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Functional logic languages have a rich literature, but it is tricky to give them a satisfying semantics. In this

paper we describe the Verse calculus,VC, a new core calculus for functional logic programming. Our main

contribution is to equipVC with a small-step rewrite semantics, so that we can reason about aVC program

in the same way as one does with lambda calculus; that is, by applying successive rewrites to it. We also show

that the rewrite system is confluent.

Additional Key Words and Phrases: confluence, declarative programming, functional programming, lambda

calculus, logic programming, rewrite rules, skew confluence, unification, Verse calculus, Verse language

1 INTRODUCTION
Functional logic programming languages add expressiveness to functional programming by intro-

ducing logical variables, equality constraints among those variables, and choice to allow multiple

alternatives to be explored. Here is a tiny example:

∃x y z. x = ⟨y, 3⟩; x = ⟨2, z⟩; y

This expression introduces three logical (or existential) variables x, y, z, constrains them with two

equalities (x = ⟨y, 3⟩ and x = ⟨2, z⟩), and finally returns y. The only solution to the two equalities is

y =2, z=3, and x = ⟨2, 3⟩; so the result of the whole expression is 2.

Functional logic programming has a long history and a rich literature [Antoy and Hanus 2010].

But it is somewhat tricky for programmers to reason about functional logic programs: they must

think about logical variables, narrowing, backtracking, Horn clauses, resolution, and the like. This

contrasts with functional programming, where one can say “just apply rewrite rules, such as

β-reduction, let-inlining, and case-of-known-constructor.” We therefore seek a precise expression of

functional logic programming as a term-rewriting system, to give us both a formal semantics (via

small-step reductions), and a powerful set of equivalences that programmers can use to reason

about their programs, and that compilers can use to optimize them.

We make the following contributions in this paper. First, we describe a new core calculus for

functional logic programming, the Verse calculus orVC for short (Section 2). As in any functional

logic language,VC supports logical variables, equalities, and choice, but it is distinctive in several

ways:

• VC natively supports higher-order functions, just like the lambda calculus. Indeed, every

lambda calculus program is aVC program. In contrast, most of the functional logic literature
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is rooted in a first-order world, and addresses higher-order features via an encoding called

defunctionalization [Hanus 2013, 3.3].

• All functional logic languages have some notion of “flexible” vs. “rigid” variables.VC offers a

newway to address these notions, through the operators one (Section 2.5) and all (Section 2.6).

This enables an elegant economy of concepts: for example, there is just one equality (other

languages may have a suspending equality and a narrowing equality), and conditional

expressions are driven by failure rather than booleans (Section 2.5).

• Choice and determinism. Choice is a fundamental feature of all functional logic languages.

InVC, choice is expressed in the syntax of the term (“laid out in space”) rather than, as is

more typical, handled by non-deterministic rewrites and backtracking (“laid out in time”).

This makesVC completely deterministic, unlike most functional logic languages which are

non-deterministic by design (Section 6.1).

As always with a calculus, the idea is thatVC distills the essence of functional logic programming.

Each construct does just one thing, andVC cannot be made smaller without losing key features.

We believe that it is possible to useVC as the compilation target for a variety of functional logic

languages such as Curry [Hanus et al. 2016]. We are ourselves working on Verse, a new general

purpose programming language, built directly onVC; indeed, our motivation for developingVC
is practical rather than theoretical. No single aspect of VC is unique, but we believe that their

combination is particularly harmonious and orthogonal. We discuss the related work in Section 6,

and design alternatives in Section 5.

Our second contribution is to equipVC with a small-step term-rewriting semantics (Section 3).

We said that the lambda calculus is a subset of VC, so it is natural to give its semantics using

rewrite rules, just as for the lambda calculus. That seems challenging, however, because logical

variables and unification involve sharing and non-local communication. How can that be expressed

in a rewrite system?

Happily, we can build on prior work: exactly the same difficulty arises with call-by-need in

the lambda calculus. For a long time, the only semantics of call-by-need that was faithful to its

sharing semantics (in which thunks are evaluated at most once) was an operational semantics that

sequentially threads a global heap through execution [Launchbury 1993]. But then Ariola et al., in a

seminal paper, showed how to reify the heap into the term itself, and thereby build a rewrite system

that is completely faithful to lazy evaluation [Ariola et al. 1995]. Inspired by their idea, we present

a new rewrite system for functional logic programs that reifies logical variables and unification

into the term itself, and replaces non-deterministic search with a (deterministic) tree of successful

results. For example, the expression above can be rewritten as follows
1
:

∃x y z. x = ⟨y, 3⟩; x = ⟨2, z⟩; y

−→{subst} ∃x y z. ⟨2, z⟩ = ⟨y, 3⟩; x = ⟨2, z⟩; y −→{eqn-elim} ∃y z. ⟨2, z⟩ = ⟨y, 3⟩; y

−→{u-tup} ∃y z. 2=y; z=3; y −→{eqn-elim} ∃y. 2=y; y

−→{hnf-swap} ∃y. y =2; y −→{subst} ∃y. y =2; 2

−→{eqn-elim} 2

Rules may be applied anywhere they match, again just like the lambda calculus. This freedom only

makes sense, however, if each term ultimately reduces to a unique value, regardless of its reduction

path, so we show thatVC is confluent, in Section 4.

2
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Syntax

Integers 𝑘

Variables 𝑥,𝑦, 𝑧, 𝑓 , 𝑔

Programs 𝑝 ::= one{e} where fvs(𝑒) = ∅
Expressions 𝑒 ::= v | 𝑒𝑞; e | ∃x . e | fail | e

1
e
2
| v

1
v
2
| one{e} | all{e}

𝑒𝑞 ::= e | v = e Note: “𝑒𝑞” is pronounced “expression or equation”

Values v ::= 𝑥 | hnf

Head values hnf ::= 𝑘 | 𝑜𝑝 | ⟨v
1
, ···, v

n
⟩ | _x . e

Primops 𝑜𝑝 ::= gt | add
Concrete syntax: “ ” and “;” are right-associative

“ ” and “=” bind more tightly than “;”

“_”, “∃” scope as far to the right as possible

e.g., (_y. ∃x . x =1; x + y) means (_y. (∃x . ((x =1); (x + y))))
Parentheses may be used freely to aid readability and override default precedence.

Desugaring

e
1
+ e

2
means add⟨e

1
, e

2
⟩

e
1
> e

2
means gt⟨e

1
, e

2
⟩

∃x
1
x
2
··· x

n
. e means ∃x

1
. ∃x

2
. ···∃x

n
. e

x := e
1
; e

2
means ∃x . x = e

1
; e

2

e
1

e
2

means f := e
1
; x := e

2
; f x f , x fresh

⟨e
1
, ···, e

n
⟩ means x

1
:= e

1
; ···; x

n
:= e

n
; ⟨x

1
, ···, x

n
⟩ x

i
fresh

e
1
= e

2
means x := e

1
; x = e

2
; x x fresh

_⟨x
1
, ···, x

n
⟩. e means _p. ∃x

1
··· x

n
. p= ⟨x

1
, ···, x

n
⟩; e p fresh, n ⩾ 0

if (∃x
1
···x

n
. e

1
) then e

2
else e

3
means (one{(∃x

1
···x

n
. e

1
; _⟨⟩. e

2
) (_⟨⟩. e

3
)})⟨⟩

fvs(e) means the free variables of e; inVC, _ and ∃ are the only binders.

Fig. 1. VC: Syntax

2 THE VERSE CALCULUS, INFORMALLY
We begin by presenting the Verse calculus, VC, informally. We will describe its rewrite rules

precisely in Section 3. The (abstract) syntax ofVC is given in Fig. 1. It has a very conventional

sub-language that is just the lambda calculus with some built-in operations and tuples as data

constructors:

• Values. A value v is either a variable x or a head-normal form hnf . InVC, a variable counts
as a value because in a functional logic language an expression may evaluate to an as-yet-

unknown logical variable. A head-normal form is a conventional value: a built-in constant k,

an operator op, a tuple, or a lambda. Our tiny calculus offers only integer constants k and

two illustrative integer operators op, namely gt and add.

• Expressions e includes values v, and applications v
1

v
2
; we will introduce the other constructs

as we go. For clarity, we often write v
1
(v

2
) rather than v

1
v
2
when v

2
is not a tuple.

1
The rule names come from Fig. 3, to be discussed in Section 3; they are given here just for reference.

3
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• A term 𝑒𝑞 is either an ordinary expression e, or an equation v = e; this syntax ensures that

equations can only occur to the left of a “; ” (Section 2.1).

• A program, p, contains a closed expression from which we extract one result using one (see

Section 2.5)—unless the expression fails, in which case the program fails (Section 2.2).

The formal syntax for e allows only applications of values, (v
1

v
2
), but the desugaring rules in Fig. 1

show how to desugar more applications (e
1

e
2
). This ANF-like normalization is not fundamental; it

simply reduces the number of rewrite rules we need. The desugaring rules are more suggestive

than precise; we aim to be precise aboutVC but less so about the source language.

Modulo this desugaring, every lambda calculus term is aVC term, and has the same semantics.

Just like the lambda calculus,VC is untyped; adding a type system is an excellent goal, but is the

subject of another paper.

Expressions also include two other key collections of constructs: logical variables and the use of

equations to perform unification (Section 2.1), and choice (Section 2.2). The details of choice and

unification, and especially their interaction, are subtle, so this section does a lot of arm-waving. But

fear not: Section 3 spells out the precise details. We only have space to describe one incarnation of

VC; Section 5 explores some possible alternative design choices.

2.1 Logical variables and equations
The Verse calculus includes first class logical variables and equations that constrain their values. You

can bring a fresh logical variable into scope with ∃, constrain a value to be equal to an expression

with an equation v = e, and compose expressions in sequence with 𝑒𝑞; e (see Fig. 1). As an example,

what might be written let x = e
1
in e

2
in a conventional functional language can be written

∃x . x = e
1
; e

2
inVC. The syntax carefully constrains both the form of equations and where they

can appear: an equation (v = e) always equates a value 𝑣 to an expression 𝑒; and an equation can

only appear to the left of a “; ” (see 𝑒𝑞 in Fig. 1). The desugaring rules in Fig. 1 rewrite a general

equation e
1
= e

2
into this simpler form.

A program executes by solving its equations, using the process of unification. For example,

∃x y z. x = ⟨y, 3⟩; x = ⟨2, z⟩; y

is solved by unifying x with ⟨y, 3⟩ and with ⟨2, z⟩; that in turn unifies ⟨y, 3⟩ with ⟨2, z⟩, which unifies
y with 2 and z with 3. Finally, 2 is returned as the result. Note carefully that, as in any declarative

language, logical variables are not mutable; a logical variable stands for a single, immutable value.

We use “∃” to bring a fresh logical variable into scope, because we really mean “there exists an x

such that ···.”
High-level functional languages usually provide some kind of pattern matching; in such a

language, we might define first by first⟨a, b⟩ =a. Such pattern matching is typically desugared to

more primitive case expressions, but inVC we do not need case expressions: unification does the

job. For example we can define first like this:

first :=_p. ∃ab. p= ⟨a, b⟩; a

For convenience, we allow ourselves to write a term like first⟨2, 5⟩, where we define the library
function first separately with “:=”; formally, you can imagine each example e being wrapped with a

binding for first, thus ∃first . first = ...; e, and similarly for other library functions.

