
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

The Verse Calculus: a Core Calculus for Functional Logic
Programming

LENNART AUGUSTSSON, Epic Games, Sweden

JOACHIM BREITNER
KOEN CLAESSEN, Epic Games, Sweden

RANJIT JHALA, Epic Games, USA

SIMON PEYTON JONES, Epic Games, United Kingdom

OLIN SHIVERS, Epic Games, USA

GUY STEELE, Oracle Labs, USA
TIM SWEENEY, Epic Games, USA

Functional logic languages have a rich literature, but it is tricky to give them a satisfying semantics. In this

paper we describe the Verse calculus,VC, a new core calculus for functional logic programming. Our main

contribution is to equipVC with a small-step rewrite semantics, so that we can reason about aVC program

in the same way as one does with lambda calculus; that is, by applying successive rewrites to it. We also show

that the rewrite system is confluent.

Additional Key Words and Phrases: confluence, declarative programming, functional programming, lambda

calculus, logic programming, rewrite rules, skew confluence, unification, Verse calculus, Verse language

1 INTRODUCTION
Functional logic programming languages add expressiveness to functional programming by intro-

ducing logical variables, equality constraints among those variables, and choice to allow multiple

alternatives to be explored. Here is a tiny example:

∃x y z. x = ⟨y, 3⟩; x = ⟨2, z⟩; y

This expression introduces three logical (or existential) variables x, y, z, constrains them with two

equalities (x = ⟨y, 3⟩ and x = ⟨2, z⟩), and finally returns y. The only solution to the two equalities is

y =2, z=3, and x = ⟨2, 3⟩; so the result of the whole expression is 2.

Functional logic programming has a long history and a rich literature [Antoy and Hanus 2010].

But it is somewhat tricky for programmers to reason about functional logic programs: they must

think about logical variables, narrowing, backtracking, Horn clauses, resolution, and the like. This

contrasts with functional programming, where one can say “just apply rewrite rules, such as

β-reduction, let-inlining, and case-of-known-constructor.” We therefore seek a precise expression of

functional logic programming as a term-rewriting system, to give us both a formal semantics (via

small-step reductions), and a powerful set of equivalences that programmers can use to reason

about their programs, and that compilers can use to optimize them.

We make the following contributions in this paper. First, we describe a new core calculus for

functional logic programming, the Verse calculus orVC for short (Section 2). As in any functional

logic language,VC supports logical variables, equalities, and choice, but it is distinctive in several

ways:

• VC natively supports higher-order functions, just like the lambda calculus. Indeed, every

lambda calculus program is aVC program. In contrast, most of the functional logic literature

In submission, March 2023,

2023. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

In submission, March 2023,
Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

is rooted in a first-order world, and addresses higher-order features via an encoding called

defunctionalization [Hanus 2013, 3.3].

• All functional logic languages have some notion of “flexible” vs. “rigid” variables.VC offers a

newway to address these notions, through the operators one (Section 2.5) and all (Section 2.6).

This enables an elegant economy of concepts: for example, there is just one equality (other

languages may have a suspending equality and a narrowing equality), and conditional

expressions are driven by failure rather than booleans (Section 2.5).

• Choice and determinism. Choice is a fundamental feature of all functional logic languages.

InVC, choice is expressed in the syntax of the term (“laid out in space”) rather than, as is

more typical, handled by non-deterministic rewrites and backtracking (“laid out in time”).

This makesVC completely deterministic, unlike most functional logic languages which are

non-deterministic by design (Section 6.1).

As always with a calculus, the idea is thatVC distills the essence of functional logic programming.

Each construct does just one thing, andVC cannot be made smaller without losing key features.

We believe that it is possible to useVC as the compilation target for a variety of functional logic

languages such as Curry [Hanus et al. 2016]. We are ourselves working on Verse, a new general

purpose programming language, built directly onVC; indeed, our motivation for developingVC
is practical rather than theoretical. No single aspect of VC is unique, but we believe that their

combination is particularly harmonious and orthogonal. We discuss the related work in Section 6,

and design alternatives in Section 5.

Our second contribution is to equipVC with a small-step term-rewriting semantics (Section 3).

We said that the lambda calculus is a subset of VC, so it is natural to give its semantics using

rewrite rules, just as for the lambda calculus. That seems challenging, however, because logical

variables and unification involve sharing and non-local communication. How can that be expressed

in a rewrite system?

Happily, we can build on prior work: exactly the same difficulty arises with call-by-need in

the lambda calculus. For a long time, the only semantics of call-by-need that was faithful to its

sharing semantics (in which thunks are evaluated at most once) was an operational semantics that

sequentially threads a global heap through execution [Launchbury 1993]. But then Ariola et al., in a

seminal paper, showed how to reify the heap into the term itself, and thereby build a rewrite system

that is completely faithful to lazy evaluation [Ariola et al. 1995]. Inspired by their idea, we present

a new rewrite system for functional logic programs that reifies logical variables and unification

into the term itself, and replaces non-deterministic search with a (deterministic) tree of successful

results. For example, the expression above can be rewritten as follows
1
:

∃x y z. x = ⟨y, 3⟩; x = ⟨2, z⟩; y

−→{subst} ∃x y z. ⟨2, z⟩ = ⟨y, 3⟩; x = ⟨2, z⟩; y −→{eqn-elim} ∃y z. ⟨2, z⟩ = ⟨y, 3⟩; y

−→{u-tup} ∃y z. 2=y; z=3; y −→{eqn-elim} ∃y. 2=y; y

−→{hnf-swap} ∃y. y =2; y −→{subst} ∃y. y =2; 2

−→{eqn-elim} 2

Rules may be applied anywhere they match, again just like the lambda calculus. This freedom only

makes sense, however, if each term ultimately reduces to a unique value, regardless of its reduction

path, so we show thatVC is confluent, in Section 4.

2

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

The Verse Calculus: a Core Calculus for Functional Logic Programming
In submission, March 2023,

Syntax

Integers 𝑘

Variables 𝑥,𝑦, 𝑧, 𝑓 , 𝑔

Programs 𝑝 ::= one{e} where fvs(𝑒) = ∅
Expressions 𝑒 ::= v | 𝑒𝑞; e | ∃x . e | fail | e

1
e
2
| v

1
v
2
| one{e} | all{e}

𝑒𝑞 ::= e | v = e Note: “𝑒𝑞” is pronounced “expression or equation”

Values v ::= 𝑥 | hnf

Head values hnf ::= 𝑘 | 𝑜𝑝 | ⟨v
1
, ···, v

n
⟩ | _x . e

Primops 𝑜𝑝 ::= gt | add
Concrete syntax: “ ” and “;” are right-associative

“ ” and “=” bind more tightly than “;”

“_”, “∃” scope as far to the right as possible

e.g., (_y. ∃x . x =1; x + y) means (_y. (∃x . ((x =1); (x + y))))
Parentheses may be used freely to aid readability and override default precedence.

Desugaring

e
1
+ e

2
means add⟨e

1
, e

2
⟩

e
1
> e

2
means gt⟨e

1
, e

2
⟩

∃x
1
x
2
··· x

n
. e means ∃x

1
. ∃x

2
. ···∃x

n
. e

x := e
1
; e

2
means ∃x . x = e

1
; e

2

e
1

e
2

means f := e
1
; x := e

2
; f x f , x fresh

⟨e
1
, ···, e

n
⟩ means x

1
:= e

1
; ···; x

n
:= e

n
; ⟨x

1
, ···, x

n
⟩ x

i
fresh

e
1
= e

2
means x := e

1
; x = e

2
; x x fresh

_⟨x
1
, ···, x

n
⟩. e means _p. ∃x

1
··· x

n
. p= ⟨x

1
, ···, x

n
⟩; e p fresh, n ⩾ 0

if (∃x
1
···x

n
. e

1
) then e

2
else e

3
means (one{(∃x

1
···x

n
. e

1
; _⟨⟩. e

2
) (_⟨⟩. e

3
)})⟨⟩

fvs(e) means the free variables of e; inVC, _ and ∃ are the only binders.

Fig. 1. VC: Syntax

2 THE VERSE CALCULUS, INFORMALLY
We begin by presenting the Verse calculus, VC, informally. We will describe its rewrite rules

precisely in Section 3. The (abstract) syntax ofVC is given in Fig. 1. It has a very conventional

sub-language that is just the lambda calculus with some built-in operations and tuples as data

constructors:

• Values. A value v is either a variable x or a head-normal form hnf . InVC, a variable counts
as a value because in a functional logic language an expression may evaluate to an as-yet-

unknown logical variable. A head-normal form is a conventional value: a built-in constant k,

an operator op, a tuple, or a lambda. Our tiny calculus offers only integer constants k and

two illustrative integer operators op, namely gt and add.

• Expressions e includes values v, and applications v
1

v
2
; we will introduce the other constructs

as we go. For clarity, we often write v
1
(v

2
) rather than v

1
v
2
when v

2
is not a tuple.

1
The rule names come from Fig. 3, to be discussed in Section 3; they are given here just for reference.

3

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

In submission, March 2023,
Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

• A term 𝑒𝑞 is either an ordinary expression e, or an equation v = e; this syntax ensures that

equations can only occur to the left of a “; ” (Section 2.1).

• A program, p, contains a closed expression from which we extract one result using one (see

Section 2.5)—unless the expression fails, in which case the program fails (Section 2.2).

The formal syntax for e allows only applications of values, (v
1

v
2
), but the desugaring rules in Fig. 1

show how to desugar more applications (e
1

e
2
). This ANF-like normalization is not fundamental; it

simply reduces the number of rewrite rules we need. The desugaring rules are more suggestive

than precise; we aim to be precise aboutVC but less so about the source language.

Modulo this desugaring, every lambda calculus term is aVC term, and has the same semantics.

Just like the lambda calculus,VC is untyped; adding a type system is an excellent goal, but is the

subject of another paper.

Expressions also include two other key collections of constructs: logical variables and the use of

equations to perform unification (Section 2.1), and choice (Section 2.2). The details of choice and

unification, and especially their interaction, are subtle, so this section does a lot of arm-waving. But

fear not: Section 3 spells out the precise details. We only have space to describe one incarnation of

VC; Section 5 explores some possible alternative design choices.

2.1 Logical variables and equations
The Verse calculus includes first class logical variables and equations that constrain their values. You

can bring a fresh logical variable into scope with ∃, constrain a value to be equal to an expression

with an equation v = e, and compose expressions in sequence with 𝑒𝑞; e (see Fig. 1). As an example,

what might be written let x = e
1
in e

2
in a conventional functional language can be written

∃x . x = e
1
; e

2
inVC. The syntax carefully constrains both the form of equations and where they

can appear: an equation (v = e) always equates a value 𝑣 to an expression 𝑒; and an equation can

only appear to the left of a “; ” (see 𝑒𝑞 in Fig. 1). The desugaring rules in Fig. 1 rewrite a general

equation e
1
= e

2
into this simpler form.

A program executes by solving its equations, using the process of unification. For example,

∃x y z. x = ⟨y, 3⟩; x = ⟨2, z⟩; y

is solved by unifying x with ⟨y, 3⟩ and with ⟨2, z⟩; that in turn unifies ⟨y, 3⟩ with ⟨2, z⟩, which unifies
y with 2 and z with 3. Finally, 2 is returned as the result. Note carefully that, as in any declarative

language, logical variables are not mutable; a logical variable stands for a single, immutable value.

We use “∃” to bring a fresh logical variable into scope, because we really mean “there exists an x

such that ···.”
High-level functional languages usually provide some kind of pattern matching; in such a

language, we might define first by first⟨a, b⟩ =a. Such pattern matching is typically desugared to

more primitive case expressions, but inVC we do not need case expressions: unification does the

job. For example we can define first like this:

first :=_p. ∃ab. p= ⟨a, b⟩; a

For convenience, we allow ourselves to write a term like first⟨2, 5⟩, where we define the library
function first separately with “:=”; formally, you can imagine each example e being wrapped with a

binding for first, thus ∃first . first = ...; e, and similarly for other library functions.

This way of desugaring pattern matching means that the input to first is not required to be fully

determined when the function is called. For example:

∃x y. x = ⟨y, 5⟩; 2=first (x); y

4

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

The Verse Calculus: a Core Calculus for Functional Logic Programming
In submission, March 2023,

Here first (x) evaluates to y, which we then unify with 2. Another way to say this is that, as usual

in logic programming, we may constrain the output of a function (here 2=first (x)), and thereby

affect its input (here ⟨y, 5⟩).
Although “;” is called “sequencing,” the order of that sequence is immaterial for equations that do

not contain choices (see Section 2.2 for the latter caveat). For example, consider (∃x y. x = 3 + y; y =

7; x). The sub-expression 3 + y is stuck until y gets a value. InVC, we can unify x only with a

value—we will see why in Section 2.2—and hence the equation x = 3+ y is also stuck. No matter! We

simply leave it and try some other equation. In this case, we can make progress with y = 7, and that

in turn unlocks x = 3 + y because now we know that y is 7, so we can evaluate 3 + 7 to 10 and unify

x with that. The idea of leaving stuck expressions aside and executing other parts of the program is

called residuation [Hanus 2013]
2
, and is at the heart of our mantra “just solve the equations.”

2.2 Choice
In conventional functional programming, an expression evaluates to a single value. In contrast,

a VC expression evaluates to zero, one, or many values; or it can get stuck, which is different

from producing zero values. The expression fail yields no values; a value v yields one value; and

the choice e
1

e
2
yields all the values yielded by e

1
followed by all the values yielded by e

2
. Order

is maintained and duplicates are not eliminated; we shall see why in Section 2.8. In short, an

expression yields a sequence of values, not a bag, and certainly not a set.

The equations we saw in Section 2.1 can fail, if the arguments are not equal, yielding no results.

Thus 3= 3 succeeds, while 3= 4 fails, returning no results. In general, we use “fail” and “returns no

results” synonymously.

What if the choice was not at the top level of an expression? For example, what does ⟨3, (7 5)⟩
mean? In VC, it does not mean a pair with some kind of multi-value in its second component.

Indeed, as you can see from Fig. 1, this expression is syntactically ill-formed. We must instead

give a name to that choice, and then we can put it in the pair, thus: ∃x . x = (7 5); ⟨3, x⟩. Now the

expression is syntactically legal, but what does it mean? In VC, a variable is never bound to a

multi-value. Instead, x is successively bound to 7, and then to 5, like this:

∃x . x = (7 5); ⟨3, x⟩ −→ (∃x . x =7; ⟨3, x⟩) (∃x . x =5; ⟨3, x⟩)

We duplicate the context surrounding the choice, and “float the choice outwards.” The same thing

happens when there are multiple choices. For example:

∃x y. x = (7 22); y = (31 5); ⟨x, y⟩ yields the sequence ⟨7, 31⟩, ⟨7, 5⟩, ⟨22, 31⟩, ⟨22, 5⟩

Notice that the order of the two equations now is significant:

∃x y. y = (31 5); x = (7 22); ⟨x, y⟩ yields the sequence ⟨7, 31⟩, ⟨22, 31⟩, ⟨7, 5⟩, ⟨22, 5⟩

Readers familiar with list comprehensions in Haskell and other languages will recognize this

nested-loop pattern, but here it emerges naturally from choice as a deeply built-in primitive, rather

than being a special construct for lists.

Just as we never bind a variable to a multi-value, we never bind it to fail either; rather we iterate

over zero values, and that iteration of course returns zero values. So:

∃x . x = fail; 33 −→ fail

2
Hanus did not invent the terms “residuation” and“narrowing,” but his survey is an excellent introduction and bibliography.

5

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

In submission, March 2023,
Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

2.3 Mixing choice and equations
In the last section, we discussed what happens if there is a choice in the right-hand side (RHS) of

an equation. What if we have equations under choice? For example:

∃x . (x =3; x + 1) (x =4; x + 4)
Intuitively, “either unify x with 3 and yield x + 1, or unify x with 4 and yield x + 4”. But there is
a problem: so far we have said only “a program executes by solving its equations” (Section 2.1).

Here, we can see two equations, (x =3) and (x =4), which are mutually contradictory, so clearly

we need to refine our notion of “solving.” The answer is pretty clear: in a branch of a choice, solve

the equations in that branch to get the value for some logical variables, and propagate those values

to occurrences in that branch (only). Occurrences of that variable outside the choice are unaffected.

We call this local propagation. This local-propagation rule would allow us to reason thus:

∃x . (x =3; x + 1) (x =4; x + 4) −→ ∃x . (x =3; 4) (x =4; 8)
Are we stuck now? No, we can float the choice out as before

3
,

∃x . (x =3; 4) (x =4; 8) −→ (∃x . x =3; 4) (∃x . x =4; 8)
and now it is apparent that the sole occurrence of x in each ∃ is the equation (x = 3), or (x = 4)
respectively; so we can drop the ∃ and the equation, yielding (4 8).

2.4 Pattern matching and narrowing
We remarked in Section 2.1 that we can desugar the pattern matching of a high-level language into

equations. But what about multi-equation pattern matching, such as this definition in Haskell:

append [] 𝑦𝑠 =𝑦𝑠

append (x : 𝑥𝑠) 𝑦𝑠 =x : append 𝑥𝑠 𝑦𝑠

If pattern matching on the first equation fails, we want to fall through to the second. Fortunately,

choice allows us to express this idea directly, where we use the empty tuple ⟨⟩ to represent the

empty list and pairs to represent cons cells (see Fig. 1 to desugar the pattern-matching lambda):

append :=_⟨𝑥𝑠,𝑦𝑠⟩. ((𝑥𝑠 = ⟨⟩; 𝑦𝑠) (∃x xr . 𝑥𝑠 = ⟨x, xr⟩; ⟨x, append⟨xr, 𝑦𝑠⟩⟩))
If 𝑥𝑠 is ⟨⟩, the left-hand choice succeeds, returning𝑦𝑠 ; and the right-hand choice fails (by attempting

to unify ⟨⟩ with ⟨x, xr⟩). If 𝑥𝑠 is of the form ⟨x, xr⟩, the right-hand choice succeeds, and we make a

recursive call to append. Finally, if 𝑥𝑠 is built with head-normal forms other than the empty tuple

and pairs, both choices fail, and append returns no results at all.

This approach to pattern matching is akin to narrowing [Hanus 2013]. Suppose single= ⟨1, ⟨⟩⟩,
a singleton list whose only element is 1. Consider the call ∃𝑧𝑠. append⟨𝑧𝑠, single⟩ = single; 𝑧𝑠 . The

call to append expands into a choice:

(𝑧𝑠 = ⟨⟩; single) (∃x xr . 𝑧𝑠 = ⟨x, xr⟩; ⟨x, append⟨xr, single⟩⟩)
which amounts to exploring the possibility that 𝑧𝑠 is headed by ⟨⟩ or a pair—the essence of narrowing.
It should not take long to reassure yourself that the program evaluates to ⟨⟩, effectively running

append backwards in the classic logic-programming manner.

This example also illustrates thatVC allows an equation (for append) that is recursive. As in any

functional language with recursive bindings, you can go into an infinite loop if you keep fruitlessly

inlining the function in its own right-hand side. It is the business of an evaluation strategy to do

only rewrites that make progress toward a solution (Section 3.8).

3
Indeed, we could have done so first, had we wished.

6

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

The Verse Calculus: a Core Calculus for Functional Logic Programming
In submission, March 2023,

2.5 Conditionals and one
Every source language will provide a conditional, such as if (x = 0) then e

2
else e

3
. But what is

the equality operator in (x =0)? One possibility, adopted by Curry [Antoy and Hanus 2021, §3.4],

is this: there is one “=” for equations (as in Section 2.1), and another, say “==”, for testing equality

(returning a boolean with constructors True and False). VC takes a different, more minimalist

position, following Icon’s lead, see Section 6.6. InVC, there is just one equality operator, written

“=” just as in Section 2.1. The expression if (x = 0) then e
2
else e

3
tries to unify x with 0. If that

succeeds (yields one or more values), the if returns e
2
; otherwise it returns e

3
. There are no data

constructors True and False; instead failure (returning zero values) plays the role of falsity.

But something is terribly wrong here. Consider ∃x y. y = (if (x = 0) then 3 else 4); x = 7.

Presumably this is meant to set x to 7, test whether it is equal to 0 (it is not), and unify y with 4.

But what is to stop us instead unifying x with 0 (via (x =0)), unifying y with 3, and then failing

when we try to unify x with 7? Not only is that not what we intended, but it also looks very

non-deterministic: the result is affected by the order in which we did unifications.

To address this, we give if a special property: in the expression if e
1
then e

2
else e

3
, equations

inside e
1
(the condition of the if) can only unify variables bound inside e

1
; variables bound outside

e
1
are called “rigid.” So in our example, the x in (x = 0) is rigid and cannot be unified. Instead, the if

is stuck, and we move on to unify x =7. That unblocks the if and all is well.

In fact,VC desugars the three-part if into something simpler, the unary construct one{e}. Its
specification is this: if e fails, one{e} fails; otherwise one{e} returns the first of the values yielded
by e. Now, if e

1
then e

2
else e

3
can (nearly) be re-expressed like this:

one{(e
1
; e

2
) e

3
}

This isn’t right yet, but the idea is this: if e
1
fails, the first branch of the choice fails, so we get

e
3
; if e

1
succeeds, we get e

2
, and the outer one will select it from the choice. But what if e

2
or e

3

themselves fail or return multiple results? Here is a better translation, the one given in Fig. 1
4
, which

wraps the then and else branches in a thunk
5
:

(one{(e
1
; (_⟨⟩. e

2
)) (_⟨⟩. e

3
)})⟨⟩

The argument of one reduces to either (_⟨⟩. e
2
) (_⟨⟩. e

3
) or (_⟨⟩. e

3
) depending on whether e

1

succeeds or fails, respectively; one then picks the first value, that is _⟨⟩. e
2
if e

1
succeeded, or _⟨⟩. e

3

if e
1
failed, and applies it to ⟨⟩. As a bonus, provided we do no evaluation under a lambda, then e

2

and e
3
will remain unevaluated until the choice is made, just as we expect from a conditional.

We use the same local-propagation rule for one that we do for choice (Section 2.3). This, together

with the desugaring for if into one, gives the “special property” of if described above.

2.6 Tuples and all
The main data structure inVC is the tuple. A tuple is a finite sequence of values, ⟨v

1
, ···, v

n
⟩, where

𝑛 ⩾ 0. A tuple can be used like a function: indexing is simply function application with the argument

being integers from 0 and up. Indexing out of range is fail, as is indexing with a non-integer value.

For example, t := ⟨10, 27, 32⟩; t (1) reduces to 27 and t (3) reduces to fail.

What if we apply a tuple to a choice, thus ⟨10, 27, 32⟩(1 0 1)? First we must desugar the applica-

tion to the form (v
1

v
2
), because that is allVC permits (Fig. 1), giving x := (1 0 1); ⟨10, 27, 32⟩(x),

which readily reduces to (27 10 27).
Tuples can be constructed by collecting all the results from a multi-valued expression, using the

all construct: if e reduces to (v
1
··· v

n
), where 𝑛 ⩾ 2, then all{e} reduces to the tuple ⟨v

1
, ···, v

n
⟩;

4
The translation in the figure also allow variables bound in the condition to scope over the then branch.

5
Using thunks for the branches of a conditional is another very old idea; for example, see [Steele Jr. 1978, p. 54].

7

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

In submission, March 2023,
Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

all{v} produces the singleton tuple ⟨v⟩; and all{fail} produces the empty tuple ⟨⟩. Note that is

associative, which means that we can think of a sequence or tree of binary choices as really being a

single 𝑛-way choice.

You might think that tuple indexing would be stuck until we know the index, but inVC, the
application of a tuple to a value rewrites to a choice of all the possible values of the index. For

example, t := ⟨10, 27, 32⟩; ∃i. t (i) looks stuck because we have no value for i, but actually rewrites

to:

∃i. (i=0; 10) (i=1; 27) (i=2; 32)

which (as we will see in Section 3) simplifies to just (10 27 32). So all allows a choice to be reified
into a tuple; and (∃i. t (i)) allows a tuple to be turned back into a choice. The idea of rewriting a

call of a function with a finite domain into a finite choice is called “narrowing” in the literature.

Do we even need one as a primitive construct, given that we have all? Can we not use (all{e})(0)
instead of one{e}? Indeed, they behave the same if e fully reduces to finitely many choices of

values. But all really requires every arm of the choice tree to resolve to a value before proceeding,

while one only needs the first choice to be a value. So, supposing that loop is a non-terminating

function, one{1 loop⟨⟩} can reduce to 1, while (all{1 loop⟨⟩})(0) loops.

2.7 Programming in Verse
VC is a fairly small language, but it is quite expressive. For example, we can define the typical list

functions one would expect from functional programming by using the duality between tuples and

choices, as seen in Fig. 2. A tuple can be turned into choices by indexing with a logical variable i.

Conversely, choices can be turned into a tuple using all. The choice operator “ ” serves as both

cons and append for choices; the corresponding operations for tuples are defined in Fig. 2. Partial

functions, e.g., head, will fail when the argument is outside of the domain.

Mapping a multi-valued function over a tuple is somewhat subtle. With flatMap the choices are

flattened in the resulting tuple, e.g., flatMap⟨(_x . x x + 10), ⟨2, 3⟩⟩ reduces to ⟨2, 12, 3, 13⟩, whereas
map keeps the choices. For example:

map⟨(_x . x x + 10), ⟨2, 3⟩⟩ −→ ⟨(_x . x x + 10) (2), (_x . x x + 10) (3)⟩ −→
⟨2 12, 3 13⟩ −→ ⟨2, 3⟩ ⟨2, 13⟩ ⟨12, 3⟩ ⟨12, 13⟩

Pattern matching for function definitions is simply done by unification of ordinary expressions;

see the desugaring of pattern-matching lambda in Fig. 1. This in turn means that we can use

ordinary abstraction mechanisms for patterns. For example, here is a function, fcn, that could be

called as follows: fcn⟨88, 1, 99, 2⟩.

fcn(t) :=∃x y. t = ⟨x, 1, y, 2⟩; x + y

If we want to give a name to the pattern, it is simple to do so:

pat⟨v,w⟩ := ⟨v, 1,w, 2⟩; fcn(t) :=∃x y. t =pat⟨x, y⟩; x + y

Patterns are truly first-class, going well beyond what can be done with, say, pattern synonyms in

Haskell. For example, pat could be computed, like this:

pat⟨a, v,w⟩ := if a=0 then ⟨v, 1,w, 2⟩ else ⟨1, 1,w, v⟩

so that the pattern depends on the value of a.

8

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

The Verse Calculus: a Core Calculus for Functional Logic Programming
In submission, March 2023,

Desugaring

f (x) := e means f :=_x . e

f ⟨x, y⟩ := e means f :=_⟨x, y⟩. e

head (𝑥𝑠) := 𝑥𝑠 (0)
tail(𝑥𝑠) := all{∃i. i > 0; 𝑥𝑠 (i)}

cons⟨x, 𝑥𝑠⟩ := all{x ∃i. 𝑥𝑠 (i)}
append⟨𝑥𝑠,𝑦𝑠⟩ := all{(∃i. 𝑥𝑠 (i)) (∃i. 𝑦𝑠 (i))}
flatMap⟨f , 𝑥𝑠⟩ := all{∃i. f (𝑥𝑠 (i))}

map⟨f , 𝑥𝑠⟩ := if x :=head (𝑥𝑠) then cons⟨f (x),map⟨f , tail(𝑥𝑠)⟩⟩ else ⟨⟩
filter ⟨p, 𝑥𝑠⟩ := all{∃i. x :=𝑥𝑠 (i); one{p(x)}; x}
find⟨p, 𝑥𝑠⟩ := one{∃i. x :=𝑥𝑠 (i); one{p(x)}; x}

some⟨p, 𝑥𝑠⟩ := one{∃i. p(𝑥𝑠 (i))}
zip⟨𝑥𝑠,𝑦𝑠⟩ := all{∃i. ⟨𝑥𝑠 (i), 𝑦𝑠 (i)⟩}

Fig. 2. Functions on tuples, analogous to list or array functions in some other languages

2.8 for loops
The expression for(e

1
) do e

2
will evaluate e

2
for each of the choices in e

1
, rather like a list compre-

hension in languages like Haskell or Python. The scoping is peculiar
6
in that variables bound in e

1

also scope over e
2
. So, for example, for(x :=2 3 5) do (x + 1) will reduce to the tuple ⟨3, 4, 6⟩.

Like list comprehension, for supports filtering; inVC, this falls out naturally by just using a

possibly failing expression in e
1
. So, for(x := 2 3 5; x > 2) do (x + 1) reduces to ⟨4, 6⟩. Nested

iteration in a for works as expected and requires nothing special. So, for(∃x y. x = 10 20; y =

1 2 3) do (x + y) reduces to ⟨11, 12, 13, 21, 22, 23⟩.
Just as if is defined in terms of the primitive one (Section 2.5), we can define for in terms of the

primitive all. Again, we have to be careful when e
2
itself fails or produces multiple results; simply

writing all{e
1
; e

2
} would give the wrong semantics. So we put e

2
within a lambda expression, and

apply each element of the tuple to ⟨⟩ afterwards, using a map function (as defined in Fig. 2):

for(∃x
1
···x

n
. e

1
) do e

2
means v :=all{∃x

1
···x

n
. e

1
; _⟨⟩. e

2
}; map⟨_z. z⟨⟩, v⟩)

for a fresh variable v. Note how this achieves that peculiar scoping rule: the initial variables in

∃x
1
···x

n
. e

1
are in scope in e

2
. Moreover, any effects (like being multi-valued) in e

2
will not affect

the choices defined by e
1
since the effects are contained within that lambda. So, for example,

for(x :=10 20) do (x x + 1) will reduce to ⟨10, 20⟩ ⟨10, 21⟩ ⟨11, 20⟩ ⟨11, 21⟩. At this point, it
is crucial that the desugaring of for uses map, not flatMap.

Given that tuple indexing expands into choices, we can iterate over tuple indices and elements

using for. For example, for(∃i x . x = t (i)) do (x + i) produces a tuple with the elements of t, each

increased by its index within t. Notice the absence of the fencepost-error-prone iteration of i over

(0 . . size (t) − 1), common in most languages.

3 REWRITE RULES
How can we give a precise semantics to a programming language? Here are some possibilities:

• A denotational semantics is the classical approach, but it is tricky to give a (perspicuous)

denotational semantics to a functional logic language because of the logical variables. We

6
But similar to C++, Java, Fortress, and Swift, and explained in VC by the subsequent desugaring into all.

9

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

In submission, March 2023,
Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

have such a denotational semantics under development, which we offer for completeness in

Appendix E, but that is the subject of another paper.

• A big-step operational semantics typically involves explaining how a (heap, expression) start-

ing point evaluates to a (heap, value) pair; Launchbury’s natural semantics for lazy eval-

uation [Launchbury 1993] is the classic paper. The heap, threaded through the semantics,

accounts for updating thunks as they are evaluated. Despite its “operational semantics” title,

the big-step approach does not convey accurate operational intuition, because it goes all the

way to a value in one step.

• A small-step operational semantics addresses this criticism: it typically describe how a (heap,

expression, stack) configuration evolves, one small step at a time (e.g., [Peyton Jones 1992]).

The difficulty is that the description is now so low level that it is again hard to explain to

programmers.

• A rewrite semantics steers between these two extremes. For example, Ariola et al.’s “A call-by-

need lambda calculus” [Ariola et al. 1995] shows how to give the semantics of a call-by-need

language as a set of rewrite rules. The great advantage of this approach is that it is easily

explicable to programmers. In fact, teachers almost always explain the execution of Haskell

or ML programs as a succession of rewrites of the program, such as: inline this call, simplify

this case expression, etc.

Up to this point, there has been no satisfying rewrite semantics for functional logic languages

(see Section 6 for previous work). Our main technical contribution is to fill this gap with a rewrite

semantics forVC, one that has the following properties:
• The semantics is expressed as a set of rewrite rules (Fig. 3). These rules apply to the core

language of Fig. 1, after all desugaring.

• Any rule can be applied, in either direction, anywhere in the program term (including under

lambdas).

• The rules are (mostly) oriented, with the intent that using them left to right makes progress.

• Despite this orientation, the rules do not say which rule should be applied where; that is the

task of a separate evaluation strategy (Section 3.8).

• The rules can be applied by programmers to reason about what their program does, and by

compilers to transform (and hopefully optimise) the program.

• There is no “magical rewriting” (Section 6.3): all the free variables on the right-hand side of a

rule are bound on the left.

3.1 Functions and function application rules
Looking at Fig. 3, rule app-add should be familiar: it simply rewrites an application of add to integer

constants. For example add⟨3, 4⟩ −→ 7. Rules app-gt and app-gt-fail are more interesting: gt⟨k
1
, k

2
⟩

fails if 𝑘
1
⩽ 𝑘

2
(rather than returning False as is more conventional), and returns k

1
otherwise

(rather than returning True). An amusing consequence is that (10 > x > 0) succeeds iff x is between

10 and 0 (comparison is right-associative).

