units of Measurement] [Geometry and Measure] 1 1 1 1
Horizontal and Vertical Lines [Straight Line Graphs] [Algebra] Adding and Subtracting Negative Numbers [Negative Numbers] [Number] 1 1 1 1
Area of Simple Shapes [Perimeter and Area] [Geometry and Measure] Multiplying and Dividing Negative Numbers [Negative Numbers] [Number] 1 1 1 1
Writing Expressions [Writing and Simplifying Expressions] [Algebra] Factors and Highest Common Factor [Factors, Multiples and Primes] [Number] 1 1 1 1
Squares, Cubes, etc [Indices, Powers and Roots] [Number] Midpoint Between Two Co-ordinates [Co-ordinates] [Algebra] 1 1 1 1
Writing Expressions [Writing and Simplifying Expressions] [Algebra] Naming Co-ordinates in 2D [Co-ordinates] [Algebra] 1 1 1 1
BIDMAS [Basic Arithmetic] [Number] Line Symmetry [Symmetry] [Geometry and Measure] 1 1 1 1
Simplifying Expressions by Collecting Like Terms [Writing and Simplifying Expressions] [Algebra] Length, Area and Volume Scale Factors [Similarity and Congruency] [Geometry and Measure] 1 1 1 1
Converting Mixed Number and Improper Fractions [Fractions] [Number] Horizontal and Vertical Lines [Straight Line Graphs] [Algebra] 1 1 1 1
Construct Angle and Line Bisectors [Construction, Loci and Scale Drawing] [Geometry and Measure] Horizontal and Vertical Lines [Straight Line Graphs] [Algebra] 1 1 1 1
Multiplying and Dividing with Decimals [Decimals] [Number] Simplifying Expressions by Collecting Like Terms [Writing and Simplifying Expressions] [Algebra] 1 1 1 1
Reflection [Transformations] [Geometry and Measure] Simplifying Expressions by Collecting Like Terms [Writing and Simplifying Expressions] [Algebra] 1 1 1 1
Substitution into Formula [Formula] [Algebra] Dividing Fractions [Fractions] [Number] 4 1 3 1
Factorising into a Single Bracket [Factorising] [Algebra] Dividing Fractions [Fractions] [Number] 2 1 2 1
Fractions of an Amount [Fractions] [Number] Multiplying Fractions [Fractions] [Number] 5 4 5 2
Time [Units of Measurement] [Geometry and Measure] Converting Mixed Number and Improper Fractions [Fractions] [Number] 4 1 4 1
Length Scale Factors in Similar Shapes [Similarity and Congruency] [Geometry and Measure] Converting Mixed Number and Improper Fractions [Fractions] [Number] 4 1 5 1
Place Value [Basic Arithmetic] [Number] Equivalent Fractions [Fractions] [Number] 4 4 3 5
Reflection [Transformations] [Geometry and Measure] Equivalent Fractions [Fractions] [Number] 1 1 1 1
Writing Expressions [Writing and Simplifying Expressions] [Algebra] Fractions of an Amount [Fractions] [Number] 1 1 1 1
Dividing Fractions [Fractions] [Number] Prime Numbers and Prime Factors [Factors, Multiples and Primes] [Number] 1 1 1 1
Adding and Subtracting Fractions [Fractions] [Number] Prime Numbers and Prime Factors [Factors, Multiples and Primes] [Number] 1 1 1 1
Simplifying Expressions by Collecting Like Terms [Writing and Simplifying Expressions] [Algebra] Multiples and Lowest Common Multiple [Factors, Multiples and Primes] [Number] 1 1 1 1
Adding and Subtracting Fractions [Fractions] [Number] Multiples and Lowest Common Multiple [Factors, Multiples and Primes] [Number] 1 1 2 1
Mental Multiplication and Division [Basic Arithmetic] [Number] Multiples and Lowest Common Multiple [Factors, Multiples and Primes] [Number] 5 5 5 5
Length Scale Factors in Similar Shapes [Similarity and Congruency] [Geometry and Measure] BIDMAS [Basic Arithmetic] [Number] 1 1 1 1

Table 13: Full list of relationships found by Random in the Eedi topics dataset. Each row refers to one relationship (one edge). From left to right, the columns are the
sending node (topic), the receiving node (topic), and the adjacency and orientation evaluations from each expert. For each topic, the brackets contain its parent level 2
and level 1 topics.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 5 0 0 1 6 0 0 0 2 1 0 0 0 0 1 0 4 0 0 2 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 1 0 0 0 2 0 0 0 0 0 0 0 1 0 0 2 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 0 3 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 3 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
21 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 14: How the 50 relationships found by VICAUSE are distributed across level 2 topics. The item (i, j) refers to edges in the direction i → j. There are 18
relationships inside level 2 topics (36%). See Table 9 for a mapping between indexes shown here in row/column names and the actual level-2 topic names.
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1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
3 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
6 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 3 0 0 0 1 0 0 0 3 1 1 0 0 0 0 0 0 0 0 0 1 2 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 1 1 0 0
14 0 2 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 1 0
15 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 1
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
23 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
25 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 2

Table 15: How the 57 relationships found by DAG-GNN are distributed across level 2 topics. The item (i, j) refers to edges in the direction i → j. There are 8
relationships inside level 2 topics (14%). See Table 9 for a mapping between indexes shown here in row/column names and the actual level-2 topic names.
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1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
4 0 3 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0
7 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0

10 0 2 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0
11 0 0 0 0 0 0 0 0 0 0 2 1 0 1 0 0 0 0 0 0 0 0 1 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
16 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
19 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
21 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
23 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
24 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
25 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

Table 16: How the 50 relationships found by Random are distributed across level 2 topics. The item (i, j) refers to edges in the direction i → j. There are 3
relationships inside level 2 topics (6%). See Table 9 for a mapping between indexes shown here in row/column names and the actual level-2 topic names.