This way of desugaring pattern matching means that the input to first is not required to be fully

determined when the function is called. For example:

∃x y. x = ⟨y, 5⟩; 2=first (x); y

4
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Here first (x) evaluates to y, which we then unify with 2. Another way to say this is that, as usual

in logic programming, we may constrain the output of a function (here 2=first (x)), and thereby

affect its input (here ⟨y, 5⟩).
Although “;” is called “sequencing,” the order of that sequence is immaterial for equations that do

not contain choices (see Section 2.2 for the latter caveat). For example, consider (∃x y. x = 3 + y; y =

7; x). The sub-expression 3 + y is stuck until y gets a value. InVC, we can unify x only with a

value—we will see why in Section 2.2—and hence the equation x = 3+ y is also stuck. No matter! We

simply leave it and try some other equation. In this case, we can make progress with y = 7, and that

in turn unlocks x = 3 + y because now we know that y is 7, so we can evaluate 3 + 7 to 10 and unify

x with that. The idea of leaving stuck expressions aside and executing other parts of the program is

called residuation [Hanus 2013]
2
, and is at the heart of our mantra “just solve the equations.”

2.2 Choice
In conventional functional programming, an expression evaluates to a single value. In contrast,

a VC expression evaluates to zero, one, or many values; or it can get stuck, which is different

from producing zero values. The expression fail yields no values; a value v yields one value; and

the choice e
1

e
2
yields all the values yielded by e

1
followed by all the values yielded by e

2
. Order

is maintained and duplicates are not eliminated; we shall see why in Section 2.8. In short, an

expression yields a sequence of values, not a bag, and certainly not a set.

The equations we saw in Section 2.1 can fail, if the arguments are not equal, yielding no results.

Thus 3= 3 succeeds, while 3= 4 fails, returning no results. In general, we use “fail” and “returns no

results” synonymously.

What if the choice was not at the top level of an expression? For example, what does ⟨3, (7 5)⟩
mean? In VC, it does not mean a pair with some kind of multi-value in its second component.

Indeed, as you can see from Fig. 1, this expression is syntactically ill-formed. We must instead

give a name to that choice, and then we can put it in the pair, thus: ∃x . x = (7 5); ⟨3, x⟩. Now the

expression is syntactically legal, but what does it mean? In VC, a variable is never bound to a

multi-value. Instead, x is successively bound to 7, and then to 5, like this:

∃x . x = (7 5); ⟨3, x⟩ −→ (∃x . x =7; ⟨3, x⟩) (∃x . x =5; ⟨3, x⟩)

We duplicate the context surrounding the choice, and “float the choice outwards.” The same thing

happens when there are multiple choices. For example:

∃x y. x = (7 22); y = (31 5); ⟨x, y⟩ yields the sequence ⟨7, 31⟩, ⟨7, 5⟩, ⟨22, 31⟩, ⟨22, 5⟩

Notice that the order of the two equations now is significant:

∃x y. y = (31 5); x = (7 22); ⟨x, y⟩ yields the sequence ⟨7, 31⟩, ⟨22, 31⟩, ⟨7, 5⟩, ⟨22, 5⟩

Readers familiar with list comprehensions in Haskell and other languages will recognize this

nested-loop pattern, but here it emerges naturally from choice as a deeply built-in primitive, rather

than being a special construct for lists.

Just as we never bind a variable to a multi-value, we never bind it to fail either; rather we iterate

over zero values, and that iteration of course returns zero values. So:

∃x . x = fail; 33 −→ fail

2
Hanus did not invent the terms “residuation” and“narrowing,” but his survey is an excellent introduction and bibliography.

5
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2.3 Mixing choice and equations
In the last section, we discussed what happens if there is a choice in the right-hand side (RHS) of

an equation. What if we have equations under choice? For example:

∃x . (x =3; x + 1) (x =4; x + 4)
Intuitively, “either unify x with 3 and yield x + 1, or unify x with 4 and yield x + 4”. But there is
a problem: so far we have said only “a program executes by solving its equations” (Section 2.1).

Here, we can see two equations, (x =3) and (x =4), which are mutually contradictory, so clearly

we need to refine our notion of “solving.” The answer is pretty clear: in a branch of a choice, solve

the equations in that branch to get the value for some logical variables, and propagate those values

to occurrences in that branch (only). Occurrences of that variable outside the choice are unaffected.

We call this local propagation. This local-propagation rule would allow us to reason thus:

∃x . (x =3; x + 1) (x =4; x + 4) −→ ∃x . (x =3; 4) (x =4; 8)
Are we stuck now? No, we can float the choice out as before

3
,

∃x . (x =3; 4) (x =4; 8) −→ (∃x . x =3; 4) (∃x . x =4; 8)
and now it is apparent that the sole occurrence of x in each ∃ is the equation (x = 3), or (x = 4)
respectively; so we can drop the ∃ and the equation, yielding (4 8).

2.4 Pattern matching and narrowing
We remarked in Section 2.1 that we can desugar the pattern matching of a high-level language into

equations. But what about multi-equation pattern matching, such as this definition in Haskell:

append [ ] 𝑦𝑠 =𝑦𝑠

append (x : 𝑥𝑠) 𝑦𝑠 =x : append 𝑥𝑠 𝑦𝑠

If pattern matching on the first equation fails, we want to fall through to the second. Fortunately,

choice allows us to express this idea directly, where we use the empty tuple ⟨⟩ to represent the

empty list and pairs to represent cons cells (see Fig. 1 to desugar the pattern-matching lambda):

append :=_⟨𝑥𝑠,𝑦𝑠⟩. ((𝑥𝑠 = ⟨⟩; 𝑦𝑠) (∃x xr . 𝑥𝑠 = ⟨x, xr⟩; ⟨x, append⟨xr, 𝑦𝑠⟩⟩))
If 𝑥𝑠 is ⟨⟩, the left-hand choice succeeds, returning𝑦𝑠 ; and the right-hand choice fails (by attempting

to unify ⟨⟩ with ⟨x, xr⟩). If 𝑥𝑠 is of the form ⟨x, xr⟩, the right-hand choice succeeds, and we make a

recursive call to append. Finally, if 𝑥𝑠 is built with head-normal forms other than the empty tuple

and pairs, both choices fail, and append returns no results at all.

This approach to pattern matching is akin to narrowing [Hanus 2013]. Suppose single= ⟨1, ⟨⟩⟩,
a singleton list whose only element is 1. Consider the call ∃𝑧𝑠. append⟨𝑧𝑠, single⟩ = single; 𝑧𝑠 . The

call to append expands into a choice:

(𝑧𝑠 = ⟨⟩; single) (∃x xr . 𝑧𝑠 = ⟨x, xr⟩; ⟨x, append⟨xr, single⟩⟩)
which amounts to exploring the possibility that 𝑧𝑠 is headed by ⟨⟩ or a pair—the essence of narrowing.
It should not take long to reassure yourself that the program evaluates to ⟨⟩, effectively running

append backwards in the classic logic-programming manner.

This example also illustrates thatVC allows an equation (for append) that is recursive. As in any

functional language with recursive bindings, you can go into an infinite loop if you keep fruitlessly

inlining the function in its own right-hand side. It is the business of an evaluation strategy to do

only rewrites that make progress toward a solution (Section 3.8).

3
Indeed, we could have done so first, had we wished.

6
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2.5 Conditionals and one
Every source language will provide a conditional, such as if (x = 0) then e

2
else e

3
. But what is

the equality operator in (x =0)? One possibility, adopted by Curry [Antoy and Hanus 2021, §3.4],

is this: there is one “=” for equations (as in Section 2.1), and another, say “==”, for testing equality

(returning a boolean with constructors True and False). VC takes a different, more minimalist

position, following Icon’s lead, see Section 6.6. InVC, there is just one equality operator, written

“=” just as in Section 2.1. The expression if (x = 0) then e
2
else e

3
tries to unify x with 0. If that

succeeds (yields one or more values), the if returns e
2
; otherwise it returns e

3
. There are no data

constructors True and False; instead failure (returning zero values) plays the role of falsity.

But something is terribly wrong here. Consider ∃x y. y = (if (x = 0) then 3 else 4); x = 7.

Presumably this is meant to set x to 7, test whether it is equal to 0 (it is not), and unify y with 4.

But what is to stop us instead unifying x with 0 (via (x =0)), unifying y with 3, and then failing

when we try to unify x with 7? Not only is that not what we intended, but it also looks very

non-deterministic: the result is affected by the order in which we did unifications.

To address this, we give if a special property: in the expression if e
1
then e

2
else e

3
, equations

inside e
1
(the condition of the if) can only unify variables bound inside e

1
; variables bound outside

e
1
are called “rigid.” So in our example, the x in (x = 0) is rigid and cannot be unified. Instead, the if

is stuck, and we move on to unify x =7. That unblocks the if and all is well.

In fact,VC desugars the three-part if into something simpler, the unary construct one{e}. Its
specification is this: if e fails, one{e} fails; otherwise one{e} returns the first of the values yielded
by e. Now, if e

1
then e

2
else e

3
can (nearly) be re-expressed like this:

one{(e
1
; e

2
) e

3
}

This isn’t right yet, but the idea is this: if e
1
fails, the first branch of the choice fails, so we get

e
3
; if e

1
succeeds, we get e

2
, and the outer one will select it from the choice. But what if e

2
or e

3

themselves fail or return multiple results? Here is a better translation, the one given in Fig. 1
4
, which

wraps the then and else branches in a thunk
5
:

(one{(e
1
; (_⟨⟩. e

2
)) (_⟨⟩. e

3
)})⟨⟩

The argument of one reduces to either (_⟨⟩. e
2
) (_⟨⟩. e

3
) or (_⟨⟩. e

3
) depending on whether e

1

succeeds or fails, respectively; one then picks the first value, that is _⟨⟩. e
2
if e

1
succeeded, or _⟨⟩. e

3

if e
1
failed, and applies it to ⟨⟩. As a bonus, provided we do no evaluation under a lambda, then e

2

and e
3
will remain unevaluated until the choice is made, just as we expect from a conditional.

We use the same local-propagation rule for one that we do for choice (Section 2.3). This, together

with the desugaring for if into one, gives the “special property” of if described above.

2.6 Tuples and all
The main data structure inVC is the tuple. A tuple is a finite sequence of values, ⟨v

1
, ···, v

n
⟩, where

𝑛 ⩾ 0. A tuple can be used like a function: indexing is simply function application with the argument

being integers from 0 and up. Indexing out of range is fail, as is indexing with a non-integer value.

For example, t := ⟨10, 27, 32⟩; t (1) reduces to 27 and t (3) reduces to fail.

What if we apply a tuple to a choice, thus ⟨10, 27, 32⟩(1 0 1)? First we must desugar the applica-

tion to the form (v
1

v
2
), because that is allVC permits (Fig. 1), giving x := (1 0 1); ⟨10, 27, 32⟩(x),

which readily reduces to (27 10 27).
Tuples can be constructed by collecting all the results from a multi-valued expression, using the

all construct: if e reduces to (v
1
··· v

n
), where 𝑛 ⩾ 2, then all{e} reduces to the tuple ⟨v

1
, ···, v

n
⟩;

4
The translation in the figure also allow variables bound in the condition to scope over the then branch.

5
Using thunks for the branches of a conditional is another very old idea; for example, see [Steele Jr. 1978, p. 54].
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all{v} produces the singleton tuple ⟨v⟩; and all{fail} produces the empty tuple ⟨⟩. Note that is

associative, which means that we can think of a sequence or tree of binary choices as really being a

single 𝑛-way choice.

You might think that tuple indexing would be stuck until we know the index, but inVC, the
application of a tuple to a value rewrites to a choice of all the possible values of the index. For

example, t := ⟨10, 27, 32⟩; ∃i. t (i) looks stuck because we have no value for i, but actually rewrites

to:

∃i. (i=0; 10) (i=1; 27) (i=2; 32)

which (as we will see in Section 3) simplifies to just (10 27 32). So all allows a choice to be reified
into a tuple; and (∃i. t (i)) allows a tuple to be turned back into a choice. The idea of rewriting a

call of a function with a finite domain into a finite choice is called “narrowing” in the literature.

Do we even need one as a primitive construct, given that we have all? Can we not use (all{e})(0)
instead of one{e}? Indeed, they behave the same if e fully reduces to finitely many choices of

values. But all really requires every arm of the choice tree to resolve to a value before proceeding,

while one only needs the first choice to be a value. So, supposing that loop is a non-terminating

function, one{1 loop⟨⟩} can reduce to 1, while (all{1 loop⟨⟩})(0) loops.