β-reduction is performed quite conventionally by app-beta; the only unusual feature is that on

the RHS of the rule, we use an ∃ to bind x, together with (x =v) to equate x to the argument. The

rule may appear to use call-by-value, because the argument is a value v, but remember that values

include variables, and a variable may be bound to an as-yet-unevaluated expression. For example:

∃y. y =3 + 4; (_x . x + 1) (y) −→ ∃y. y =3 + 4; ∃x . x =y; x + 1

Finally, the side condition 𝑥 ∉ fvs(v) in app-beta ensures that the ∃x does not capture any variables

free in v. If x appears free in v, α-conversion may be used on _x . e to rename x to 𝑦 ∉ fvs(v).

10

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

The Verse Calculus: a Core Calculus for Functional Logic Programming
In submission, March 2023,

Application:

app-add add⟨k
1
, k

2
⟩ −→ k

3
where 𝑘

3
= 𝑘

1
+ 𝑘

2

app-gt gt⟨k
1
, k

2
⟩ −→ k

1
if 𝑘

1
> 𝑘

2

app-gt-fail gt⟨k
1
, k

2
⟩ −→ fail if 𝑘

1
⩽ 𝑘

2

app-beta
𝛼 (_x . e) (v) −→ ∃x . x =v; e if 𝑥 ∉ fvs(v)

app-tup ⟨v
0
, ···, v

n
⟩(v) −→ ∃x . x =v; (x =0; v

0
) ··· (x =n; v

n
) fresh x ∉ fvs(v, v

0
, ···, v

n
)

app-tup-0 ⟨⟩(v) −→ fail

Unification:

u-lit k
1
=k

2
; e −→ e if 𝑘

1
= 𝑘

2

u-tup ⟨v
1
, ···, v

n
⟩ = ⟨v ′

1
, ···, v ′

n
⟩; e −→ v

1
=v
′
1
; ···; v

n
=v
′
n
; e

u-fail hnf
1
=hnf

2
; e −→ fail if u-lit, u-tup do not match

u-occurs x =V [x]; e −→ fail if V ≠ □
subst 𝑋 [x =v; e] −→ (𝑋 {v/x}) [x =v; e{v/x}] if x ∈ fvs(𝑋, e), x ∉ fvs(v),

and (v = y =⇒ x ≺ y)

hnf-swap hnf =x; e −→ x =hnf ; e

var-swap y =x; e −→ x =y; e if x ≺ y

seq-swap 𝑒𝑞; x =v; e −→ x =v; 𝑒𝑞; e unless (𝑒𝑞 is y =v
′
and y ⪯ x)

Elimination:

val-elim v; e −→ e

exi-elim ∃x . e −→ e if x ∉ fvs(e)
eqn-elim ∃x . 𝑋 [x =v; e] −→ 𝑋 [e] if x ∉ fvs(𝑋 [v; e])
fail-elim 𝑋 [fail] −→ fail if 𝑋 ≠ □

Normalization:

exi-float
𝛼 𝑋 [∃x . e] −→ ∃x . 𝑋 [e] if 𝑋 ≠ □, 𝑥 ∉ fvs(𝑋)

seq-assoc (𝑒𝑞; e
1
); e

2
−→ 𝑒𝑞; (e

1
; e

2
)

eqn-float v = (𝑒𝑞; e
1
); e

2
−→ 𝑒𝑞; (v = e

1
; e

2
)

exi-swap ∃x . ∃y. e −→ ∃y. ∃x . e

Choice:

one-fail one{fail} −→ fail

one-value one{v} −→ v

one-choice one{v e} −→ v

all-fail all{fail} −→ ⟨⟩
all-value all{v} −→ ⟨v⟩
all-choice all{v

1
··· v

n
} −→ ⟨v

1
, ···, v

n
⟩

choose-r fail e −→ e

choose-l e fail −→ e

choose-assoc (e
1

e
2
) e

3
−→ e

1
(e

2
e
3
)

choose SX [𝐶𝑋 [e
1

e
2
]] −→ SX [𝐶𝑋 [e

1
] 𝐶𝑋 [e

2
]] if 𝐶𝑋 ≠ □

Note: In the rules marked with a superscript 𝛼 , use 𝛼-conversion to satisfy the side condition.

Fig. 3. The Verse Calculus: Rewrite rules

11

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

In submission, March 2023,
Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

Execution contexts 𝑋 ::= □ | v =𝑋 ; e | 𝑋 ; e | 𝑒𝑞; 𝑋
Value contexts 𝑉 ::= □ | ⟨v

1
, ···,V , ···, v

n
⟩

Scope contexts 𝑆𝑋 ::= one{SC} | all{SC}
𝑆𝐶 ::= □ | SC e | e SC

Choice contexts 𝐶𝑋 ::= □ | v =𝐶𝑋 | 𝐶𝑋 ; e | ce; 𝐶𝑋 | ∃x .𝐶𝑋

Choice-free exprs 𝑐𝑒 ::= v | ceq; ce | one{e} | all{e} | ∃x . ce | op(v)
𝑐𝑒𝑞 ::= ce | v = ce

Fig. 4. The syntax of contexts

In VC, tuples behave like (finite) functions in which application is indexing. Rule app-tup

describes how tuple application works on non-empty tuples, while app-tup-0 deals with empty

tuples. Notice that app-tup does not require the argument to be evaluated to an integer 𝑘 ; instead

the rule works by narrowing. So the expression ∃x . ⟨2, 3, 2, 7, 9⟩(x) = 2; x does not suspend awaiting

a value for x; instead it explores all the alternatives, returning (0 2). This is a free design decision:

a suspending semantics would be equally easy to express.

3.2 Unification rules
Next we study unification, again in Fig. 3. Rules u-lit and u-tup are the standard rules for unification,

going back nearly 60 years [Robinson 1965]. Rule u-fail makes unification fail on two different

head-normal forms (see Fig. 1 for the syntax of hnf). Note in particular that unification fails if you

attempt to unify a lambda with any other value, including itself (see Section 4.3).

The standard “occurs check” is rule u-occurs, which makes use of a context V , whose syntax is

given in Fig. 4 [Felleisen and Friedman 1986; Felleisen et al. 1987]. In general, a context is a syntax

tree containing a single hole, written □. The notation V [v] is the term obtained by filling the hole

in V with v. For example, u-occurs reduces x = ⟨1, x, 3⟩ to fail using the context V = ⟨1,□, 3⟩.
The key innovation in VC is the way bindings (that is, just ordinary equalities) of logical

variables are propagated. The key rule is:

subst 𝑋 [x =v; e] −→ (𝑋 {v/x}) [x =v; e{v/x}] if x ∈ fvs(𝑋, e), x ∉ fvs(v)
and v = y =⇒ x ≺ y

The rule says that if we have an equation (x =v), we can replace the occurrences of x by v within

the following expression and also within a surrounding context. This rule uses context 𝑋 (Fig. 4),

and uses the notation e{v/x} to mean “capture-avoiding substitution of v for x in e” (and similarly

𝑋 {v/x}, but 𝑋 will have no bindings to be avoided). There are several things to notice:

• subst fires only when the right-hand side of the equation is a value v, so that the substitution

does not risk duplicating either work or choices. This restriction is precisely the same as

the let-v rule of Ariola et al. [1995] and, by not duplicating choices, it neatly implements

so-called call-time choice [Hanus 2013]. We do not need a heap, or thunks, or updates; the

equalities of the program elegantly suffice to express the necessary sharing.

• subst replaces all occurrences of x in 𝑋 and e, but it leaves the original (x =v) undisturbed,
because 𝑋 might not be big enough to encompass all occurrences of x. For example, we can

rewrite (y =x + 1; (x = 3; z=x + 3)) to (y =x + 1; (x = 3; z= 3 + 3)), using 𝑋 = (□; z=x + 3),
but that leaves an occurrence of x in (y =x + 1). When there are no remaining occurrences

of x we may eliminate the binding: see Section 3.5.

12

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

The Verse Calculus: a Core Calculus for Functional Logic Programming
In submission, March 2023,

• The side condition 𝑥 ∉ fvs(v) in subst prevents infinite substitution, while 𝑥 ∈ fvs(𝑋, 𝑒)
ensures that there is at least one occurrence to substitute. The other side condition will be

explained next, when we discuss var-swap.

3.3 Swapping and binding order
Rules hnf-swap helps subst to fire by putting the variable on the left. Rule var-swap is trickier.

Consider this example where a and b are bound further out, perhaps by lambdas. It can rewrite in

two different ways:

∃x . x = ⟨a⟩; x = ⟨b⟩; x

−→{subst} ∃x . x = ⟨a⟩; ⟨a⟩ = ⟨b⟩; ⟨a⟩ −→{subst} ∃x . ⟨b⟩ = ⟨a⟩; x = ⟨b⟩; ⟨b⟩
−→{u-tup} ∃x . x = ⟨a⟩; a=b; ⟨a⟩ −→{u-tup} ∃x . b=a; x = ⟨b⟩; ⟨b⟩
−→{eqn-elim} a=b; ⟨a⟩ −→{eqn-elim} b=a; ⟨b⟩
−→{subst} a=b; ⟨b⟩ −→{subst} b=a; ⟨a⟩

Each column is a reduction sequence starting from the same common term at the top; the two

sequences differ when it comes to which equation for x is chosen for subst in the first step. As you

can see, they conclude with two terms that are “obviously” the same, but which are syntactically

different. Rule var-swap allows them to be brought together, so that the unification rules are

syntactically confluent. Rule seq-swap is needed for a similar reason. Consider this example:

c=a; c=b; c

−→{subst} c=a; a=b; a −→{subst} b=a; c=b; b

−→{var-swap} c=a; b=a; a −→{subst} b=a; c=a; a

Again, the concluding terms of the two columns are “obviously” the same, because they differ only

in the order of the equations (b=a) and (c=a); seq-swap allows them to be brought together, and

makes explicit our intuition that order of equations (x = v) does not matter.

Next we study the mysterious 𝑥 ≺ 𝑦 side condition in var-swap, and similar ones in subst and

seq-swap. In the overall proof of confluence, it turns out to be very helpful if the unification rules

are terminating (see Section 4.3). To achieve this, var-swap fires on y =x only if x is bound inside

y, written x ≺ y, so that the innermost-bound variable ends up on the left. Similarly, the side

condition on seq-swap prevents it firing infinitely; and the side condition (v = y =⇒ x ≺ y) on
subst prevents the rule from firing until var-swap has done its work.

Other rules, notably exi-swap, may change this binding order and thereby re-enable var-swap or

seq-swap, but the unification rules considered in isolation are terminating and confluent, and that is

what we need for the proof.

3.4 Local substitution
Consider this (extremely) tricky term: ∃x . x = if (x = 0; x > 1) then 33 else 55. What should

this do? At first you might think it was stuck—how can we simplify the if when its condition

mentions x, which is not yet defined? But in fact, rule subst allows us to substitute locally in any

𝑋 -context surrounding the equation (x =0) thusly:7

∃x . x = if (x =0; x > 1) then 33 else 55; x

−→{subst} ∃x . x = if (x =0; 0 > 1) then 33 else 55; x

−→{app-gt-fail,fail-elim} ∃x . x = if fail then 33 else 55; x

−→{simplify if} ∃x . x = 55; x −→{subst} ∃x . x = 55; 55 −→{eqn-elim} 55
7
Here and elsewhere we rewrite terms that have not been fully desugared, but that is just an expository aid; formally, the

rules apply only to programs in the language of Fig. 1.

13

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

In submission, March 2023,
Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

Minor variants of the same example get stuck instead of reducing. For example, if you replace the

(x = 0) with (x =100) then rewriting gets stuck, as the reader may verify; and yet there is a solution

to the equations, namely x =55. And if you replace (x = 0) with (x =55), then rewriting again gets

stuck, and reasonably so, since in this case there are no valid solutions to the equations. Perhaps

this is not surprising: we cannot reasonably expect a program to solve arbitrary equations. For

example, ∃x . x ∗ x = x has two solutions but discovering that involves solving a quadratic equation.

3.5 Elimination and normalization rules
Four elimination rules allow dead code to be dropped (Fig. 3): val-elim discards a value to the left

of a semicolon; exi-elim discards a dead existential; eqn-elim discards an existential ∃x that binds

a variable whose only occurrence is a single equation x = v; and fail-elim discards the context

surrounding a fail. Note that none of these rules, except fail-elim, discard an unevaluated expression,

because that expression might fail and we don’t want to “lose” that failure (see Section 3.7). The

exception is fail-elim, which propagates failure.

Four normalization rules help to put the expression in a form that allows other rules to fire (Fig. 3):

exi-float allows an existential to float outwards; seq-assoc makes semicolon right-associated; eqn-

float moves work out of the right-hand side of an equation v = e. For example, we cannot use subst

to substitute for x in (x = (e; 3); x + 2), because the RHS of the x-equation is not a value; but we

can instead apply eqn-float to get (e; x = 3); x + 2, and then seq-assoc to get e; x = 3; x + 2; and
now we can apply subst.

Rule exi-swap allows you to move an existential inward so that a dead equation can be eliminated

by eqn-elim. Rule exi-swap is unusual because it can be infinitely applied; avoiding that eventuality

is easily achieved by tweaking the evaluation strategy (Section 3.8).

Note that all these swapping and normalization rules preserve the left-to-right sequencing of

expressions, which matters because choices are made left to right as we saw in Section 2.3. Moreover,

the rules do not float equalities or existentials out of choices: that restriction is the key to localizing

unification (Section 2.3) and to the flexible/rigid distinction of Section 2.5. For example, consider

the expression (y = ((x = 3; x + 5) (x = 4)); ⟨x + 1, y⟩). We must not float the binding (x = 3) up to

a point where it might interact with the expression (x + 1), because the latter is outside the choice,
and a different branch of the choice binds x to 4.

3.6 Rules for choice
The rules for choice are given in Fig. 3:

• Rules one-fail, one-value, and one-choice describe the semantics of one, as in Section 2.5.

• Similarly, all-fail, all-value, and all-choice describe the semantics of all (Section 2.6).

• Rules choose-r and choose-l eliminate fail, which behaves as an identity for choice.

• Rule choose-assoc associates choice to the right, so that one-choice or all-choice can fire.

(The dots on the left of all-choice should be read as a string of right-associated choices.)

The most interesting rule is choose, which, just as described in Section 2.2, “floats the choice

outwards,” duplicating the surrounding context. But what “surrounding context” precisely? We

use two new contexts, SX and 𝐶𝑋 , both defined in Fig. 4. A choice context 𝐶𝑋 is like an execution

context 𝑋 , but with no possible choices to the left of the hole:

𝐶𝑋 ::= □ | v =𝐶𝑋 | 𝐶𝑋 ; e | ce; 𝐶𝑋 | ∃x .𝐶𝑋

Here, ce is a guaranteed-choice-free expression (syntax in Fig. 4). This syntactic condition is

necessarily conservative; for example, a call f (x) is considered not guaranteed-choice-free because

14

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

The Verse Calculus: a Core Calculus for Functional Logic Programming
In submission, March 2023,

it depends on what function f does. We must guarantee not to have choices to the left so that we

preserve the order of choices—see Section 2.3.

The context SX (Fig. 4) in choose ensures that 𝐶𝑋 is as large as possible. This is a very subtle

point: without this restriction we lose confluence. To see this, consider
8
:

∃x . (if (x > 0) then 55 else (44 2)); x =1; (77 99)
−→{subst} ∃x . (if (1 > 0) then 55 else (44 2)); x =1; (77 99)
−→{simplify if} ∃x . 55; x =1; (77 99)
−→{val-elim, eqn-elim} 77 99

But suppose instead we floated the choice out, partway, like this:

∃x . (if (x > 0) then 55 else (44 2)); x =1; (77 99)
−→{Bogus choose} ∃x . (if (x > 0) then 55 else (44 2)); ((x =1; 77) (x =1; 99))

Now the (x = 1) is inside the choice branches, so we cannot use subst to substitute for x in the

condition of the if. Nor can we use choose again to float the choice further out because the if is not

guaranteed choice-free (in this example, the else branch has a choice). So, alas, we are stuck! Our

not-entirely-satisfying solution is to force choose to float the choice all the way to the top. The SX

context (Fig. 4) formalizes what we mean by “the top”: rule choose can float a choice outward only

when it becomes part of the choice tree (context SC) immediately under a one or all construct

(context SX).

Rule choose moves choices around; only one-choice and all-choice decompose choices. So choice

behaves a bit like a data constructor, or normal form, of the language. This contrasts with other

approaches that eliminate choice by non-deterministically picking one branch or the other, which

immediately gives up confluence.

3.7 The Verse calculus is lenient
VC is lenient [Schauser and Goldstein 1995], not lazy (call-by-need), nor strict (call-by-value).

Under lenient evaluation, everything is eventually evaluated, but functions can run before their

arguments have a value. Consider a function call f (e), where e is not a value. InVC, applications
are in administrative normal form (ANF), so we must actually write ∃x . x = e; f (x). This expression
will not return a value until e reduces to a value: that is, everything is eventually evaluated. But

even so, f (x) can proceed to β-reduce (Section 3.1), assuming we know the definition of f .

Lenience supports abstraction. For example, we can replace an expression (x = ⟨y, 3⟩; y > 7) by
∃f . f = (_⟨p, q⟩. p= ⟨q, 3⟩; q > 7); f ⟨x, y⟩

Here, we abstract over the free variables of the expression, and define a named function f . Calling

the function is just the same as writing the original expression. This transformation would not be

valid under call-by-value.

This is not just a way to get parallelism, which was the original motivation for introducing

lenience in the data-flow language Id [Schauser and Goldstein 1995]; it affects semantics. Consider:

∃f x y. f = (_p. x =7; p); y = (if (x > 0) then 7 else 8); f (y)
Here, y does not get a value until x is known; but x does not get its value (in this case 7) until f is

called. Without lenience this program would be stuck.

However, moving to laziness seems problematic. For example, consider: ∃x . x =wombat⟨⟩; 3. In a

lazy language this expression would yield 3, but inVC, everything is evaluated, and the expression
will not return a value until wombat⟨⟩ converges. There is a good reason for this choice: wombat⟨⟩
8
Remember, if is syntactic sugar for a use of one (see Section 2.5), but using if makes the example easier to understand.

15

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

In submission, March 2023,
Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

might fail, and we should not return 3 until we know there is no failure. With laziness, we could

easily lose confluence.

3.8 Evaluation strategy
Any rewrite rule can apply anywhere in the term, at any time. For example, in the term (x =

3 + 4; y = 4 + 2; x + y) the rewrite rules do not say whether to rewrite 3 + 4→ 7 and then 4 + 2→ 6,

or the other way around. The rules do, however, require us to reduce 3 + 4→ 7 before substituting

for x in x + y, because rule subst only fires when the RHS is a value. The rewrite rules thereby

express semantics.

For example, in the lambda calculus, by changing the rewrite rule β to βV, we change the language

from call-by-name to call-by-value; by adding let, plus suitable rewrite rules, we can express call-

by-need [Ariola et al. 1995]. In VC, the rewrite rules are carefully crafted in a similar way; for

example, subst will substitute x =v only when the equation binds a variable to a value, rather like

βV in lambda calculus. Similarly, the elimination rules never discard a term that could fail.

In any term there may of course be many redexes—that is good. An evaluation strategy answers

the question: given a closed term, which unique redex, out of the many possible redexes, should

be rewritten next to make progress toward the result? Let us call an evaluation strategy good

if it guarantees to terminate if there is any terminating sequence of reductions; i.e., if any path

terminates with a value, then a good evaluation strategy will terminate with that same value
9
. For

example, in the pure lambda calculus, normal-order reduction, sometimes called leftmost-outermost

reduction, is a good evaluation strategy.

We believe that the same leftmost-outermost strategy is close to being good for VC10: just
repeatedly reduce the leftmost-outermost redex, with some tweaks to avoid infinite application of

exi-swap. That is easy in theory, but it is tricky in practice. For example, consider (x + y; ⟨x, 3⟩ =
⟨2, y⟩); x. The (x+y) is not a redex, but the equation is; we can apply unification to get (x = 2; y = 3),
and then substitution to rewrite the (x + y) to (2 + 3); and now the (2 + 3) is a redex. So a reduction
may “unlock” a redex far to its left. A major challenge of an implementation is to find the next

redex efficiently.

We have several prototype implementations ofVC, each involving an abstract machine with a

stack, a heap, a bunch of blocked computations, and so on. Exploring this design space is, however,

beyond the scope of this paper.

3.9 Developing and debugging rules
The rules we describe here should both be able to transform a program to its value, and also

be confluent. To aid in the development of the rules, we have used several mechanized tools to

automate reduction, random test-case generation, and confluence checking. Initially, we used PLT

Redex [Felleisen et al. 2009], which is very easy to use but not very efficient. For better efficiency

we switched to a Haskell library for term rewriting. The library provides a DSL for writing rules,

and provides the infrastructure to apply the rules everywhere, detect cycles, provide traces, etc.

Some sample rewrite rules can be found in Fig. 5.

We used this infrastructure in two ways. First, we have a set of examples with known results,

against which we can test a potential rule set. Second, before beginning a proof of confluence, we

used QuickCheck [Claessen and Hughes 2000] to generate test cases and check them for confluence.

9
It would be even better if the strategy could (c) guarantee to find the result in the minimal number of rewrite steps—so-called

“optimal reduction” [Asperti and Guerrini 1999; Lamping 1990; Lévy 1978]—but optimal reduction is typically very hard,

even in theory, and invariably involves reducing under lambdas, so for practical purposes it is well out of reach.

10
We say “close to” being good because we do not yet have a proof; indeed rule fail-elim may be a bit too powerful.

16

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

The Verse Calculus: a Core Calculus for Functional Logic Programming
In submission, March 2023,

rules lhs = "APP-ADD" ‘name‘ (do Op Add :@: Tup [Int k1, Int k2] ← [lhs]
pure (Int (k1 + k2)))

<> "EXI-SWAP" ‘name‘ (do EXI x (EXI y e) ← [lhs]
pure (EXI y (EXI x e)))

<> "EQN-ELIM" ‘name‘ (do EXI x a← [lhs]
(ctx, (Var x

′
:=: Val v) :>: e) ← execX a

guard (x =x
′ ∧ x ∉ free (ctx (v :>: e)))

pure (ctx e))
Fig. 5. Sample Haskell reduction rules

QuickCheck turned out to be invaluable at finding counterexamples to otherwise reasonable-looking

rules; it has run on the order of 100 million tests on the current rule set.

4 METATHEORY
The rules of our rewrite semantics can be applied anywhere, in any order, and they give meaning

to programs without committing to a particular evaluation strategy. But then it had better be the

case that no matter how the rules are applied, one always obtains the same result! That is, our

rules should be confluent. In this section, we describe our proof of confluence. Because the rule set

is quite big (compared, say, to the pure lambda calculus), this proof turns out to be a substantial

undertaking.

Reductions and confluence.A binary relation is a set of pairs of related items. A reduction relation

R is the compatible closure
11
of any binary relation on a set of tree-structured terms, such as the

terms generated by some BNF grammar. We write R∗ for the reflexive transitive closure of R. We

write 𝑒 −→R 𝑒 ′ (𝑎 steps to 𝑏) if (𝑒, 𝑒 ′) ∈ R and 𝑒 −→→R 𝑒 ′ (𝑎 reduces to 𝑏) if (𝑒, 𝑒 ′) ∈ R∗. A reduction

relation R is confluent if whenever 𝑒 −→→R 𝑒
1
and 𝑒 −→→R 𝑒

2
, there exists an 𝑒 ′ such that 𝑒

1
−→→R 𝑒 ′ and

𝑒
2
−→→R 𝑒 ′. Confluence gives us the assurance that we will not get different results when choosing

different rules, or get stuck with some rules and not with others.

Normal forms and unicity. A term 𝑒 is an R-normal form if there does not exist any 𝑒 ′ such that

𝑒 −→R 𝑒 ′. Confluence implies uniqueness of normal forms (unicity): if 𝑒 −→→R 𝑒
1
and 𝑒 −→→R 𝑒

2
, and

𝑒
1
and 𝑒

2
are normal forms, then 𝑒

1
= 𝑒

2
[Barendregt 1984, Corollary 3.1.13(ii)].

4.1 Recursion, and the notorious even/odd problem
It is well known that adding letrec to the lambda calculus makes it non-confluent, in a very tiresome,

but hard-to-avoid, way [Ariola and Blom 2002]. In our context, consider the term:

∃x y. x = ⟨1, y⟩; y = (_z. x); x −→→ ∃y. y = (_z. ⟨1, y⟩); ⟨1, y⟩ (1) substitute for x first

∃x y. x = ⟨1, y⟩; y = (_z. x); x −→→ ∃x . x = ⟨1, _z. x⟩; x (2) substitute for y first

The results of (1) and (2) have the same meaning (are indistinguishable by aVC context) but cannot

be joined by our rewrite rules. Nor is this easily fixed by adding new rules, as we did when we

added var-swap (Section 3.2) and seq-swap (Section 3.5). Why not? Because the terms are equivalent

only under some kind of graph isomorphism.

We have tackled this problem in three different ways. First, we can simply prohibit recursion,

and prove confluence under that restriction (Section 4.2). This is akin to proving confluence for

the lambda calculus with let but not letrec. InVC, excluding recursion is not so simple because

VC has no letrec; rather, recursion emerges during execution. For example, is this recursive:

11
“Compatible closure” means that, for any context 𝐸 and any two terms𝑀 and 𝑁 , if (𝑀,𝑁) ∈ R then (𝐸 [𝑀], 𝐸 [𝑁]) ∈ R.

17

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

In submission, March 2023,
Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

∃x y. x = ⟨1, y⟩; f ⟨x, y⟩? It might be if f = (_⟨v,w⟩. v =w)! For tuples, we have a simple solution:

rule u-occursmakes the entire term fail if we get recursion through a tuple. But we cannot do this for

lambdas because it leads to non-confluence. Consider f = (_x . const⟨x, f ⟩), where const = (_⟨p, q⟩. p).
The equation for f looks recursive because the RHS mentions f ; but if we β-reduce the application

of const, the occurrence of f disappears.

Thus motivated, we restrict our attention to terms that have no recursion:

• A recursive equation is an equation of the form x =V [_y. e], where 𝑥 ∈ fvs(𝑒), which equates

a variable x with a value that contains a lambda in which x is free.

• A term 𝑒 is recursive if it contains a recursive equation.

• A term 𝑒 is transitively recursive if 𝑒 −→→ 𝑒 ′ where 𝑒 ′ is recursive.
• A term 𝑒 has no recursion if it is not transitively recursive.

The no-recursion condition is not as severe as it might first appear: it only prohibits recursion

through equations. But no expressiveness is lost thereby: in our untyped setting, one can still write

recursive (and non-terminating) programs using one’s favorite fixpoint combinator, such as Y or Z.

This approach is not entirely satisfying: it is hard to prove that a term has no recursion, and it is

clumsy to write recursive programs using only Y-combinators. Our second approach is to adopt

the idea of skew confluence [Ariola and Blom 2002], a clever technique developed specifically to

handle the even/odd problem; we give an overview of skew confluence in Section 4.4, and provide

details of our approach to a proof of skew confluence forVC in Appendix D, including several

new lemmas, but we emphasize that the proof of skew confluence is not yet complete.

A third approach is simply to abandon confluence as a goal altogether. Confluence is, after all,

purely syntactic, and hence much stronger than what we really need, which is that each of our

rules be semantics-preserving. But, of course, that requires an independent notion of semantics, a

direction we sketch in Appendix E.

4.2 Proof of confluence
Our main result is thatVC’s reduction rules are confluent for terms with no recursion. We sketch

the proof here, with full details in Appendix C (and relevant preliminaries in Appendix B).

Theorem 4.1 (Confluence). The reduction relation in Fig. 3 is confluent for terms with no recursion.

Proof sketch. Our proof strategy is to (1) divide the rules into groups for application, unification, etc.,

approximately as in Fig. 3, (2) prove confluence for each separately, and then (3) prove that their

combination is confluent via commutativity. Given two reduction relations 𝑅 and 𝑆 , we say that 𝑅

commutes with 𝑆 if for all terms 𝑒, 𝑒
1
, 𝑒

2
such that 𝑒 −→→𝑅 𝑒

1
and 𝑒 −→→𝑆 𝑒

2
there exists 𝑒 ′ such that

𝑒
1
−→→𝑆 𝑒 ′ and 𝑒

2
−→→𝑅 𝑒 ′. We prove each individual sub-relation is confluent and that they pairwise

commute. Then confluence of their union follows, using Huet [1980]:

Lemma 4.2 (Commutativity). If 𝑅 and 𝑆 are confluent and commute, then 𝑅 ∪ 𝑆 is confluent.

Proving confluence for application, elimination and choice is easy: they all satisfy the diamond

property—namely, that two different reduction steps can be joined at a common term by a single

step—which suffices to show the relations are confluent [Barendregt 1984]. The diamond property

itself can be verified easily by considering critical pairs of transitions. The rules for unification and

normalization, however, pose two problems.

The unification problem. The first problem is that the unification relation does not satisfy the

diamond property—it may needmultiple steps to join the results of two different one-step reductions.

For example, consider the term (x = ⟨1, y⟩; x = ⟨z, 2⟩; x = ⟨1, 2⟩; 3). The term can be reduced in one

step by substituting x in the third equation by either ⟨1, y⟩ or ⟨z, 2⟩. After this, it will take multiple

steps to join the two terms.

18

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

The Verse Calculus: a Core Calculus for Functional Logic Programming
In submission, March 2023,

Following a well-trodden path in proofs of confluence for the λ-calculus (e.g., [Barendregt 1984]),

our proof of confluence for the unification rules works in two stages. First, we prove that the

reductions are locally confluent, meaning if 𝑒 single-steps to each of 𝑒
1
and 𝑒

2
, then 𝑒

1
and 𝑒

2
can be

joined at some 𝑒 ′ by taking multiple unification rule steps. Second, we prove that the unification

reductions are terminating, which relies upon eliminating recursion in tuples via u-occurs and in

lambdas via the no-recursion condition. Newman’s Lemma [Huet 1980, Lemma 2.4] then implies

that the locally confluent, terminating unification relation is also confluent.

The normalization problem. The second problem is that the normalization rules do not commute

with the unification rules. Recall from Section 3.3 that the unification rules rely upon variable

ordering to orient equations between variables in a canonical fashion. The normalization rule

exi-swap can change the variable order and hence, its behavior is deeply intertwined with unification

and cannot be factored out via a commutativity argument. Instead, we prove that the union of

unification and normalization is confluent by showing that unification postpones after normalization

[Hindley 1964]; see Appendix C for the gory details.

4.3 Design for confluence
VC is carefully designed to ensure confluence.

Ensuring that unification terminates. Our proof strategy for the confluence of the unification

rules requires that they terminate. The side condition x ∉ fvs(v) in subst avoids infinite substitution.

If instead we dropped that condition, the following sequence of subst reductions would not

terminate:

∃x . x = ⟨1, x⟩; x → ∃x . x = ⟨1, x⟩; ⟨1, x⟩ → ∃x . x = ⟨1, x⟩; ⟨1, ⟨1, x⟩⟩ → · · ·

Here, each step makes one substitution for x. An exactly analogous example can be made for a

lambda value.

Similarly, as we discussed in Section 3.2, rule var-swap uses the variable-ordering side condition

x ≺ y to put the equation in a canonical orientation, and thus ensure that the unification rules

terminate.

Unifying lambdas. InVC, an attempt to unify two lambdas fails even if the lambdas are seman-

tically identical (rule u-fail). Why? Because semantic identity of functions is unimplementable. We

cannot instead say that the attempt to unify gets stuck because that leads to non-confluence. Here

is an expression that rewrites in two different ways, depending on which equation we subst first:

(_p. 1) = (_q. 2); 1 ←←− ∃x . x = (_p. 1); x = (_q. 2); x ⟨⟩ −→→ (_q. 2) = (_p. 1); 2

These two outcomes cannot be joined. Defining unification to fail for lambdas makes both outcomes

lead to fail, and confluence is restored.

Unifying variables. Note that while u-lit lets us eliminate equalities on the same literal k = k,

there is no analogous u-var rule to drop equalities on the same variable x = x. Perhaps surprisingly,

adding that rule would lead to non-confluence. To see why, suppose we had such a u-var, and

consider the term (∃x . x = (_y. y); x = x; 0). If we first apply u-var to eliminate the equality

x =x, then the remainder reduces to 0. However, if we first subst the equality x = (_y. y), we get
((_y. y) = (_y. y); 0), which fails. Thus, there is no rule u-var: such equalities can be eliminated

only after the value of x is substituted in and checked to not be a lambda.

4.4 Overview of skew confluence
We travel a path very similar to the one blazed by Ariola and her co-authors. Ariola and Klop

studied a form of the lambda calculus with an added letrec construct and determined (like us) that

19

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

In submission, March 2023,
Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

their calculus was not confluent; then they added a specific constraint on recursive substitution

and proved that the modified calculus is confluent [Ariola and Klop 1994, 1997]. In a later paper,

Ariola and Blom proved that their calculus without the constraint, while not confluent, does obey a

weaker related property, which they invented, called skew confluence [Ariola and Blom 2002]. We

believe, and currently are trying to prove, thatVC without the pesky no-recursion side condition

of Theorem 4.1 is skew confluent.

Confluence: ∀e, e
1
, e

2
. e −→→R e

1
∧ e −→→R e

2
=⇒ ∃𝑒 ′. e

1
−→→R e

′ ∧ e
2
−→→R e

′
.

Skew confluence: ∀e, e
1
, e

2
. e −→→R e

1
∧ e −→→R e

2
=⇒ ∃𝑒 ′. e

1
−→→R e

′ ∧ e
2
⪯𝜔R e

′
.

These are depicted here as two commutative diagrams, which differ only on the bottom edge:

Confluence Skew confluence

𝑒 𝑒
1

𝑒
2

𝑒 ′

R
R R

R

𝑒 𝑒
1

𝑒
2

𝑒 ′

R
RR

⪯𝜔R

For each diagram, given e, e
1
, e

2
that obey

the relationships indicated by all the solid

lines, there exists e
′
such that all relationships

indicated by dotted lines are also satisfied.

You can understand skew confluence as follows: if two different reduction paths from e produce

terms e
1
, e

2
, then e

1
can be further reduced to some e

′
such that all of e

2
’s permanent structure

is present in e
′
, written e

2
⪯𝜔R e

′
. By “permanent structure” we mean an outer shell of tuples,

lambdas, and constants, that will never change no matter how much further reduction takes place.

For example, however far we reduce the term ⟨1, _z. e⟩, the result will always look like ⟨1, _z. e′⟩,
where 𝑒 −→→R 𝑒 ′. We can formalize the notion of permanent structure by defining an information

content function 𝜔R (e) that replaces all the impermanent bits of e with a new dummy term Ω. Thus

𝜔R (⟨1, _z. x⟩) = ⟨1, _z.Ω⟩. Then e
2
⪯𝜔R e

′
if 𝜔R (e2) can be made equal to e

′
by replacing each

occurrence of Ω in 𝜔R (e2) with an (individually-chosen) term.

Consider the even-odd problem discussed in Section 4.1.

∃x y. x = ⟨1, y⟩; y =_z. x; x)
−→→∃y. y =_z. ⟨1, y⟩; ⟨1, y⟩ −→→∃x . x = ⟨1, _z. x⟩; x

−→ ∃y. y =_z. ⟨1, y⟩; ⟨1, _z. ⟨1, y⟩⟩ −→ ∃x . x = ⟨1, _z. x⟩; ⟨1, _z. x⟩)
−→ ∃y. y =_z. ⟨1, y⟩; ⟨1, _z. ⟨1, _z. ⟨1, y⟩⟩⟩ −→ ∃x . x = ⟨1, _z. x⟩; ⟨1, _z. ⟨1, _z. x⟩⟩
−→ · · · −→ · · ·

The two columns can never join up, but if you pick any term in either column, there is a term in the

other column that has a greater amount of permanent structure. That in turn means that the terms

in the left-hand column are contextually equivalent to those in the right-hand column, because the

context can inspect only the permanent structure. This contextual equivalence is the real reason

for seeking confluence in the first place.

In Appendix D we show how to adapt the proof strategy of Section 4.2 and Appendix C for

skew confluence. To do this we need a new result: if two relations are skew confluent with respect

to the same information content function and commute, then their union is also skew confluent.

(In fact, it is not required that the two relations fully commute: a slightly weaker precondition

suffices.) Using this result, our plan is to (i) define an appropriate information content function

forVC expressions; (ii) prove that all the rewrite rules forVC are monotonic in this information

content function; (iii) prove that the Unification rules (modified to permit recursive substitution)

together with the Normalization rules are skew confluent; (iv) prove that this combined set of rules

commutes in the necessary way with the rules for Application, Elimination, and Choice (which

taken together are already known to be confluent); and (v) then apply our new result to show that

20

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

The Verse Calculus: a Core Calculus for Functional Logic Programming
In submission, March 2023,

the entire set of rewrite rules is skew confluent. At this time steps (iii) and (iv) are incomplete, so

we emphasize that we do not yet have a complete proof of skew confluence forVC.

5 VARIATIONS AND CHOICES
In a calculus likeVC, there is room for many design variations. We discuss some of them here.

5.1 Ordering and choices
As we discussed in Section 3.6, rule choose is less than satisfying for two reasons. First, the 𝐶𝑋

context uses a conservative, syntactic analysis for choice-free expressions; and second, the SX

context is needed to force 𝐶𝑋 to be maximal. A rule like this would be more satisfying:

simpler-choose 𝐶𝑋 [e
1

e
2
] −→ 𝐶𝑋 [e

1
] 𝐶𝑋 [e

2
]

The trouble with this is that it may change the order of the results (Section 2.3). Another possibility

would be to accept that results may come out in the “wrong” order, but have some kind of sorting

mechanism to put them back into the “right” order. Something like this:

labeled-choose 𝐶𝑋 [e
1

e
2
] −→ 𝐶𝑋 [𝐿 ⊲ e

1
] 𝐶𝑋 [𝑅 ⊲ e

2
]

Here, the two branches are labeled with L and R. We can add new rules to reorder such labeled

expressions, something in the spirit of:

sort (𝑅 ⊲ e
1
) (𝐿 ⊲ e

2
) −→ (𝐿 ⊲ e

2
) (𝑅 ⊲ e

1
)

We believe this can be made to work, and it would allow more programs to evaluate, but it adds

unwelcome clutter to program terms, and the cure may be worse than the disease. However, the

idea directly inspired our denotational semantics (Appendix E.4), where it seems to work rather

beautifully.

5.2 Generalizing one and all
InVC, we introduced one and all as the primitive choice-consuming operators, and neither is

more general than the other, as discussed in Section 2.6. We could have introduced a more general

operator split
12
as 𝑒 ::= · · · | split(e){v

1
, v

2
} and rules:

split-fail split(fail){f , g} −→ f ⟨⟩
split-value split(v){f , g} −→ g⟨v, _⟨⟩. fail⟩
split-choice split(v e){f , g} −→ g⟨v, _⟨⟩. e⟩

The intuition behind split is that it distinguishes a failing computation from one that returns at

least one value. If e fails, it calls f ; but if e returns at least one value, it passes that to g together

with the remaining computation, safely tucked away within a lambda. When adding more effects

toVC (see Appendix F), it is in fact crucial to use split to exactly control the order of effects.

Indeed, this is more general, as we can implement one and all with split:

one{e} ≡ f (x) := fail; g⟨x, y⟩ :=x; split(e){f , g}
all{e} ≡ f (x) := ⟨⟩; g⟨x, y⟩ := cons⟨x, split(y⟨⟩){f , g}⟩; split(e){f , g}

For this paper, we stuck to the arguably simpler one and all, to avoid confusing the presentation

with these higher-order encodings, but there are no complications using split instead.

12
The name inspired by Kiselyov et al. [2005].

21

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

In submission, March 2023,
Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

6 VC IN CONTEXT: REFLECTIONS AND RELATEDWORK
Functional logic programming has a rich literature; excellent starting points are Antoy and Hanus’s

CACM review article [Antoy and Hanus 2010] and Hanus’s longer survey [Hanus 2013]. Now

that we know what VC is, we can identify its distinctive features, and compare them to other

approaches.

6.1 Choice and non-determinism
A significant difference between our presentation and earlier works is our treatment of choice.

Consider an expression like (3+ (20 30)). Choice is typically handled by a pair of non-deterministic

rewrite rules:

e
1

e
2
−→ e

1
e
1

e
2
−→ e

2

So our expression rewrites (non-deterministically) to either (3 + 20) or (3 + 30), and that in turn

allows the addition to make progress. Of course, including non-deterministic choice means the

rules are non-confluent by construction. Instead, one must generalize to say that a reduction

does not change the set of results; in the context of lambda calculi, see for example Kutzner and

Schmidt-Schauß [1998]; Schmidt-Schauß and Machkasova [2008].

In contrast, our rules never pick one side or the other of a choice. And yet, (3 + (20 30))
can still make progress by floating out the choice (rule choose in Fig. 3), thus (3 + 20) (3 + 30).
In effect, choices are laid out in space (in the syntax of the term), rather than being explored by

non-deterministic selection. Rule choose is not a new idea: it is common in calculi with choice, see

e.g., de’Liguoro and Piperno [1995, Section 6.1] and Dal Lago et al. [2020, Section 3], and, more

recently, has been used to describe functional logic languages, where it is variously called bubbling

[Antoy et al. 2007] or pull-tabbing [Antoy 2011]. However, our formulation appears simpler because

we avoid the need for attaching an identifier to each choice with its attendant complications.

6.2 One and all
Logical variables, choice, and equalities are present in many functional logic languages. However,

one and all are distinctive features ofVC, with the notable exception of Fresh, a very interesting

design introduced in a technical report nearly 40 years ago [Smolka and Panangaden 1985] that

also aims to unify functional and logical constructs. Fresh reifies choice into data via confinement

(corresponding to one) and collection (corresponding to all). However, Fresh differs fromVC in

crucial ways. First, it solves equations in a strictly left-to-right fashion, which means that it is not

lenient in the sense discussed in Section 3.7. Second, its semantics are presented in an operational

fashion with explicit stacks and heaps, in contrast to our focus on developing an equational account

of functional logic programming. Finally, Fresh appears not to have been implemented.

Several aspects of all and one are worth noting. First, all reifies choice (a control operator) into

a tuple (a data structure); for example, all{1 7 2} returns the tuple ⟨1, 7, 2⟩. In the other direction,

indexing turns a tuple into choice (for example, ∃i. ⟨1, 7, 2⟩(i) yields (1 7 2)). Other languages
can reify choices into a (non-deterministic) list, via an operator called bagof, or a mechanism called

set-functions in an extension of Curry [Antoy and Hanus 2021, Section 4.2.7], implemented in the

Kiel Curry System interpreter [Antoy and Hanus 2009; Braßel and Huch 2007, 2009]. But in Curry,

this is regarded as a somewhat sophisticated feature, whereas it is part of the foundational fabric of

VC. Curry’s set-functions need careful explanation about sharing across non-deterministic choices,

or what is “inside” and “outside” the set function, something that appears as a straightforward

consequence ofVC’s single rule choose.

Second, even under the reification of all, VC is deterministic. VC takes pains to maintain

order, so that when reifying choice into a tuple, the order of elements in that tuple is completely

22

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

The Verse Calculus: a Core Calculus for Functional Logic Programming
In submission, March 2023,

determined. This determinism has a price: we have to take care to maintain the left-to-right order

of choices (see Section 2.3 and Section 3.6, for example). However, maintaining that order has

other payoffs. For example, it is relatively easy to add effects other than choice, including mutable

variables and input/output, to VC. To substantiate this claim, Appendix F gives the additional

syntax and rewrite rules for mutable variables.

Thirdly, one allows us to reify failure; to try something and take different actions depending on

whether or not it succeeds. Prolog’s “cut” operator has a similar flavor, and Curry’s set-functions

allow one to do the same thing.

Finally, one and all neatly encapsulate the idea of “flexible” vs. “rigid” logical variables. As we

saw in Section 2.5, logical variables bound outside one/all cannot be unified inside it; they are

“rigid.” This notion is nicely captured by the fact that equalities cannot float outside one and all

(Section 3.5).

6.3 The semantics of logical variables
Our logical variables, introduced by ∃, are often called extra variables in the literature, because they

are typically introduced as variables that appear on the right-hand side of a function definition, but

are not bound on the left. For example, in Curry we can write:

first x | x =:= (a,b) = a where a,b free

Here, a and b are logical variables, not bound on the left; they get their values through unification

(written “=:=”). In Curry, they are explicitly introduced by the “where a,b free” clause, while in
many other papers their introduction is implicit in the top-level rules, simply by not being bound on

the left. These extra variables (our logical variables) are at the heart of the “logic” part of functional

logic programming.

Constructor-based ReWrite Logic (CRWL) [González-Moreno et al. 1999] is the brand leader

for high-level semantics for non-strict, non-deterministic functional logic languages. CRLW is a

“big-step” rewrite semantics that rewrites a term to a value in a single step. López-Fraguas et al.

[2007] make a powerful case for instead giving the semantics of a functional logic language using

“small-step” rewrite rules, more like those of the lambda calculus, that successively rewrite the

term, one step at a time, until it reaches a normal form. Their paper does exactly this, and proves

equivalence to the CRWL framework. Their key insight (like us, inspired by Ariola et al. [1995]’s

formalization of the call-by-need lambda calculus) is to use let to make sharing explicit.

However, both CRWL and López-Fraguas et al. suffer from a major problem: they require

something we call magical rewriting. A key rewrite rule is this:

𝑓 (\ (𝑒
1
), . . . , \ (𝑒𝑛)) −→ \ (𝑟ℎ𝑠)

if (𝑒
1
, . . . , 𝑒𝑛) −→ 𝑟ℎ𝑠 is a top-level function binding, and

\ is a substitution mapping variables to closed values, s.t. 𝑑𝑜𝑚(\) = fvs(𝑒
1
, . . . , 𝑒𝑛, 𝑟ℎ𝑠)

The substitution for the free variables of the left-hand-side can readily be chosen by matching the

left-hand-side against the call. But the substitution for the extra variables must be chosen “magically”

[López-Fraguas et al. 2007, Section 7] or clairvoyantly, so as to make the future execution work

out. This is admirably high-level because it hides everything about unification, but it is not much

help to a programmer trying to understand a program, nor is it directly executable. In a subsequent

journal paper, they refine CRWL to avoid magical rewriting using “let-narrowing” [López-Fraguas

et al. 2014, Section 6]; this system looks rather different to ours, especially in its treatment of choice,

but is rather close in spirit.

To explain actual execution, the state of the art is described by Albert et al. [2005]. They give both

a big-step operational semantics (in the style of Launchbury [1993]), and a small-step operational

23

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

In submission, March 2023,
Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

semantics. These two approaches both thread a heap through the execution, which holds the

unification variables and their unification state; the small-step semantics also has a stack, to specify

the focus of execution. The trouble is that heaps and stacks are difficult to explain to a programmer,

and do not make it easy to reason about program equivalence. In addition to this machinery, the

model is further complicated with concurrency to account for residuation.

In contrast, our rewrite rules give a complete, executable (i.e., no “magic”) account of logical

variables and choice, directly as small-step rewrites on the original program, rather than as the

evolution of a (heap, control, stack) configuration. Moreover, we have no problem with residuation.

6.4 Flat vs. higher order
When giving the semantics of functional logic languages, a first-order presentation is almost

universal. User-defined functions can be defined at top level only, and function symbols (the names

of such functions) are syntactically distinguished from ordinary variables. As Hanus describes, it is

possible to translate a higher-order program into a first-order form using defunctionalization [Hanus

2013, Section 3.3] and a built-in apply function. (Hanus does not mention this, but for a language

with arbitrarily nested lambdas, one would need to do lambda-lifting [Johnsson 1985] as well; this

is perhaps a minor point.) Sadly, this encoding is hardly a natural rendition of the lambda calculus,

and it obstructs the goal of using rewrite rules to explain to programmers how their program might

execute. In contrast, a strength of ourVC presentation is that it deals natively with the full lambda

calculus.

6.5 Intermediate language
Hanus’s Flat Language [Albert et al. 2005, Fig 1], FLC, plays the same role asVC: it is a small core

language into which a larger surface language can be desugared. There are some common features:

variables, literals, constructor applications, and sequencing (written hnf in FLC). However, it seems

thatVC has a greater economy of concepts. In particular, FLC has two forms of equality (==) and

(=:=), and two forms of case-expression, case and fcase. In each pair, the former suspends if

it encounters a logical variable; the latter unifies or narrows respectively. In contrast,VC has a

single equality (=), and the orthogonal one construct, to deal with all four concepts.

FLC has let-expressions (let x=e in b) whereVC uses ∃ and (again) unification. FLC also

uses the same construct for a different purpose, to bring a logical variable into scope, using the

strange binding x=x, thus (let x=x in e). In contrast, ∃x . e seems more direct.

6.6 Comparison with Icon
There are many obvious similarities between Verse and the Icon programming language [Griswold

1979; Griswold and Griswold 1983, 2002; Griswold et al. 1979, 1981]:

• An expression can (successively) produce any number of values.

• An expression that produces zero values is said to fail [Griswold et al. 1981, §3.1]; an expres-

sion that produces at least one value is said to succeed.

• The expression e
1

e
2
produces all the values of e

1
followed by all the values of e

2
.

• There is a way to turn an array (or tuple) 𝑎 into a sequence of produced values. In Icon, this

is written !a [Griswold et al. 1979, §3]; in Verse, a?; inVC, ∃i. a(i).
• Most “scalar” operations (such as addition and comparisons) run through all possible combi-

nations of values of their operand expressions, using a specific left-to-right evaluation order

and automatic chronological backtracking.

• Success and failure are used in place of boolean values for control-structure purposes. Some

operations, especially comparisons, can fail as part of their defined semantics. The expression

24

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

The Verse Calculus: a Core Calculus for Functional Logic Programming
In submission, March 2023,

if e
1
then e

2
else e

3
checks to see whether e

1
succeeds; it then produces the values of e

2

(if e
1
succeeded) or produces the values of e

3
(if e

1
failed). If e

1
succeeds and then e

2
fails,

backtracking does not attempt to examine further values from e
1
.

• The “ ” construct is idiomatically used as a logical or operation [Griswold et al. 1979, §3].

• There is a control structure that executes a specified expression once for every value produced

by another expression. In Icon, this is every e
1
do e

2
and in Verse, it is written for(e

1
) do e

2
;

• It is impossible to name a generator (Icon) or choice (Verse); if e produces multiple values,

x := e will provide one value at a time from e to be named by variable x.

But there are also major differences between Verse and Icon. Icon was designed primarily

to use expressions as generators to automatically explore a combinatorial space of possibilities

(“goal-directed evaluation”), and secondarily to use success/failure rather than booleans to drive

control structure. But in other respects, Icon is a fairly conventional imperative language, relying

on side effects (assignments) to process the generated combinations. The designers judged that

the interactions of such side effects with completely unrestrained control backtracking would

be difficult for programmers to understand [Griswold et al. 1981, §3.1]; therefore, the design of

Icon emphasizes limited scopes for control backtracking and tools for controlling the backtracking

process [Griswold et al. 1981, §3.3].

In contrast, Verse is a declarative language and avoids these difficulties by using a functional logic

approach rather than an imperative approach to processing generated combinations:

• While Icon typically processes multiple values from an expression by using assignment, Verse

typically processes multiple values by using equations (which are then solved).

• Verse also has a concise way to turn a finite sequence of multiple values into an array di-

rectly. For example, to make variable a refer to an array containing all values generated by

expression e, code such as the following (using a repeat loop containing an assignment) is

idiomatic in Icon [Griswold et al. 1979, §8]:

a := array 0 string; i := 0; repeat a[i+] := e; close(a)
In Verse, a = for{e} does the job; inVC, a=all{e} is all it takes.
• Backtracking in Icon is “only control backtracking”; side effects, such as assignments, are not

undone [Griswold et al. 1981, §3.1].

• Both languages have an implicit “cut” (permanent acceptance of the first produced value)

after the predicate part of an if-then-else, but Icon furthermore has an implicit cut at each

statement end (semicolon or end of line) [Griswold et al. 1981, §3.1], each closing brace “}”,
and most keywords [Icon PC 1980].

7 LOOKING BACK, LOOKING FORWARD
We believe that this is the first presentation of a functional logic language as a deterministic

rewrite system. A rewrite system has the advantage (compared to more denotational, or more

operational, methods) that it is is sufficiently low-level to capture the computational model of the

language; and yet sufficiently high-level to be illuminating to a programmer or compiler writer.

Our focus on rewriting as a way to define the semantics has forced us to focus on confluence, a

rather syntactic property that is stronger (and hence more delicate and harder to prove) than the

contextual equivalence that we really need. That in turn led us to study the elegant and ingenious

notion of skew confluence, which has been barely revisited during the last 20 years, but which we

believe deserves a wider audience.

We have much left to do. The full Verse language has statically checked types. In the dynamic

semantics, the types can be represented by partial identity functions—identity for the values of

the type, and fail otherwise. This gives a distinctive new perspective on type systems, one that

25

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

In submission, March 2023,
Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

we intend to develop in future work. The full Verse language also has a statically checked effect

system, including both mutable references and input/output. All these effects must be transactional,

e.g., when the condition of an if fails, any store effects in the condition must be rolled back. We

have preliminary reduction rules for updateable references, see Appendix F.

ACKNOWLEDGMENTS
We thank our colleagues for their helpful and specific feedback on earlier drafts of this paper,

including Jessica Augustsson, Francisco López-Fraguas, Andy Gordon, Michael Hanus, David

Holz, Juan Rodríguez Hortalá, John Launchbury, Dale Miller, Andy Pitts, Niklas Röjemo, Jaime

Sánches-Hernández, Andrew Scheidecker, and Stephanie Weirich.

REFERENCES
Elvira Albert, Michael Hanus, Frank Huch, Javier Oliver, and German Vidal. 2005. Operational semantics for declarative multi-

paradigm languages. Journal of Symbolic Computation 40, 1 (2005), 795–829. https://doi.org/10.1016/j.jsc.2004.01.001

Reduction Strategies in Rewriting and Programming special issue.

Sergio Antoy. 2011. On the Correctness of Pull-Tabbing. Theory and Practice of Logic Programming 11, 4-5 (July 2011),

713–730. https://doi.org/10.1017/S1471068411000263

Sergio Antoy, Daniel W. Brown, and Su-Hui Chiang. 2007. Lazy Context Cloning for Non-Deterministic Graph Rewriting.

Electronic Notes in Theoretical Computer Science 176, 1 (May 2007), 3–23. https://doi.org/10.1016/j.entcs.2006.10.026

Proceedings of the Third International Workshop on Term Graph Rewriting (TERMGRAPH 2006).

Sergio Antoy and Michael Hanus. 2009. Set Functions for Functional Logic Programming. In Proceedings of the 11th ACM

SIGPLAN Conference on Principles and Practice of Declarative Programming (Coimbra, Portugal) (PPDP ’09). Association

for Computing Machinery, New York, NY, USA, 73–82. https://doi.org/10.1145/1599410.1599420

Sergio Antoy and Michael Hanus. 2010. Functional Logic Programming. Commun. ACM 53, 4 (April 2010), 74–85.

https://doi.org/10.1145/1721654.1721675

Sergio Antoy and Michael Hanus. 2021. Curry: A Tutorial Introduction. Technical Report. Kiel University (Christian-

Albrechts-Universität zu Kiel). https://web.archive.org/web/20220121070135/https://www.informatik.uni-kiel.de/~curry/

tutorial/tutorial.pdf

Zena M. Ariola and Stefan Blom. 2002. Skew confluence and the lambda calculus with letrec. Annals of Pure and Applied

Logic 117, 1 (2002), 95–168. https://doi.org/10.1016/S0168-0072(01)00104-X

Zena M. Ariola and Jan Willem Klop. 1994. Cyclic lambda graph rewriting. In Proceedings of the Ninth Annual IEEE

Symposium on Logic in Computer Science (LICS ’94). IEEE, 416–425. https://doi.org/10.1109/LICS.1994.316066

Zena M. Ariola and Jan Willem Klop. 1997. Lambda Calculus with Explicit Recursion. Information and Computation 139, 2

(Dec. 1997), 154–233. https://doi.org/10.1006/inco.1997.2651

Zena M. Ariola, John Maraist, Martin Odersky, Matthias Felleisen, and Philip Wadler. 1995. A Call-by-Need Lambda

Calculus. In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (San

Francisco, California, USA) (POPL ’95). Association for Computing Machinery, New York, NY, USA, 233246. https:

//doi.org/10.1145/199448.199507

Andrea Asperti and Stefano Guerrini. 1999. The Optimal Implementation of Functional Programming Languages. Cambridge

University Press.

H. P. (Hendrik Pieter) Barendregt. 1984. The Lambda Calculus: Its Syntax and Semantics (revised ed.). Studies in Logic and

the Foundations of Mathematics, Vol. 103. North-Holland (Elsevier Science Publishers), Amsterdam.

Bernd Braßel and Frank Huch. 2007. On a Tighter Integration of Functional and Logic Programming. In 5th Asian Symposium

on Programming Languages and Systems (APLAS 2007) (LNCS 4807), Zhong Shao (Ed.). Springer-Verlag, Berlin, Heidelberg,

122–138. https://doi.org/10.1007/978-3-540-76637-7_9

Bernd Braßel and Frank Huch. 2009. The Kiel Curry System KiCS. In Applications of Declarative Programming and Knowledge

Management (LNAI 5437), Dietmar Seipel, Michael Hanus, and Armin Wolf (Eds.). Springer-Verlag, Berlin, Heidelberg,

195–205. https://doi.org/10.1007/978-3-642-00675-3_13

Jan Christiansen, Daniel Seidel, and Janis Voigtländer. 2011. An Adequate, Denotational, Functional-Style Semantics for

Typed FlatCurry. In Functional and Constraint Logic Programming: 19th International Workshop, WFLP 2010, Julio Mariño

(Ed.). Springer-Verlag, Berlin, Heidelberg, 119–136. https://doi.org/10.1007/978-3-642-20775-4_7

Koen Claessen and John Hughes. 2000. QuickCheck: A Lightweight Tool for Random Testing of Haskell Programs. In

Proceedings of the Fifth ACM SIGPLAN International Conference on Functional Programming (Montreal, Canada) (ICFP ’00).

Association for Computing Machinery, New York, NY, USA, 268–279. https://doi.org/10.1145/351240.351266

26

https://doi.org/10.1016/j.jsc.2004.01.001
https://doi.org/10.1017/S1471068411000263
https://doi.org/10.1016/j.entcs.2006.10.026
https://doi.org/10.1145/1599410.1599420
https://doi.org/10.1145/1721654.1721675
https://web.archive.org/web/20220121070135/https://www.informatik.uni-kiel.de/~curry/tutorial/tutorial.pdf
https://web.archive.org/web/20220121070135/https://www.informatik.uni-kiel.de/~curry/tutorial/tutorial.pdf
https://doi.org/10.1016/S0168-0072(01)00104-X
https://doi.org/10.1109/LICS.1994.316066
https://doi.org/10.1006/inco.1997.2651
https://doi.org/10.1145/199448.199507
https://doi.org/10.1145/199448.199507
https://doi.org/10.1007/978-3-540-76637-7_9
https://doi.org/10.1007/978-3-642-00675-3_13
https://doi.org/10.1007/978-3-642-20775-4_7
https://doi.org/10.1145/351240.351266

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

The Verse Calculus: a Core Calculus for Functional Logic Programming
In submission, March 2023,

Ugo Dal Lago, Giulio Guerrieri, and Willem Heijltjes. 2020. Decomposing Probabilistic Lambda-Calculi. In Foundations of

Software Science and Computation Structures: 23rd International Conference (FoSSaCS’20) (LNCS 12077), Jean Goubault-

Larrecq and Barbara König (Eds.). Springer International, 136–156. https://doi.org/10.1007/978-3-030-45231-5_8

Ugo de’Liguoro and Adolfo Piperno. 1995. Nondeterministic Extensions of Untyped _-Calculus. Information and Computation

122, 2 (1995), 149–177. https://doi.org/10.1006/inco.1995.1145

Matthias Felleisen, Robert Bruce Findler, and Matthew Flatt. 2009. Semantics Engineering with PLT Redex. MIT Press,

Cambridge, Massachusetts, USA. https://mitpress.mit.edu/9780262062756/semantics-engineering-with-plt-redex/

Matthias Felleisen and Daniel P. Friedman. 1986. Control Operators, the SECD Machine, and the _-Calculus. In Formal

Description of Programming Concepts III: Proceedings of the IFIP TC 2/WG 2.2 Working Conference (Ebberup, Denmark).

Elsevier Science Publishers (North-Holland), 193–217. https://web.archive.org/web/20220709064643/https://www.cs.

tufts.edu/~nr/cs257/archive/matthias-felleisen/cesk.pdf

Matthias Felleisen, Daniel P. Friedman, Eugene Kohlbecker, and Bruce Duba. 1987. A Syntactic Theory of Sequential Control.

Theoretical Computer Science 52, 3 (1987), 205–237. https://doi.org/10.1016/0304-3975(87)90109-5

J.C. González-Moreno, M.T. Hortalá-González, F.J. López-Fraguas, and M. Rodríguez-Artalejo. 1999. An approach to

declarative programming based on a rewriting logic. The Journal of Logic Programming 40, 1 (July 1999), 47–87.

https://doi.org/10.1016/S0743-1066(98)10029-8

Ralph E. Griswold. 1979. User’s Manual for the Icon Programming Language. Technical Report TR 78-14. Department of

Computer Science, University of Arizona. https://www2.cs.arizona.edu/icon/ftp/doc/tr78_14.pdf

Ralph E. Griswold and Madge T. Griswold. 1983. The Icon Programming Language. Prentice-Hall, Englewood Cliffs, New

Jersey.

Ralph E. Griswold and Madge T. Griswold. 2002. The Icon Programming Language (third ed.). Peer-to-Peer Communications.

https://web.archive.org/web/20040723085807/https://www2.cs.arizona.edu/icon/ftp/doc/lb1up.pdf

Ralph E. Griswold, David R. Hanson, and John T. Korb. 1979. The Icon Programming Language: An Overview. SIGPLAN

Notices 14, 4 (April 1979), 18–31. https://doi.org/10.1145/988078.988082

Ralph E. Griswold, David R. Hanson, and John T. Korb. 1981. Generators in Icon. ACM Trans. Programming Languages and

Systems 3, 2 (April 1981), 144–161. https://doi.org/10.1145/357133.357136

Michael Hanus. 2013. Functional Logic Programming: From Theory to Curry. LNCS, Vol. 7797. Springer, Berlin, Heidelberg,

123–168. https://doi.org/10.1007/978-3-642-37651-1_6

Michael Hanus, Sergio Antoy, Bernd Braßel, Herbert Kuchen, Francisco J. López-Fraguas, Wolfgang Lux, Juan José Moreno

Navarro, Björn Peemöller, and Frank Steiner. 2016. Curry: An Integrated Functional Logic Language (Version 0.9.0).

Technical Report. University of Kiel. https://web.archive.org/web/20161020144634/https://www-ps.informatik.uni-

kiel.de/currywiki/_media/documentation/report.pdf

J. Roger Hindley. 1964. The Church-Rosser Property and a Result in Combinatory Logic. Ph.D. Dissertation. University of

Newcastle-upon-Tyne, United Kingdom.

Gérard Huet. 1980. Confluent Reductions: Abstract Properties and Applications to Term Rewriting Systems. J. ACM 27, 4

(Oct. 1980), 797–821. https://doi.org/10.1145/322217.322230

Icon PC 1980. Programming Corner from Icon Newsletter 4. https://www2.cs.arizona.edu/icon/progcorn/pc_inl04.htm

Thomas Johnsson. 1985. Lambda lifting: Transforming programs to recursive equations. In Functional Programming

Languages and Computer Architecture, Jean-Pierre Jouannaud (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg,

190–203.

Oleg Kiselyov, Chung-chieh Shan, Daniel P. Friedman, and Amr Sabry. 2005. Backtracking, interleaving, and terminating

monad transformers: (functional pearl). In Proceedings of the 10th ACM SIGPLAN International Conference on Functional

Programming, ICFP 2005, Tallinn, Estonia, September 26-28, 2005, Olivier Danvy and Benjamin C. Pierce (Eds.). ACM,

192–203. https://doi.org/10.1145/1086365.1086390

Arne Kutzner and Manfred Schmidt-Schauß. 1998. A Non-Deterministic Call-by-Need Lambda Calculus. In Proceedings of

the Third ACM SIGPLAN International Conference on Functional Programming (Baltimore, Maryland, USA) (ICFP ’98).

Association for Computing Machinery, New York, NY, USA, 324–335. https://doi.org/10.1145/289423.289462

John Lamping. 1990. An Algorithm for Optimal Lambda Calculus Reduction. In Proceedings of the 17th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (San Francisco, California, USA) (POPL ’90). Association for

Computing Machinery, New York, NY, USA, 16–30. https://doi.org/10.1145/96709.96711

John Launchbury. 1993. A Natural Semantics for Lazy Evaluation. In Proceedings of the 20th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (Charleston, South Carolina, USA) (POPL ’93). Association for

Computing Machinery, New York, NY, USA, 144–154. https://doi.org/10.1145/158511.158618

Jean-Jacques Lévy. 1976. An Algebraic Interpretation of the _𝛽K-Calculus; and an Application of a Labelled _-Calculus.