2.7 Programming in Verse
VC is a fairly small language, but it is quite expressive. For example, we can define the typical list

functions one would expect from functional programming by using the duality between tuples and

choices, as seen in Fig. 2. A tuple can be turned into choices by indexing with a logical variable i.

Conversely, choices can be turned into a tuple using all. The choice operator “ ” serves as both

cons and append for choices; the corresponding operations for tuples are defined in Fig. 2. Partial

functions, e.g., head, will fail when the argument is outside of the domain.

Mapping a multi-valued function over a tuple is somewhat subtle. With flatMap the choices are

flattened in the resulting tuple, e.g., flatMap⟨(_x . x x + 10), ⟨2, 3⟩⟩ reduces to ⟨2, 12, 3, 13⟩, whereas
map keeps the choices. For example:

map⟨(_x . x x + 10), ⟨2, 3⟩⟩ −→ ⟨(_x . x x + 10) (2), (_x . x x + 10) (3)⟩ −→
⟨2 12, 3 13⟩ −→ ⟨2, 3⟩ ⟨2, 13⟩ ⟨12, 3⟩ ⟨12, 13⟩

Pattern matching for function definitions is simply done by unification of ordinary expressions;

see the desugaring of pattern-matching lambda in Fig. 1. This in turn means that we can use

ordinary abstraction mechanisms for patterns. For example, here is a function, fcn, that could be

called as follows: fcn⟨88, 1, 99, 2⟩.

fcn(t) :=∃x y. t = ⟨x, 1, y, 2⟩; x + y

If we want to give a name to the pattern, it is simple to do so:

pat⟨v,w⟩ := ⟨v, 1,w, 2⟩; fcn(t) :=∃x y. t =pat⟨x, y⟩; x + y

Patterns are truly first-class, going well beyond what can be done with, say, pattern synonyms in

Haskell. For example, pat could be computed, like this:

pat⟨a, v,w⟩ := if a=0 then ⟨v, 1,w, 2⟩ else ⟨1, 1,w, v⟩

so that the pattern depends on the value of a.

8
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Desugaring

f (x) := e means f :=_x . e

f ⟨x, y⟩ := e means f :=_⟨x, y⟩. e

head (𝑥𝑠) := 𝑥𝑠 (0)
tail(𝑥𝑠) := all{∃i. i > 0; 𝑥𝑠 (i)}

cons⟨x, 𝑥𝑠⟩ := all{x ∃i. 𝑥𝑠 (i)}
append⟨𝑥𝑠,𝑦𝑠⟩ := all{(∃i. 𝑥𝑠 (i)) (∃i. 𝑦𝑠 (i))}
flatMap⟨f , 𝑥𝑠⟩ := all{∃i. f (𝑥𝑠 (i))}

map⟨f , 𝑥𝑠⟩ := if x :=head (𝑥𝑠) then cons⟨f (x),map⟨f , tail(𝑥𝑠)⟩⟩ else ⟨⟩
filter ⟨p, 𝑥𝑠⟩ := all{∃i. x :=𝑥𝑠 (i); one{p(x)}; x}
find⟨p, 𝑥𝑠⟩ := one{∃i. x :=𝑥𝑠 (i); one{p(x)}; x}

some⟨p, 𝑥𝑠⟩ := one{∃i. p(𝑥𝑠 (i))}
zip⟨𝑥𝑠,𝑦𝑠⟩ := all{∃i. ⟨𝑥𝑠 (i), 𝑦𝑠 (i)⟩}

Fig. 2. Functions on tuples, analogous to list or array functions in some other languages

2.8 for loops
The expression for(e

1
) do e

2
will evaluate e

2
for each of the choices in e

1
, rather like a list compre-

hension in languages like Haskell or Python. The scoping is peculiar
6
in that variables bound in e

1

also scope over e
2
. So, for example, for(x :=2 3 5) do (x + 1) will reduce to the tuple ⟨3, 4, 6⟩.

Like list comprehension, for supports filtering; inVC, this falls out naturally by just using a

possibly failing expression in e
1
. So, for(x := 2 3 5; x > 2) do (x + 1) reduces to ⟨4, 6⟩. Nested

iteration in a for works as expected and requires nothing special. So, for(∃x y. x = 10 20; y =

1 2 3) do (x + y) reduces to ⟨11, 12, 13, 21, 22, 23⟩.
Just as if is defined in terms of the primitive one (Section 2.5), we can define for in terms of the

primitive all. Again, we have to be careful when e
2
itself fails or produces multiple results; simply

writing all{e
1
; e

2
} would give the wrong semantics. So we put e

2
within a lambda expression, and

apply each element of the tuple to ⟨⟩ afterwards, using a map function (as defined in Fig. 2):

for(∃x
1
···x

n
. e

1
) do e

2
means v :=all{∃x

1
···x

n
. e

1
; _⟨⟩. e

2
}; map⟨_z. z⟨⟩, v⟩)

for a fresh variable v. Note how this achieves that peculiar scoping rule: the initial variables in

∃x
1
···x

n
. e

1
are in scope in e

2
. Moreover, any effects (like being multi-valued) in e

2
will not affect

the choices defined by e
1
since the effects are contained within that lambda. So, for example,

for(x :=10 20) do (x x + 1) will reduce to ⟨10, 20⟩ ⟨10, 21⟩ ⟨11, 20⟩ ⟨11, 21⟩. At this point, it
is crucial that the desugaring of for uses map, not flatMap.

Given that tuple indexing expands into choices, we can iterate over tuple indices and elements

using for. For example, for(∃i x . x = t (i)) do (x + i) produces a tuple with the elements of t, each

increased by its index within t. Notice the absence of the fencepost-error-prone iteration of i over

(0 . . size (t) − 1), common in most languages.

3 REWRITE RULES
How can we give a precise semantics to a programming language? Here are some possibilities:

• A denotational semantics is the classical approach, but it is tricky to give a (perspicuous)

denotational semantics to a functional logic language because of the logical variables. We

6
But similar to C++, Java, Fortress, and Swift, and explained in VC by the subsequent desugaring into all.
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have such a denotational semantics under development, which we offer for completeness in

Appendix E, but that is the subject of another paper.

• A big-step operational semantics typically involves explaining how a (heap, expression) start-

ing point evaluates to a (heap, value) pair; Launchbury’s natural semantics for lazy eval-

uation [Launchbury 1993] is the classic paper. The heap, threaded through the semantics,

accounts for updating thunks as they are evaluated. Despite its “operational semantics” title,

the big-step approach does not convey accurate operational intuition, because it goes all the

way to a value in one step.

• A small-step operational semantics addresses this criticism: it typically describe how a (heap,

expression, stack) configuration evolves, one small step at a time (e.g., [Peyton Jones 1992]).

The difficulty is that the description is now so low level that it is again hard to explain to

programmers.

• A rewrite semantics steers between these two extremes. For example, Ariola et al.’s “A call-by-

need lambda calculus” [Ariola et al. 1995] shows how to give the semantics of a call-by-need

language as a set of rewrite rules. The great advantage of this approach is that it is easily

explicable to programmers. In fact, teachers almost always explain the execution of Haskell

or ML programs as a succession of rewrites of the program, such as: inline this call, simplify

this case expression, etc.

Up to this point, there has been no satisfying rewrite semantics for functional logic languages

(see Section 6 for previous work). Our main technical contribution is to fill this gap with a rewrite

semantics forVC, one that has the following properties:
• The semantics is expressed as a set of rewrite rules (Fig. 3). These rules apply to the core

language of Fig. 1, after all desugaring.

• Any rule can be applied, in either direction, anywhere in the program term (including under

lambdas).

• The rules are (mostly) oriented, with the intent that using them left to right makes progress.

• Despite this orientation, the rules do not say which rule should be applied where; that is the

task of a separate evaluation strategy (Section 3.8).

• The rules can be applied by programmers to reason about what their program does, and by

compilers to transform (and hopefully optimise) the program.

• There is no “magical rewriting” (Section 6.3): all the free variables on the right-hand side of a

rule are bound on the left.

3.1 Functions and function application rules
Looking at Fig. 3, rule app-add should be familiar: it simply rewrites an application of add to integer

constants. For example add⟨3, 4⟩ −→ 7. Rules app-gt and app-gt-fail are more interesting: gt⟨k
1
, k

2
⟩

fails if 𝑘
1
⩽ 𝑘

2
(rather than returning False as is more conventional), and returns k

1
otherwise

(rather than returning True). An amusing consequence is that (10 > x > 0) succeeds iff x is between

10 and 0 (comparison is right-associative).

β-reduction is performed quite conventionally by app-beta; the only unusual feature is that on

the RHS of the rule, we use an ∃ to bind x, together with (x =v) to equate x to the argument. The

rule may appear to use call-by-value, because the argument is a value v, but remember that values

include variables, and a variable may be bound to an as-yet-unevaluated expression. For example:

∃y. y =3 + 4; (_x . x + 1) (y) −→ ∃y. y =3 + 4; ∃x . x =y; x + 1

Finally, the side condition 𝑥 ∉ fvs(v) in app-beta ensures that the ∃x does not capture any variables

free in v. If x appears free in v, α-conversion may be used on _x . e to rename x to 𝑦 ∉ fvs(v).

10
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Application:

app-add add⟨k
1
, k

2
⟩ −→ k

3
where 𝑘

3
= 𝑘

1
+ 𝑘

2

app-gt gt⟨k
1
, k

2
⟩ −→ k

1
if 𝑘

1
> 𝑘

2

app-gt-fail gt⟨k
1
, k

2
⟩ −→ fail if 𝑘

1
⩽ 𝑘

2

app-beta
𝛼 (_x . e) (v) −→ ∃x . x =v; e if 𝑥 ∉ fvs(v)

app-tup ⟨v
0
, ···, v

n
⟩(v) −→ ∃x . x =v; (x =0; v

0
) ··· (x =n; v

n
) fresh x ∉ fvs(v, v

0
, ···, v

n
)

app-tup-0 ⟨⟩(v) −→ fail

Unification:

u-lit k
1
=k

2
; e −→ e if 𝑘

1
= 𝑘

2

u-tup ⟨v
1
, ···, v

n
⟩ = ⟨v ′

1
, ···, v ′

n
⟩; e −→ v

1
=v
′
1
; ···; v

n
=v
′
n
; e

u-fail hnf
1
=hnf

2
; e −→ fail if u-lit, u-tup do not match

u-occurs x =V [x ]; e −→ fail if V ≠ □
subst 𝑋 [x =v; e ] −→ (𝑋 {v/x}) [x =v; e{v/x}] if x ∈ fvs(𝑋, e), x ∉ fvs(v),

and (v = y =⇒ x ≺ y)

hnf-swap hnf =x; e −→ x =hnf ; e

var-swap y =x; e −→ x =y; e if x ≺ y

seq-swap 𝑒𝑞; x =v; e −→ x =v; 𝑒𝑞; e unless (𝑒𝑞 is y =v
′
and y ⪯ x)

Elimination:

val-elim v; e −→ e

exi-elim ∃x . e −→ e if x ∉ fvs(e)
eqn-elim ∃x . 𝑋 [x =v; e ] −→ 𝑋 [e ] if x ∉ fvs(𝑋 [v; e ])
fail-elim 𝑋 [fail] −→ fail if 𝑋 ≠ □

Normalization:

exi-float
𝛼 𝑋 [∃x . e ] −→ ∃x . 𝑋 [e ] if 𝑋 ≠ □, 𝑥 ∉ fvs(𝑋 )

seq-assoc (𝑒𝑞; e
1
); e

2
−→ 𝑒𝑞; (e

1
; e

2
)

eqn-float v = (𝑒𝑞; e
1
); e

2
−→ 𝑒𝑞; (v = e

1
; e

2
)

exi-swap ∃x . ∃y. e −→ ∃y. ∃x . e

Choice:

one-fail one{fail} −→ fail

one-value one{v} −→ v

one-choice one{v e} −→ v

all-fail all{fail} −→ ⟨⟩
all-value all{v} −→ ⟨v⟩
all-choice all{v

1
··· v

n
} −→ ⟨v

1
, ···, v

n
⟩

choose-r fail e −→ e

choose-l e fail −→ e

choose-assoc (e
1

e
2
) e

3
−→ e

1
(e

2
e
3
)

choose SX [𝐶𝑋 [e
1

e
2
] ] −→ SX [𝐶𝑋 [e

1
] 𝐶𝑋 [e

2
] ] if 𝐶𝑋 ≠ □

Note: In the rules marked with a superscript 𝛼 , use 𝛼-conversion to satisfy the side condition.