Theoretical Computer Science 2, 1 (June 1976), 97–114. https://doi.org/10.1016/0304-3975(76)90009-8

Jean-Jacques Lévy. 1978. Réductions Correctes et Optimales dans le Lambda-calcul. Ph.D. Dissertation. Université Paris vii.

https://web.archive.org/web/20051016053439/http://pauillac.inria.fr/~levy/pubs/78phd.pdf

27

https://doi.org/10.1007/978-3-030-45231-5_8
https://doi.org/10.1006/inco.1995.1145
https://mitpress.mit.edu/9780262062756/semantics-engineering-with-plt-redex/
https://web.archive.org/web/20220709064643/https://www.cs.tufts.edu/~nr/cs257/archive/matthias-felleisen/cesk.pdf
https://web.archive.org/web/20220709064643/https://www.cs.tufts.edu/~nr/cs257/archive/matthias-felleisen/cesk.pdf
https://doi.org/10.1016/0304-3975(87)90109-5
https://doi.org/10.1016/S0743-1066(98)10029-8
https://www2.cs.arizona.edu/icon/ftp/doc/tr78_14.pdf
https://web.archive.org/web/20040723085807/https://www2.cs.arizona.edu/icon/ftp/doc/lb1up.pdf
https://doi.org/10.1145/988078.988082
https://doi.org/10.1145/357133.357136
https://doi.org/10.1007/978-3-642-37651-1_6
https://web.archive.org/web/20161020144634/https://www-ps.informatik.uni-kiel.de/currywiki/_media/documentation/report.pdf
https://web.archive.org/web/20161020144634/https://www-ps.informatik.uni-kiel.de/currywiki/_media/documentation/report.pdf
https://doi.org/10.1145/322217.322230
https://www2.cs.arizona.edu/icon/progcorn/pc_inl04.htm
https://doi.org/10.1145/1086365.1086390
https://doi.org/10.1145/289423.289462
https://doi.org/10.1145/96709.96711
https://doi.org/10.1145/158511.158618
https://doi.org/10.1016/0304-3975(76)90009-8
https://web.archive.org/web/20051016053439/http://pauillac.inria.fr/~levy/pubs/78phd.pdf

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

In submission, March 2023,
Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

Francisco Javier López-Fraguas, Enrique Martin-Martin, Juan Rodríguez-Hortalá, and Jaime Sánchez-Hernández. 2014.

Rewriting and narrowing for constructor systems with call-time choice semantics. Theory and Practice of Logic pro-

gramming 14, 2 (March 2014), 165–213. https://doi.org/doi:10.1017/S1471068412000373 Published online on 30 October

2012.

Francisco J. López-Fraguas, Juan Rodríguez-Hortalá, and Jaime Sánchez-Hernández. 2007. A Simple Rewrite Notion for

Call-Time Choice Semantics. In Proceedings of the 9th ACM SIGPLAN International Conference on Principles and Practice

of Declarative Programming (Wroclaw, Poland) (PPDP ’07). Association for Computing Machinery, New York, NY, USA,

197–208. https://doi.org/10.1145/1273920.1273947

Simon L. Peyton Jones. 1992. Implementing Lazy Functional Languages on Stock Hardware: The Spineless Tagless G-

machine. Journal of Functional Programming 2, 2 (April 1992), 127–202. https://doi.org/10.1017/S0956796800000319 Also

available at https://www.microsoft.com/en-us/research/publication/implementing-lazy-functional-languages-on-stock-

hardware-the-spineless-tagless-g-machine/.

J. A. Robinson. 1965. A Machine-Oriented Logic Based on the Resolution Principle. J. ACM 12, 1 (Jan. 1965), 23–41.

https://doi.org/10.1145/321250.321253

Klaus E. Schauser and Seth C. Goldstein. 1995. How Much Non-strictness Do Lenient Programs Require?. In Proceedings of

the Seventh International Conference on Functional Programming Languages and Computer Architecture (La Jolla, California,

USA) (FPCA ’95). Association for Computing Machinery, New York, NY, USA, 216–225. https://doi.org/10.1145/224164.

224208

Manfred Schmidt-Schauß and Elena Machkasova. 2008. A Finite Simulation Method in a Non-deterministic Call-by-Need

Lambda-Calculus with Letrec, Constructors, and Case. In 19th International Conference on Rewriting Techniques and

Applications (RTA ’08) (LNCS 5117). Springer, Berlin, Heidelberg, 321–335. https://doi.org/10.1007/978-3-540-70590-1_22

Gert Smolka and Prakash Panangaden. 1985. FRESH: A Higher-Order Language with Unification and Multiple Results.

Technical Report TR 85-685. Cornell University, Ithaca, New York, USA. https://hdl.handle.net/1813/6525

Guy Lewis Steele Jr. 1978. Rabbit: A Compiler for Scheme. Technical Report 474. Artificial Intelligence Laboratory,

Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. https://web.archive.org/web/20211108071621/

https://dspace.mit.edu/bitstream/handle/1721.1/6913/AITR-474.pdf Master’s Dissertation.

28

https://doi.org/doi:10.1017/S1471068412000373
https://doi.org/10.1145/1273920.1273947
https://doi.org/10.1017/S0956796800000319
https://www.microsoft.com/en-us/research/publication/implementing-lazy-functional-languages-on-stock-hardware-the-spineless-tagless-g-machine/
https://www.microsoft.com/en-us/research/publication/implementing-lazy-functional-languages-on-stock-hardware-the-spineless-tagless-g-machine/
https://doi.org/10.1145/321250.321253
https://doi.org/10.1145/224164.224208
https://doi.org/10.1145/224164.224208
https://doi.org/10.1007/978-3-540-70590-1_22
https://hdl.handle.net/1813/6525
https://web.archive.org/web/20211108071621/https://dspace.mit.edu/bitstream/handle/1721.1/6913/AITR-474.pdf
https://web.archive.org/web/20211108071621/https://dspace.mit.edu/bitstream/handle/1721.1/6913/AITR-474.pdf

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

The Verse Calculus: a Core Calculus for Functional Logic Programming
In submission, March 2023,

A EXAMPLE
A complete reduction sequence for a small example can be found in Fig. 6. This example shows how

constraining the output of a function call can constrain the argument. While most of the reductions

are administrative in nature, these are the highlights: At 1○ the swap function is inlined so that at

2○ a β-reduction can happen. Step 3○ inlines the argument, and 4○ does the matching of the tuple.

At 5○ and 6○ the actual numbers are inlined.

swap ⟨x, y⟩ := ⟨y, x ⟩; ∃p. swap (p) = ⟨2, 3⟩; p

−→{desugar} ∃swap. swap= (_xy. ∃x y. ⟨x, y⟩ =xy; ⟨y, x ⟩) ; ∃p t. t = swap (p) ; t = ⟨2, 3⟩; p

1○ −→{subst,eqn-elim} ∃p t. t = (_xy. ∃x y. ⟨x, y⟩ =xy; ⟨y, x ⟩) (p) ; t = ⟨2, 3⟩; p

−→{subst,eqn-elim} ∃p. (2, 3) = (_xy. ∃x y. ⟨x, y⟩ =xy; ⟨y, x ⟩) (p) ; p

2○ −→{app-beta} ∃p. (2, 3) = (∃xy. xy =p; ∃x y. ⟨x, y⟩ =xy; ⟨y, x ⟩) ; p

−→{exi-float} ∃pxy. (2, 3) = ((xy =p; ∃x y. ⟨x, y⟩ =xy; ⟨y, x ⟩)) ; p

3○ −→{subst,eqn-elim} ∃p. (2, 3) = (∃x y. ⟨x, y⟩ =p; ⟨y, x ⟩) ; p

−→{exi-float,exi-float} ∃px y. (2, 3) = (⟨x, y⟩ =p; ⟨y, x ⟩) ; p

−→{eqn-float,seq-assoc} ∃px y. ⟨x, y⟩ =p; (2, 3) = ⟨y, x ⟩; p

−→{hnf-swap} ∃px y. p= ⟨x, y⟩; (2, 3) = ⟨y, x ⟩; p

−→{subst,eqn-elim} ∃x y. (2, 3) = ⟨y, x ⟩; ⟨x, y⟩
4○ −→{u-tup,seq-assoc} ∃x y. 2=y; 3=x; ⟨x, y⟩
−→{hnf-swap} ∃x y. y =2; 3=x; ⟨x, y⟩

5○ −→{subst,eqn-elim} ∃x . 3=x; ⟨x, 2⟩
−→{hnf-swap} ∃x . x =3; ⟨x, 2⟩

6○ −→{subst,eqn-elim} ⟨3, 2⟩

Fig. 6. A sample reduction sequence

29

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

In submission, March 2023,
Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

B CONFLUENCE: PRELIMINARIES
B.1 Reduction relations
Definition B.1 (Binary relations). A binary relation is a set of pairs of related items; if 𝑅 is a

relation, then we may write 𝑎 𝑅 𝑏 to mean (𝑎, 𝑏) ∈ 𝑅.

Definition B.2 (Prototype reduction relations and rewrite rules). Let R̂ be any binary relation on a

set of tree-structured terms, such as the terms generated by some BNF grammar; we sometimes

refer to R̂ as a prototype reduction relation.

Often a prototype reduction relation is specified by a rewrite rule of the form 𝛼 −→ 𝛽 , which

indicates that for any substitution 𝜎 that consistently instantiates all the metavariables (BNF

nonterminals) in 𝛼 and 𝛽 , (𝜎 (𝛼), 𝜎 (𝛽)) is a member of the prototype reduction relation. A prototype

reduction relation may also be specified by a set of rewrite rules, in which case the prototype

reduction relation is the union of the prototype reduction relations specified by the individual

rewrite rules.

Definition B.3 (Reduction relations). A reduction relation R is the compatible closure of some

prototype reduction relation R̂; compatibility means that, for any context 𝐸 and any two terms𝑀

and 𝑁 , if (𝑀, 𝑁) ∈ R then (𝐸 [𝑀], 𝐸 [𝑁]) ∈ R. Because most of the relations we consider here are

compatible, we find it more convenient to use a hat over relation symbol to indicate that it may not

be compatible, rather than using some special mark to indicate that a relation is compatible or to

indicate the taking of a compatible closure.

Definition B.4 (Derived relations). For any relation—but typically for a reduction relation, so we

will call it R here—we write R𝑘 for the composition of 𝑘 copies of R and R∗ for the reflexive and
transitive closure of R, i.e. R∗ ≡ ∪

0⩽𝑘R𝑘 . We write

• 𝑎 −→R 𝑏 (𝑎 steps to 𝑏) if (𝑎, 𝑏) ∈ R,
• 𝑎 𝜖−→R 𝑏 (𝑎 skips to 𝑏) if 𝑎 ≡ 𝑏 or (𝑎, 𝑏) ∈ R,
• 𝑎 −→→R 𝑏 (𝑎 reduces to 𝑏) if (𝑥,𝑦) ∈ R∗.
• 𝑎 𝑘−→→R 𝑏 (𝑎 𝑘-steps to 𝑏) if (𝑎, 𝑏) ∈ R𝑘 , and

Sometimes we use this same notation and terminology with a prototype reduction relation R̂, thus
for example 𝑎 −→R̂ 𝑏. In such a case, the arrow indicates rewriting of the entire term 𝑎 (at the root),

and not of some subterm of 𝑎.

Definition B.5 (Size). The size of a reduction 𝑎 −→→ 𝑏 is the smallest 𝑖 such that 𝑎
𝑖−→→ 𝑏.

Definition B.6 (Normal Forms). A term 𝑎 is an R-Normal Form if there does not exist any 𝑏 such

that 𝑎 −→R 𝑏.

For clarity, we will omit the subscript R when it is clear from the context.

B.2 Confluence
Definition B.7 (Diamond Property). A reduction relation satisfies the diamond property if when-

ever 𝑎 −→ 𝑏 and 𝑎 −→ 𝑐 , there is a 𝑑 such that 𝑏 −→ 𝑑 and 𝑐 −→ 𝑑 .

Definition B.8 (Confluence). Two terms 𝑏, 𝑐 can be R-joined written 𝑏 ↓R 𝑐 , if there is a 𝑑 such

that 𝑏 −→→R 𝑑 and 𝑐 −→→R 𝑑 . A reduction relation R is confluent if whenever 𝑎 −→→R 𝑏 and 𝑎 −→→R 𝑐 ,

we have 𝑏 ↓R 𝑐 .

Definition B.9 (Local Confluence). A reduction relation R is locally confluent if whenever 𝑎 −→R 𝑏

and 𝑎 −→R 𝑐 , we have 𝑏 ↓R 𝑐 .

30

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

The Verse Calculus: a Core Calculus for Functional Logic Programming
In submission, March 2023,

𝑎

𝑏 𝑐

𝑑

𝑎

𝑏 𝑐

𝑑

𝑎

𝑏 𝑐

𝑑

Fig. 7. Diamond Property (L), Local Confluence (M), and Confluence (R)

𝑎

𝑏 𝑐

• •
𝜖 𝜖

Fig. 8. Strong Confluence

Lemma B.10 (Diamond [Barendregt 1984]). If R satisfies the diamond property then R is

confluent.

Lemma B.11 (Unicity [Barendregt 1984]). If R is confluent then every term reduces to at most

one normal form.

Lemma B.12 (Closure [Barendregt 1984]). If R is confluent then R∗ is confluent.

Definition B.13 (Noetherian Reduction). A reduction relation R is Noetherian if there is no infinite

sequence 𝑎
0
−→R 𝑎

1
−→R . . . −→R 𝑎𝑛 −→R

The following result is known as Newman’s Lemma [Barendregt 1984; Huet 1980].

Lemma B.14 (Newman’s Lemma). If R is locally confluent and Noetherian then R is confluent.

Definition B.15 (Strong Confluence). A reduction relation is strongly confluent if whenever 𝑎 −→ 𝑏

and 𝑎 −→ 𝑐 , either 𝑏 −→→ 𝑐 or there is a 𝑑 such that 𝑏 −→→ 𝑑 and 𝑐 −→ 𝑑 , as shown in Fig. 8, where the 𝜖

label indicates 0 or 1 step.

Lemma B.16 ([Huet 1980, Lemma 2.5]). If R is strongly confluent then R is confluent.

B.3 Commutativity
Definition B.17 (Commutativity). A reduction relation 𝑅 commutes with 𝑆 if for all terms 𝑎, 𝑏, 𝑐

such that 𝑎 −→→𝑅 𝑏 and 𝑎 −→→𝑆 𝑐 there exists 𝑑 such that 𝑏 −→→𝑆 𝑑 and 𝑐 −→→𝑅 𝑑 , as illustrated on the

left in Fig. 9.

Definition B.18 (Strong commutativity). A reduction relation 𝑅 strongly commutes with 𝑆 if for all

terms 𝑎, 𝑏, 𝑐 such that 𝑎 −→𝑅 𝑏 and 𝑎 −→𝑅 𝑐 there exists 𝑑 such that 𝑏 −→𝑆 𝑑 and 𝑐 −→𝑅 𝑑 , as illustrated

in the middle in Fig. 9.

Note that if 𝑅 strongly commutes with itself then, by Definition B.7, 𝑅 has the diamond property.

Lemma B.19 (Strong-Commutativity). If 𝑅 strongly commutes with 𝑆 then 𝑅 commutes with 𝑆 .

31

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

In submission, March 2023,
Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

𝑎

𝑏 𝑐

𝑑

𝑆𝑅

𝑆 𝑅

𝑎

𝑏 𝑐

𝑑

𝑆𝑅

𝑆 𝑅

𝑎

𝑏 𝑐

𝑑

𝑆𝑅

𝑆 𝑅

Fig. 9. Commutativity (L), Strong Commutativity (C), ∗-Commutativity (R)

Proof. Via the following “chase” diagram (probably well known?)

• • • •

• • • •

• • • •

• • • •

𝑆 𝑆 𝑆

𝑅

𝑅

𝑅

𝑆

𝑅

𝑆 𝑆

𝑅 𝑅

𝑅𝑅𝑅

𝑆

𝑆 𝑆

𝑅 𝑅 𝑅

𝑆

𝑆 𝑆

□

Lemma B.20 (Union). If 𝑅 and 𝑆
1
commute and 𝑅 and 𝑆

2
commute then 𝑅 and 𝑆

1
∪ 𝑆

2
commute.

Proof. Via the following chase diagram (probably well known?)

• • • • • •

• • • • • •

𝑆1 𝑆2

𝑅

𝑆1

𝑅

𝑆2

𝑅 𝑅

𝑆1 𝑆2

𝑅 𝑅

𝑆1 𝑆2

□

Definition B.21 (Postpones). A reduction relation 𝑅 strongly postpones after 𝑆 if 𝑒 −→𝑅 · −→𝑆 𝑒 ′

implies 𝑒 −→→𝑆 · −→𝑅 𝑒 ′.

Lemma B.22 ([Hindley 1964]). If 𝑅 strongly postpones after 𝑆 then if 𝑒 −→→𝑅∪𝑆 𝑒 ′ then 𝑒 −→→𝑆 · −→→𝑅

𝑒 ′.

Definition B.23 (Hops). A reduction relation 𝑅 hops after 𝑆 if 𝑒 −→𝑅 · −→𝑆 𝑒 ′ implies there is an 𝑒 ′′

such that 𝑒 ′ −→→𝑅 𝑒 ′′ and 𝑒 −→𝑆 · −→→𝑅 𝑒 ′′.

𝑒 • 𝑒 ′

• 𝑒 ′′

𝑅 𝑆

𝑆

𝑅

𝑅

Lemma B.24. If 𝑅 is confluent and hops after 𝑆 then

𝑒 • 𝑒 ′

• 𝑒 ′′

𝑅 𝑆

𝑆

𝑅

𝑅

32

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

The Verse Calculus: a Core Calculus for Functional Logic Programming
In submission, March 2023,

Proof. By induction on size of −→→𝑅 .

Base case By definition of hops after.

Inductive case Assume the lemma for reductions of size upto 𝑘 and complete the proof via

the following diagram where (1) is from the induction hypothesis, (2) is from the definition

of hops over, and (3) is from the assumption that 𝑅 is confluent.

• • • •

• • (1)

(2) (3)

𝑅 𝑅𝑘 𝑆

𝑆 𝑆

𝑅

𝑅

𝑅
𝑅

𝑅

𝑅

□

Lemma B.25. If 𝑅 is confluent and hops after 𝑆 then

𝑒 𝑒 ′

• 𝑒 ′′
𝑆

𝑅

𝑅

𝑅∪𝑆

Proof. By induction on the number of 𝑆 steps in −→→𝑅∪𝑆 , via the following diagram.

• • • •

• • •

• •

𝑅 𝑆

𝑆 𝑅

(𝑅∗∪𝑆)𝑘

𝑅

𝐿𝑒𝑚𝑚𝑎 𝐵.24

(𝑅∗∪𝑆)𝑘

𝑅𝐿𝑒𝑚𝑚𝑎 𝐵.29

𝑆

𝑅

𝑅
𝐼𝐻

□

Definition B.26 (half-commutes). A reduction relation𝑅 half-commuteswith 𝑆 if whenever 𝑒 −→𝑅 𝑒
1

and 𝑒 −→𝑆 𝑒
2
there exists 𝑒 ′ such that 𝑒

2
−→→𝑅 𝑒 ′ and 𝑒

1
−→𝑆𝜖 · −→→𝑅 𝑒 ′.

𝑒 𝑒
2

𝑒
1

• 𝑒 ′

𝑆

𝑅

𝑆𝜖 𝑅

𝑅

Lemma B.27. If 𝑅 is confluent and 𝑅 half-commutes with 𝑆 then 𝑅 commutes with 𝑅 ∪ 𝑆 .

Proof. Via the following diagram, where: (1) is 𝑅 is confluent, and (2) is Lemma B.28.

• • • • • •

• (1) (2) (1) (2) (2)

𝑅 𝑆 𝑅 𝑆

𝑅 𝑅 𝑅 𝑅 𝑅 𝑅

𝑅 𝑅∪𝑆 𝑅 𝑅∪𝑆

□

33

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

In submission, March 2023,
Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

Lemma B.28. If 𝑅 is confluent and 𝑅 half-commutes with 𝑆 then if 𝑒 −→→𝑅 𝑒
1
and 𝑒 −→→𝑆 𝑒

2
then

exists 𝑒 ′ such that 𝑒
1
−→→𝑅∪𝑆 𝑒 ′ and 𝑒

2
−→→𝑅 𝑒 ′.

𝑒 𝑒
2

𝑒
1

𝑒 ′

𝑅

𝑆𝑘

𝑅

(𝑅∗∪𝑆)𝑘

Proof. By repeatedly tiling (1) Lemma B.30 as follows

• • • • •

• (1) (1) (1) (1)

𝑆1 𝑆2 𝑆 𝑆𝑘

𝑅 𝑅 𝑅 𝑅 𝑅

(𝑅∗∪𝑆)1 (𝑅∗∪𝑆)2 (𝑅∗∪𝑆) (𝑅∗∪𝑆)𝑘

□

Lemma B.29. If 𝑅 is confluent and 𝑅 half-commutes with 𝑆 then if 𝑒 −→→𝑅 𝑒
1
and 𝑒 −→(𝑅∗∪𝑆)𝑘 𝑒

2
then

exists 𝑒 ′ such that 𝑒
1
−→→(𝑅∗∪𝑆)𝑘 𝑒 ′ and 𝑒

2
−→→𝑅 𝑒 ′.

𝑒 𝑒
2

𝑒
1

𝑒 ′

𝑅

(𝑅∗∪𝑆)𝑘

𝑅

(𝑅∗∪𝑆)𝑘

Proof. Similar to Lemma B.28, by repeatedly “tiling” (1) Lemma B.30 and using (2) 𝑅 is confluent

to match the 𝑅∗ reductions.

• • • • •

• (2) (1) (1) (1)

𝑅 𝑆1 𝑆𝑘

𝑅 𝑅 𝑅 𝑅 𝑅

𝑅 (𝑅∗∪𝑆)1 (𝑅∗∪𝑆)𝑘

□

Lemma B.30. If 𝑅 is confluent and 𝑅 half-commutes with 𝑆 then if 𝑒 −→→𝑅 𝑒
1
and 𝑒 −→𝑆 𝑒

2
then exists

𝑒 ′ such that 𝑒
1

𝜖−→𝑆 · −→→𝑅 𝑒 ′ and 𝑒
2
−→→𝑅 𝑒 ′.

𝑒 𝑒
2

𝑒
1

• 𝑒 ′

𝑅

𝑆

𝑅

𝑆𝜖 𝑅

Proof. By induction on the size of 𝑒 −→→𝑅 𝑒
1
.

Base Case Immediate from the definition of half-commutes.

Inductive Case Assume the lemma holds for reductions of size 𝑘 , complete the proof via the

following diagram where (1) is due to the induction hypothesis, (2) is from the definition of

34

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

The Verse Calculus: a Core Calculus for Functional Logic Programming
In submission, March 2023,

𝑅 half-commutes with 𝑆 and, (3) follows from the fact that 𝑅 is confluent.

𝑒 𝑒
2

• • (1)

𝑒
1

• (2) (3)

𝑅𝑘

𝑅

𝑆

𝑅

𝑅𝑆𝜖

𝑅

𝑅

𝑅

𝑆𝜖 𝑅

□

B.4 ∗-Commutativity
Definition B.31 (∗-Commutativity). A reduction relation 𝑅 ∗-commutes with 𝑆 if for all terms

𝑎, 𝑏, 𝑐 such that 𝑎 −→𝑅 𝑏 and 𝑎 −→𝑆 𝑐 there exists 𝑑 such that 𝑏 −→→𝑆 𝑑 and 𝑐
𝜖−→𝑅 𝑑 (right in Fig. 9.)

Lemma B.32. If 𝑅 ∗-commutes with 𝑆 then for all 𝑎, 𝑏, 𝑐 if 𝑎 −→𝑅 𝑏 and 𝑎 −→→𝑆 𝑐 then there exists 𝑑

such that 𝑏 −→→𝑆 𝑑 and 𝑐
𝜖−→𝑅 𝑑 .

Proof. By induction on the size of the reduction 𝑎 −→→𝑆 𝑐 .

(Base case) Here 𝑐 is the same as 𝑎, so just pick 𝑑 = 𝑏.

(Ind. case) Assume the lemma for reductions of size less than or equal to 𝑛. Suppose that

𝑎
𝑛+1−−−→→𝑆 𝑐 . Then there exists 𝑐 ′ such that 𝑎

𝑛−→→𝑆 𝑐 ′ and 𝑐 ′ −→𝑆 𝑐 . The proof is completed by

the diagram:

𝑎

𝑏 𝑐 ′

𝑑 ′ 𝑐

𝑑

𝑆𝑛𝑅

𝑆 𝑅𝐼𝐻
𝑆

𝑆 𝑅𝐵.31

□

Lemma B.33. If 𝑅 ∗-commutes with 𝑆 then for all 𝑎, 𝑏, 𝑐 if 𝑎 −→→𝑅 𝑏 and 𝑎 −→𝑆 𝑐 then there exists 𝑑

such that 𝑏 −→→𝑆 𝑑 and 𝑐 −→→𝑅 𝑑 .

Proof. By induction on the size of the reduction 𝑎 −→→𝑅 𝑏.

(Base case) Here 𝑏 is the same as 𝑎, so just pick 𝑑 = 𝑐 .

(Ind. case) Assume the lemma for reductions of size less than or equal to 𝑛. Suppose that

𝑎
𝑛+1−−−→→𝑅 𝑏. Then there exists some 𝑏 ′ such that 𝑎

𝑛−→→𝑅 𝑏 ′ and 𝑏 ′ −→𝑅 𝑏. The proof is completed

by the diagram below.

35

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

In submission, March 2023,
Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

𝑎

𝑏 ′ 𝑐

𝑏 𝑑 ′

𝑑

𝑆𝑅𝑛

𝑆 𝑅

𝑅

𝑆 𝑅

𝐼𝐻

𝐵.32

□

Lemma B.34 (∗-Commutativity). If 𝑅 ∗-commutes with 𝑆 then 𝑅 commutes with 𝑆 .

Proof. By induction on the size of the reduction 𝑎 −→→𝑆 𝑐 .

(Base case) Here 𝑐 is the same as 𝑎, so just pick 𝑑 = 𝑏.

(Ind. case) Assume the lemma for reductions of size less than or equal to 𝑛. Suppose that

𝑎
𝑛+1−−−→→𝑆 𝑐 . Then there exists some 𝑐 ′ such that 𝑎

𝑛−→→𝑆 𝑐
′
and 𝑐 ′ −→𝑆 𝑐 . The proof is completed

by the diagram below.

𝑎

𝑏 𝑐 ′

𝑑 ′ 𝑐

𝑑

𝑆𝑛𝑅

𝑆 𝑅𝐼𝐻
𝑆

𝑆 𝑅𝐵.33

□

B.5 Commutativity and Confluence
Lemma B.35 (Commutativity). If 𝑅 and 𝑆 are confluent and commute, then 𝑅 ∪ 𝑆 is confluent.

Lemma B.36 (N-Commutativity). If (i) ∀0 ⩽ 𝑖 ⩽ 𝑛, the reduction relation 𝑅𝑖 is confluent, and

(ii) ∀0 ⩽ 𝑖 < 𝑗 ⩽ 𝑛, the reduction relations 𝑅𝑖 and 𝑅 𝑗 commute then ∪𝑛𝑖=0𝑅𝑖 is confluent.

Proof. By induction on 𝑛 using Lemma B.35 and Lemma B.20. □

B.6 Confluent Kernels
Definition B.37 (Kernel). A reduction relation 𝑆 is a kernel of 𝑅, written 𝑆 ⪯ 𝑅 if (1) 𝑆 ⊆ 𝑅 and

(2) If 𝑎 −→𝑅 𝑏 there exists 𝑐 such that 𝑎, 𝑏 −→→𝑆 𝑐 .

Lemma B.38 (Kernel-Steps). If 𝑆 ⪯ 𝑅 and 𝑆 is confluent and 𝑎 −→→𝑅 𝑏 then ∃𝑐. 𝑎, 𝑏 −→→𝑆 𝑐 .

Proof. By induction on 𝑎 −→→𝑅 𝑏.

Base Case: 𝑎 ≡ 𝑏 so trivially 𝑎, 𝑏 −→→𝑆 𝑎.

36

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

The Verse Calculus: a Core Calculus for Functional Logic Programming
In submission, March 2023,

𝑎

𝑏 𝑐

𝑅
𝑆

𝑆

Fig. 10. 𝑆 is a kernel of 𝑅 written 𝑆 ⪯ 𝑅

Inductive Case: Assume theorem for 𝑎
𝑛−→→𝑅 𝑏. Suppose that 𝑎

𝑛−→→𝑅 𝑏 ′ via 𝑎
𝑛−→→𝑅 𝑏 and 𝑏 −→𝑅 𝑏 ′.

The proof follows from the diagram below: 𝑐 is from the IH, 𝑐 ′ from 𝑆 ⪯ 𝑅 and 𝑐 ′′ from the

confluence of 𝑆 .

𝑎

𝑏 𝑐

𝑏 ′ 𝑐 ′ 𝑐 ′′

𝑅𝑛 𝑆

𝑆

𝑅

𝑆

𝑆

𝑆

𝑆

□

Theorem B.39. Kernel Confluence If 𝑆 ⪯ 𝑅 and 𝑆 is confluent, then 𝑅 is confluent.

Proof. Suppose that 𝑎 −→→𝑅 𝑏
1
and 𝑎 −→→𝑅 𝑏

2
. The following diagram shows how to construct 𝑐

such that 𝑏
1
−→→𝑅 𝑐 and 𝑏

2
−→→𝑅 𝑐 . 𝑐

1
(resp. 𝑐

2
) follows from Lemma B.38 using 𝑎 and 𝑏

1
(resp. 𝑏

2
).

Recall that 𝑆 ⪯ 𝑅 implies every 𝑆 reduction is also an 𝑅 reduction.

𝑎

𝑏
1

𝑐
1

𝑐
2

𝑏
2

𝑐

𝑅 𝑅

𝑆,𝑅

𝑆𝑆

𝑆,𝑅

𝑆,𝑅 𝑆,𝑅

□

C CONFLUENCE OFVC: PROOF
Definition C.1 (Reductions). LetR be the reduction relation defined as the unionU∪N∪A∪G∪C

of five distinct reduction relations, each of which is defined as the compatible closure of a prototype

reduction relation that is in turn defined by rewrite rules in Fig. 3, as follows:

• U (Unification) is the compatible closure of Û, which is the union of the prototype reduction

relations specified by rules u-lit, u-tup, u-fail, u-occurs, subst, hnf-swap, var-swap, choose,

seq-assoc, eqn-float, and seq-swap.

• N (Normalization) is the compatible closure of N̂ , which is the union of the prototype

reduction relations specified by rules exi-swap, exi-float, subst (restricted to x = y), and

var-swap.

• A (Application) is the compatible closure of Â, which is the union of the prototype reduction

relations specified by rules app-add, app-gt, app-gt-fail, app-beta, app-tup, and app-tup-0.

• G (Garbage Collection) is the compatible closure of Ĝ, which is the union of the prototype

reduction relations specified by rules fail-elim, val-elim, exi-elim, and eqn-elim.

37

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

In submission, March 2023,
Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

U and Û N and N̂ A and Â G and Ĝ C and Ĉ
u-lit exi-swap app-add fail-elim one-fail

u-tup exi-float app-gt val-elim one-value

u-fail subst (restricted to x =y) app-gt-fail exi-elim one-choice

u-occurs var-swap app-beta eqn-elim all-fail

subst app-tup all-value

hnf-swap app-tup-0 all-choice

var-swap choose-l

choose choose-r

seq-assoc

eqn-float

seq-swap

Fig. 11. Division of the rewrite rules shown in Fig. 3 into groups

U N A G C

Unification U C.19 C.42 C.49 C.50 C.51

Normalization N C.31 C.52 C.53 C.54

Application A C.55 C.56 C.57

Garbage Collection G C.58 C.59

Choice C C.60

Fig. 12. Summary of the confluence and commutativity of the reductions in Definition C.1. The lemmas
on the diagonal (resp. non-diagonal) entries establish confluence (resp. commutativity) for the respective
relation (resp. pairs of relations).

• C (Choice) is the compatible closure of Ĉ, which is the union of the prototype reduction

relations specified by rules one-fail, one-value, one-choice, all-fail, all-value, all-choice,

choose-l, and choose-r.

Let R̂ = Û ∪ N̂ ∪ Â ∪ Ĝ ∪ Ĉ; then R may also be described as the compatible closure of R̂ (because

the operation of taking a compatible closure distributes over ∪).

These groups correspond approximately to the sub-headings in Fig. 3, but not precisely. In particular,

some rewrite rules appear in more than one group: var-swap is used in bothU andN , and subst is

used in bothU and (in restricted form)N . Moreover, choose is used inU but not in C, although it

is listed under “Choice” in Fig. 3.

For convenient reference, the five lists of rules are also displayed in tabular form in Fig. 11.

Definition C.2 (Recursive Equations). A recursive equation is a term of the form

x =V [_y. e] where 𝑥 ∈ fvs(𝑒)
where the LHS is a variable and the RHS is a value that is or contains a _ in which x occurs free. A

term 𝑒 is recursive if it contains a recursive equation. A term 𝑒 is transitively recursive if 𝑒 −→→R 𝑒 ′

where 𝑒 ′ is recursive. A term 𝑒 has no recursion if it is not transitively recursive.

Our main confluence theorem is as follows:

Theorem C.3 (Confluence). If 𝑒 has no recursion and 𝑒 −→→R 𝑒
1
and 𝑒 −→→R 𝑒

2
then 𝑒

1
↓R 𝑒

2
.

38

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

The Verse Calculus: a Core Calculus for Functional Logic Programming
In submission, March 2023,

Notation

𝑎, 𝑏, 𝑐, 𝑑, 𝑒 Expressions (syntax in Fig. 1)

Δ An expression 𝑒 that has a redex at the root

𝑒
1
⊂ 𝑒

2
The expression 𝑒

1
is a strict sub-term of 𝑒

2

𝑒
1
⊆ 𝑒

2
The expression 𝑒

1
is a sub-term of 𝑒

2
, including 𝑒

2
itself

𝑎 −→R̂ 𝑏 𝑎 reduces to 𝑏 via one root-level step of R
𝑎 −→R 𝑏 𝑎 reduces to 𝑏 in one step of R
𝑎

𝜖−→R 𝑏 𝑎 reduces to 𝑏 in zero or one step of R
𝑎 −→→R 𝑏 𝑎 reduces to 𝑏 in zero or more steps of R
𝑎

𝑘−→→R 𝑏 𝑎 reduces to 𝑏 in 𝑘 steps of R

Expression contexts

𝐸 ::= □ | E; e | v =E; e | ∃x . E | E e | e E | one{E} | all{E}
| E(v) | v(E) | ⟨v

1
, ···, E, ···, v

n
⟩ | _x . E

Note: 𝑒
1
⊆ 𝑒

2
is equivalent to ∃𝐸. 𝐸 [𝑒

1
] ≡ 𝑒

2
.

Fig. 13. Summary of notation

Proof. First, we partition R into the relationsU ∪N , A, G and C. Next, we show that each

of these relations is confluent and pairwise commutative (Fig. 12). Finally, we use Lemma B.36 to

prove their union R is confluent. □

The no-recursion condition is only needed to proveU is confluent, but we assume it globally for

clarity.

C.1 Disjointness, Reduction under, and the Diamond property
In talking about confluence we often speak of two different reduction steps with a common starting

point, thus 𝑒 −→R 𝑒
1
and 𝑒 −→R 𝑒

2
. In the first of these there is a sub-term of 𝑒 , say Δ

1
, that is the

actual redex; the root of Δ
1
matches some rule in R. Δ

1
is just an ordinary expression, but we use

the notation “Δ” to stress that it is the root of a redex (see Fig. 13). Δ
1
is a sub-term of 𝑒 (or possibly

Δ = 𝑒), which we write Δ
1
⊆ 𝑒 (again in Fig. 13). Note that 𝑒

1
⊆ 𝑒

2
is equivalent to saying that there

exists some expression context 𝐸 such that 𝐸 [𝑒
1
] ≡ 𝑒

2
, i.e. that 𝑒

2
can be decomposed into a context

𝐸 whose hole is filled by 𝑒
1
.

Similarly we may identify Δ
2
, the redex that is reduced by 𝑒 −→R 𝑒

2
. Now there are two cases to

consider:

(1) Δ
1
is disjoint from Δ

2
in 𝑒; or

(2) Δ
1
⊆ Δ

2
, or Δ

2
⊆ Δ

1
.

One might wonder if Δ
1
can overlap Δ

2
, but that is not possible: we are discussing syntax trees, not

graphs, and so for distinct Δ
1
and Δ

2
, either the root of Δ

1
is a child of the root of Δ

2
, or vice versa,

or neither.

In the first case (a) we have the diamond property immediately:

Lemma C.4 (Disjoint). Let 𝑒 ≡ . . . Δ
1
. . . Δ

2
. . . be an expression with two disjoint redexes Δ

1
and

Δ
2
. If 𝑒 −→ . . . Δ′

1
. . . Δ

2
. . . ≡ 𝑒

1
and 𝑒 −→ . . . Δ

1
. . . Δ′

2
. . . ≡ 𝑒

2
then there exists 𝑒 ′ such that 𝑒

1
−→ 𝑒 ′

and 𝑒
2
−→ 𝑒 ′.

Proof. Trivial: 𝑒 ′ = . . . Δ′
1
. . . Δ′

2
. . .. □

39

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

In submission, March 2023,
Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

C.2 Lemmas for Reductions-Under
So to prove the diamond property for a relation R, we should focus attention only on case (b) where

the redexes are not disjoint, i.e. one occurs under the other. To this end, it suffices to consider the

case where one of the reductions is at the root, written 𝑒 −→R̂ 𝑒
1
(see Fig. 13 and Appendix B.1), and

the other occurs under 𝑒 i.e. is of the form 𝐸 [Δ] −→R 𝑒
2
where 𝑒

2
≡ 𝐸 [Δ′], and Δ −→R̂ Δ′.

Next, we prove a set of “reductions-under” 𝑅 lemmas that say that if a term 𝑒 can be (1) reduced

using two different rules 𝑅 and 𝑆 as 𝑒 −→𝑅 𝑒𝑅 and 𝑒𝑆 −→𝑆 , such that (2) the redex for the 𝑆 reduction

occurs under the redex for the 𝑅 reduction, then there exists some 𝑒 ′ such that 𝑒𝑅 (resp. 𝑒𝑆) can be

reduced to 𝑒 ′ using some number of 𝑆 (resp. 𝑅) reductions.

The lemmas will be used in two ways. First, to show that two different relations commute. Second,

that a relation (strongly) commutes with itself, i.e. has the diamond property, and hence is confluent.

In each case, we will split cases on which relation is the “outer” reduction and which is the “inner”

and then applying the appropriate “reduction-under” lemma for the outer relation, and using

Lemma C.4 for the case where the redexes are disjoint.

C.2.1 Application. The following lemma says that if a term ΔA is the root of an A reduction

ΔA −→A Δ′A and the ΔA additionally contains under it a subterm Δ that is the root of some R
reduction Δ −→R Δ′ then it is possible to join the result of the R and A reduction at a common

term Δ′′A by executing a single step of the other reduction, i.e. A and R respectively. (Recall that

𝐸 [𝑒 ′] ≡ 𝑒 means that 𝑒 ′ ⊆ 𝑒 i.e. 𝑒 ′ occurs under or is a sub-term of 𝑒).

Lemma C.5 (Under-A). If ΔA −→Â Δ′A and ΔA ≡ 𝐸 [Δ] and Δ −→R̂ Δ′ then there exists Δ′′A such

that Δ′A −→R Δ′′A and 𝐸 [Δ′] −→Â Δ′′A .

ΔA ≡ 𝐸 [Δ] 𝐸 [Δ′]

Δ′A Δ′′A

Â

R

Â

R

Proof. Split cases on the rule used in Â.

Case: app-beta i.e. ΔA −→A Δ′A ≡ (_x . e)v −→ ∃x . x =v; e. If Δ ⊆ e, i.e. R : 𝑒 −→ 𝑒 ′, then join

at Δ′′A ≡ ∃x . x =v; e
′
. If Δ ⊆ v, i.e. R : v −→ v

′
, then join at Δ′′A ≡ ∃x . x =v

′
; e.

Case: app-tup i.e. ΔA −→A Δ′A ≡ ⟨v0 . . . v
n
⟩v −→ ∃x . x = v; (x = 0; v

0
. . . x = n; v

n
). If

Δ ⊆ v
i
, i.e. R : v

i
−→ v

′
i
, then join at ∃x . x = v; (x = 0; v

0
. . . x = i; v

′
i
. . . x = n; v

n
). If

Δ ⊆ v, i.e. R : v −→ v
′
, then join at ∃x . x =v

′
; (x =0; v

0
. . . x =n; v

n
).

Case: app-tup0 i.e. ΔA −→A Δ′A ≡ ⟨⟩v −→ fail. Here, Δ ⊆ 𝑣 , i.e. R : v −→ v
′
, then join at

Δ′′A ≡ fail.

Case: app-add, app-gt-* In any of the primitive application rules, Δ ̸⊆ ΔA .

□

C.2.2 Unification.

Lemma C.6 (Under-U). Let R ′ ≡ R − subst − var-swap. If ΔU −→Û Δ′U and ΔU ≡ 𝐸 [Δ] and
Δ −→R̂′ Δ′ then there exists Δ′′U such that Δ′U −→→R′ Δ′′U and 𝐸 [Δ′] −→Û Δ′′U .

ΔU ≡ 𝐸 [Δ] 𝐸 [Δ′]

Δ′U Δ′′U

Û

R′

Û

R′

40

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

The Verse Calculus: a Core Calculus for Functional Logic Programming
In submission, March 2023,

Proof. Split cases on the rule used in Û.

Case subst : Here, ΔU ≡ 𝑋 [x =v]. Split cases on the occurrence of Δ.
Case Δ ⊆ 𝑋 , i.e. 𝑋 ≡ 𝑋 ′[Δ].

𝑋 ′[Δ] [𝑥 = 𝑣] 𝑋 ′{𝑣/𝑥}[Δ{𝑣/𝑥}] [𝑥 = 𝑣]

𝑋 ′[Δ′] [𝑥 = 𝑣] 𝑋 ′{𝑣/𝑥}[Δ′{𝑣/𝑥}] [𝑥 = 𝑣]
R′

U

U
R′ via 𝐿𝑒𝑚𝑚𝑎 𝐶.11

Case Δ ⊆ 𝑣 , i.e. 𝑣 −→R′ 𝑣 ′

𝑋 [𝑥 = 𝑣] 𝑋 {𝑣/𝑥}[𝑥 = 𝑣]

𝑋 [𝑥 = 𝑣 ′] 𝑋 {𝑣 ′/𝑥}[𝑥 = 𝑣 ′]
R′

U

U
R′ (repeat at each 𝑣)

Case hnf-swap : ΔU ≡ hnf =x and ℎ −→R′ ℎ′, so join at Δ′′U ≡ x = hnf
′
.

hnf = 𝑥 𝑥 = hnf

hnf
′ = 𝑥 𝑥 = hnf

′

U

R′ R′

U

Case u-occurs : ΔU ≡ 𝑥 = 𝑉 [𝑥] and 𝑉 [𝑥] −→R′ 𝑉 ′[𝑥], so join at Δ′′U ≡ fail.

𝑥 = 𝑉 [𝑥] fail

𝑥 = 𝑉 ′[𝑥]

U

R′ U

Case var-swap : Impossible, no Δ ⊆ ΔU
Case u-lit : Impossible, no Δ ⊆ ΔU
Case u-fail : Join at Δ′′U ≡ fail.

Case u-tup : ΔU ≡ (u1
... u

n
) == (v

1
... v

n
).

Case Δ ⊆ 𝑢𝑖 i.e. 𝑢𝑖 −→R′ 𝑢 ′𝑖 Join at Δ′′U ≡ 𝑢1 = 𝑣
1
; . . . 𝑢 ′𝑖 = 𝑣𝑖 ; . . . 𝑢𝑛 = 𝑣𝑛 .

Case Δ ⊆ 𝑣 𝑗 i.e. 𝑣 𝑗 −→R′ 𝑣 ′𝑗 Join at Δ′′U ≡ 𝑢1 = 𝑣
1
; . . . 𝑢 𝑗 = 𝑣 ′𝑗 ; . . . 𝑢𝑛 = 𝑣𝑛 .

Case seq-assoc : ΔU ≡ (𝑒𝑞; 𝑒1); 𝑒2 −→ 𝑒𝑞; (𝑒
1
; 𝑒

2
) ≡ Δ′U . Split cases on where Δ occurs, which

as we’re precluding subst is either in 𝑒𝑞 or in 𝑒
1
or in 𝑒

2
.

Case Δ ⊆ 𝑒𝑞 i.e. 𝑒𝑞 −→R′ 𝑒𝑢 ′ Join at Δ′′U ≡ 𝑒𝑢 ′; (𝑒1; 𝑒2).
Case Δ ⊆ 𝑒

1
i.e. 𝑒

1
−→R′ 𝑒 ′1 Join at Δ′′U ≡ 𝑒𝑞; (𝑒 ′1; 𝑒2).

Case Δ ⊆ 𝑒
2
i.e. 𝑒

2
−→R′ 𝑒 ′2 Join at Δ′′U ≡ 𝑒𝑞; (𝑒1; 𝑒 ′2).

Case Δ spans (𝑒𝑞; 𝑒
1
) or (𝑒𝑞; 𝑒

1
); 𝑒

2
via fail-elim. Join at fail.

Case eqn-float : ΔU ≡ 𝑣 = (𝑒𝑞; 𝑒
1
); 𝑒

2
−→ 𝑒𝑞; (𝑣 = 𝑒

1
; 𝑒

2
) ≡ Δ′U . Split cases on where Δ occurs,

which as we’re precluding subst is either in 𝑣 , 𝑒𝑞, 𝑒
1
or in 𝑒

2
.

Case Δ ⊆ 𝑣 i.e. 𝑣 −→R′ 𝑣 ′ Join at Δ′′U ≡ 𝑒𝑞; (𝑣 ′ = 𝑒
1
; 𝑒

2
).

Case Δ ⊆ 𝑒𝑞 i.e. 𝑒𝑞 −→R′ 𝑒𝑢 ′ Join at Δ′′U ≡ 𝑒𝑢 ′; (𝑣 = 𝑒
1
; 𝑒

2
).

Case Δ ⊆ 𝑒
1
i.e. 𝑒

1
−→R′ 𝑒 ′1 Join at Δ′′U ≡ 𝑒𝑞; (𝑣 = 𝑒 ′

1
; 𝑒

2
).

Case Δ ⊆ 𝑒
2
i.e. 𝑒

2
−→R′ 𝑒 ′2 Join at Δ′′U ≡ 𝑒𝑞; (𝑣 = 𝑒

1
; 𝑒 ′

2
).

Case Δ spans (𝑒𝑞; 𝑒
1
) or 𝑣 = (𝑒𝑞; 𝑒

1
); 𝑒

2
via fail-elim. Join at fail.

Case choose : via Lemma C.7.

□

41

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

In submission, March 2023,
Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

Lemma C.7 (Under-choose). If Δ𝑐ℎ −→�choose Δ′𝑐ℎ and Δ𝑐ℎ ≡ 𝐸 [Δ] and Δ −→R̂ Δ′ then there exists

Δ′′𝑐ℎ such that Δ′𝑐ℎ −→→R Δ′′𝑐ℎ and 𝐸 [Δ′] −→�choose Δ′′𝑐ℎ .

Δ𝑐ℎ ≡ 𝐸 [Δ] 𝐸 [Δ′]

Δ′𝑐ℎ Δ′′𝑐ℎ

�choose
R

�choose
R

Proof. By the definition of choose we have

Δ𝑐ℎ ≡ SX [𝐶𝑋 [e
1

e
2
]] −→ SX [𝐶𝑋 [e

1
] 𝐶𝑋 [e

2
]] ≡ Δ′𝑐ℎ

Split cases on where Δ occurs

Case Δ ⊆ 𝑒
1
i.e. 𝑒

1
−→R 𝑒 ′

1
, so join at SX [𝐶𝑋 [e′

1
] 𝐶𝑋 [e

2
]].

Case Δ ⊆ 𝑒
2
i.e. 𝑒

2
−→R 𝑒 ′

2
, so join at SX [𝐶𝑋 [e

1
e
′
2
]].

Case Δ ⊆ e
1

e
2
i.e. e

1
e
2
−→R e

i
where 𝑒

3−𝑖 is fail so join at SX [𝐶𝑋 [e
i
]].

Case Δ ⊆ 𝐶𝑋 i.e. 𝐶𝑋 −→R 𝐶𝑋 ′ so join (via two R steps) at SX [CX
′[e

1
] CX

′[e
2
]].

Case Δ ⊆ 𝐶𝑋 [e
1

e
2
] i.e. 𝐶𝑋 [e

1
e
2
] −→R CX

′[e′
1

e
′
2
], so join at SX [CX

′[e′
1
] CX

′[e′
2
]].
□

C.2.3 Normalization.

Lemma C.8 (Under-N). Let R ′ = R − N − U. If ΔN −→N̂ Δ′N and ΔN ≡ 𝐸 [Δ] and Δ −→R̂′ Δ′
then exists Δ′′N such that Δ′N −→R′ Δ′′N and 𝐸 [Δ′] −→N̂ Δ′′N .

Proof. Split cases on the reduction rule used in ΔN −→N̂ Δ′N
Case exi-swap : i.e. N : ∃x . ∃y. e −→ ∃y. ∃x . e. Split cases on the position of Δ.
Case Δ ⊆ 𝑒 : i.e. 𝑒 −→R′ 𝑒 ′; join at ∃x . ∃y. e′.
Case Δ ⊆ (∃y. e) : i.e. 𝑦 eliminated via an exi-elim or eqn-elim ∃y. e −→R′ 𝑒 ′; join at ∃x . e′.
Case Δ ⊆ (∃x . ∃y. e) : i.e. 𝑥 eliminated via an exi-elim or eqn-elim ∃x . ∃y. e −→R′ ∃y. e′; join

at ∃y. e′.
Case exi-float : i.e. N : 𝑋 [∃x . e] −→ ∃x . 𝑋 [e]. Split cases on the position of Δ.
Case Δ ⊆ 𝑒 : i.e. 𝑒 −→R′ 𝑒 ′; join at ∃x . 𝑋 [e′].
Case Δ ⊆ (∃x . e) : i.e. 𝑥 eliminated via an exi-elim or eqn-elim ∃x . e −→R′ 𝑒 ′; join at 𝑋 [e′].
Case Δ ⊆ 𝑋 : i.e. 𝑋 [∃x . e] −→R′ X

′[∃x . e′]; join at ∃x .X ′[e′].
Case subst-var : i.e. N : 𝑋 [x = y] −→ (𝑋 {y/x}) [x = y]. The only possible position of Δ is

Δ ⊆ 𝑋 i.e. 𝑋 [𝑥 = 𝑦] −→R′ 𝑋 ′[𝑥 = 𝑦]; join at (X ′{y/x}) [x = y].
Case var-swap : i.e. N : x = y −→ y = x. Impossible to have Δ ⊆ x = y.

□

C.2.4 Garbage Collection.

Lemma C.9 (Under-G). If ΔG −→Ĝ Δ′G and ΔG ≡ 𝐸 [Δ] and Δ −→R̂ Δ′ then there exists Δ′′G such

that Δ′G
𝜖−→R Δ′′G and 𝐸 [Δ′] −→Ĝ Δ′′G .

Proof. Let ΔG −→Ĝ Δ′G be the G redex and split cases on the reduction rule used in the step.

Case val-elim : i.e. G : v; e −→ e. Split cases on position of Δ
Case Δ ⊆ v : Join at e.

Case Δ ⊆ e : i.e. 𝑒 −→R 𝑒 ′; join at e
′
.

Case Δ ⊆ v; e : i.e. 𝑣 ; 𝑒 −→
fail-elim

fail as 𝑒 ≡ 𝑋 [fail]; join at fail.

Case fail-elim : i.e. G : 𝑋 [fail] −→ fail. Then 𝑋 [fail] −→R X
′[fail] hence join at fail.

42

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

The Verse Calculus: a Core Calculus for Functional Logic Programming
In submission, March 2023,

Case exi-elim : i.e. G : ∃𝑦, x, 𝑧. e −→ ∃𝑦, 𝑧. e; (We can generalize exi-elim to first use a sequence

of exi-swap to bring the x binder to the end before applying exi-elim as this does not change

the order of the remaining binders.) Split cases on position of Δ
Case Δ ⊆ e : i.e. 𝑒 −→R 𝑒 ′; join at ∃𝑦, 𝑧. e′.
Case Δ ⊆ ∃𝑦, x, 𝑧. e : i.e. via exi-swap; join at ∃𝑦, 𝑧. e.

Case eqn-elim : i.e. G : ∃x . 𝑋 [x = v; e] −→ 𝑋 [e] where 𝑥 ∉ fvs(𝑋 [v; e]). (We can generalize

exi-elim to first use a sequence of exi-swap to bring the x binder to the end before applying

eqn-elim as this does not change the order of the remaining binders.) Split cases on position

of Δ
Case Δ ⊆ v : i.e. 𝑣 −→R 𝑣 ′; join at 𝑋 [e].
Case Δ ⊆ e : i.e. 𝑒 −→R 𝑒 ′ (where fvs(𝑒 ′) = fvs(𝑒)); join at 𝑋 [e′].
Case Δ ⊆ 𝑋 : i.e. 𝑋 [x = v; e] −→R X

′[x = v; e] (where fvs(𝑋 ′) = fvs(𝑋)); join at X
′[e].

□

C.2.5 Choice.

Lemma C.10 (Under-C). If ΔC −→Ĉ Δ′C and ΔC ≡ 𝐸 [Δ] and Δ −→R Δ′ then there exists Δ′′C such

that Δ′C
𝜖−→R Δ′′C and 𝐸 [Δ′] −→Ĉ Δ′′C .

Proof. Split cases on the rule used in ΔC −→Ĉ Δ′C .

Case one-fail (symmetric all-fail) Impossible as Δ ̸⊆ ΔC .
Case one-value : Here ΔC −→C Δ′C ≡ one{v} −→ v. Hence Δ ⊆ v i.e. R : v −→ v

′
, so join at

v
′
.

Case all-value : Here ΔC −→C Δ′C ≡ all{v} −→ ⟨v⟩. Hence Δ ⊆ v i.e. R : v −→ v
′
, so join at

(v ′).
Case one-choice : Here ΔC −→C Δ′C ≡ one{v e} −→ v. If Δ ⊆ v, i.e. R : v −→ v

′
then join

at v
′
. If Δ ⊆ e, i.e. R : e −→ e

′
then join at v.

Case all-choice : Here ΔC −→C Δ′C ≡ all{v
1

. . . v
n
} −→ ⟨v

1
,. . ., v

n
⟩. If Δ ⊆ v

i
ie R : v

i
−→

v
′
i
then join at ⟨v

1
,. . ., v ′

i
,. . ., v

n
⟩.

Case choose-l : (symmetric choose-r) Here ΔC −→C Δ′C ≡ fail e −→ 𝑒 . Here, Δ ⊆ 𝑒 , i.e.

R : 𝑒 −→ 𝑒 ′ so join at e
′
.

Case choose-assoc : i.e. ΔC −→C Δ′C ≡ (𝑒1 𝑒2) 𝑒3 −→ 𝑒
1
(𝑒

2
𝑒
3
). Split cases on where Δ occurs.

Case Δ ⊆ 𝑒
1
, i.e. R : 𝑒

1
−→ 𝑒 ′

1
so join at 𝑒 ′

1
(𝑒

2
𝑒
3
).

Case Δ ⊆ 𝑒
2
, i.e. R : 𝑒

2
−→ 𝑒 ′

2
so join at 𝑒

1
(𝑒 ′

2
𝑒
3
).

Case Δ ⊆ 𝑒
3
, i.e. R : 𝑒

3
−→ 𝑒 ′

3
so join at 𝑒

1
(𝑒

2
𝑒 ′
3
).

Case Δ ≡ e
1

fail, i.e. R : e
1

fail −→ 𝑒
1
so join at 𝑒

1
𝑒
3
.

Case Δ ≡ fail e
2
, i.e. R : fail e

2
−→ 𝑒

2
so join at 𝑒

2
𝑒
3
.

□

C.3 Lemmas for Substitution and Unification
Lemma C.11 (Substitution). Let R ′ ≡ R −U. If Δ −→R̂′ Δ′ then Δ{𝑣/𝑥} −→R̂′ Δ′{𝑣/𝑥}.

Proof. By induction on the structure of Δ, splitting cases on the reduction rule used and using

the fact that e, v, 𝑋,𝐶𝑋, SX are all closed under value substitution. □

Lemma C.12 (Subst-Swap). If 𝑒 −→
subst

𝑒
1
and 𝑒 −→

swap
𝑒
2
then exists 𝑒 ′ such that 𝑒

1
, 𝑒

2
−→→U 𝑒 ′.

Proof. Let Δ
1
−→
subst

Δ′
1
and Δ

2
−→
swap

Δ′
2
be the respective reducts. Via Lemma C.4 it suffices

to consider two cases:

Case swap under subst : i.e. Δ
2
⊆ Δ

1
Let Δ

1
≡ 𝑋 [x =v]; split cases on Δ

2
position.

43

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

In submission, March 2023,
Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

Case Δ
2
≡ x =v : via rule var-swap:

𝑋 [𝑥 = 𝑦] 𝑋 {𝑦/𝑥}[𝑥 = 𝑦]

𝑋 {𝑦/𝑥}[𝑦 = 𝑥]

𝑋 [𝑦 = 𝑥] 𝑋 {𝑥/𝑦}[𝑦 = 𝑥]

U

R′

R′

U
U

Case Δ
2
⊆ 𝑣 : i.e. 𝑣 −→

swap
𝑣 ′.

𝑋 [𝑥 = 𝑣] 𝑋 {𝑣/𝑥}[𝑥 = 𝑣]

𝑋 [𝑥 = 𝑣 ′] 𝑋 {𝑣 ′/𝑥}[𝑥 = 𝑣 ′]

subst

swap

subst

swap (repeat at each 𝑣)

Case Δ
2
⊆ 𝑋 : i.e. 𝑋 ≡ 𝑋 ′[. . . Δ

2
. . .]. Let 𝑢 ′ ≡ 𝑢{𝑣/𝑥}, split cases on swap RHS.

Case same variable : Δ
2
≡ u=x where 𝑢 is HNF or variable.

𝑋 ′[. . . 𝑢 = 𝑥 . . .] [𝑥 = 𝑣] 𝑋 ′{𝑣/𝑥}[. . . 𝑢 ′ = 𝑣 . . .] [𝑥 = 𝑣]

•

𝑋 ′[. . . 𝑥 = 𝑢 . . .] [𝑥 = 𝑣] 𝑋 ′{𝑣/𝑥}[. . . 𝑣 = 𝑢 ′ . . .] [𝑥 = 𝑣]

subst

*-swap

subst

𝐿𝑒𝑚𝑚𝑎 𝐶.18

Case different variable : Δ
2
≡ u=y where 𝑢 is HNF or variable.

𝑋 ′[. . . 𝑢 = 𝑦 . . .] [𝑥 = 𝑣] 𝑋 ′{𝑣/𝑥}[. . . 𝑢 ′ = 𝑦 . . .] [𝑥 = 𝑣]

𝑋 ′[. . . 𝑦 = 𝑢 . . .] [𝑥 = 𝑣] 𝑋 ′{𝑣/𝑥}[. . . 𝑦 = 𝑢 ′ . . .] [𝑥 = 𝑣]

subst

swap

subst

swap

Case subst under swap : i.e. Δ
1
⊆ Δ

2
Let Δ

2
≡ hnf =x, so Δ

1
⊆ hnf , i.e. hnf −→

subst
hnf

′
, so

join at x = hnf
′
.

hnf = 𝑥 hnf
′ = 𝑥

𝑥 = hnf 𝑥 = hnf
′

subst

swap swap

subst

□

Definition C.13 (Levels). Let 𝑒𝑞
1
≡ x

1
=v

1
and 𝑒𝑞

2
≡ x

2
=v

2
be two equations in a term 𝑒 . We say

𝑒𝑞
2
is under 𝑒𝑞

1
if 𝑒𝑞

2
⊆ 𝑋 and 𝑋 [𝑒𝑞

1
] ⊆ 𝑒 .

Lemma C.14 (Subst-Subst). If 𝑒 −→
subst

𝑒
1
and 𝑒 −→

subst
𝑒
2
then 𝑒

1
↓U 𝑒

2
.

Proof. Suppose that the redex 𝑒 −→ 𝑒𝑖 is using the equation 𝑒𝑞𝑖 ≡ x
i
=v

i
. Split cases on

Case 𝑒𝑞
1
is under 𝑒𝑞

2
and 𝑒𝑞

2
is under 𝑒𝑞

1
: Lemma C.15 completes the proof.

Case 𝑒𝑞
1
is under 𝑒𝑞

2
and 𝑒𝑞

2
is not under 𝑒𝑞

1
: Lemma C.16 completes the proof.

Case 𝑒𝑞
1
is not under 𝑒𝑞

2
and 𝑒𝑞

2
is under 𝑒𝑞

1
: Lemma C.16 completes the proof.

44

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

The Verse Calculus: a Core Calculus for Functional Logic Programming
In submission, March 2023,

Case 𝑒𝑞
1
is not under 𝑒𝑞

2
and 𝑒𝑞

2
is not under 𝑒𝑞

1
: The substitutions are disjoint, so Lemma C.4

completes the proof.

□

Lemma C.15 (Subst-Same). If 𝑒 −→
subst

𝑒
1
using 𝑒𝑞

1
and 𝑒 −→

subst
𝑒
2
using 𝑒𝑞

2
such that 𝑒𝑞

1
is

under 𝑒𝑞
2
and 𝑒𝑞

2
is under 𝑒𝑞

1
, then 𝑒

1
↓U 𝑒

2
.

Proof. As 𝑒𝑞
1
is under 𝑒𝑞

2
and 𝑒𝑞

2
is under 𝑒𝑞

1
, we have 𝑒 ≡ 𝑋 [x = v

1
; y = v

2
], i.e. wlog the

equations 𝑒𝑞
1
and 𝑒𝑞

2
are adjacent. Let us split cases on whether 𝑥 ≡ 𝑦

Case 𝑥 ≡ 𝑦 : We join 𝑒
1
and 𝑒

2
using Lemma C.18 via the context 𝑋 ′ ≡ 𝑋 {z/x} [𝑥 = 𝑧] where 𝑧

is a fresh variable.

𝑋 [𝑥 = 𝑢;𝑥 = 𝑣] 𝑋 {𝑢/𝑥}[𝑥 = 𝑢;𝑢 = 𝑣]

𝑋 {𝑣/𝑥}[𝑣 = 𝑢;𝑥 = 𝑣] •

𝑒𝑞2

𝑒𝑞1

𝐿𝑒𝑚𝑚𝑎 𝐶.18

Case 𝑥 . 𝑦 : Let us split cases on whether 𝑥,𝑦 appear in fvs(𝑢), fvs(𝑣) respectively.
Case 𝑥 ∉ fvs(𝑣), 𝑦 ∉ fvs(𝑢) :

𝑋 [𝑥 = 𝑢;𝑦 = 𝑣] 𝑋 {𝑢/𝑥}[𝑥 = 𝑢;𝑦 = 𝑣]

𝑋 {𝑣/𝑥}[𝑥 = 𝑢;𝑦 = 𝑣] 𝑋 {𝑣/𝑥}[𝑥 = 𝑢;𝑦 = 𝑣]

𝑒𝑞2

𝑒𝑞1

𝑒𝑞2

𝑒𝑞1

Case 𝑥 ∉ fvs(𝑣), 𝑦 ∈ fvs(𝑢) :

𝑋 [𝑥 = 𝑢;𝑦 = 𝑣] 𝑋 {𝑢/𝑥}[𝑥 = 𝑢;𝑦 = 𝑣]

𝑋 {𝑣/𝑦}[𝑥 = 𝑢{𝑣/𝑦};𝑦 = 𝑣] 𝑋 {𝑢{𝑣/𝑦}/𝑥, 𝑣/𝑦}[𝑥 = 𝑢{𝑣/𝑦};𝑦 = 𝑣]

𝑒𝑞2

𝑒𝑞1

𝑒𝑞2

𝑒𝑞1

Case 𝑥 ∈ fvs(𝑣), 𝑦 ∉ fvs(𝑢) : Symmetric to previous case.

Case 𝑥 ∈ fvs(𝑣), 𝑦 ∈ fvs(𝑢) : Join at fail if u-occurs, else impossible due to no recursion.

□

Lemma C.16 (Subst-Diff). If 𝑒 −→
subst

𝑒
1
using 𝑒𝑞

1
and 𝑒 −→

subst
𝑒
2
using 𝑒𝑞

2
such that 𝑒𝑞

1
is

not under 𝑒𝑞
2
and 𝑒𝑞

2
is under 𝑒𝑞

1
, then 𝑒

1
↓U 𝑒

2
.

Proof. Here, we have 𝑒 ≡ 𝑋
1
[...𝑋

2
[𝑥

2
= 𝑣

2
] ...] [𝑥

1
= 𝑣

1
] where the substitution with x

2
= v

2

does not affect 𝑋
1
, 𝑥

1
, 𝑣

1
. Split cases on whether 𝑥

1
≡ 𝑥

2
.

Case 𝑥
1
≡ 𝑥

2
≡ 𝑥 : By no recursion we have 𝑥 ∉ fvs(𝑣

1
), 𝑥 ∉ fvs(𝑣

2
). Hence, we can join 𝑒

1
and

𝑒
2
using Lemma C.17 on the sub-terms 𝑋

2
{𝑣

1
/𝑥}[𝑣

1
= 𝑣

2
] and 𝑋

2
{𝑣

2
/𝑥}[𝑣

1
= 𝑣

2
].

𝑋
1
[. . . 𝑋

2
[𝑥 = 𝑣

2
] . . .] [𝑥 = 𝑣

1
] 𝑋

1
[. . . 𝑋

2
{𝑣

2
/𝑥}[𝑥 = 𝑣

2
] . . .] [𝑥 = 𝑣

1
]

𝑋
1
{𝑣

1
/𝑥}[. . . 𝑋

2
{𝑣

1
/𝑥}[𝑣

1
= 𝑣

2
] . . .] [𝑥 = 𝑣

1
] • 𝑋

1
{𝑣

1
/𝑥}[. . . 𝑋

2
{𝑣

2
/𝑥}[𝑣

1
= 𝑣

2
] . . .] [𝑥 = 𝑣

1
]

𝑒𝑞1

𝑒𝑞2

𝑒𝑞1

𝐿𝑒𝑚𝑚𝑎 𝐶.17

Case 𝑥
1
. 𝑥

2
: Let v_1

′ ≡ 𝑣
1
{𝑣

2
/𝑥

2
} and v_2

′ ≡ 𝑣
2
{𝑣

1
/𝑥

1
}. Split cases on whether 𝑥𝑖 ∈ fvs(𝑣3−𝑖).