Fig. 3. The Verse Calculus: Rewrite rules
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Execution contexts 𝑋 ::= □ | v =𝑋 ; e | 𝑋 ; e | 𝑒𝑞; 𝑋
Value contexts 𝑉 ::= □ | ⟨v

1
, ···,V , ···, v

n
⟩

Scope contexts 𝑆𝑋 ::= one{SC} | all{SC}
𝑆𝐶 ::= □ | SC e | e SC

Choice contexts 𝐶𝑋 ::= □ | v =𝐶𝑋 | 𝐶𝑋 ; e | ce; 𝐶𝑋 | ∃x .𝐶𝑋

Choice-free exprs 𝑐𝑒 ::= v | ceq; ce | one{e} | all{e} | ∃x . ce | op(v)
𝑐𝑒𝑞 ::= ce | v = ce

Fig. 4. The syntax of contexts

In VC, tuples behave like (finite) functions in which application is indexing. Rule app-tup

describes how tuple application works on non-empty tuples, while app-tup-0 deals with empty

tuples. Notice that app-tup does not require the argument to be evaluated to an integer 𝑘 ; instead

the rule works by narrowing. So the expression ∃x . ⟨2, 3, 2, 7, 9⟩(x) = 2; x does not suspend awaiting

a value for x; instead it explores all the alternatives, returning (0 2). This is a free design decision:

a suspending semantics would be equally easy to express.

3.2 Unification rules
Next we study unification, again in Fig. 3. Rules u-lit and u-tup are the standard rules for unification,

going back nearly 60 years [Robinson 1965]. Rule u-fail makes unification fail on two different

head-normal forms (see Fig. 1 for the syntax of hnf ). Note in particular that unification fails if you

attempt to unify a lambda with any other value, including itself (see Section 4.3).

The standard “occurs check” is rule u-occurs, which makes use of a context V , whose syntax is

given in Fig. 4 [Felleisen and Friedman 1986; Felleisen et al. 1987]. In general, a context is a syntax

tree containing a single hole, written □. The notation V [v ] is the term obtained by filling the hole

in V with v. For example, u-occurs reduces x = ⟨1, x, 3⟩ to fail using the context V = ⟨1,□, 3⟩.
The key innovation in VC is the way bindings (that is, just ordinary equalities) of logical

variables are propagated. The key rule is:

subst 𝑋 [x =v; e ] −→ (𝑋 {v/x}) [x =v; e{v/x}] if x ∈ fvs(𝑋, e), x ∉ fvs(v)
and v = y =⇒ x ≺ y

The rule says that if we have an equation (x =v), we can replace the occurrences of x by v within

the following expression and also within a surrounding context. This rule uses context 𝑋 (Fig. 4),

and uses the notation e{v/x} to mean “capture-avoiding substitution of v for x in e” (and similarly

𝑋 {v/x}, but 𝑋 will have no bindings to be avoided). There are several things to notice:

• subst fires only when the right-hand side of the equation is a value v, so that the substitution

does not risk duplicating either work or choices. This restriction is precisely the same as

the let-v rule of Ariola et al. [1995] and, by not duplicating choices, it neatly implements

so-called call-time choice [Hanus 2013]. We do not need a heap, or thunks, or updates; the

equalities of the program elegantly suffice to express the necessary sharing.

• subst replaces all occurrences of x in 𝑋 and e, but it leaves the original (x =v) undisturbed,
because 𝑋 might not be big enough to encompass all occurrences of x. For example, we can

rewrite (y =x + 1; (x = 3; z=x + 3)) to (y =x + 1; (x = 3; z= 3 + 3)), using 𝑋 = (□; z=x + 3),
but that leaves an occurrence of x in (y =x + 1). When there are no remaining occurrences

of x we may eliminate the binding: see Section 3.5.
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• The side condition 𝑥 ∉ fvs(v) in subst prevents infinite substitution, while 𝑥 ∈ fvs(𝑋, 𝑒)
ensures that there is at least one occurrence to substitute. The other side condition will be

explained next, when we discuss var-swap.

3.3 Swapping and binding order
Rules hnf-swap helps subst to fire by putting the variable on the left. Rule var-swap is trickier.

Consider this example where a and b are bound further out, perhaps by lambdas. It can rewrite in

two different ways:

∃x . x = ⟨a⟩; x = ⟨b⟩; x

−→{subst} ∃x . x = ⟨a⟩; ⟨a⟩ = ⟨b⟩; ⟨a⟩ −→{subst} ∃x . ⟨b⟩ = ⟨a⟩; x = ⟨b⟩; ⟨b⟩
−→{u-tup} ∃x . x = ⟨a⟩; a=b; ⟨a⟩ −→{u-tup} ∃x . b=a; x = ⟨b⟩; ⟨b⟩
−→{eqn-elim} a=b; ⟨a⟩ −→{eqn-elim} b=a; ⟨b⟩
−→{subst} a=b; ⟨b⟩ −→{subst} b=a; ⟨a⟩

Each column is a reduction sequence starting from the same common term at the top; the two

sequences differ when it comes to which equation for x is chosen for subst in the first step. As you

can see, they conclude with two terms that are “obviously” the same, but which are syntactically

different. Rule var-swap allows them to be brought together, so that the unification rules are

syntactically confluent. Rule seq-swap is needed for a similar reason. Consider this example:

c=a; c=b; c

−→{subst} c=a; a=b; a −→{subst} b=a; c=b; b

−→{var-swap} c=a; b=a; a −→{subst} b=a; c=a; a

Again, the concluding terms of the two columns are “obviously” the same, because they differ only

in the order of the equations (b=a) and (c=a); seq-swap allows them to be brought together, and

makes explicit our intuition that order of equations (x = v) does not matter.

Next we study the mysterious 𝑥 ≺ 𝑦 side condition in var-swap, and similar ones in subst and

seq-swap. In the overall proof of confluence, it turns out to be very helpful if the unification rules

are terminating (see Section 4.3). To achieve this, var-swap fires on y =x only if x is bound inside

y, written x ≺ y, so that the innermost-bound variable ends up on the left. Similarly, the side

condition on seq-swap prevents it firing infinitely; and the side condition (v = y =⇒ x ≺ y) on
subst prevents the rule from firing until var-swap has done its work.

Other rules, notably exi-swap, may change this binding order and thereby re-enable var-swap or

seq-swap, but the unification rules considered in isolation are terminating and confluent, and that is

what we need for the proof.

3.4 Local substitution
Consider this (extremely) tricky term: ∃x . x = if (x = 0; x > 1) then 33 else 55. What should

this do? At first you might think it was stuck—how can we simplify the if when its condition

mentions x, which is not yet defined? But in fact, rule subst allows us to substitute locally in any

𝑋 -context surrounding the equation (x =0) thusly:7

∃x . x = if (x =0; x > 1) then 33 else 55; x

−→{subst} ∃x . x = if (x =0; 0 > 1) then 33 else 55; x

−→{app-gt-fail,fail-elim} ∃x . x = if fail then 33 else 55; x

−→{simplify if} ∃x . x = 55; x −→{subst} ∃x . x = 55; 55 −→{eqn-elim} 55
7
Here and elsewhere we rewrite terms that have not been fully desugared, but that is just an expository aid; formally, the

rules apply only to programs in the language of Fig. 1.
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Minor variants of the same example get stuck instead of reducing. For example, if you replace the

(x = 0) with (x =100) then rewriting gets stuck, as the reader may verify; and yet there is a solution

to the equations, namely x =55. And if you replace (x = 0) with (x =55), then rewriting again gets

stuck, and reasonably so, since in this case there are no valid solutions to the equations. Perhaps

this is not surprising: we cannot reasonably expect a program to solve arbitrary equations. For

example, ∃x . x ∗ x = x has two solutions but discovering that involves solving a quadratic equation.

3.5 Elimination and normalization rules
Four elimination rules allow dead code to be dropped (Fig. 3): val-elim discards a value to the left

of a semicolon; exi-elim discards a dead existential; eqn-elim discards an existential ∃x that binds

a variable whose only occurrence is a single equation x = v; and fail-elim discards the context

surrounding a fail. Note that none of these rules, except fail-elim, discard an unevaluated expression,

because that expression might fail and we don’t want to “lose” that failure (see Section 3.7). The

exception is fail-elim, which propagates failure.

Four normalization rules help to put the expression in a form that allows other rules to fire (Fig. 3):

exi-float allows an existential to float outwards; seq-assoc makes semicolon right-associated; eqn-

float moves work out of the right-hand side of an equation v = e. For example, we cannot use subst

to substitute for x in (x = (e; 3); x + 2), because the RHS of the x-equation is not a value; but we

can instead apply eqn-float to get (e; x = 3); x + 2, and then seq-assoc to get e; x = 3; x + 2; and
now we can apply subst.

Rule exi-swap allows you to move an existential inward so that a dead equation can be eliminated

by eqn-elim. Rule exi-swap is unusual because it can be infinitely applied; avoiding that eventuality

is easily achieved by tweaking the evaluation strategy (Section 3.8).

Note that all these swapping and normalization rules preserve the left-to-right sequencing of

expressions, which matters because choices are made left to right as we saw in Section 2.3. Moreover,

the rules do not float equalities or existentials out of choices: that restriction is the key to localizing

unification (Section 2.3) and to the flexible/rigid distinction of Section 2.5. For example, consider

the expression (y = ((x = 3; x + 5) (x = 4)); ⟨x + 1, y⟩). We must not float the binding (x = 3) up to

a point where it might interact with the expression (x + 1), because the latter is outside the choice,
and a different branch of the choice binds x to 4.

3.6 Rules for choice
The rules for choice are given in Fig. 3:

• Rules one-fail, one-value, and one-choice describe the semantics of one, as in Section 2.5.

• Similarly, all-fail, all-value, and all-choice describe the semantics of all (Section 2.6).

• Rules choose-r and choose-l eliminate fail, which behaves as an identity for choice.

• Rule choose-assoc associates choice to the right, so that one-choice or all-choice can fire.

(The dots on the left of all-choice should be read as a string of right-associated choices.)

The most interesting rule is choose, which, just as described in Section 2.2, “floats the choice

outwards,” duplicating the surrounding context. But what “surrounding context” precisely? We

use two new contexts, SX and 𝐶𝑋 , both defined in Fig. 4. A choice context 𝐶𝑋 is like an execution

context 𝑋 , but with no possible choices to the left of the hole:

𝐶𝑋 ::= □ | v =𝐶𝑋 | 𝐶𝑋 ; e | ce; 𝐶𝑋 | ∃x .𝐶𝑋

Here, ce is a guaranteed-choice-free expression (syntax in Fig. 4). This syntactic condition is

necessarily conservative; for example, a call f (x) is considered not guaranteed-choice-free because

14
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it depends on what function f does. We must guarantee not to have choices to the left so that we

preserve the order of choices—see Section 2.3.