45

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

In submission, March 2023,
Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

Case 𝑥
2
∉ fvs(𝑣

1
)

𝑋
1
[. . . 𝑋

2
[𝑥

2
= 𝑣

2
] . . .] [𝑥

1
= 𝑣

1
] 𝑋

1
[. . . 𝑋

2
{𝑣

2
/𝑥

2
}[𝑥

2
= 𝑣

2
] . . .] [𝑥

1
= 𝑣

1
]

𝑋
1
{𝑣

1
/𝑥

1
}[. . . 𝑋

2
{𝑣

1
/𝑥}[𝑥

2
= 𝑣 ′

2
] . . .] [𝑥

1
= 𝑣

1
] 𝑋

1
{𝑣

1
/𝑥}[. . . 𝑋

2
{𝑣 ′

2
/𝑥

2
, 𝑣

1
/𝑥

1
}[𝑥

2
= 𝑣 ′

2
] . . .] [𝑥

1
= 𝑣

1
]

𝑒𝑞1

𝑒𝑞2

𝑒𝑞2

𝑒𝑞1

Case 𝑥
2
∈ fvs(𝑣

1
), 𝑥

1
∉ fvs(𝑣

2
)

𝑋
1
[. . . 𝑋

2
[𝑥

2
= 𝑣

2
] . . .] [𝑥

1
= 𝑣

1
] 𝑋

1
[. . . 𝑋

2
{𝑣

2
/𝑥

2
}[𝑥

2
= 𝑣

2
] . . .] [𝑥

1
= 𝑣

1
]

𝑋
1
{𝑣

1
/𝑥

1
}[. . . 𝑋

2
{𝑣

1
/𝑥

1
}[𝑥

2
= 𝑣

2
] . . .] [𝑥

1
= 𝑣

1
] 𝑋

1
{𝑣

1
/𝑥

1
}[. . . 𝑋

2
{𝑣

1
/𝑥

1
, 𝑣

2
/𝑥

2
}[𝑥

2
= 𝑣

2
] . . .] [𝑥

1
= 𝑣

1
]

𝑋
1
{𝑣

1
/𝑥

1
}[. . . 𝑋

2
{𝑣 ′

1
/𝑥

1
, 𝑣

2
/𝑥

2
}[𝑥

2
= 𝑣

2
] . . .] [𝑥

1
= 𝑣

1
]

𝑒𝑞1

𝑒𝑞2

𝑒𝑞1

𝑒𝑞2
𝑒𝑞2

Case 𝑥
2
∈ fvs(𝑣

1
), 𝑥

1
∈ fvs(𝑣

2
) In this case, we get the below diagram where, since 𝑥

2
∈

fvs(𝑣 ′
2
), the term 𝑥

2
= 𝑣 ′

2
either steps to fail (and so we can join at fail) or the term violates

the no recursion assumption.

𝑋
1
[. . . 𝑋

2
[𝑥

2
= 𝑣

2
] . . .] [𝑥

1
= 𝑣

1
] 𝑋

1
[. . . 𝑋

2
{𝑣

2
/𝑥

2
}[𝑥

2
= 𝑣

2
] . . .] [𝑥

1
= 𝑣

1
]

𝑋
1
{𝑣

1
/𝑥

1
}[. . . 𝑋

2
{𝑣

1
/𝑥

1
}[𝑥

2
= 𝑣 ′

2
] . . .] [𝑥

1
= 𝑣

1
] 𝑋

1
{𝑣

1
/𝑥

1
}[. . . 𝑋

2
{𝑣

1
/𝑥

1
, 𝑣 ′

2
/𝑥

2
}[𝑥

2
= 𝑣 ′

2
] . . .] [𝑥

1
= 𝑣

1
]

𝑒𝑞1

𝑒𝑞2

𝑒𝑞1

□

Unification Lemmas The next two unification lemmas state that our rewrite rules encode classical

unification algorithms.

Lemma C.17 (Unify). If 𝑧 ∩ (fvs(𝑢) ∪ fvs(𝑣)) = ∅ then 𝑋 {𝑢/𝑧}[𝑢 = 𝑣] ↓U 𝑋 {𝑣/𝑧}[𝑢 = 𝑣]

Proof. Let 𝑋𝑢 ≡ 𝑋 {𝑢/𝑧} and 𝑋𝑣 ≡ 𝑋 {𝑣/𝑧}. The proof follows by induction on the triple

(♯free, ♯size, ♯𝑛) where

♯free � ♯fvs(𝑢) + ♯fvs(𝑣)
♯size � Σ𝑛𝑖=1size(𝑢𝑖) + size(𝑣𝑖)

♯𝑛 � the cardinality of 𝑢, 𝑣

Split cases on the first equation 𝑢
1
= 𝑣

1
.

Case hnf
1
= hnf

2
with incompatible values: Here,

𝑋𝑢 [hnf
1
= hnf

2
;𝑢 ′ = 𝑣 ′] −→

u-fail
𝑋𝑢 [fail]

and

𝑋𝑣 [hnf
1
= hnf

2
;𝑢 ′ = 𝑣 ′] −→

u-fail
𝑋𝑣 [fail]

after which we can join at fail via fail-elim.

46

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

The Verse Calculus: a Core Calculus for Functional Logic Programming
In submission, March 2023,

Case ⟨u
1
,. . ., u_k⟩ = ⟨v

1
,. . ., v

k
⟩ with tuples of the same arity 𝑘 : use u-tup to get equations per

component and join using the induction hypothesis, which is well-founded as the ♯size is

strictly smaller:

𝑋𝑢 [⟨𝑢1, ..., 𝑢𝑘⟩ = ⟨𝑣1, ..., 𝑣𝑘⟩;𝑢 ′ = 𝑣 ′] 𝑋𝑢 [𝑢1 = 𝑣
1
, ..., 𝑢𝑘 = 𝑣𝑘 ;𝑢

′ = 𝑣 ′]

•

𝑋𝑣 [⟨𝑢1, ..., 𝑢𝑘⟩ = ⟨𝑣1, ..., 𝑣𝑘⟩;𝑢 ′ = 𝑣 ′] 𝑋𝑣 [𝑢1 = 𝑣
1
, ..., 𝑢𝑘 = 𝑣𝑘 ;𝑢

′ = 𝑣 ′]

u-tup

u-tup

𝐼𝐻

Case x = y use subst to replace all occurrences of 𝑥 with 𝑦, and then apply the IH on the

remaining 𝑛 − 1 equations 𝑢 ′ = 𝑣 ′. Note that the induction is well-founded as in this case

♯free and ♯size are unchanged but the number of equations decreases by one.

𝑋𝑢 [𝑥 = 𝑦;𝑢 ′ = 𝑣 ′] 𝑋𝑢{𝑦/𝑥}[𝑥 = 𝑦;𝑢 ′{𝑦/𝑥} = 𝑣 ′{𝑦/𝑥}]

•

𝑋𝑣 [𝑥 = 𝑦;𝑢 ′ = 𝑣 ′] 𝑋𝑣{𝑦/𝑥}[𝑥 = 𝑦;𝑢 ′{𝑦/𝑥} = 𝑣 ′{𝑦/𝑥}]

subst

subst

𝐼𝐻

Case x = h where ℎ is an HNF value and 𝑥 ∉ fvs(ℎ): use subst to replace all occurrences of 𝑥

withℎ, and then apply the IH on the remaining 𝑛−1 equations𝑢 ′ = 𝑣 ′. Note that the induction
is well-founded in this case as ♯free decreases since 𝑥 is removed from the free variables of

𝑢 ′ and 𝑣 ′ and 𝑋𝑢 and 𝑋𝑣 even though the ♯size may increase due to the substitution.

𝑋𝑢 [𝑥 = ℎ;𝑢 ′ = 𝑣 ′] 𝑋𝑢{ℎ/𝑥}[𝑥 = ℎ;𝑢 ′{ℎ/𝑥} = 𝑣 ′{ℎ/𝑥}]

•

𝑋𝑣 [𝑥 = ℎ;𝑢 ′ = 𝑣 ′] 𝑋𝑣{ℎ/𝑥}[𝑥 = ℎ;𝑢 ′{ℎ/𝑥} = 𝑣 ′{ℎ/𝑥}]

subst

subst

𝐼𝐻

Case x = v where 𝑥 ∈ fvs(𝑣): either join at fail via u-occurs or violates the no recursion

assumption.

□

Lemma C.18 (Unify-Flip). If 𝑧 ∩ (fvs(𝑢) ∪ fvs(𝑣)) = ∅ then 𝑋 {𝑢/𝑧}[𝑢 = 𝑣] ↓U 𝑋 {𝑣/𝑧}[𝑣 = 𝑢]

Proof. Same as Lemma C.17 except using hnf-swap and var-swap to make the equations the

same on both sides. □

C.4 Unification is Confluent
Lemma C.19 (U-Confluent). U is confluent.

Proof. We prove thatU is confluent via the following strategy inspired by labeled reductions

[Lévy 1976]. LetU𝑘 which is a subset ofU that only applies reductions to terms that are under less

than 𝑘 _s.

47

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

In submission, March 2023,
Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

Block b ::= {v = r ; b}ℓ | {𝑏;𝑏}ℓ | 𝑡
RHS r ::= b | t

Tail t ::= v | v
1

v
2
| ∃x . e | e

1
e
2
| one{e} | all{e} | fail

Fig. 14. Labeled Blocks

(1) First, we show thatU𝑘 is locally confluent for all 𝑘 (Lemma C.21).

(2) Second, we show thatU𝑘 is terminating for all 𝑘 (Lemma C.23).

(3) Third, consequently, by Lemma B.14 we obtain thatU𝑘 is confluent for all 𝑘 .

(4) Finally, we show thatU is confluent by using the largest 𝑘 in two traces, to join two arbitrary

sequences ofU reductions Lemma C.22.

□

Definition C.20 (𝑘-Unification). A 𝑘-labeled term is a term where each subterm occurring under

at most 𝑘 _’s is marked by a special label ℓ . LetU𝑘 be defined as the set of allU reductions where:

(1) theU-redex is a ℓ-labeled or occurs under ⩽ 𝑘 _s, and (2) the subst preserves labels.

Lemma C.21. U𝑘 is locally confluent.

Proof. For simplicity, we directly prove thatU is locally confluent (Lemma C.28). The proof

carries over toU𝑘 as the only requiredU-reductions under > 𝑘 _s are on labeled subterms. □

We can now prove that any twoU𝑘 reductions (and henceU reductions) can be joined.

Lemma C.22 (U𝑘 -join). If 𝑒 −→→U𝑖
𝑒𝑖 and 𝑒 −→→U𝑗

𝑒 𝑗 then there exists 𝑒 ′ such that 𝑒𝑖 , 𝑒 𝑗 −→→U 𝑒 ′.

Proof. Let 𝑘 = max(𝑖, 𝑗). AsU𝑖 ,U𝑗 ⊆ U𝑘 we have 𝑒 −→→U𝑘
𝑒𝑖 and 𝑒 −→→U𝑘

𝑒 𝑗 . By Lemma C.23

and Lemma C.21 and Lemma B.14,U𝑘 is confluent, hence there exists 𝑒 ′ such that 𝑒𝑖 , 𝑒 𝑗 −→→U𝑘
𝑒 ′,

after whichU𝑘 ⊆ U completes the proof. □

Lemma C.23. U𝑘 is Noetherian.

Proof. By induction on 𝑘 .

Base case (𝑘 ≡ 0) via Lemma C.27.

Inductive case Assume the induction hypothesis that U𝑘 is Noetherian and prove U𝑘+1 is
Noetherian. Let 𝜎 be aU𝑘+1 reduction sequence 𝑒 −→ We will prove that 𝜎 is finite. By

the IH there is some finite prefix of the trace 𝑒 −→→U𝑘+1 𝑒
′
after which there are no moreU

steps at level⩽ 𝑘 . Note that 𝑒 ′ is finite and of the form . . . (_x
1
. e

1
) . . . (_x

n
. e

n
) . . . comprising

𝑛 disjoint _ terms. EveryU𝑘+1 reduction from 𝑒 ′ is aU𝑘 reduction from some e
i
, that occur

“in parallel” i.e. without influencing each other, and which can be sequenced to get aU𝑘+1
reduction sequence. Again, by the induction hypothesis, each of these reduction sequences

(for each 𝑒𝑖) is finite, and hence their sequencing is finite, hence 𝜎 must be finite.

□

Labeled Blocks We prove the base case of Lemma C.23 by stratifying expressions into labeled

blocks, tails, rhs and expressions as shown in Fig. 14. A tail is a term that is “inert” for the purposes

ofU
0
reduction: namely a value, application, existential, one, all or choice. An rhs is either a block

or a tail (which includes a value). A labeled block is a sequence of equations v = r of a value and

an RHS r followed by a tail t. We assume each block carries a unique “ghost” label ℓ (that will be

used to prove termination). In any block 𝑏, for any two labels ℓ
1
and ℓ

2
we write ℓ

1
≺𝑏 ℓ

2
if the

48

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

The Verse Calculus: a Core Calculus for Functional Logic Programming
In submission, March 2023,

block labelled by ℓ
2
occurs inside (under) the block labelled by ℓ

1
in 𝑏. We will use 𝑏ℓ to denote the

(unique) sub-block of 𝑏 labeled by ℓ . For rewrites like choose, seq-assoc, seq-swap and eqn-float, we

assume that the rewritten term is given a fresh set of distinct block labels. For rewrites with u-tup,

we assume fresh labels are given to the new (inner) blocks created by tuple matching equations.

All otherU rewrites preserve blocks or delete them, so we assume that the same labels carry over

to the rewritten terms.

Lemma C.24. seq-swap strongly postpones afterU.

Proof. Split cases on each reduction of U; the diamond is completed as the rules are non-

overlapping. □

Definition C.25 (Elimination). We say a reduction eliminates a variable 𝑥 from a block 𝑏 if the

reduction is (1) a subst reduction spanning 𝑏 or an enclosing block (2) using an equation x = v

where (3) v is either an HNF or a variable 𝑦 such that 𝑥 ≺ 𝑦. A reduction sequence eliminates a

variable 𝑥 from a block 𝑏 if there is some reduction in the sequence that eliminates 𝑥 from 𝑏, and

the sequence contains no subsequent subst reductions spanning any block strictly enclosing 𝑏.

Lemma C.26. U
0
is Noetherian for all blocks b.

Proof. We prove that for any term b that it is only possible to take finitely manyU
0
steps from

b. Let 𝜎 � 𝑏 −→ 𝑏
1
−→ 𝑏

2
−→ . . . be aU

0
reduction sequence starting at 𝑏. Write 𝜎𝑖 for the prefix

𝑏 −→ . . . −→ 𝑏𝑖 . We will show that 𝜎 must be finite. LetU ′
0
� U

0
− seq-swap. As seq-swap strongly

postpones afterU Lemma C.24, any infinite 𝜎 can be translated to a either: (a) A sequence with a

finite prefix ofU ′
0
reductions followed by infinitely many seq-swap, or (b) An infinite sequence of

U ′
0
reductions. Next, we show neither case is possible.

Case (a) This case is ruled out by the ordering restriction on seq-swap which ensures that after

the finite prefix ofU ′
0
reductions, we can only keep swapping equations till they reach a canonical

linear order after which no further swaps are possible.

Case (b) Next, we (ignore seq-swap to) show there is no infinite sequence ofU ′
0
reductions. To

do so, suppose that 𝜎 is such a reduction sequence. For each prefix (𝜎𝑖 , 𝑒𝑖) we define the following
lexicographic termination metric

♯(𝜎𝑖 , 𝑏𝑖) � (♯choose(𝑏𝑖), ♯semi(𝑏𝑖), cands(𝜎𝑖 , 𝑏𝑖), size(𝑏𝑖), ♯swaps(𝑏𝑖))
where

choose(𝑏𝑖) � choose redexes in 𝑏𝑖

semi(𝑏𝑖) � seq-assoc or eqn-float redexes in 𝑏𝑖

cands(𝜎𝑖 , 𝑒𝑖) � [. . . ℓ ↦→ (♯cand(𝜎𝑖 , 𝑏𝑖 , ℓ) . . . | ℓ ∈ 𝑏𝑖]
where labels are ordered by ≺𝑏𝑖

size(𝑏𝑖) � size of the block 𝑏𝑖

swaps(𝑏𝑖) � var-swap redexes in 𝑏𝑖

and where, for a finite reduction (prefix) 𝜎 ′ block 𝑏 and label ℓ

cand(𝜎 ′, 𝑏, ℓ) � fvs(𝑏ℓ) − elim(𝜎 ′, 𝑏, ℓ)
elim(𝜎 ′, 𝑏, ℓ) � {𝑥 | 𝜎 ′ eliminates 𝑥 from 𝑏ℓ }

The unification reductions preserve the following invariant: once a variable 𝑥 has been eliminated

from a block, it appears at most once in the block as an LHS of an equation x = v, and that equation

49

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

In submission, March 2023,
Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

can never again be used to perform a substitution in that block unless new occurrences of 𝑥 are

injected into the block by a substitution performed in an enclosing block, in which case, the block
metric for the outer block will be strictly smaller. Specifically, each application of

• choose strictly reduces ♯choose;
• seq-assoc or eqn-float strictly reduces ♯semi (leaving ♯choose unchanged);
• subst strictly reduces ♯cands (leaving ♯semi, ♯choose unchanged), as it eliminates a variable

from the block ℓ that the substitution spans;

• u-tup strictly reduces size (leaving cands, ♯semi, ♯choose unchanged), as it preserves elim
and hence cand, but reduces the size of ℓ ;
• u-lit, u-fail, u-occurs strictly reduces size (leaving cands, ♯semi, ♯choose unchanged);
• var-swap strictly reduces swaps leaving the other components unchanged.

Thus, as ♯(𝜎𝑖 , 𝑏𝑖) is a strictly decreasing well-founded metric, the sequence (𝜎
1
, 𝑏

1
), . . . , is finite,

and so any sequence ofU
0
’ steps is guaranteed to terminate. □

Lemma C.27. U
0
is Noetherian for all tails 𝑡 , rhs 𝑟 and expressions 𝑒 .

Proof. By induction on the structure of t, r and e, using Lemma C.26 for the base case. □

Lemma C.28. U is locally confluent.

Proof. Let Δ
1
−→

1
Δ′
1
and Δ

2
−→

2
Δ′
2
denote the twoU reducts. If the reducts are disjoint, then

the terms can be joined trivially in a single step via Lemma C.4. By symmetry it suffices to consider

the case where Δ
1
occurs under Δ

2
. Let us split cases on the rule used for Δ

1
.

Case Δ
1
viaU − subst − var-swap join using Lemma C.6.

Case Δ
1
via var-swap join using Lemma C.29.

Case Δ
1
via subst join using Lemma C.30.

□

Lemma C.29 (var-swap under). If ΔU −→U Δ′U and ΔU ≡ 𝐸 [Δ] and Δ −→
swap

Δ′ then there

exists Δ′′U such that Δ′U −→→swap
Δ′′U and 𝐸 [Δ′] −→U Δ′′R .

ΔU ≡ 𝐸 [Δ] 𝐸 [Δ′]

Δ′U Δ′′U

U

var-swap

U

var-swap

Proof. Split cases on the rule used inU.

Case u-lit or var-swap : impossible as no var-swap redex under k
1
=k

2
or x =y.

Case u-tup : Here, ΔU ≡ ⟨u1
,. . ., u

n
⟩ = ⟨v

1
,. . ., v

n
⟩ and wlog the var-swap redex is 𝑢 ′

1
−→𝑢1

so

join at u_1
′=v

1
; . . .; u

n
=v

n
.

Case u-fail : Here, ΔU ≡ hnf 𝑖 −→ hnf
′
𝑖 so join at fail

Case u-occurs : Here, ΔU ≡ x =V [x] and the var-swap redex is under V [x], i.e.𝑉 [𝑥] −→
subst

𝑉 [𝑥] ′ as the free variables are preserved by var-swap hence we can join at fail.

Case hnf-swap : Here, ΔU ≡ hnf = 𝑥 and the var-swap redex is under hnf i.e. hnf −→
subst

hnf
′
, hence join at 𝑥 = hnf

′
.

Case subst : via Lemma C.12.

Case choose : via Lemma C.7.

Case seq-assoc : Here, ΔU ≡ (𝑒𝑞; 𝑒1); 𝑒2 −→ 𝑒𝑞; (𝑒
1
; 𝑒

2
) ≡ Δ′U . Split cases on where Δ occurs.

Case Δ ⊆ 𝑒𝑞 i.e. 𝑒𝑞 −→
var-swap

𝑒𝑢 ′ Join at Δ′′U ≡ 𝑒𝑢 ′; (𝑒1; 𝑒2).
Case Δ ⊆ 𝑒

1
i.e. 𝑒

1
−→
var-swap

𝑒 ′
1
Join at Δ′′U ≡ 𝑒𝑞; (𝑒 ′1; 𝑒2).

50

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

The Verse Calculus: a Core Calculus for Functional Logic Programming
In submission, March 2023,

Case Δ ⊆ 𝑒
2
i.e. 𝑒

2
−→
var-swap

𝑒 ′
2
Join at Δ′′U ≡ 𝑒𝑞; (𝑒1; 𝑒 ′2).

Case eqn-float : ΔU ≡ 𝑣 = (𝑒𝑞; 𝑒
1
); 𝑒

2
−→ 𝑒𝑞; (𝑣 = 𝑒

1
; 𝑒

2
) ≡ Δ′U . Split cases on where Δ occurs.

Case Δ ⊆ 𝑣 i.e. 𝑣 −→
var-swap

𝑣 ′ Join at Δ′′U ≡ 𝑒𝑞; (𝑣 ′ = 𝑒
1
; 𝑒

2
).

Case Δ ⊆ 𝑒𝑞 i.e. 𝑒𝑞 −→
var-swap

𝑒𝑢 ′ Join at Δ′′U ≡ 𝑒𝑢 ′; (𝑣 = 𝑒
1
; 𝑒

2
).

Case Δ ⊆ 𝑒
1
i.e. 𝑒

1
−→
var-swap

𝑒 ′
1
Join at Δ′′U ≡ 𝑒𝑞; (𝑣 = 𝑒 ′

1
; 𝑒

2
).

Case Δ ⊆ 𝑒
2
i.e. 𝑒

2
−→
var-swap

𝑒 ′
2
Join at Δ′′U ≡ 𝑒𝑞; (𝑣 = 𝑒

1
; 𝑒 ′

2
).

□

Lemma C.30 (subst-under). If ΔU −→U Δ′U and ΔU ≡ 𝐸 [Δ] and Δ −→
subst

Δ′ then there exists

Δ′′U such that Δ′U −→→subst
Δ′′U and 𝐸 [Δ′] −→U Δ′′U .

ΔU ≡ 𝐸 [Δ] 𝐸 [Δ′]

Δ′U Δ′′U

U

subst

U

subst

Proof. Split cases on the rule used inU.

Case u-lit or var-swap : impossible as no subst redex under k
1
=k

2
or x =y.

Case u-tup : Here, ΔU ≡ ⟨u1,. . ., un
⟩ = ⟨v

1
,. . ., v

n
⟩ and wlog the subst redex is 𝑢 ′

1
−→𝑢1

so join at

u_1
′=v

1
; . . .; u

n
=v

n
.

Case u-fail : Here, ΔU ≡ hnf 𝑖 −→ hnf
′
𝑖 so join at fail

Case u-occurs : Here, ΔU ≡ x = V [x] and the subst redex is under V [x], i.e. 𝑉 [𝑥] −→
subst

𝑉 [𝑥] ′ as the free variables are preserved by subst hence we can join at fail.

Case hnf-swap : Here, ΔU ≡ hnf = 𝑥 and the subst redex is under hnf i.e. hnf −→
subst

hnf
′
,

hence join at 𝑥 = hnf
′
.

Case subst : via Lemma C.14.

Case choose : via Lemma C.7.

Case seq-assoc : ΔU ≡ (𝑒𝑞; 𝑒1); 𝑒2 −→ 𝑒𝑞; (𝑒
1
; 𝑒

2
) ≡ Δ′U . Split cases on where Δ occurs.

Case Δ ⊆ 𝑒𝑞 i.e. 𝑒𝑞 −→R′ 𝑒𝑢 ′ Join at Δ′′U ≡ 𝑒𝑢 ′; (𝑒1; 𝑒2).
Case Δ ⊆ 𝑒

1
i.e. 𝑒

1
−→R′ 𝑒 ′1 Join at Δ′′U ≡ 𝑒𝑞; (𝑒 ′1; 𝑒2).

Case Δ ⊆ 𝑒
2
i.e. 𝑒

2
−→R′ 𝑒 ′2 Join at Δ′′U ≡ 𝑒𝑞; (𝑒1; 𝑒 ′2).

Case Δ ⊆ (𝑒𝑞; 𝑒
1
) i.e. subst : (𝑒𝑞; 𝑒

1
) −→ (𝑒𝑢 ′; 𝑒 ′

1
) Join at Δ′′U ≡ 𝑒𝑢 ′; (𝑒 ′1; 𝑒2).

Case Δ ⊆ ((𝑒𝑞; 𝑒
1
); 𝑒

2
) i.e. subst : (𝑒𝑞; 𝑒

1
); 𝑒

2
−→ (𝑒𝑢 ′; 𝑒 ′

1
); 𝑒 ′

2
Join at Δ′′U ≡ 𝑒𝑢 ′; (𝑒 ′1; 𝑒 ′2).

Case eqn-float : ΔU ≡ 𝑣 = (𝑒𝑞; 𝑒
1
); 𝑒

2
−→ 𝑒𝑞; (𝑣 = 𝑒

1
; 𝑒

2
) ≡ Δ′U . Split cases on where Δ occurs.

Case Δ ⊆ 𝑣 i.e. 𝑣 −→R′ 𝑣 ′ Join at Δ′′U ≡ 𝑒𝑞; (𝑣 ′ = 𝑒
1
; 𝑒

2
).

Case Δ ⊆ 𝑒𝑞 i.e. 𝑒𝑞 −→R′ 𝑒𝑢 ′ Join at Δ′′U ≡ 𝑒𝑢 ′; (𝑣 = 𝑒
1
; 𝑒

2
).

Case Δ ⊆ 𝑒
1
i.e. 𝑒

1
−→R′ 𝑒 ′1 Join at Δ′′U ≡ 𝑒𝑞; (𝑣 = 𝑒 ′

1
; 𝑒

2
).

Case Δ ⊆ 𝑒
2
i.e. 𝑒

2
−→R′ 𝑒 ′2 Join at Δ′′U ≡ 𝑒𝑞; (𝑣 = 𝑒

1
; 𝑒 ′

2
).

Case Δ ⊆ (𝑒𝑞; 𝑒
1
) i.e. subst : 𝑣 = (𝑒𝑞; 𝑒

1
); 𝑒

2
−→ 𝑣 = (𝑒𝑢 ′; 𝑒 ′

1
); 𝑒

2
. Join at Δ′′U ≡ 𝑒𝑢 ′; (𝑣 =

𝑒 ′
1
; 𝑒

2
).

Case Δ ⊆ 𝑣 = (𝑒𝑞; 𝑒
1
); 𝑒

2
i.e. subst : (𝑣 = 𝑒𝑞; 𝑒

1
); 𝑒

2
−→ (𝑣 ′ = 𝑒𝑢 ′; 𝑒 ′

1
); 𝑒 ′

2
Join at Δ′′U ≡

𝑒𝑢 ′; (𝑣 ′ = 𝑒 ′
1
; 𝑒 ′

2
).

□

C.5 Normalization is Confluent
Recall that N ≡ exi-swap + exi-float + var-swap + subst-var where

subst-var 𝑋 [x =y; e] −→ (𝑋 {y/x}) [x =y; e{y/x}]

51

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

In submission, March 2023,
Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

It will be convenient to factor out exi-float so let

SS � subst-var + var-swap
N ′ � SS + exi-swap
N � N ′ + exi-float

Lemma C.31 (N -Confluent). N is confluent.

Proof. The above result follows in two steps. First we show thatN ′– i.e. normalization-without-

exi-float – is confluent in Lemma C.35. Second we show that N ′strongly postpones after exi-

float Lemma C.34. Consequently, each −→→N can be rewritten as the composition of −→→
exi-float

followed by −→→N′ after which the following diagram completes the proof, where (1) Lemma C.32

(2) Lemma C.33 (3) Lemma C.35. (4) Lemma C.35

•

• •

• •

• (1) •

(2) (2)

(3) (3)

(4)

exi-float exi-float

exi-float exi-float

N′ N′

N′

N′ N′

N′

N′ N′

N′

N′

exi-float

N′

exi-float

□

LemmaC.32. If 𝑒 −→→
exi-float

𝑒
1
and 𝑒 −→→

exi-float
𝑒
2
then exists 𝑒

1
−→→

exi-float
𝑒 ′
1
, 𝑒

2
−→→

exi-float

𝑒 ′
2
, such that 𝑒 ′

1
↓
exi-swap

𝑒 ′
2
.

Proof. On each side add the (missing) exi-float steps on the other side, and then use (multiple)

exi-swap to join. □

Lemma C.33. exi-float strongly commutes with N ′.

Proof. Split cases on each possible case of N ′, the diamond is completed trivially as the rules

are non-overlapping. □

Lemma C.34. N ′strongly postpones after exi-float, so N∗ ≡ exi-float
∗ · N ′∗.

Proof. Split cases on each possible case of N ′; the diamond is completed trivially as the rules

are non-overlapping. □

Lemma C.35. N ′is confluent.

52

2549

2550

2551

2552

2553

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

2577

2578

2579

2580

2581

2582

2583

2584

2585

2586

2587

2588

2589

2590

2591

2592

2593

2594

2595

2596

2597

The Verse Calculus: a Core Calculus for Functional Logic Programming
In submission, March 2023,

Proof. Via the following diagram, where: (1) is LemmaC.36; (2) is LemmaC.40; (3) is LemmaC.39;

(4) is Lemma C.38.

•

• • • •

(1) (4) (1)

(2) (2)

(3)

N′ N′
𝐸 𝐸

SSSS SS SS𝐸 𝐸

SS SSN′ N′

SS SS

□

Lemma C.36. If 𝑒 −→→N′ 𝑒 ′ there exists 𝑒 ′′ such that 𝑒 ′ −→→SS 𝑒 ′′ and 𝑒 −→→
exi-swap

· −→→SS 𝑒 ′′.

𝑒 𝑒 ′

• 𝑒 ′′
exi-swap

SS

SS

N′

Proof. By using Lemma B.25 with the facts that SS is confluent (Lemma C.39) and SS hops

after exi-swap (Lemma C.37). □

Lemma C.37. SS(resp.U) hops after exi-swap.

Proof. By splitting cases on the SS(resp.U) reduction that precedes the exi-swap.

Case var-swap Let the Δ
swap

≡ 𝑋 [x =y]. If the exi-swap preserves the order of 𝑥 and 𝑦 then

the result follows trivially (as the reductions are non-overlapping.) If the exi-swap toggles the

order then the result follows via the diagram

∃𝑥,𝑦. . . . 𝑋 [𝑥 = 𝑦] ∃𝑥,𝑦. . . . 𝑋 [𝑦 = 𝑥]

∃𝑦, 𝑥 𝑋 [𝑥 = 𝑦] ∃𝑦, 𝑥 𝑋 [𝑦 = 𝑥]
exi-swap

var-swap

exi-swap

var-swap

Case non-var-swap AnU reduction other than var-swap is variable-order independent, so the

sequence ofU-step followed by exi-swap is equivalent to first doing the exi-swap and then

theUstep.

□

Lemma C.38. exi-swap is confluent.

Proof. Trivial, via the diamond property. □

Lemma C.39. SS = subst-var + swap is confluent.

Proof. Note that SS is a subset of U; the proof follows similar to the proof of Lemma C.19

(ignoring the bits about u-tup and u-lit and u-fail and substituting HNF values.) □

Lemma C.40. SScommutes with N ′.

53

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

2646

In submission, March 2023,
Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

Proof. Recall thatN ′ ≡ SS + exi-swap. The proof follows by observing that SS half-commutes

with exi-swap Lemma C.41, recalling that SS is confluent Lemma C.39, after which Lemma B.27

yields the conclusion SS commutes with SS + exi-swap ≡ N ′. □

Lemma C.41. SS half-commutes with exi-swap.

Proof. Recall that SS ≡ subst-var + var-swap. Split cases and show each reduction half-

commutes with exi-swap.

Case subst-var If the exi-swap occurs under subst-var then they trivially commute as the

variable order is unaffected by the exi-swap. If the subst-var occurs under exi-swap the proof

is completed by the following diagram.