The context SX (Fig. 4) in choose ensures that 𝐶𝑋 is as large as possible. This is a very subtle

point: without this restriction we lose confluence. To see this, consider
8
:

∃x . (if (x > 0) then 55 else (44 2)); x =1; (77 99)
−→{subst} ∃x . (if (1 > 0) then 55 else (44 2)); x =1; (77 99)
−→{simplify if} ∃x . 55; x =1; (77 99)
−→{val-elim, eqn-elim} 77 99

But suppose instead we floated the choice out, partway, like this:

∃x . (if (x > 0) then 55 else (44 2)); x =1; (77 99)
−→{Bogus choose} ∃x . (if (x > 0) then 55 else (44 2)); ((x =1; 77) (x =1; 99))

Now the (x = 1) is inside the choice branches, so we cannot use subst to substitute for x in the

condition of the if. Nor can we use choose again to float the choice further out because the if is not

guaranteed choice-free (in this example, the else branch has a choice). So, alas, we are stuck! Our

not-entirely-satisfying solution is to force choose to float the choice all the way to the top. The SX

context (Fig. 4) formalizes what we mean by “the top”: rule choose can float a choice outward only

when it becomes part of the choice tree (context SC) immediately under a one or all construct

(context SX ).

Rule choose moves choices around; only one-choice and all-choice decompose choices. So choice

behaves a bit like a data constructor, or normal form, of the language. This contrasts with other

approaches that eliminate choice by non-deterministically picking one branch or the other, which

immediately gives up confluence.

3.7 The Verse calculus is lenient
VC is lenient [Schauser and Goldstein 1995], not lazy (call-by-need), nor strict (call-by-value).

Under lenient evaluation, everything is eventually evaluated, but functions can run before their

arguments have a value. Consider a function call f (e), where e is not a value. InVC, applications
are in administrative normal form (ANF), so we must actually write ∃x . x = e; f (x). This expression
will not return a value until e reduces to a value: that is, everything is eventually evaluated. But

even so, f (x) can proceed to β-reduce (Section 3.1), assuming we know the definition of f .

Lenience supports abstraction. For example, we can replace an expression (x = ⟨y, 3⟩; y > 7) by
∃f . f = (_⟨p, q⟩. p= ⟨q, 3⟩; q > 7); f ⟨x, y⟩

Here, we abstract over the free variables of the expression, and define a named function f . Calling

the function is just the same as writing the original expression. This transformation would not be

valid under call-by-value.

This is not just a way to get parallelism, which was the original motivation for introducing

lenience in the data-flow language Id [Schauser and Goldstein 1995]; it affects semantics. Consider:

∃f x y. f = (_p. x =7; p); y = (if (x > 0) then 7 else 8); f (y)
Here, y does not get a value until x is known; but x does not get its value (in this case 7) until f is

called. Without lenience this program would be stuck.

However, moving to laziness seems problematic. For example, consider: ∃x . x =wombat⟨⟩; 3. In a

lazy language this expression would yield 3, but inVC, everything is evaluated, and the expression
will not return a value until wombat⟨⟩ converges. There is a good reason for this choice: wombat⟨⟩
8
Remember, if is syntactic sugar for a use of one (see Section 2.5), but using if makes the example easier to understand.
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might fail, and we should not return 3 until we know there is no failure. With laziness, we could

easily lose confluence.

3.8 Evaluation strategy
Any rewrite rule can apply anywhere in the term, at any time. For example, in the term (x =

3 + 4; y = 4 + 2; x + y) the rewrite rules do not say whether to rewrite 3 + 4→ 7 and then 4 + 2→ 6,

or the other way around. The rules do, however, require us to reduce 3 + 4→ 7 before substituting

for x in x + y, because rule subst only fires when the RHS is a value. The rewrite rules thereby

express semantics.

For example, in the lambda calculus, by changing the rewrite rule β to βV, we change the language

from call-by-name to call-by-value; by adding let, plus suitable rewrite rules, we can express call-

by-need [Ariola et al. 1995]. In VC, the rewrite rules are carefully crafted in a similar way; for

example, subst will substitute x =v only when the equation binds a variable to a value, rather like

βV in lambda calculus. Similarly, the elimination rules never discard a term that could fail.

In any term there may of course be many redexes—that is good. An evaluation strategy answers

the question: given a closed term, which unique redex, out of the many possible redexes, should

be rewritten next to make progress toward the result? Let us call an evaluation strategy good

if it guarantees to terminate if there is any terminating sequence of reductions; i.e., if any path

terminates with a value, then a good evaluation strategy will terminate with that same value
9
. For

example, in the pure lambda calculus, normal-order reduction, sometimes called leftmost-outermost

reduction, is a good evaluation strategy.

We believe that the same leftmost-outermost strategy is close to being good for VC10: just
repeatedly reduce the leftmost-outermost redex, with some tweaks to avoid infinite application of

exi-swap. That is easy in theory, but it is tricky in practice. For example, consider (x + y; ⟨x, 3⟩ =
⟨2, y⟩); x. The (x+y) is not a redex, but the equation is; we can apply unification to get (x = 2; y = 3),
and then substitution to rewrite the (x + y) to (2 + 3); and now the (2 + 3) is a redex. So a reduction
may “unlock” a redex far to its left. A major challenge of an implementation is to find the next

redex efficiently.

We have several prototype implementations ofVC, each involving an abstract machine with a

stack, a heap, a bunch of blocked computations, and so on. Exploring this design space is, however,

beyond the scope of this paper.

3.9 Developing and debugging rules
The rules we describe here should both be able to transform a program to its value, and also

be confluent. To aid in the development of the rules, we have used several mechanized tools to

automate reduction, random test-case generation, and confluence checking. Initially, we used PLT

Redex [Felleisen et al. 2009], which is very easy to use but not very efficient. For better efficiency

we switched to a Haskell library for term rewriting. The library provides a DSL for writing rules,

and provides the infrastructure to apply the rules everywhere, detect cycles, provide traces, etc.

Some sample rewrite rules can be found in Fig. 5.

We used this infrastructure in two ways. First, we have a set of examples with known results,

against which we can test a potential rule set. Second, before beginning a proof of confluence, we

used QuickCheck [Claessen and Hughes 2000] to generate test cases and check them for confluence.

9
It would be even better if the strategy could (c) guarantee to find the result in the minimal number of rewrite steps—so-called

“optimal reduction” [Asperti and Guerrini 1999; Lamping 1990; Lévy 1978]—but optimal reduction is typically very hard,

even in theory, and invariably involves reducing under lambdas, so for practical purposes it is well out of reach.

10
We say “close to” being good because we do not yet have a proof; indeed rule fail-elim may be a bit too powerful.
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rules lhs = "APP-ADD" ‘name‘ (do Op Add :@: Tup [ Int k1, Int k2 ] ← [ lhs ]
pure (Int (k1 + k2)))

<> "EXI-SWAP" ‘name‘ (do EXI x (EXI y e) ← [ lhs ]
pure (EXI y (EXI x e)))

<> "EQN-ELIM" ‘name‘ (do EXI x a← [ lhs ]
(ctx, (Var x

′
:=: Val v) :>: e) ← execX a

guard (x =x
′ ∧ x ∉ free (ctx (v :>: e)))

pure (ctx e))
Fig. 5. Sample Haskell reduction rules

QuickCheck turned out to be invaluable at finding counterexamples to otherwise reasonable-looking

rules; it has run on the order of 100 million tests on the current rule set.

4 METATHEORY
The rules of our rewrite semantics can be applied anywhere, in any order, and they give meaning

to programs without committing to a particular evaluation strategy. But then it had better be the

case that no matter how the rules are applied, one always obtains the same result! That is, our

rules should be confluent. In this section, we describe our proof of confluence. Because the rule set

is quite big (compared, say, to the pure lambda calculus), this proof turns out to be a substantial

undertaking.

Reductions and confluence.A binary relation is a set of pairs of related items. A reduction relation

R is the compatible closure
11
of any binary relation on a set of tree-structured terms, such as the

terms generated by some BNF grammar. We write R∗ for the reflexive transitive closure of R. We

write 𝑒 −→R 𝑒 ′ (𝑎 steps to 𝑏) if (𝑒, 𝑒 ′) ∈ R and 𝑒 −→→R 𝑒 ′ (𝑎 reduces to 𝑏) if (𝑒, 𝑒 ′) ∈ R∗. A reduction

relation R is confluent if whenever 𝑒 −→→R 𝑒
1
and 𝑒 −→→R 𝑒

2
, there exists an 𝑒 ′ such that 𝑒

1
−→→R 𝑒 ′ and

𝑒
2
−→→R 𝑒 ′. Confluence gives us the assurance that we will not get different results when choosing

different rules, or get stuck with some rules and not with others.

Normal forms and unicity. A term 𝑒 is an R-normal form if there does not exist any 𝑒 ′ such that

𝑒 −→R 𝑒 ′. Confluence implies uniqueness of normal forms (unicity): if 𝑒 −→→R 𝑒
1
and 𝑒 −→→R 𝑒

2
, and

𝑒
1
and 𝑒

2
are normal forms, then 𝑒

1
= 𝑒

2
[Barendregt 1984, Corollary 3.1.13(ii)].

4.1 Recursion, and the notorious even/odd problem
It is well known that adding letrec to the lambda calculus makes it non-confluent, in a very tiresome,

but hard-to-avoid, way [Ariola and Blom 2002]. In our context, consider the term:

∃x y. x = ⟨1, y⟩; y = (_z. x); x −→→ ∃y. y = (_z. ⟨1, y⟩); ⟨1, y⟩ (1) substitute for x first

∃x y. x = ⟨1, y⟩; y = (_z. x); x −→→ ∃x . x = ⟨1, _z. x⟩; x (2) substitute for y first

The results of (1) and (2) have the same meaning (are indistinguishable by aVC context) but cannot

be joined by our rewrite rules. Nor is this easily fixed by adding new rules, as we did when we

added var-swap (Section 3.2) and seq-swap (Section 3.5). Why not? Because the terms are equivalent

only under some kind of graph isomorphism.

We have tackled this problem in three different ways. First, we can simply prohibit recursion,

and prove confluence under that restriction (Section 4.2). This is akin to proving confluence for

the lambda calculus with let but not letrec. InVC, excluding recursion is not so simple because

VC has no letrec; rather, recursion emerges during execution. For example, is this recursive:

11
“Compatible closure” means that, for any context 𝐸 and any two terms𝑀 and 𝑁 , if (𝑀,𝑁 ) ∈ R then (𝐸 [𝑀 ], 𝐸 [𝑁 ]) ∈ R.
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∃x y. x = ⟨1, y⟩; f ⟨x, y⟩? It might be if f = (_⟨v,w⟩. v =w)! For tuples, we have a simple solution:

rule u-occursmakes the entire term fail if we get recursion through a tuple. But we cannot do this for

lambdas because it leads to non-confluence. Consider f = (_x . const⟨x, f ⟩), where const = (_⟨p, q⟩. p).
The equation for f looks recursive because the RHS mentions f ; but if we β-reduce the application

of const, the occurrence of f disappears.

Thus motivated, we restrict our attention to terms that have no recursion:

• A recursive equation is an equation of the form x =V [_y. e ], where 𝑥 ∈ fvs(𝑒), which equates

a variable x with a value that contains a lambda in which x is free.

• A term 𝑒 is recursive if it contains a recursive equation.

• A term 𝑒 is transitively recursive if 𝑒 −→→ 𝑒 ′ where 𝑒 ′ is recursive.
• A term 𝑒 has no recursion if it is not transitively recursive.

The no-recursion condition is not as severe as it might first appear: it only prohibits recursion

through equations. But no expressiveness is lost thereby: in our untyped setting, one can still write

recursive (and non-terminating) programs using one’s favorite fixpoint combinator, such as Y or Z.

This approach is not entirely satisfying: it is hard to prove that a term has no recursion, and it is

clumsy to write recursive programs using only Y-combinators. Our second approach is to adopt

the idea of skew confluence [Ariola and Blom 2002], a clever technique developed specifically to

handle the even/odd problem; we give an overview of skew confluence in Section 4.4, and provide

details of our approach to a proof of skew confluence forVC in Appendix D, including several

new lemmas, but we emphasize that the proof of skew confluence is not yet complete.

A third approach is simply to abandon confluence as a goal altogether. Confluence is, after all,

purely syntactic, and hence much stronger than what we really need, which is that each of our

rules be semantics-preserving. But, of course, that requires an independent notion of semantics, a

direction we sketch in Appendix E.

4.2 Proof of confluence
Our main result is thatVC’s reduction rules are confluent for terms with no recursion. We sketch

the proof here, with full details in Appendix C (and relevant preliminaries in Appendix B).

Theorem 4.1 (Confluence). The reduction relation in Fig. 3 is confluent for terms with no recursion.

Proof sketch. Our proof strategy is to (1) divide the rules into groups for application, unification, etc.,

approximately as in Fig. 3, (2) prove confluence for each separately, and then (3) prove that their

combination is confluent via commutativity. Given two reduction relations 𝑅 and 𝑆 , we say that 𝑅

commutes with 𝑆 if for all terms 𝑒, 𝑒
1
, 𝑒

2
such that 𝑒 −→→𝑅 𝑒

1
and 𝑒 −→→𝑆 𝑒

2
there exists 𝑒 ′ such that

𝑒
1
−→→𝑆 𝑒 ′ and 𝑒

2
−→→𝑅 𝑒 ′. We prove each individual sub-relation is confluent and that they pairwise

commute. Then confluence of their union follows, using Huet [1980]:

Lemma 4.2 (Commutativity). If 𝑅 and 𝑆 are confluent and commute, then 𝑅 ∪ 𝑆 is confluent.

Proving confluence for application, elimination and choice is easy: they all satisfy the diamond

property—namely, that two different reduction steps can be joined at a common term by a single

step—which suffices to show the relations are confluent [Barendregt 1984]. The diamond property

itself can be verified easily by considering critical pairs of transitions. The rules for unification and

normalization, however, pose two problems.

The unification problem. The first problem is that the unification relation does not satisfy the

diamond property—it may needmultiple steps to join the results of two different one-step reductions.

For example, consider the term (x = ⟨1, y⟩; x = ⟨z, 2⟩; x = ⟨1, 2⟩; 3). The term can be reduced in one

step by substituting x in the third equation by either ⟨1, y⟩ or ⟨z, 2⟩. After this, it will take multiple

steps to join the two terms.
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Following a well-trodden path in proofs of confluence for the λ-calculus (e.g., [Barendregt 1984]),

our proof of confluence for the unification rules works in two stages. First, we prove that the

reductions are locally confluent, meaning if 𝑒 single-steps to each of 𝑒
1
and 𝑒

2
, then 𝑒

1
and 𝑒

2
can be

joined at some 𝑒 ′ by taking multiple unification rule steps. Second, we prove that the unification

reductions are terminating, which relies upon eliminating recursion in tuples via u-occurs and in

lambdas via the no-recursion condition. Newman’s Lemma [Huet 1980, Lemma 2.4] then implies

that the locally confluent, terminating unification relation is also confluent.

The normalization problem. The second problem is that the normalization rules do not commute

with the unification rules. Recall from Section 3.3 that the unification rules rely upon variable

ordering to orient equations between variables in a canonical fashion. The normalization rule

exi-swap can change the variable order and hence, its behavior is deeply intertwined with unification

and cannot be factored out via a commutativity argument. Instead, we prove that the union of

unification and normalization is confluent by showing that unification postpones after normalization

[Hindley 1964]; see Appendix C for the gory details.

4.3 Design for confluence
VC is carefully designed to ensure confluence.

Ensuring that unification terminates. Our proof strategy for the confluence of the unification

rules requires that they terminate. The side condition x ∉ fvs(v) in subst avoids infinite substitution.

If instead we dropped that condition, the following sequence of subst reductions would not

terminate:

∃x . x = ⟨1, x⟩; x → ∃x . x = ⟨1, x⟩; ⟨1, x⟩ → ∃x . x = ⟨1, x⟩; ⟨1, ⟨1, x⟩⟩ → · · ·

Here, each step makes one substitution for x. An exactly analogous example can be made for a

lambda value.

Similarly, as we discussed in Section 3.2, rule var-swap uses the variable-ordering side condition

x ≺ y to put the equation in a canonical orientation, and thus ensure that the unification rules

terminate.

Unifying lambdas. InVC, an attempt to unify two lambdas fails even if the lambdas are seman-

tically identical (rule u-fail). Why? Because semantic identity of functions is unimplementable. We

cannot instead say that the attempt to unify gets stuck because that leads to non-confluence. Here

is an expression that rewrites in two different ways, depending on which equation we subst first:

(_p. 1) = (_q. 2); 1 ←←− ∃x . x = (_p. 1); x = (_q. 2); x ⟨⟩ −→→ (_q. 2) = (_p. 1); 2

These two outcomes cannot be joined. Defining unification to fail for lambdas makes both outcomes

lead to fail, and confluence is restored.

Unifying variables. Note that while u-lit lets us eliminate equalities on the same literal k = k,

there is no analogous u-var rule to drop equalities on the same variable x = x. Perhaps surprisingly,

adding that rule would lead to non-confluence. To see why, suppose we had such a u-var, and

consider the term (∃x . x = (_y. y); x = x; 0). If we first apply u-var to eliminate the equality

x =x, then the remainder reduces to 0. However, if we first subst the equality x = (_y. y), we get
((_y. y) = (_y. y); 0), which fails. Thus, there is no rule u-var: such equalities can be eliminated

only after the value of x is substituted in and checked to not be a lambda.

4.4 Overview of skew confluence
We travel a path very similar to the one blazed by Ariola and her co-authors. Ariola and Klop

studied a form of the lambda calculus with an added letrec construct and determined (like us) that
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their calculus was not confluent; then they added a specific constraint on recursive substitution

and proved that the modified calculus is confluent [Ariola and Klop 1994, 1997]. In a later paper,

Ariola and Blom proved that their calculus without the constraint, while not confluent, does obey a

weaker related property, which they invented, called skew confluence [Ariola and Blom 2002]. We

believe, and currently are trying to prove, thatVC without the pesky no-recursion side condition

of Theorem 4.1 is skew confluent.

Confluence: ∀e, e
1
, e

2
. e −→→R e

1
∧ e −→→R e

2
=⇒ ∃𝑒 ′. e

1
−→→R e

′ ∧ e
2
−→→R e

′
.

Skew confluence: ∀e, e
1
, e

2
. e −→→R e

1
∧ e −→→R e

2
=⇒ ∃𝑒 ′. e

1
−→→R e

′ ∧ e
2
⪯𝜔R e

′
.

These are depicted here as two commutative diagrams, which differ only on the bottom edge:

Confluence Skew confluence

𝑒 𝑒
1

𝑒
2

𝑒 ′

R
R R

R

𝑒 𝑒
1

𝑒
2

𝑒 ′

R
RR

⪯𝜔R

For each diagram, given e, e
1
, e

2
that obey

the relationships indicated by all the solid

lines, there exists e
′
such that all relationships

indicated by dotted lines are also satisfied.

You can understand skew confluence as follows: if two different reduction paths from e produce

terms e
1
, e

2
, then e

1
can be further reduced to some e

′
such that all of e

2
’s permanent structure

is present in e
′
, written e

2
⪯𝜔R e

′
. By “permanent structure” we mean an outer shell of tuples,

lambdas, and constants, that will never change no matter how much further reduction takes place.

For example, however far we reduce the term ⟨1, _z. e⟩, the result will always look like ⟨1, _z. e′⟩,
where 𝑒 −→→R 𝑒 ′. We can formalize the notion of permanent structure by defining an information

content function 𝜔R (e) that replaces all the impermanent bits of e with a new dummy term Ω. Thus

𝜔R (⟨1, _z. x⟩) = ⟨1, _z.Ω⟩. Then e
2
⪯𝜔R e

′
if 𝜔R (e2) can be made equal to e

′
by replacing each

occurrence of Ω in 𝜔R (e2) with an (individually-chosen) term.

Consider the even-odd problem discussed in Section 4.1.

∃x y. x = ⟨1, y⟩; y =_z. x; x)
−→→∃y. y =_z. ⟨1, y⟩; ⟨1, y⟩ −→→∃x . x = ⟨1, _z. x⟩; x

−→ ∃y. y =_z. ⟨1, y⟩; ⟨1, _z. ⟨1, y⟩⟩ −→ ∃x . x = ⟨1, _z. x⟩; ⟨1, _z. x⟩)
−→ ∃y. y =_z. ⟨1, y⟩; ⟨1, _z. ⟨1, _z. ⟨1, y⟩⟩⟩ −→ ∃x . x = ⟨1, _z. x⟩; ⟨1, _z. ⟨1, _z. x⟩⟩
−→ · · · −→ · · ·

The two columns can never join up, but if you pick any term in either column, there is a term in the

other column that has a greater amount of permanent structure. That in turn means that the terms

in the left-hand column are contextually equivalent to those in the right-hand column, because the

context can inspect only the permanent structure. This contextual equivalence is the real reason

for seeking confluence in the first place.

In Appendix D we show how to adapt the proof strategy of Section 4.2 and Appendix C for

skew confluence. To do this we need a new result: if two relations are skew confluent with respect

to the same information content function and commute, then their union is also skew confluent.

(In fact, it is not required that the two relations fully commute: a slightly weaker precondition

suffices.) Using this result, our plan is to (i) define an appropriate information content function

forVC expressions; (ii) prove that all the rewrite rules forVC are monotonic in this information

content function; (iii) prove that the Unification rules (modified to permit recursive substitution)

together with the Normalization rules are skew confluent; (iv) prove that this combined set of rules

commutes in the necessary way with the rules for Application, Elimination, and Choice (which

taken together are already known to be confluent); and (v) then apply our new result to show that
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the entire set of rewrite rules is skew confluent. At this time steps (iii) and (iv) are incomplete, so

we emphasize that we do not yet have a complete proof of skew confluence forVC.

5 VARIATIONS AND CHOICES
In a calculus likeVC, there is room for many design variations. We discuss some of them here.

5.1 Ordering and choices
As we discussed in Section 3.6, rule choose is less than satisfying for two reasons. First, the 𝐶𝑋

context uses a conservative, syntactic analysis for choice-free expressions; and second, the SX

context is needed to force 𝐶𝑋 to be maximal. A rule like this would be more satisfying:

simpler-choose 𝐶𝑋 [e
1

e
2
] −→ 𝐶𝑋 [e

1
] 𝐶𝑋 [e

2
]

The trouble with this is that it may change the order of the results (Section 2.3). Another possibility

would be to accept that results may come out in the “wrong” order, but have some kind of sorting

mechanism to put them back into the “right” order. Something like this:

labeled-choose 𝐶𝑋 [e
1

e
2
] −→ 𝐶𝑋 [𝐿 ⊲ e

1
] 𝐶𝑋 [𝑅 ⊲ e

2
]

Here, the two branches are labeled with L and R. We can add new rules to reorder such labeled

expressions, something in the spirit of:

sort (𝑅 ⊲ e
1
) (𝐿 ⊲ e

2
) −→ (𝐿 ⊲ e

2
) (𝑅 ⊲ e

1
)

We believe this can be made to work, and it would allow more programs to evaluate, but it adds

unwelcome clutter to program terms, and the cure may be worse than the disease. However, the

idea directly inspired our denotational semantics (Appendix E.4), where it seems to work rather

beautifully.