∃𝑦, 𝑥 𝑋 [𝑥 = 𝑦] ∃𝑥,𝑦. . . . 𝑋 [𝑥 = 𝑦]

∃𝑥,𝑦. . . . 𝑋 [𝑦 = 𝑥]

∃𝑦, 𝑥 𝑋 {𝑦/𝑥}[𝑥 = 𝑦] ∃𝑥,𝑦. . . . 𝑋 {𝑦/𝑥}[𝑥 = 𝑦] ∃𝑥,𝑦. . . . 𝑋 {𝑥/𝑦}[𝑦 = 𝑥]

exi-swap

var-swap

subst-var

subst-var

exi-swap var-swap+subst-var

Case var-swap (under exi-swap) The non-trivial cases are where the same variables 𝑥 , 𝑦 are

being swapped by both rules (otherwise, the reductions half-commutes trivially via the

diamond property). For the variables to be the same, the var-swap must occur under the

exi-swap (as otherwise the same variables are not in scope.) Hence, the proof is completed by

the following diagram.

∃𝑥,𝑦. . . . 𝑋 [𝑥 = 𝑦] ∃𝑦, 𝑥 𝑋 [𝑥 = 𝑦]

∃𝑥,𝑦. . . . 𝑋 [𝑦 = 𝑥] ∃𝑦, 𝑥 𝑋 [𝑦 = 𝑥]
var-swap

exi-swap

var-swap

exi-swap

□

C.6 Unification + Normalization is Confluent
Recall that

N � exi-float + exi-swap + SS

and define

U ′ � U + exi-swap

Lemma C.42. U ∪N is confluent.

Proof. We proveU∪N is confluent by a generalization of the proof of LemmaC.31 where we use

the fullU relation (instead of the subset SS). First we show thatU’ – i.e.U∪N without-exi-float

– is confluent Lemma C.45. Second we show thatU’ strongly postpones after exi-float Lemma C.44.

Consequently, each −→→U∪N can be rewritten as the composition of −→→
exi-float

followed by −→→U′

54

2647

2648

2649

2650

2651

2652

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

2664

2665

2666

2667

2668

2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2679

2680

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690

2691

2692

2693

2694

2695

The Verse Calculus: a Core Calculus for Functional Logic Programming
In submission, March 2023,

after which the following diagram completes the proof.

•

• •

• •

• • •

• •

• •

•

exi-float exi-float

exi-float exi-float

U′ U′

U′

U′ U′

U′

U′ U′

𝐿𝑒𝑚𝑚𝑎 𝐶.32

𝐿𝑒𝑚𝑚𝑎 𝐶.45

U′

exi-float

U′
𝐿𝑒𝑚𝑚𝑎 𝐶.43

𝐿𝑒𝑚𝑚𝑎 𝐶.45

U′

exi-float

𝐿𝑒𝑚𝑚𝑎 𝐶.43

U′

𝐿𝑒𝑚𝑚𝑎 𝐶.45

□

Lemma C.43. exi-float strongly commutes withU’.

Proof. Split cases on each possible case ofU’; the diamond is completed trivially as the rules

are non-overlapping. □

Lemma C.44. LetU ′ � U+exi-swap.Ustrongly postpones after exi-float, soU ′∗ ≡ exi-float
∗ ·U∗.

Proof. Same as Lemma C.34. □

Lemma C.45. LetU ′ � U + exi-swap.U ′ is confluent.

Proof. Via the following diagram, where: (1) is LemmaC.46; (2) is LemmaC.47; (3) is LemmaC.19;

(4) is Lemma C.38.

•

• • • •

(1) (4) (1)

(2) (2)

(3)

U′ U′
𝐸 𝐸

UU U U𝐸 𝐸

U UU′ U′

U U

□

55

2696

2697

2698

2699

2700

2701

2702

2703

2704

2705

2706

2707

2708

2709

2710

2711

2712

2713

2714

2715

2716

2717

2718

2719

2720

2721

2722

2723

2724

2725

2726

2727

2728

2729

2730

2731

2732

2733

2734

2735

2736

2737

2738

2739

2740

2741

2742

2743

2744

In submission, March 2023,
Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

Lemma C.46. Let U ′ = U + exi-swap. If 𝑒 −→→U′ 𝑒 ′ there exists 𝑒 ′′ such that 𝑒 ′ −→→U 𝑒 ′′ and
𝑒 −→→

exi-swap
· −→→U 𝑒 ′′.

𝑒 𝑒 ′

• 𝑒 ′′
exi-swap

U

U

U′

Proof. (Similar to Lemma C.36), By using Lemma B.25 with the facts that U is confluent

(Lemma C.19) andU hops after exi-swap (Lemma C.37). □

Lemma C.47. LetU ′ = U + exi-swap.U’ commutes withU.

Proof. The proof follows by observing thatU half-commutes with exi-swap Lemma C.48, recall-

ing thatU is confluent Lemma C.19, after which Lemma B.27 yields the conclusionU commutes

withU + exi-swap ≡ U ′. □

Lemma C.48. U half-commutes with exi-swap.

Proof. Same as Lemma C.41; the rules in Uother than those in the subset SS trivially half-

commutes as they do not overlap with exi-swap. □

C.7 U ∪N Commute With A ∪ G ∪ C
Lemma C.49 (U-A-Comm). U and A commute.

Proof. We show thatU ∗-commutes withA and hence commutes via Lemma B.34. Let ΔU −→U
Δ′U and ΔA −→A Δ′A denote the reducts forU and A respectively.

Case: ΔU and ΔA disjoint via Lemma C.4.

Case: ΔU ⊆ ΔA via Lemma C.5.

Case: ΔA ⊆ ΔU via Lemma C.6.

□

Lemma C.50 (U − G-Comm). U and G commute.

Proof. We show thatU ∗-commutes commutes wth G, and hence by Lemma B.34,U commutes

wth G. Let ΔU −→U Δ′U and ΔG −→G Δ′G denote the reducts forU and G respectively. If the reducts

are disjoint then terms can be trivially joined. Let us split cases on whether ΔU occurs under ΔG
or vice versa.

Case ΔU ⊆ ΔG : via Lemma C.9.

Case ΔG ⊆ ΔU : via Lemma C.6.

□

Lemma C.51 (U − C-Comm). U and C commute.

Proof. We show thatU ∗-commutes with C, and hence by Lemma B.34,U commutes wth C.
Let ΔU −→U Δ′U and ΔC −→C Δ′C denote the reducts forU and C respectively. If the reducts are

disjoint then terms can be trivially joined. Let us split cases on whether ΔU occurs under ΔC or
vice versa.

Case ΔU ⊆ ΔC via Lemma C.10.

Case ΔC ⊆ ΔU via Lemma C.6.

□

Lemma C.52. N and A commute.

56

2745

2746

2747

2748

2749

2750

2751

2752

2753

2754

2755

2756

2757

2758

2759

2760

2761

2762

2763

2764

2765

2766

2767

2768

2769

2770

2771

2772

2773

2774

2775

2776

2777

2778

2779

2780

2781

2782

2783

2784

2785

2786

2787

2788

2789

2790

2791

2792

2793

The Verse Calculus: a Core Calculus for Functional Logic Programming
In submission, March 2023,

Proof. We show that N strongly commutes with A, hence commutes via Lemma B.19. Let

ΔA −→A Δ′A and ΔN −→N Δ′N denote the reducts for A and N respectively. If the reducts are

disjoint then terms can be trivially joined in a single step. Let us split cases on whether ΔA occurs

under ΔN or vice versa.

Case ΔA ⊆ ΔN via Lemma C.8.

Case ΔN ⊆ ΔA via Lemma C.5.

□

Lemma C.53. N and G commute.

Proof. We show that N strongly commutes with G, hence commutes via Lemma B.19. Let

ΔG −→G Δ′G and ΔN −→N Δ′N denote the reducts for G andN respectively. If the reducts are disjoint

then terms can be trivially joined in a single step. Let us split cases on whether ΔG occurs under

ΔN or vice versa.

Case ΔG ⊆ ΔN via Lemma C.8.

Case ΔN ⊆ ΔG via Lemma C.9.

□

Lemma C.54. N and C commute.

Proof. We show that N strongly commutes with C, hence commutes via Lemma B.19. Let

ΔC −→C Δ′C and ΔN −→N Δ′N denote the reducts for C andN respectively. If the reducts are disjoint

then terms can be trivially joined in a single step. Split cases on whether ΔC occurs under ΔN or

vice versa.

Case ΔC ⊆ ΔN via Lemma C.8.

Case ΔN ⊆ ΔC via Lemma C.10.

□

C.8 Application
Lemma C.55. A is confluent.

Proof. We show that A satisfies the diamond property and hence, is confluent by Lemma B.10.

Suppose that 𝑒 −→A 𝑒
1
via the redux Δ

1
−→A Δ′

1
, and 𝑒 −→A 𝑒

2
via the redux Δ

2
−→A Δ′

2
. If Δ

1
and Δ

2

are disjoint in 𝑒 , the terms 𝑒
1
and 𝑒

2
can be trivially joined in a single step. If Δ

1
⊆ Δ

2
(or Δ

2
⊆ Δ

1
)

then Lemma C.5 completes the proof. □

Lemma C.56. A and G commute.

Proof. We show that A strongly commutes with G, hence commutes via Lemma B.19. Let

ΔA −→A Δ′A and ΔG −→G Δ′G denote the reducts for A and G respectively. If the reducts are

disjoint then terms can be trivially joined in a single step. Let us split cases on whether ΔA occurs

under ΔN or vice versa.

Case ΔA ⊆ ΔG via Lemma C.9.

Case ΔG ⊆ ΔA via Lemma C.5.

□

Lemma C.57. A and C commute.

Proof. We show that A strongly commutes with C, hence commutes via Lemma B.19. Let

ΔA −→A Δ′A and ΔC −→C Δ′C denote the reducts forA and C respectively. If the reducts are disjoint

57

2794

2795

2796

2797

2798

2799

2800

2801

2802

2803

2804

2805

2806

2807

2808

2809

2810

2811

2812

2813

2814

2815

2816

2817

2818

2819

2820

2821

2822

2823

2824

2825

2826

2827

2828

2829

2830

2831

2832

2833

2834

2835

2836

2837

2838

2839

2840

2841

2842

In submission, March 2023,
Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

then terms can be trivially joined in a single step. Let us split cases on whether ΔA occurs under

ΔC or vice versa.

Case ΔC ⊆ ΔA via Lemma C.5.

Case ΔA ⊆ ΔC via Lemma C.10.

□

C.9 Garbage Collection
Lemma C.58. G is confluent.

Proof. We show that G satisfies the diamond property and hence, is confluent by Lemma B.10.

Suppose that 𝑒 −→G 𝑒
1
via the redux Δ

1
−→G Δ′

1
𝑒 −→G 𝑒

2
via the redux Δ

2
−→G Δ′

2
. If Δ

1
and Δ

2
are

disjoint, the terms 𝑒
1
and 𝑒

2
can be trivially joined in a single step. If Δ

1
⊆ Δ

2
(or Δ

2
⊆ Δ

1
) then

Lemma C.9 completes the proof. □

Lemma C.59. G and C commute.

Proof. We show that G and C strongly commute. Let ΔG −→G Δ′G and ΔC −→C Δ′C denote the
reducts for G and G respectively. If the reducts are disjoint then terms can be trivially joined in a

single step. Let us split cases on whether ΔG occurs under ΔC or vice versa.

Case ΔG ⊆ ΔC : via Lemma C.10.

Case ΔC ⊆ ΔG : via Lemma C.9.

□

C.10 Choice
Lemma C.60. C is confluent.

Proof. Lemma C.10 shows that C has the diamond property (as C ⊆ R), and hence C is confluent

via Lemma B.10. □

58

2843

2844

2845

2846

2847

2848

2849

2850

2851

2852

2853

2854

2855

2856

2857

2858

2859

2860

2861

2862

2863

2864

2865

2866

2867

2868

2869

2870

2871

2872

2873

2874

2875

2876

2877

2878

2879

2880

2881

2882

2883

2884

2885

2886

2887

2888

2889

2890

2891

The Verse Calculus: a Core Calculus for Functional Logic Programming
In submission, March 2023,

D SKEW CONFLUENCE

[This is a sketch of an incomplete proof of skew confluence.]

We now consider a version of VC that fully supports recursive substitution, and lifts the

pesky no-recursion precondition on the confluence theorem. Rather than lifting the side condition

x ∉ fvs(𝑣) on rule subst, which avoids using a recursive equation for substitution, we take another

approach that we believe leads to a simpler proof: we introduce the familiar, conventional fixpoint

operator `x . hnf , but allow it to be applied only to head values, not to general expressions. A

new unification rule u-occurs-wrap can turn a recursive equation into one that is not recursive

(by packaging up the right-hand side within a fixpoint), after which rule subst may be applied.

A corresponding new rule u-unwrap can expand a fixpoint by applying the conventional rewrite

rule `x . hnf −→ hnf {`x . hnf /x}. While this rule allows infinite application, a sensible evaluation

strategy would apply this rule “only when needed”—when it is on either side of an equation, or

when it is in the function position of an application. If we regard anyVC data structure as tree, the

fixpoint construct in effect can label any subtree in such a way that any node beneath it can have a

“back pointer” up to the labeled node by referring to the bound variable that serves as the label.

D.1 Free Variables
We use the conventional notation fvs(e) to denote the set of variables that occur free in the

expression e. Variables are bound by the constructs ∃x . e, _x . e, and `x . hnf . Figure 15 contains a

formal definition of this function forVC.
We use the variation fvsol(e) to denote the set of variables that occur free in the expression

e in at least one position that is not within the body of a lambda expression
13
. As an example,

fvsol(∃x . ⟨x, f , g, _y. ⟨x, g, y, z⟩⟩) = {𝑓 , 𝑔} because:
• x is bound by ∃, so it is not free.

• f is free in a position not within the body of a lambda expression.

• g is free in at least one position not within the body of a lambda expression (it also happens

to be free in a second position that is within the body of a lambda expression).

• y is bound by _, so it is not free.

• z is free, but appears only in a position that is within the body of a lambda expression.

Figure 16 contains a formal definition of this function. Unlike fvs(𝑒), fvsol(v) is only ever appplied

to a value v.

D.2 Substitution
We use the notation e{v/x} to denote the expression that results from performing standard capture-

avoiding substitution of the value v for every occurrence of the variable x within the expression e

(it turns out that, forVC, substitution of general expressions for variables is not required, only

substitution of values for variables). Figure 17 contains a formal definition of how this notation

applies to theVC grammar (compare [Barendregt 1984, §2.1.15]).

D.3 Modified grammar and rewrite rules
Let us modify the grammar forVC to have one additional kind of value, a fixpoint value `x . hnf :

Values v ::= x | hnf | `x . hnf

and a modify the set of Unification rewrite rulesU so that rule u-occurs

u-occurs x = V [x] −→ fail if V ≠ □

13
“fvsol(·)” abbreviates “free variables outside lambda”

59

2892

2893

2894

2895

2896

2897

2898

2899

2900

2901

2902

2903

2904

2905

2906

2907

2908

2909

2910

2911

2912

2913

2914

2915

2916

2917

2918

2919

2920

2921

2922

2923

2924

2925

2926

2927

2928

2929

2930

2931

2932

2933

2934

2935

2936

2937

2938

2939

2940

In submission, March 2023,
Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

fvs(x) = {x}
fvs(k) = { }
fvs(op) = { }

fvs(⟨v
1
, . . . , v

n
⟩) = fvs(v

1
) ∪ · · · ∪ fvs(v

n
)

fvs(_x . e) = fvs(e) \ {𝑥}
fvs(`x . e) = fvs(e) \ {𝑥}
fvs(𝑒𝑞; e) = fvs(𝑒𝑞) ∪ fvs(e)
fvs(v = e) = fvs(v) ∪ fvs(e)
fvs(∃x . e) = fvs(e) \ {𝑥}
fvs(fail) = { }

fvs(e
1

e
2
) = fvs(e

1
) ∪ fvs(e

2
)

fvs(v
1

v
2
) = fvs(v

1
) ∪ fvs(v

2
)

fvs(one{e}) = fvs(e)
fvs(all{e}) = fvs(e)

Fig. 15. Definition of the free-variables function fvs(e)

fvsol(x) = {x}
fvsol(k) = { }
fvsol(op) = { }

fvsol(⟨v
1
, . . . , v

n
⟩) = fvsol(v

1
) ∪ · · · ∪ fvsol(v

n
)

fvsol(_x . e) = { }
Fig. 16. Definition of the free-variables-outside-lambdas function fvsol(v)

is replaced by the two rules
1415

u-occurs-fail x = hnf ; e −→ fail if x ∈ fvsol(hnf)
u-occurs-wrap x = hnf ; e −→ x = `x . hnf ; e if x ∈ fvs(hnf) and x ∉ fvsol(hnf)

Let us also add this rewrite rule:

u-unwrap `x . hnf −→ hnf {`x . hnf /x}
As we will see, rule u-unwrap is confluent but not Noetherian.

The resulting grammar is not confluent; in particular, it suffers from the even-odd problem

described in Section 4.1 [Ariola and Blom 2002, Example 4.1]. Therefore we will modify the proof

of confluence forU to become a proof of skew confluence [Ariola and Blom 2002], and then go on

to prove thatVC itself, with this modification, is skew confluent.

D.4 Unwrapping of Fixpoints is Confluent but not Noetherian
Lemma D.1. The rule u-unwrap is confluent.

14
These two rules allow equations to be recursive through lambda expressions and possibly also tuples, but not through

tuples only; thus equations such as f = _y. ⟨y, f ⟩ and x = ⟨1, _y. ⟨y, x ⟩⟩ can be processed by rule u-occurs-wrap, but

the equation x = ⟨1, x ⟩ can be processed only by rule u-occurs-fail. An alternate design using the single rule

u-occurs-wrap x = hnf −→ x = `x . hnf if x ∈ fvs(hnf)
plus rule u-unwrap could be used instead to support recursion through tuples only as well as through lambda expressions.

15
u-occurs-fail is identical to u-occurs in its effect, but it is re-expressed using fvsol(·) , which we need anyway for

u-occurs-wrap. Now we can drop the context𝑉 , which was only used in u-occurs.

60

2941

2942

2943

2944

2945

2946

2947

2948

2949

2950

2951

2952

2953

2954

2955

2956

2957

2958

2959

2960

2961

2962

2963

2964

2965

2966

2967

2968

2969

2970

2971

2972

2973

2974

2975

2976

2977

2978

2979

2980

2981

2982

2983

2984

2985

2986

2987

2988

2989

The Verse Calculus: a Core Calculus for Functional Logic Programming
In submission, March 2023,

x{v/x} ≡ v

y{v/x} ≡ y if 𝑦 ≠ 𝑥

k{v/x} ≡ k

op{v/x} ≡ op

⟨v
1
,. . ., v

n
⟩{v/x} ≡ ⟨v

1
{v/x},. . ., v

n
{v/x}⟩

(_y. e){v/x} ≡ _y. e{v/x} if 𝑦 ∉ fvs(x, v) [use 𝛼]
(`y. v ′){v/x} ≡ `y. v ′{v/x} if 𝑦 ∉ fvs(x, v) [use 𝛼]
(𝑒𝑞; e){v/x} ≡ 𝑒𝑞{v/x}; e{v/x}
(v ′ = e){v/x} ≡ v

′{v/x} = e{v/x}
(∃y. e){v/x} ≡ ∃y. e{v/x} if 𝑦 ∉ fvs(x, v) [use 𝛼]

fail{v/x} ≡ fail

(e
1

e
2
){v/x} ≡ e

1
{v/x} e

2
{v/x}

(v
1

v
2
){v/x} ≡ v

1
{v/x} v

2
{v/x}

(one{e}){v/x} ≡ one{e{v/x}}
(all{e}){v/x} ≡ all{e{v/x}}

Fig. 17. Definition of the substitution notation e{v/x}

Proof. Suppose that e −→
u-unwrap

e
1
and e −→

u-unwrap
e
2
for distinct redexes within 𝑒 .

If the redexes are disjoint, then Lemma C.4 applies.

Otherwise, without loss of generality assume the redex for e −→
u-unwrap

e
1
contains the redex

for e −→
u-unwrap

e
2
; let 𝑒 must be of the form C

1
[`x . C

2
[`y. hnf]] (𝛼-conversion may be used to

ensure that 𝑥 and 𝑦 are distinct variables).

Then e
1
= C

1
[C

2
[`y. hnf]{`x .C

2
[`y. hnf]/x}] and e

2
= C

1
[`x .C

2
[hnf {`y. hnf /y}]].

From e
2
we can take just one more u-unwrap step, using the outermost redex `x .C

2
[cdots],

obtaining e
′ = C

1
[(C

2
[hnf {`y. hnf /y}]){`x .C

2
[hnf {`y. hnf /y}]/x}].

[More to come.]

Thus we have e
1
−→→

u-unwrap
e
′
and e

2
−→
u-unwrap

e
′
, so u-unwrap is strongly confluent, and

therefore by Lemma B.16 is confluent. □

To see that u-unwrap is not Noetherian, observe that

`x . ⟨1, x⟩ −→
u-unwrap

⟨1, `x . ⟨1, x⟩⟩ −→
u-unwrap

⟨1, ⟨1, `x . ⟨1, x⟩⟩⟩ −→
u-unwrap

· · ·
is an unending sequence of reduction steps.

D.5 Information Content
We define a second grammar, for a second language VC

Ω
, by adding one more value Ω, which

indicates a lack of information as to just what will be computed. When Ω appears in a context

where only a value is permitted, it indicates uncertainty as to what value will be provided; when Ω

appears in a context where any expression permitted, it furthermore indicates uncertainty as to

how many values will be provided (possibly none).

Values v ::= x | hnf | `x . hnf | Ω

For every term ofVC there is a corresponding term ofVC
Ω
, identical in structure and appearance

and containing no occurrence of Ω; we identify such terms and regard the set of terms ofVC as

simply a subset of the terms ofVC
Ω
.

The definition of substitution (Fig. 17) is extended in the expected trivial manner: Ω{v/x} ≡ Ω.

61

2990

2991

2992

2993

2994

2995

2996

2997

2998

2999

3000

3001

3002

3003

3004

3005

3006

3007

3008

3009

3010

3011

3012

3013

3014

3015

3016

3017

3018

3019

3020

3021

3022

3023

3024

3025

3026

3027

3028

3029

3030

3031

3032

3033

3034

3035

3036

3037

3038

In submission, March 2023,
Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

Information Content: I
info-fix `x . v −→ Ω

info-seq 𝑒𝑞; e −→ Ω

info-exi ∃x . e −→ Ω

info-fail-l fail e −→ Ω

info-fail-r e fail −→ Ω

info-choice-omega Ω e −→ Ω

info-choice-assoc (e
1

e
2
) e

3
−→ Ω

info-app-omega Ω v −→ Ω

info-app-hnf hnf v −→ Ω

info-one one{e} −→ Ω

info-all all{e} −→ Ω

Fig. 18. Rewrite rules onVCΩ for defining the function 𝜔
VC
(𝑒)

Definition D.2. (after [Ariola and Blom 2002, Definition 2.3]) Let T be a set of terms over a

signature that includes the constant Ω. Define ⩽𝜔
𝑇
be the relation such that Ω ⩽𝜔

𝑇
M for every

term M ∈ T ; then define ⩽𝜔 to be the transitive, reflexive, and compatible closure of ⩽𝜔
𝑇
.

Figure 18 shows a system I of rewrite rules onVC
Ω
. These may be compared to similar rules

for the _◦ calculus [Ariola and Blom 2002, Definition 5.20].

Lemma D.3. [Huet 1980, Lemma 3.1] The relation −→R is locally confluent iff for every critical pair

(e
1
, e

2
) of R, e

1
and e

2
can be joined—that is, there exists e

3
such that e

1
−→R e

3
and e

2
−→R e

3
.

Lemma D.4 (I-Confluent). I is locally confluent and Noetherian; therefore I is confluent.

Proof. Consider all critical pairs of I:
• Rules info-fail-l and info-fail-r produce the critical pair (Ω,Ω).
• Rules info-fail-l and info-choice-omega produce no critical pairs.

• Rules info-fail-l and info-choice-assoc produce the critical pair (Ω e,Ω).
• Rules info-fail-r and info-choice-omega produce the critical pair (Ω,Ω).
• Rules info-fail-r and info-choice-assoc produce the critical pairs (Ω,Ω) and (Ω e,Ω).
• Rules info-choice-omega and info-choice-assoc produce the critical pair (Ω e,Ω).
• No other pairs of rules produce any critical pairs.

The critical pair (Ω,Ω) can be trivially joined at Ω. The critical pair (Ω e,Ω) can be joined at Ω in

one step by using rule info-choice-omega on Ω e.

All critical pairs can be joined; therefore by Lemma D.3 I is locally confluent.

Let the size of a term ofVC
Ω
be the number of tokens it contains other than parentheses. Each

of the rewrite rules in Fig. 18 strictly decreases the number of such tokens. Because any given term

has a finite number 𝑛 of such tokens, and the number of tokens cannot be less than zero, for every

term every rewriting sequence from that term can have no more than 𝑛 steps. So I is bounded and

therefore Noetherian.

Because I is locally confluent and Noetherian, it is confluent by Newman’s lemma. □

Because I is confluent and Noetherian, it follows that I defines unique normal forms forVC
Ω
.

Therefore we are justified in defining 𝜔
VC
(𝑒) to be the function that takes any term inVC

Ω
and

returns the term that is its normal form under I.
Definition D.5. The comparison 𝑒 ⩽𝜔VC

𝑒 ′ is defined to mean 𝜔
VC
(𝑒) ⩽𝜔 𝜔

VC
(𝑒 ′).

62

3039

3040

3041

3042

3043

3044

3045

3046

3047

3048

3049

3050

3051

3052

3053

3054

3055

3056

3057

3058

3059

3060

3061

3062

3063

3064

3065

3066

3067

3068

3069

3070

3071

3072

3073

3074

3075

3076

3077

3078

3079

3080

3081

3082

3083

3084

3085

3086

3087

The Verse Calculus: a Core Calculus for Functional Logic Programming
In submission, March 2023,

[Need to prove that ⩽𝜔VC

is monotonic with respect to ⩽𝜔 ; this should be routine [Ari-

ola and Blom 2002, Proposition 5.21].]

Lemma D.6 (VC monotonic). Every rewrite rule inVC is monotonic with respect to ⩽𝜔VC

.

Proof. For every rewrite rule inA ∪U ∪N ∪ G ∪ C, the left-hand side is an expression that is

mapped to Ω by the function 𝜔
VC
, and no matter what expression e is the result of applying 𝜔

VC
to

the right-hand side, we have Ω ⩽𝜔 e. □

D.6 Preliminaries about Skew Confluence
Why use skew confluence? Ordinary confluence is useful because if term e has an R-normal form,

then that normal form is unique if R is confluent. Ariola and Blom define a related notion, which

we will refer to as R-skew-normal form
16
, and prove that under certain conditions, if term e has an

R-skew-normal form, then that normal form is unique if R is skew confluent.

A R-skew-normal form is not a single term, but rather a possibly infinite set of erased terms. We

summarize this idea, using our own terminology, as follows:

• Let an erasure of a term be a copy in which some number of subterms (possibly zero, and

possibly the entire term) have been replaced with Ω, a special term that means “unknown”

or “we don’t know yet.”

• We can compare erased terms with the partial order ⩽𝜔 , which is the transitive, reflexive,

and compatible closure of the relation in which Ω is less than any other term. Observe that if

e
′
is any erasure of e (including e itself) then e

′ ⩽𝜔 e.

• Define theR-information content 𝜔R (e) of a term e to be the unique erasure of e in which every

redex has been replaced by Ω. Any non-Ω structure in the result is therefore “permanent”:

no further reductions under R can alter that structure.

• Define the downward closure ⇓⩽𝜔
𝐴 of a set of terms 𝐴 to be the set of all elements of 𝐴 and

all possible erasures of those elements, that is, ⇓⩽𝜔
𝐴 = {e′ | e ∈ 𝐴, e′ ⩽𝜔 }.

• Define the R-skew-normal form of e to be the downward closure of the set of information

contents of all possible R-reducts of e, that is, ⇓⩽𝜔
{𝜔 (e′) | 𝑒 −→→R 𝑒 ′}.

Taking the downward closure with respect to ⩽𝜔 is crucial; without that step, it would not be

possible to prove that skew-normal forms are unique for certain reduction relations.

Skew confluence is a natural extension of confluence, in this sense: if R is skew confluent,

then an expression e has a unique R-normal form if and only if its R-skew-normal form is

the (finite) set consisting of all possible erasures of that R-normal form. (For example, ⟨1, 2⟩
is the unique normal form of ∃x . x = 2; ⟨1, x⟩, and the R-skew-normal form of that same term is

{⟨1, 2⟩, ⟨Ω, 2⟩, ⟨1,Ω⟩, ⟨Ω,Ω⟩,Ω}.)
But working with possibly infinite sets directly is tricky. Fortunately, there is a simpler path,

because Ariola and Blom prove an important theorem: Define the partial order e ⪯𝜔R e
′
to mean

𝜔R (e) ⩽𝜔 𝜔R (e′); then a reduction relation that is monotonic in ⪯𝜔R (𝑒 −→R 𝑒 ′ =⇒ 𝑒 ⪯𝜔R 𝑒 ′)
has unique skew-normal forms if and only if the reduction relation is skew confluent [Ariola and

Blom 2002, Theorem 5.4]—and skew confluence is much easier to prove, using techniques that do

not involve possibly infinite sets, but are fairly similar to proofs of ordinary confluence that use

commutative diagrams and case analysis. They also prove that if a reduction relation is confluent

and monotonic, then it is skew confluent [Ariola and Blom 2002, Corollary 5.5].

Definition D.7. Reduction relation R over the set of terms 𝑇 is skew confluent using quasi order

⪯ if for all 𝑎, 𝑏, 𝑐 ∈ 𝑇 , if 𝑎 −→→R 𝑏 and 𝑎 −→→R 𝑐 , there exists 𝑑 ∈ 𝑇 such that 𝑏 −→→R 𝑑 and 𝑐 ⪯ 𝑑 . As a

diagram:

16
Ariola and Blom call it the “infinite normal form”; this is a bit misleading because in fact not all such forms are infinite.

63

3088

3089

3090

3091

3092

3093

3094

3095

3096

3097

3098

3099

3100

3101

3102

3103

3104

3105

3106

3107

3108

3109

3110

3111

3112

3113

3114

3115

3116

3117

3118

3119

3120

3121

3122

3123

3124

3125

3126

3127

3128

3129

3130

3131

3132

3133

3134

3135

3136

In submission, March 2023,
Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

𝑎 𝑏

𝑐 𝑑

R

RR

R
⪯

[More to come.]

D.7 New Lemmas about Skew Confluence
Lemma D.8. If relation R is monotonic in some quasi order ⪯ and confluent, then it is skew confluent

using ⪯.

Proof. By the definition of confluence,

𝑎 𝑐

𝑏 𝑑

R

R

R

R

Because R is monotonic, −→→R⊂
⪯←←−→→R , therefore

𝑎 𝑐

𝑏 𝑑

R

R

R

R
⪯

□

Definition D.9. Let reduction relation R be monotonic in quasi order ⪯ and skew confluent using

⪯. Let reduction relation R←⪯ be defined by a set of rewrite rules that are converses of those rewrite

rules of R whose converses are used in the proof that R is skew confluent. Then we say that R is

skew confluent using ⪯ and R←⪯ .

Lemma D.10. Let relation R be monotonic in quasi order ⪯ and skew confluent using ⪯ and R←⪯ ;
similarly let S be monotonic in the same quasi order ⪯ and skew confluent using ⪯ and S←⪯ . Suppose
furthermore that R and S commute and that R and S←⪯ commute. Then the following four diagrams

hold:

𝑎 𝑏

𝑐 𝑑

R
RR

R∪S
⪯

𝑎 𝑏

𝑐 𝑑

S
RR

R∪S
⪯

𝑎 𝑏

𝑐 𝑑

R
RR

R∪S
⪯

𝑎 𝑏

𝑐 𝑑

S
RR

R∪S
⪯

Proof. (1) Because R is skew confluent, we have

𝑎 𝑏

𝑐 𝑑

R
RR

R
⪯

Because
⪯←←−→→R ⊂ ⪯←←−→→R∪S , the first diagram follows.

(2) Because R and S commute, we have

64

3137

3138

3139

3140

3141

3142

3143

3144

3145

3146

3147

3148

3149

3150

3151

3152

3153

3154

3155

3156

3157

3158

3159

3160

3161

3162

3163

3164

3165

3166

3167

3168

3169

3170

3171

3172

3173

3174

3175

3176

3177

3178

3179

3180

3181

3182

3183

3184

3185

The Verse Calculus: a Core Calculus for Functional Logic Programming
In submission, March 2023,

𝑎 𝑏

𝑐 𝑑

S
RR

S
Because −→→S⊂

⪯←←−→→R∪S , the second diagram follows.

(3) The following diagram clearly holds if the sequence of reduction steps from b to d is the same

as the sequence of reduction steps from b to a to d:

𝑎 𝑏

𝑐 𝑑

R
RR

≡

Because ≡⊂ ⪯←←−→→R∪S , the third diagram follows.