5.2 Generalizing one and all
InVC, we introduced one and all as the primitive choice-consuming operators, and neither is

more general than the other, as discussed in Section 2.6. We could have introduced a more general

operator split
12
as 𝑒 ::= · · · | split(e){v

1
, v

2
} and rules:

split-fail split(fail){f , g} −→ f ⟨⟩
split-value split(v){f , g} −→ g⟨v, _⟨⟩. fail⟩
split-choice split(v e){f , g} −→ g⟨v, _⟨⟩. e⟩

The intuition behind split is that it distinguishes a failing computation from one that returns at

least one value. If e fails, it calls f ; but if e returns at least one value, it passes that to g together

with the remaining computation, safely tucked away within a lambda. When adding more effects

toVC (see Appendix F), it is in fact crucial to use split to exactly control the order of effects.

Indeed, this is more general, as we can implement one and all with split:

one{e} ≡ f (x) := fail; g⟨x, y⟩ :=x; split(e){f , g}
all{e} ≡ f (x) := ⟨⟩; g⟨x, y⟩ := cons⟨x, split(y⟨⟩){f , g}⟩; split(e){f , g}

For this paper, we stuck to the arguably simpler one and all, to avoid confusing the presentation

with these higher-order encodings, but there are no complications using split instead.

12
The name inspired by Kiselyov et al. [2005].
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6 VC IN CONTEXT: REFLECTIONS AND RELATEDWORK
Functional logic programming has a rich literature; excellent starting points are Antoy and Hanus’s

CACM review article [Antoy and Hanus 2010] and Hanus’s longer survey [Hanus 2013]. Now

that we know what VC is, we can identify its distinctive features, and compare them to other

approaches.

6.1 Choice and non-determinism
A significant difference between our presentation and earlier works is our treatment of choice.

Consider an expression like (3+ (20 30)). Choice is typically handled by a pair of non-deterministic

rewrite rules:

e
1

e
2
−→ e

1
e
1

e
2
−→ e

2

So our expression rewrites (non-deterministically) to either (3 + 20) or (3 + 30), and that in turn

allows the addition to make progress. Of course, including non-deterministic choice means the

rules are non-confluent by construction. Instead, one must generalize to say that a reduction

does not change the set of results; in the context of lambda calculi, see for example Kutzner and

Schmidt-Schauß [1998]; Schmidt-Schauß and Machkasova [2008].

In contrast, our rules never pick one side or the other of a choice. And yet, (3 + (20 30))
can still make progress by floating out the choice (rule choose in Fig. 3), thus (3 + 20) (3 + 30).
In effect, choices are laid out in space (in the syntax of the term), rather than being explored by

non-deterministic selection. Rule choose is not a new idea: it is common in calculi with choice, see

e.g., de’Liguoro and Piperno [1995, Section 6.1] and Dal Lago et al. [2020, Section 3], and, more

recently, has been used to describe functional logic languages, where it is variously called bubbling

[Antoy et al. 2007] or pull-tabbing [Antoy 2011]. However, our formulation appears simpler because

we avoid the need for attaching an identifier to each choice with its attendant complications.

6.2 One and all
Logical variables, choice, and equalities are present in many functional logic languages. However,

one and all are distinctive features ofVC, with the notable exception of Fresh, a very interesting

design introduced in a technical report nearly 40 years ago [Smolka and Panangaden 1985] that

also aims to unify functional and logical constructs. Fresh reifies choice into data via confinement

(corresponding to one) and collection (corresponding to all). However, Fresh differs fromVC in

crucial ways. First, it solves equations in a strictly left-to-right fashion, which means that it is not

lenient in the sense discussed in Section 3.7. Second, its semantics are presented in an operational

fashion with explicit stacks and heaps, in contrast to our focus on developing an equational account

of functional logic programming. Finally, Fresh appears not to have been implemented.

Several aspects of all and one are worth noting. First, all reifies choice (a control operator) into

a tuple (a data structure); for example, all{1 7 2} returns the tuple ⟨1, 7, 2⟩. In the other direction,

indexing turns a tuple into choice (for example, ∃i. ⟨1, 7, 2⟩(i) yields (1 7 2)). Other languages
can reify choices into a (non-deterministic) list, via an operator called bagof, or a mechanism called

set-functions in an extension of Curry [Antoy and Hanus 2021, Section 4.2.7], implemented in the

Kiel Curry System interpreter [Antoy and Hanus 2009; Braßel and Huch 2007, 2009]. But in Curry,

this is regarded as a somewhat sophisticated feature, whereas it is part of the foundational fabric of

VC. Curry’s set-functions need careful explanation about sharing across non-deterministic choices,

or what is “inside” and “outside” the set function, something that appears as a straightforward

consequence ofVC’s single rule choose.

Second, even under the reification of all, VC is deterministic. VC takes pains to maintain

order, so that when reifying choice into a tuple, the order of elements in that tuple is completely
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determined. This determinism has a price: we have to take care to maintain the left-to-right order

of choices (see Section 2.3 and Section 3.6, for example). However, maintaining that order has

other payoffs. For example, it is relatively easy to add effects other than choice, including mutable

variables and input/output, to VC. To substantiate this claim, Appendix F gives the additional

syntax and rewrite rules for mutable variables.

Thirdly, one allows us to reify failure; to try something and take different actions depending on

whether or not it succeeds. Prolog’s “cut” operator has a similar flavor, and Curry’s set-functions

allow one to do the same thing.

Finally, one and all neatly encapsulate the idea of “flexible” vs. “rigid” logical variables. As we

saw in Section 2.5, logical variables bound outside one/all cannot be unified inside it; they are

“rigid.” This notion is nicely captured by the fact that equalities cannot float outside one and all

(Section 3.5).

6.3 The semantics of logical variables
Our logical variables, introduced by ∃, are often called extra variables in the literature, because they

are typically introduced as variables that appear on the right-hand side of a function definition, but

are not bound on the left. For example, in Curry we can write:

first x | x =:= (a,b) = a where a,b free

Here, a and b are logical variables, not bound on the left; they get their values through unification

(written “=:=”). In Curry, they are explicitly introduced by the “where a,b free” clause, while in
many other papers their introduction is implicit in the top-level rules, simply by not being bound on

the left. These extra variables (our logical variables) are at the heart of the “logic” part of functional

logic programming.

Constructor-based ReWrite Logic (CRWL) [González-Moreno et al. 1999] is the brand leader

for high-level semantics for non-strict, non-deterministic functional logic languages. CRLW is a

“big-step” rewrite semantics that rewrites a term to a value in a single step. López-Fraguas et al.

[2007] make a powerful case for instead giving the semantics of a functional logic language using

“small-step” rewrite rules, more like those of the lambda calculus, that successively rewrite the

term, one step at a time, until it reaches a normal form. Their paper does exactly this, and proves

equivalence to the CRWL framework. Their key insight (like us, inspired by Ariola et al. [1995]’s

formalization of the call-by-need lambda calculus) is to use let to make sharing explicit.

However, both CRWL and López-Fraguas et al. suffer from a major problem: they require

something we call magical rewriting. A key rewrite rule is this:

𝑓 (\ (𝑒
1
), . . . , \ (𝑒𝑛)) −→ \ (𝑟ℎ𝑠)

if (𝑒
1
, . . . , 𝑒𝑛) −→ 𝑟ℎ𝑠 is a top-level function binding, and

\ is a substitution mapping variables to closed values, s.t. 𝑑𝑜𝑚(\ ) = fvs(𝑒
1
, . . . , 𝑒𝑛, 𝑟ℎ𝑠)

The substitution for the free variables of the left-hand-side can readily be chosen by matching the

left-hand-side against the call. But the substitution for the extra variables must be chosen “magically”

[López-Fraguas et al. 2007, Section 7] or clairvoyantly, so as to make the future execution work

out. This is admirably high-level because it hides everything about unification, but it is not much

help to a programmer trying to understand a program, nor is it directly executable. In a subsequent

journal paper, they refine CRWL to avoid magical rewriting using “let-narrowing” [López-Fraguas

et al. 2014, Section 6]; this system looks rather different to ours, especially in its treatment of choice,

but is rather close in spirit.

To explain actual execution, the state of the art is described by Albert et al. [2005]. They give both

a big-step operational semantics (in the style of Launchbury [1993]), and a small-step operational
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semantics. These two approaches both thread a heap through the execution, which holds the

unification variables and their unification state; the small-step semantics also has a stack, to specify

the focus of execution. The trouble is that heaps and stacks are difficult to explain to a programmer,

and do not make it easy to reason about program equivalence. In addition to this machinery, the

model is further complicated with concurrency to account for residuation.

In contrast, our rewrite rules give a complete, executable (i.e., no “magic”) account of logical

variables and choice, directly as small-step rewrites on the original program, rather than as the

evolution of a (heap, control, stack) configuration. Moreover, we have no problem with residuation.

6.4 Flat vs. higher order
When giving the semantics of functional logic languages, a first-order presentation is almost

universal. User-defined functions can be defined at top level only, and function symbols (the names

of such functions) are syntactically distinguished from ordinary variables. As Hanus describes, it is

possible to translate a higher-order program into a first-order form using defunctionalization [Hanus

2013, Section 3.3] and a built-in apply function. (Hanus does not mention this, but for a language

with arbitrarily nested lambdas, one would need to do lambda-lifting [Johnsson 1985] as well; this

is perhaps a minor point.) Sadly, this encoding is hardly a natural rendition of the lambda calculus,

and it obstructs the goal of using rewrite rules to explain to programmers how their program might

execute. In contrast, a strength of ourVC presentation is that it deals natively with the full lambda

calculus.

6.5 Intermediate language
Hanus’s Flat Language [Albert et al. 2005, Fig 1], FLC, plays the same role asVC: it is a small core

language into which a larger surface language can be desugared. There are some common features:

variables, literals, constructor applications, and sequencing (written hnf in FLC). However, it seems

thatVC has a greater economy of concepts. In particular, FLC has two forms of equality (==) and

(=:=), and two forms of case-expression, case and fcase. In each pair, the former suspends if

it encounters a logical variable; the latter unifies or narrows respectively. In contrast,VC has a

single equality (=), and the orthogonal one construct, to deal with all four concepts.

FLC has let-expressions (let x=e in b) whereVC uses ∃ and (again) unification. FLC also

uses the same construct for a different purpose, to bring a logical variable into scope, using the

strange binding x=x, thus (let x=x in e). In contrast, ∃x . e seems more direct.

6.6 Comparison with Icon
There are many obvious similarities between Verse and the Icon programming language [Griswold

1979; Griswold and Griswold 1983, 2002; Griswold et al. 1979, 1981]:

• An expression can (successively) produce any number of values.

• An expression that produces zero values is said to fail [Griswold et al. 1981, §3.1]; an expres-

sion that produces at least one value is said to succeed.

• The expression e
1

e
2
produces all the values of e

1
followed by all the values of e

2
.

• There is a way to turn an array (or tuple) 𝑎 into a sequence of produced values. In Icon, this

is written !a [Griswold et al. 1979, §3]; in Verse, a?; inVC, ∃i. a(i).
• Most “scalar” operations (such as addition and comparisons) run through all possible combi-

nations of values of their operand expressions, using a specific left-to-right evaluation order

and automatic chronological backtracking.

• Success and failure are used in place of boolean values for control-structure purposes. Some

operations, especially comparisons, can fail as part of their defined semantics. The expression
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if e
1
then e

2
else e

3
checks to see whether e

1
succeeds; it then produces the values of e

2

(if e
1
succeeded) or produces the values of e

3
(if e

1
failed). If e

1
succeeds and then e

2
fails,

backtracking does not attempt to examine further values from e
1
.

• The “ ” construct is idiomatically used as a logical or operation [Griswold et al. 1979, §3].

• There is a control structure that executes a specified expression once for every value produced

by another expression. In Icon, this is every e
1
do e

2
and in Verse, it is written for(e

1
) do e

2
;

• It is impossible to name a generator (Icon) or choice (Verse); if e produces multiple values,

x := e will provide one value at a time from e to be named by variable x.