(4) Because R and S←⪯ commute, we have

𝑎 𝑏

𝑐 𝑑

S
RR

S
Because←←−S⊂

⪯←←−→→R∪S , the fourth diagram follows.

[It may turn out to be impossible to prove for our specific application that R and S←⪯
commute. In that case, it may be necessary to use a more complicated or more subtle

precondition. The important thing is to prove the fourth diagram somehow.]

□

Lemma D.11. Let relation R be monotonic in quasi order ⪯ and skew confluent using ⪯ and R←⪯ ;
similarly let S be monotonic in the same quasi order ⪯ and skew confluent using ⪯ and S←⪯ . Suppose
furthermore that R and S commute and that R and S←⪯ commute. Then

𝑎 𝑏

𝑐 𝑑

R∪S
⪯

RR

R∪S
⪯

Proof. By induction on the size of the top edge of the diagram. At each step one of the four

diagrams from Lemma D.10 will be used.

[More to come.]

□

Lemma D.12. Let relation R be monotonic in quasi order ⪯ and skew confluent using ⪯ and R←⪯ ;
similarly let S be monotonic in the same quasi order ⪯ and skew confluent using ⪯ and S←⪯ . Then

𝑎 𝑏

𝑐 𝑑

R∪S
⪯

R∪SR∪S

R∪S
⪯

65

3186

3187

3188

3189

3190

3191

3192

3193

3194

3195

3196

3197

3198

3199

3200

3201

3202

3203

3204

3205

3206

3207

3208

3209

3210

3211

3212

3213

3214

3215

3216

3217

3218

3219

3220

3221

3222

3223

3224

3225

3226

3227

3228

3229

3230

3231

3232

3233

3234

In submission, March 2023,
Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

Proof. By case analysis on whether left edge uses R or S; then project that left edge into R∗ or
S∗ respectively and apply Lemma D.11.

[More to come.]

□

Lemma D.13. Let relation R be monotonic in quasi order ⪯ and skew confluent using ⪯ and R←⪯ ;
similarly let S be monotonic in the same quasi order ⪯ and skew confluent using ⪯ and S←⪯ . Then

𝑎 𝑏

𝑐 𝑑

R∪S
R∪S

R∪S

R∪S
⪯

⪯

Proof. By induction on the size of the left edge of the diagram.

Base case This diagram clearly holds by letting the bottom edge be the same as the top edge:

𝑎 𝑏

𝑐 𝑑

≡
R∪S

≡

R∪S
⪯

⪯

and it implies this diagram:

𝑎 𝑏

𝑐 𝑑

(R∪S)0
R∪S

R∪S

R∪S
⪯

⪯

Inductive case Assume the diagram holds for left edges of all sizes up to 𝑛. Then this diagram:

𝑎 𝑏

𝑐 𝑑

(R∪S)𝑛+1
R∪S

R∪S

R∪S
⪯

⪯

follows from this diagram:

𝑎 𝑏

𝑐 𝑑

𝑒 𝑓

(R∪S)𝑛
R∪S

R∪S

R∪S
⪯

⪯

R∪S R∪S

R∪S
⪯

𝐷.12

where the top half is the inductive hypothesis and the bottom half follows from Lemma D.12.

□

Lemma D.14. Let relation R be monotonic in quasi order ⪯ and skew confluent using ⪯ and R←⪯ ;
similarly let S be monotonic in the same quasi order ⪯ and skew confluent using ⪯ and S←⪯ . If R
commutes with S, then T = R ∪ S is monotonic in ⪯ and skew confluent using ⪯ and T←⪯ .

66

3235

3236

3237

3238

3239

3240

3241

3242

3243

3244

3245

3246

3247

3248

3249

3250

3251

3252

3253

3254

3255

3256

3257

3258

3259

3260

3261

3262

3263

3264

3265

3266

3267

3268

3269

3270

3271

3272

3273

3274

3275

3276

3277

3278

3279

3280

3281

3282

3283

The Verse Calculus: a Core Calculus for Functional Logic Programming
In submission, March 2023,

Proof. □

D.8 Proof thatVC Is Skew Confluent

[This is just a brief proof sketch.]

First prove that the modifiedU is skew confluent. (In doing so we will defineU←⩽𝜔
VC

.)

Then use existing proofs to demonstrate thatA ∪N ∪ G ∪ C is confluent. Because they are also

monotonic, they are therefore skew confluent, and (A ∪ N ∪ G ∪ C)←⩽𝜔
VC

is trivial.

Prove that A ∪N ∪ G ∪ C commutes withU←⩽𝜔
VC

.

Then apply Lemma D.14 to show thatU ∪ (A ∪N ∪ G ∪ C) is skew confluent.

67

3284

3285

3286

3287

3288

3289

3290

3291

3292

3293

3294

3295

3296

3297

3298

3299

3300

3301

3302

3303

3304

3305

3306

3307

3308

3309

3310

3311

3312

3313

3314

3315

3316

3317

3318

3319

3320

3321

3322

3323

3324

3325

3326

3327

3328

3329

3330

3331

3332

In submission, March 2023,
Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

Domains

𝑊 = Z + ⟨𝑊 ⟩ + (𝑊 →𝑊 ∗)
⟨𝑊 ⟩ = a finite tuple of values𝑊

𝐸𝑛𝑣 = 𝐼𝑑𝑒𝑛𝑡 →𝑊

Semantics of expressions and values

EJeK : 𝐸𝑛𝑣 →𝑊 ∗

EJvK 𝜌 = unit (VJ𝑣K 𝜌)
EJfailK 𝜌 = empty

EJe
1

e
2
K 𝜌 = EJe

1
K 𝜌 ⋓ EJe

2
K 𝜌

EJe
1
= e

2
K 𝜌 = EJe

1
K 𝜌 ⋒ EJe

2
K 𝜌

EJe
1
; e

2
K 𝜌 = EJe

1
K 𝜌 # EJe

2
K 𝜌

EJv
1

v
2
K 𝜌 = apply(VJv

1
K 𝜌, VJv

2
K 𝜌)

EJ∃x . eK 𝜌 =
⋃

𝑤∈𝑊 EJ𝑒K (𝜌 [𝑥 ↦→ 𝑤])
EJone{e}K 𝜌 = one(EJ𝑒K 𝜌)
EJall{e}K 𝜌 = unit (all(EJ𝑒K 𝜌))

VJvK : 𝐸𝑛𝑣 →𝑊

VJxK 𝜌 = 𝜌 (𝑥)
VJkK 𝜌 = 𝑘

VJ𝑜𝑝K 𝜌 = OJ𝑜𝑝K
VJ_x . eK 𝜌 = _𝑤.EJ𝑒K (𝜌 [𝑥 ↦→ 𝑤])

VJ⟨v
1
, ···, v

n
⟩K 𝜌 = ⟨VJ𝑣

1
K 𝜌, ···,VJ𝑣𝑛K 𝜌⟩

OJopK : 𝑊

OJaddK = _𝑤. if (𝑤 = ⟨k
1
, k

2
⟩) then unit (𝑘

1
+ 𝑘

2
) elseWRONG

OJgtK = _𝑤. if (𝑤 = ⟨k
1
, k

2
⟩ ∧ 𝑘

1
> 𝑘

2
) then unit (𝑘

1
) else empty

OJintK = _𝑤. if (𝑤 = 𝑘) then unit (𝑘) else empty

𝑎𝑝𝑝𝑙𝑦 : (𝑊 ×𝑊) →𝑊 ∗

𝑎𝑝𝑝𝑙𝑦 (𝑘,𝑤) = WRONG 𝑘 ∈ Z
𝑎𝑝𝑝𝑙𝑦 (⟨𝑣

0
, ···, 𝑣𝑛⟩, 𝑘) = unit (𝑣𝑘) 0 ⩽ 𝑘 ⩽ 𝑛

= empty otherwise

𝑎𝑝𝑝𝑙𝑦 (𝑓 ,𝑤) = 𝑓 (𝑤) 𝑓 ∈𝑊 →𝑊 ∗

Fig. 19. Expression semantics

E A DENOTATIONAL SEMANTICS FORVC
It is highly desirable to have a denotational semantics for VC. A denotational semantics says

directly what an expression means rather than how it behaves, and that meaning can be very

perspicuous. Equipped with a denotational semantics we can, for example, prove that the left hand

side and right hand side of each rewrite rule have the same denotation; that is, the rewrites are

meaning-preserving.

68

3333

3334

3335

3336

3337

3338

3339

3340

3341

3342

3343

3344

3345

3346

3347

3348

3349

3350

3351

3352

3353

3354

3355

3356

3357

3358

3359

3360

3361

3362

3363

3364

3365

3366

3367

3368

3369

3370

3371

3372

3373

3374

3375

3376

3377

3378

3379

3380

3381

The Verse Calculus: a Core Calculus for Functional Logic Programming
In submission, March 2023,

Domains

𝑊 ∗ = (WRONG + P(𝑊))⊥
Operations

Empty empty : 𝑊 ∗

empty = { }
Unit unit : 𝑊 →𝑊 ∗

unit (𝑤) = {𝑤}
Union ⋓ : 𝑊 ∗ →𝑊 ∗ →𝑊 ∗

𝑠
1
⋓ 𝑠

2
= 𝑠

1
∪ 𝑠

2

Intersection ⋒ : 𝑊 ∗ →𝑊 ∗ →𝑊 ∗

𝑠
1
⋒ 𝑠

2
= 𝑠

1
∩ 𝑠

2

Sequencing # : 𝑊 ∗ →𝑊 ∗ →𝑊 ∗

𝑠
1
𝑠

2
= 𝑠

2
if 𝑠

1
is non-empty

= { } otherwise

One one : 𝑊 ∗ →𝑊 ∗ The result is either empty or a singleton

one(𝑠) = ???

All all : 𝑊 ∗ → ⟨𝑊 ⟩
all(𝑠) = ???

All operations over𝑊 ∗ implicitly propagate ⊥ and WRONG. E.g.

𝑠
1
⋓ 𝑠

2
= ⊥ if 𝑠

1
= ⊥ or 𝑠

2
= ⊥

= WRONG if (𝑠
1
= WRONG and 𝑠

2
≠ ⊥) or (𝑠

2
= WRONG and 𝑠

1
≠ ⊥)

= 𝑠
1
∪ 𝑠

2
otherwise

Fig. 20. Set semantics for𝑊 ∗

But a denotational semantics for a functional logic language is tricky. Typically one writes a

denotation function something like

EJeK : 𝐸𝑛𝑣 →𝑊

where 𝐸𝑛𝑣 = 𝐼𝑑𝑒𝑛𝑡 →𝑊 . So E takes an expession e and an environment 𝜌 : 𝐸𝑛𝑣 and returns the

value, or denotation, of the expresssion. The environment binds each free variable of e to its value.

But what is the semantics of ∃x . e? We need to extend 𝜌 with a binding for x, but what is x bound

to? In a functional logic language x is given its value by various equalities scattered throughout e.

This section sketches our approach to this challenge. It is not finished work, and does not count

as a contribution of our paper. We offer it because we have found it an illuminating alternative way

to understandVC, one that complements the rewrite rules that are the substance of the paper.

E.1 A first attempt at a denotational semantics
Our denotational semantics forVC is given in Fig. 19.

• We have one semantic function (here E andV) for each syntactic non terminal (here 𝑒 and 𝑣

respectively.)

• Each function has one equation for each form of the construct.

69

3382

3383

3384

3385

3386

3387

3388

3389

3390

3391

3392

3393

3394

3395

3396

3397

3398

3399

3400

3401

3402

3403

3404

3405

3406

3407

3408

3409

3410

3411

3412

3413

3414

3415

3416

3417

3418

3419

3420

3421

3422

3423

3424

3425

3426

3427

3428

3429

3430

In submission, March 2023,
Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

• Both functions take an environment 𝜌 that maps in-scope identifiers to a single value; see

the definition 𝐸𝑛𝑣 = 𝐼𝑑𝑒𝑛𝑡 →𝑊 .

• The value functionV returns a single value𝑊 , while the expression function E returns a

collection of values𝑊 ∗ (Appendix E.1).

The semantics is parameterised over the meaning of a “collection of values 𝑊 ∗”. To a first

approximation, think of𝑊 ∗ a (possibly infinite) set of values𝑊 , with union, intersection etc having

their ordinary meaning.

Our first interpretation, given in Figure 20, is a little more refined:𝑊 ∗ includes⊥ andWRONG as

well as a set of values. Our second interpretation is given in Figure 21, and discussed in Appendix E.4.

The equations themselves, in Fig. 19 are beautifully simple and compositional, as a denotational

semantics should be.

The equations forV are mostly self-explanatory, but an equation likeVJkK 𝜌 = 𝑘 needs some

explanation: the 𝑘 on the left hand side (e.g. “3”) is a piece of syntax, but the 𝑘 on the right is

the corresponding element of the semantic world of values𝑊 (e.g. 3). As is conventional, albeit

a bit confusing, we use the same 𝑘 for both. Same for 𝑜𝑝 , where the semantic equivalent is the

corresponding mathematical function.

The equations for E are more interesting.

• Values EJvK 𝜌 : compute the single value for v, and return a singleton sequence of results.

The auxiliary function unit is defined at the bottom of Fig. 19.

• In particular, values include lambdas. The semantics says that a lambda evaluates to a singleton

collection, whose only element is a function value. But that function value has type𝑊 →𝑊 ∗;
that is, it is a function that takes a single value and returns a collection of values.

• Function application EJv
1

v
2
K 𝜌 is easy, because V returns a single value: just apply the

meaning of the function to the meaning of the argument. The apply function is defined in

Figure 19.

• Choice EJe
1

e
2
K 𝜌 : take the union (written ⋓) of the values returned by e

1
and e

2
respectively.

For bags this union operator is just bag union (Figure 20).

• Unification EJe
1

e
2
K 𝜌 : take the intersection of the values returned by e

1
and e

2
respectively.

For bags, this “intersection” operator ⋒ is defined in Fig. 20. In this definition, the equality is

mathematical equality of functions; which we can’t implement for functions; see Appendix E.1.

• Sequencing EJe
1
; e

2
K 𝜌 . Again we use an auxiliary function # to combine the meanings of

e
1
and e

2
. For bags, the function # (Fig. 20 again) uses a bag comprehension. Again it does a

cartesian product, but without the equality constraint of ⋒.
• The semantics of (one{e}) simply applies the semantic function one : 𝑊 ∗ → 𝑊 ∗ to the

collection of values returned by e. If e returns no values, so does (one{e}); but if e returns one

or more values, (one{e}) returns the first. Of course that begs the question of what “the first”

means – for bags it would be non-deterministic. We will fix this problem in Appendix E.4,

but for now we simply ignore it.

• The semantics of (all{e}) is similar, but it always returns a singleton collection (hence the

unit in the semantics of all) whose element is a (possibly-empty) tuple that contains all the

values in the collection returned by e.

The fact that unification “=” maps onto intersection, and choice “ ” onto union, is very satisfying.

The big excitement is the treatment of ∃. We must extend 𝜌 , but what should we bind x to?

(Compare the equation forVJ_x . eK , where we have a value𝑤 to hand.) Our answer is simple: try

all possible values, and union the results:

EJ∃x . eK 𝜌 =
⋃
𝑤∈𝑊

EJ𝑒K (𝜌 [𝑥 ↦→ 𝑤])

70

3431

3432

3433

3434

3435

3436

3437

3438

3439

3440

3441

3442

3443

3444

3445

3446

3447

3448

3449

3450

3451

3452

3453

3454

3455

3456

3457

3458

3459

3460

3461

3462

3463

3464

3465

3466

3467

3468

3469

3470

3471

3472

3473

3474

3475

3476

3477

3478

3479

The Verse Calculus: a Core Calculus for Functional Logic Programming
In submission, March 2023,

That

⋃
𝑤∈𝑊 means: enumerate all values in𝑤 ∈𝑊 , in some arbitrary order, and for each: bind 𝑥 to

𝑤 , find the semantics of 𝑒 for that value of 𝑥 , namely EJ𝑒K (𝜌 [𝑥 ↦→ 𝑤]), and take the union (in the

sense of ⋓) of the results.
Of course we can’t possibly implement it like this, but it makes a great specification. For example

∃x . x = 3 tries all possible values for x, but only one of them succeeds, namely 3, so the semantics

is a singleton sequence [3].

E.2 The denotational semantics is un-implementable
This semantics is nice and simple, but we definitely can’t implement it! Consider

∃x . (x2 − x − 6) = 0; x

The semantics will iterate over all possible values for x, returning all those that satisfy the equality;

including 3, for example. But unless our implementation can guarantee to solve quadratic equations,

we can’t expect it to return 3. Instead it’ll get stuck.

Another way in which the implementation might get stuck is through unifying functions:

(_x . x + x) = (_y. y ∗ 2) or even (_x . x + 1) = (_y. y + 1)
But not all unification-over-functions is ruled out. We do expect the implementation to succeed

with

∃f . ((_x . x + 1) = f); f 3

Here the ∃ will “iterate” over all values of f , and the equality will pick out the (unique) iteration in

which f is bound to the incrementing function.

So our touchstone must be:

• If the implementation returns a value at all, it must be the value given by the semantics.

• Ideally, the verifier will guarantee that the implementation does not get stuck, or goWRONG.

E.3 Getting WRONG right
Getting WRONG right is a bit tricky.

• What is the value of (3 = ⟨⟩)? The intersection semantics would say empty, the empty

collection of results, but we might want to say WRONG.

• ShouldWRONG be an element of𝑊 or of𝑊 ∗? We probably want (one{3 wrong} to return
a unit (3) rather thenWRONG?

• What about fst (⟨3,wrong⟩)? Is that wrong or 3?
There is probably more than one possible choice here.

E.4 An order-sensitive denotational semantics
There is a Big Problem with this approach. Consider ∃x . x = (4 3). The existential enumerates

all possible values of x in some arbitrary order, and takes the union (i.e., “concatentation”) of the

results from each of these bindings. Suppose that ∃ enumerates 3 before 4; then the semantics of

this expression is the sequence [3, 4], and not [4, 3] as it should be. And yet returning a sequence

(not a set nor a bag) is a key design choice in Verse. What can we do?

Figure 21 give a new denotational semantics that does account for order. The key idea (due to

Joachim Breitner) is this: return a sequence of labelled values; and then sort that sequence (in one

and all) into canonical order before exposing it to the programmer.

We do not change the equations for E, V , and O at all; they remain precisely as they are in

Figure 19. However the semantics of a collection of values, 𝑊 ∗, does change, and is given in

Figure 21:

71

3480

3481

3482

3483

3484

3485

3486

3487

3488

3489

3490

3491

3492

3493

3494

3495

3496

3497

3498

3499

3500

3501

3502

3503

3504

3505

3506

3507

3508

3509

3510

3511

3512

3513

3514

3515

3516

3517

3518

3519

3520

3521

3522

3523

3524

3525

3526

3527

3528

In submission, March 2023,
Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

Domains

𝑊 ∗ = (WRONG + P(𝐿𝑊))⊥
𝑊 ? = {𝑊 } Set with 0 or 1 elements

𝐿𝑊 = [𝐿] ×𝑊 Sequence of 𝐿 and a value

𝐿 = L + R

Operations

Empty empty : 𝑊 ∗

empty = ∅
Singleton unit : 𝑊 →𝑊 ∗

unit (𝑤) = {([],𝑤)}
Union ⋓ : 𝑊 ∗ →𝑊 ∗ →𝑊 ∗

𝑠
1
⋓ 𝑠

2
= {(L : 𝑙,𝑤) | (𝑙,𝑤) ∈ 𝑠

1
} ∪ {(R : 𝑙,𝑤) | (𝑙,𝑤) ∈ 𝑠

2
}

Intersection ⋒ : 𝑊 ∗ →𝑊 ∗ →𝑊 ∗

𝑠
1
⋒ 𝑠

2
= {(𝑙

1
⊲⊳ 𝑙

2
,𝑤

1
) | (𝑙

1
,𝑤

1
) ∈ 𝑠

1
, (𝑙

2
,𝑤

2
) ∈ 𝑠

2
,𝑤

1
= 𝑤

2
}

Sequencing # : 𝑊 ∗ →𝑊 ∗ →𝑊 ∗

𝑠
1
𝑠

2
= {(𝑙

1
⊲⊳ 𝑙

2
,𝑤

2
) | (𝑙

1
,𝑤

1
) ∈ 𝑠

1
, (𝑙

2
,𝑤

2
) ∈ 𝑠

2
}

One one : 𝑊 ∗ →𝑊 ∗

one(𝑠) = head (sort (𝑠))
All all : 𝑊 ∗ →𝑊 ∗

all(𝑠) = tuple(sort (𝑠))
Head head : ([𝑊] +WRONG) →𝑊 ∗

head (WRONG) = WRONG

head [] = 𝑒𝑚𝑝𝑡𝑦

head (𝑤 : 𝑠) = unit (𝑤)
To tuple tuple : ([𝑊] +WRONG) → ⟨𝑊 ⟩

tuple(WRONG) = WRONG

tuple[𝑤
1
, ···,𝑤𝑛] = ⟨𝑤

1
, ···,𝑤𝑛⟩

Sort sort : 𝐿𝑊 ∗ → ([𝑊] +WRONG)⊥
sort (𝑠) = [] if 𝑠 is empty

= WRONG if𝑤𝑠 has more than one element

= 𝑤𝑠 otherwise

⊲⊳ sort{(𝑙,𝑤) | (L : 𝑙,𝑤) ∈ 𝑠}
⊲⊳ sort{(𝑙,𝑤) | (R : 𝑙,𝑤) ∈ 𝑠}

where𝑤𝑠 = [𝑤 | ([],𝑤) ∈ 𝑠]

Fig. 21. Labelled set semantics for𝑊 ∗

72

3529

3530

3531

3532

3533

3534

3535

3536

3537

3538

3539

3540

3541

3542

3543

3544

3545

3546

3547

3548

3549

3550

3551

3552

3553

3554

3555

3556

3557

3558

3559

3560

3561

3562

3563

3564

3565

3566

3567

3568

3569

3570

3571

3572

3573

3574

3575

3576

3577

The Verse Calculus: a Core Calculus for Functional Logic Programming
In submission, March 2023,

• A collection of values𝑊 ∗ is now ⊥ or WRONG (as before), or a set of labelled values, each of

type 𝐿𝑊 .

• A labelled value (of type 𝐿𝑊) is just a pair ([𝐿] ×𝑊) of a label and a value.

• A label is a sequence of tags 𝐿, where a tag is just L or R, similar to Section 5.1.

• The union (or concatentation) operation ⋓, defined in Fig. 21, adds a L tag to the labels of the

values in the left branch of the choice, and a R tag to those coming from the right. So the

labels specify where in the tree the value comes from.

• Sequencing # and ⋒ both concatenate the labels from the values they combine.

• Finally sort puts everything in the “right” order: first the values with an empty label, then the

values whose label starts with L (notice the recursive sort of the trimmed-down sequence),

and then those that start with R. Notice that sort removes all the labels, leaving just a bare

sequence of values𝑊 ∗.
• Note that if sort encounters a set with more than one unlabelled element then this considered

WRONG. This makes ambiguous expressions, like one{∃x . x}, WRONG.

Let us look at our troublesome example ∃x . x = (4 3), and assume that ∃ binds x to 3 and then 4.

The meaning of this expression will be

EJ∃x . x = (4 3)K 𝜖 = [(R, 3), (L, 4)]
Now if we take all of that expression we will get a singleton sequence containing ⟨4, 3⟩, because
all does a sort, stripping off all the tags.

EJall{∃x . x = (4 3)}K 𝜖 = [([], ⟨4, 3⟩)]

E.5 Related work
[Christiansen et al. 2011] gives another approach to a denotational semantics for a functional logic

language. We are keen to learn of others.

73

3578

3579

3580

3581

3582

3583

3584

3585

3586

3587

3588

3589

3590

3591

3592

3593

3594

3595

3596

3597

3598

3599

3600

3601

3602

3603

3604

3605

3606

3607

3608

3609

3610

3611

3612

3613

3614

3615

3616

3617

3618

3619

3620

3621

3622

3623

3624

3625

3626

In submission, March 2023,
Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

F UPDATEABLE REFERENCES
The full Verse language has updatable references (à la ML). There are three new primitive operations,

alloc, read, and write. The alloc creates a new reference with an initial value, read extracts the

value from a reference, and write sets the value of a referene.

Modifying these references is transactional in the sense that if a computation fails, then any

updates will not be visible outside the construct that handles the failures. E.g.,

r B alloc(0); (if (write⟨r, 1⟩; fail) then 1 else 2); read(r)
will have the value 0, because the write is part of an expression that fails, and so its effect is not

visible.

To add updateable references we extend the system with syntax and rules from figure 22. The

store h in {e} indicates that e should be reduced using the heap h. A heap is simply a mapping from

references to values (one mapping being r ↦→v). A reference is some opaque type that supports

equality (unification) and creation of a new reference.

The interaction of the new primitives with the store can be seen from the axioms. The alloc(v)
operation creates a new reference and adds a binding with v to the store. The read(r) operation
retrieves the value for reference r from the store, and write⟨r, v⟩ updates the reference r with v in

the store. All of these operations use the context S which ensures that there are no store operations

to the left of the hole, i.e., a store operation in the hole is the next one that should execute.

The interesting rules involve choice and split because store operations are transactional in the

sense that when an expressions fails, none of its store operations will happen.

When reducing split(e){f , g} in an S hole, rule st-split-dup, the store is duplicated. Any store

operations inside the split will happen in this local copy of the store. Note the two occurrences

of h in the right hand side of st-split-dup. If the reduction of e results in fail then rule fail-elim

is used, and the store from the failing computation is simply thrown away. If the reduction of e

results in a value (with or without more alternatives) then rule st-split is used. This rule replaces

the outer store with the inner store, since we know the inner computation has succeeded.

Similarely, the reduction of e
1

e
2
will duplicate the store into the first branch, st-choice-dup.

Here e
1
must not contain any store operation nor be a value. And again, similarely, st-choice

commits the new store and throws away the old.

The use of oe in the rules is to ensure that the rules cannot get stuck in a loop. Using e instead of

oe would mean that failing or committing would make the expression match the duplication rule

again. It also prevents the duplication rule from repeatedly duplicating the store.

Note that store is part of the 𝑋 context, which means that the store can float inside existentials.

This is necessary for the store rules to fire since the S context does not allow going under existentials.

The semantics of for(d) do e with respect to store effects is somewhat intricate. The expression

d is possibly multi-valued; any effects that happens when computing the first value of d will be

visible the first time e is computed. Both these effects are then visible when computing the second

value of d, and so on. If any iteration of d fails, then the effects of that computation are not visible

outside d. This means that the desugaring of for into split needs to be more elaborate.

for(∃x
1
···x

n
. d) do e

means

f ⟨⟩ B ⟨⟩;
g(v) (r) B (v = ⟨x

1
, ···, x

n
⟩; cons⟨e, split(r ⟨⟩){f , g}⟩;

split(∃x
1
··· x

n
. d; ⟨x

1
, ···, x

n
⟩){f , g}

To support limited store operations (e.g., read, but not write) we can equip the store with a set

of currently allowed operations. We also need some extra primitives that modify this set.

74

3627

3628

3629

3630

3631

3632

3633

3634

3635

3636

3637

3638

3639

3640

3641

3642

3643

3644

3645

3646

3647

3648

3649

3650

3651

3652

3653

3654

3655

3656

3657

3658

3659

3660

3661

3662

3663

3664

3665

3666

3667

3668

3669

3670

3671

3672

3673

3674

3675

The Verse Calculus: a Core Calculus for Functional Logic Programming
In submission, March 2023,

Syntax extension

References 𝑟

Expressions 𝑒 ::= · · · | store h in {e}
Primops 𝑜𝑝 ::= · · · | alloc | read | write

Head values ℎ𝑛𝑓 ::= · · · | 𝑟
Execution contexts 𝑋 ::= · · · | store h in {𝑋 }
Scope contexts 𝑆𝐶 ::= · · · | store h in {SC}
Heap ℎ ::= 𝜖 | r ↦→v, h

Heap context 𝐻 ::= □, h | r ↦→v,H

Store contexts 𝑆 ::= □ | v = S | S; e | 𝑠𝑒 ; S | ∃x . S

Store-op free exprs 𝑠𝑒 ::= v | 𝑠𝑒
1
= 𝑠𝑒

2
| 𝑠𝑒

1
; 𝑠𝑒

2
| ∃x . 𝑠𝑒 | sp(v)

Results 𝑤 ::= v | v e

Non-store primops 𝑠𝑝 ::= any, except alloc, read,write

Non-store expression 𝑜𝑒 ::= like e, but not w, store, or fail

Axiom extensions

Normalization change

exi-float 𝑋 [∃x . e] −→ ∃x . 𝑋 [e] if 𝑋 ≠ □, 𝑥 ∉ fvs(𝑋), use 𝛼
if there is store in 𝑋 then e ∈ ce

Reference ops

ref-alloc store h in {S[alloc(v)]} −→ store r ↦→v, h in {S[r]}
fvs(v)#bvs(S), r fresh

ref-read store H [r ↦→v] in {S[read(r)]} −→ store H [r ↦→v] in {S[v]}
fvs(v)#bvs(S), use 𝛼

ref-write store H [r ↦→v
1
] in {S[write⟨r, v

2
⟩]} −→ store H [r ↦→v

2
] in {S[⟨⟩]}

fvs(v
2
)#bvs(S)

Store duplication

st-split-dup store h in {S[split(oe){f , g}]} −→ store h in {S[split(store h in {oe}){f , g}]}
fvs(h)#bvs(S), use 𝛼

st-choice-dup store h in {oe e} −→ store h in {store h in {oe} e}

Store commit

st-split store h
1
in {S[split(store h

2
in {w}){f , g}]} −→ store h

2
in {S[split(w){f , g}]}

fvs(h
2
)#bvs(S)

st-choice store h
1
in {S[(store h

2
in {w}) e]} −→ store h

2
in {S[w e]}

fvs(h
2
)#bvs(S)

Unification

Extension with the obvious axioms making equal references unify, and anything else fail.

Top level

Start top level reduction of e with store 𝜖 in {e}.

Fig. 22. The Verse calculus: store axioms

75

3676

3677

3678

3679

3680

3681

3682

3683

3684

3685

3686

3687

3688

3689

3690

3691

3692

3693

3694

3695

3696

3697

3698

3699

3700

3701

3702

3703

3704

3705

3706

3707

3708

3709

3710

3711

3712

3713

3714

3715

3716

3717

3718

3719

3720

3721

3722

3723

3724

In submission, March 2023,
Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

F.1 Examples
[LA: Not yet]

76

	Abstract
	1 Introduction
	2 The Verse calculus, informally
	2.1 Logical variables and equations
	2.2 Choice
	2.3 Mixing choice and equations
	2.4 Pattern matching and narrowing
	2.5 Conditionals and ``one''
	2.6 Tuples and ``all''
	2.7 Programming in Verse
	2.8 ``for'' loops

	3 Rewrite rules
	3.1 Functions and function application rules
	3.2 Unification rules
	3.3 Swapping and binding order
	3.4 Local substitution
	3.5 Elimination and normalization rules
	3.6 Rules for choice
	3.7 The Verse calculus is lenient
	3.8 Evaluation strategy
	3.9 Developing and debugging rules

	4 Metatheory
	4.1 Recursion, and the notorious even/odd problem
	4.2 Proof of confluence
	4.3 Design for confluence
	4.4 Overview of skew confluence

	5 Variations and choices
	5.1 Ordering and choices
	5.2 Generalizing ``one'' and ``all''

	6 The Verse calculus in context: reflections and related work
	6.1 Choice and non-determinism
	6.2 One and all
	6.3 The semantics of logical variables
	6.4 Flat vs. higher order
	6.5 Intermediate language
	6.6 Comparison with Icon

	7 Looking back, looking forward
	Acknowledgments
	References
	A Example
	B Confluence: Preliminaries
	B.1 Reduction relations
	B.2 Confluence
	B.3 Commutativity
	B.4 *-Commutativity
	B.5 Commutativity and Confluence
	B.6 Confluent Kernels

	C Confluence of the Verse calculus: Proof
	C.1 Disjointness, Reduction under, and the Diamond property
	C.2 Lemmas for Reductions-Under
	C.3 Lemmas for Substitution and Unification
	C.4 Unification is Confluent
	C.5 Normalization is Confluent
	C.6 Unification + Normalization is Confluent
	C.7 U and N Commute With A and G and C
	C.8 Application
	C.9 Garbage Collection
	C.10 Choice

	D Skew Confluence
	D.1 Free Variables
	D.2 Substitution
	D.3 Modified grammar and rewrite rules
	D.4 Unwrapping of Fixpoints is Confluent but not Noetherian
	D.5 Information Content
	D.6 Preliminaries about Skew Confluence
	D.7 New Lemmas about Skew Confluence
	D.8 Proof that VC Is Skew Confluent

	E A denotational semantics for VC
	E.1 A first attempt at a denotational semantics
	E.2 The denotational semantics is un-implementable
	E.3 Getting ``wrong'' right
	E.4 An order-sensitive denotational semantics
	E.5 Related work

	F Updateable references
	F.1 Examples