But there are also major differences between Verse and Icon. Icon was designed primarily

to use expressions as generators to automatically explore a combinatorial space of possibilities

(“goal-directed evaluation”), and secondarily to use success/failure rather than booleans to drive

control structure. But in other respects, Icon is a fairly conventional imperative language, relying

on side effects (assignments) to process the generated combinations. The designers judged that

the interactions of such side effects with completely unrestrained control backtracking would

be difficult for programmers to understand [Griswold et al. 1981, §3.1]; therefore, the design of

Icon emphasizes limited scopes for control backtracking and tools for controlling the backtracking

process [Griswold et al. 1981, §3.3].

In contrast, Verse is a declarative language and avoids these difficulties by using a functional logic

approach rather than an imperative approach to processing generated combinations:

• While Icon typically processes multiple values from an expression by using assignment, Verse

typically processes multiple values by using equations (which are then solved).

• Verse also has a concise way to turn a finite sequence of multiple values into an array di-

rectly. For example, to make variable a refer to an array containing all values generated by

expression e, code such as the following (using a repeat loop containing an assignment) is

idiomatic in Icon [Griswold et al. 1979, §8]:

a := array 0 string; i := 0; repeat a[i+] := e; close(a)
In Verse, a = for{e} does the job; inVC, a=all{e} is all it takes.
• Backtracking in Icon is “only control backtracking”; side effects, such as assignments, are not

undone [Griswold et al. 1981, §3.1].

• Both languages have an implicit “cut” (permanent acceptance of the first produced value)

after the predicate part of an if-then-else, but Icon furthermore has an implicit cut at each

statement end (semicolon or end of line) [Griswold et al. 1981, §3.1], each closing brace “}”,
and most keywords [Icon PC 1980].

7 LOOKING BACK, LOOKING FORWARD
We believe that this is the first presentation of a functional logic language as a deterministic

rewrite system. A rewrite system has the advantage (compared to more denotational, or more

operational, methods) that it is is sufficiently low-level to capture the computational model of the

language; and yet sufficiently high-level to be illuminating to a programmer or compiler writer.

Our focus on rewriting as a way to define the semantics has forced us to focus on confluence, a

rather syntactic property that is stronger (and hence more delicate and harder to prove) than the

contextual equivalence that we really need. That in turn led us to study the elegant and ingenious

notion of skew confluence, which has been barely revisited during the last 20 years, but which we

believe deserves a wider audience.

We have much left to do. The full Verse language has statically checked types. In the dynamic

semantics, the types can be represented by partial identity functions—identity for the values of

the type, and fail otherwise. This gives a distinctive new perspective on type systems, one that
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we intend to develop in future work. The full Verse language also has a statically checked effect

system, including both mutable references and input/output. All these effects must be transactional,

e.g., when the condition of an if fails, any store effects in the condition must be rolled back. We

have preliminary reduction rules for updateable references, see Appendix F.
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A EXAMPLE
A complete reduction sequence for a small example can be found in Fig. 6. This example shows how

constraining the output of a function call can constrain the argument. While most of the reductions

are administrative in nature, these are the highlights: At 1○ the swap function is inlined so that at

2○ a β-reduction can happen. Step 3○ inlines the argument, and 4○ does the matching of the tuple.

At 5○ and 6○ the actual numbers are inlined.

swap ⟨x, y⟩ := ⟨y, x ⟩; ∃p. swap (p) = ⟨2, 3⟩; p

−→{desugar} ∃swap. swap= (_xy. ∃x y. ⟨x, y⟩ =xy; ⟨y, x ⟩) ; ∃p t. t = swap (p) ; t = ⟨2, 3⟩; p

1○ −→{subst,eqn-elim} ∃p t. t = (_xy. ∃x y. ⟨x, y⟩ =xy; ⟨y, x ⟩) (p) ; t = ⟨2, 3⟩; p

−→{subst,eqn-elim} ∃p. (2, 3) = (_xy. ∃x y. ⟨x, y⟩ =xy; ⟨y, x ⟩) (p) ; p

2○ −→{app-beta} ∃p. (2, 3) = (∃xy. xy =p; ∃x y. ⟨x, y⟩ =xy; ⟨y, x ⟩) ; p

−→{exi-float} ∃pxy. (2, 3) = ( (xy =p; ∃x y. ⟨x, y⟩ =xy; ⟨y, x ⟩)) ; p

3○ −→{subst,eqn-elim} ∃p. (2, 3) = (∃x y. ⟨x, y⟩ =p; ⟨y, x ⟩) ; p

−→{exi-float,exi-float} ∃px y. (2, 3) = ( ⟨x, y⟩ =p; ⟨y, x ⟩) ; p

−→{eqn-float,seq-assoc} ∃px y. ⟨x, y⟩ =p; (2, 3) = ⟨y, x ⟩; p

−→{hnf-swap} ∃px y. p= ⟨x, y⟩; (2, 3) = ⟨y, x ⟩; p

−→{subst,eqn-elim} ∃x y. (2, 3) = ⟨y, x ⟩; ⟨x, y⟩
4○ −→{u-tup,seq-assoc} ∃x y. 2=y; 3=x; ⟨x, y⟩
−→{hnf-swap} ∃x y. y =2; 3=x; ⟨x, y⟩

5○ −→{subst,eqn-elim} ∃x . 3=x; ⟨x, 2⟩
−→{hnf-swap} ∃x . x =3; ⟨x, 2⟩

6○ −→{subst,eqn-elim} ⟨3, 2⟩

Fig. 6. A sample reduction sequence
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B CONFLUENCE: PRELIMINARIES
B.1 Reduction relations
Definition B.1 (Binary relations). A binary relation is a set of pairs of related items; if 𝑅 is a

relation, then we may write 𝑎 𝑅 𝑏 to mean (𝑎, 𝑏) ∈ 𝑅.

Definition B.2 (Prototype reduction relations and rewrite rules). Let R̂ be any binary relation on a

set of tree-structured terms, such as the terms generated by some BNF grammar; we sometimes

refer to R̂ as a prototype reduction relation.

Often a prototype reduction relation is specified by a rewrite rule of the form 𝛼 −→ 𝛽 , which

indicates that for any substitution 𝜎 that consistently instantiates all the metavariables (BNF

nonterminals) in 𝛼 and 𝛽 , (𝜎 (𝛼), 𝜎 (𝛽)) is a member of the prototype reduction relation. A prototype

reduction relation may also be specified by a set of rewrite rules, in which case the prototype

reduction relation is the union of the prototype reduction relations specified by the individual

rewrite rules.

Definition B.3 (Reduction relations). A reduction relation R is the compatible closure of some

prototype reduction relation R̂; compatibility means that, for any context 𝐸 and any two terms𝑀

and 𝑁 , if (𝑀, 𝑁 ) ∈ R then (𝐸 [𝑀], 𝐸 [𝑁 ]) ∈ R. Because most of the relations we consider here are

compatible, we find it more convenient to use a hat over relation symbol to indicate that it may not

be compatible, rather than using some special mark to indicate that a relation is compatible or to

indicate the taking of a compatible closure.

Definition B.4 (Derived relations). For any relation—but typically for a reduction relation, so we

will call it R here—we write R𝑘 for the composition of 𝑘 copies of R and R∗ for the reflexive and
transitive closure of R, i.e. R∗ ≡ ∪

0⩽𝑘R𝑘 . We write

• 𝑎 −→R 𝑏 (𝑎 steps to 𝑏) if (𝑎, 𝑏) ∈ R,
• 𝑎 𝜖−→R 𝑏 (𝑎 skips to 𝑏) if 𝑎 ≡ 𝑏 or (𝑎, 𝑏) ∈ R,
• 𝑎 −→→R 𝑏 (𝑎 reduces to 𝑏) if (𝑥,𝑦) ∈ R∗.
• 𝑎 𝑘−→→R 𝑏 (𝑎 𝑘-steps to 𝑏) if (𝑎, 𝑏) ∈ R𝑘 , and

Sometimes we use this same notation and terminology with a prototype reduction relation R̂, thus
for example 𝑎 −→R̂ 𝑏. In such a case, the arrow indicates rewriting of the entire term 𝑎 (at the root),

and not of some subterm of 𝑎.

Definition B.5 (Size). The size of a reduction 𝑎 −→→ 𝑏 is the smallest 𝑖 such that 𝑎
𝑖−→→ 𝑏.

Definition B.6 (Normal Forms). A term 𝑎 is an R-Normal Form if there does not exist any 𝑏 such

that 𝑎 −→R 𝑏.

For clarity, we will omit the subscript R when it is clear from the context.

B.2 Confluence
Definition B.7 (Diamond Property). A reduction relation satisfies the diamond property if when-

ever 𝑎 −→ 𝑏 and 𝑎 −→ 𝑐 , there is a 𝑑 such that 𝑏 −→ 𝑑 and 𝑐 −→ 𝑑 .

Definition B.8 (Confluence). Two terms 𝑏, 𝑐 can be R-joined written 𝑏 ↓R 𝑐 , if there is a 𝑑 such

that 𝑏 −→→R 𝑑 and 𝑐 −→→R 𝑑 . A reduction relation R is confluent if whenever 𝑎 −→→R 𝑏 and 𝑎 −→→R 𝑐 ,

we have 𝑏 ↓R 𝑐 .

Definition B.9 (Local Confluence). A reduction relation R is locally confluent if whenever 𝑎 −→R 𝑏

and 𝑎 −→R 𝑐 , we have 𝑏 ↓R 𝑐 .
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𝑎

𝑏 𝑐

𝑑

𝑎

𝑏 𝑐

𝑑

𝑎

𝑏 𝑐

𝑑

Fig. 7. Diamond Property (L), Local Confluence (M), and Confluence (R)

𝑎

𝑏 𝑐

• •
𝜖 𝜖

Fig. 8. Strong Confluence

Lemma B.10 (Diamond [Barendregt 1984]). If R satisfies the diamond property then R is

confluent.

Lemma B.11 (Unicity [Barendregt 1984]). If R is confluent then every term reduces to at most

one normal form.

Lemma B.12 (Closure [Barendregt 1984]). If R is confluent then R∗ is confluent.

Definition B.13 (Noetherian Reduction). A reduction relation R is Noetherian if there is no infinite

sequence 𝑎
0
−→R 𝑎

1
−→R . . . −→R 𝑎𝑛 −→R . . ..

The following result is known as Newman’s Lemma [Barendregt 1984; Huet 1980].

Lemma B.14 (Newman’s Lemma). If R is locally confluent and Noetherian then R is confluent.

Definition B.15 (Strong Confluence). A reduction relation is strongly confluent if whenever 𝑎 −→ 𝑏

and 𝑎 −→ 𝑐 , either 𝑏 −→→ 𝑐 or there is a 𝑑 such that 𝑏 −→→ 𝑑 and 𝑐 −→ 𝑑 , as shown in Fig. 8, where the 𝜖

label indicates 0 or 1 step.

Lemma B.16 ([Huet 1980, Lemma 2.5]). If R is strongly confluent then R is confluent.

B.3 Commutativity
Definition B.17 (Commutativity). A reduction relation 𝑅 commutes with 𝑆 if for all terms 𝑎, 𝑏, 𝑐

such that 𝑎 −→→𝑅 𝑏 and 𝑎 −→→𝑆 𝑐 there exists 𝑑 such that 𝑏 −→→𝑆 𝑑 and 𝑐 −→→𝑅 𝑑 , as illustrated on the

left in Fig. 9.

Definition B.18 (Strong commutativity). A reduction relation 𝑅 strongly commutes with 𝑆 if for all

terms 𝑎, 𝑏, 𝑐 such that 𝑎 −→𝑅 𝑏 and 𝑎 −→𝑅 𝑐 there exists 𝑑 such that 𝑏 −→𝑆 𝑑 and 𝑐 −→𝑅 𝑑 , as illustrated

in the middle in Fig. 9.

Note that if 𝑅 strongly commutes with itself then, by Definition B.7, 𝑅 has the diamond property.

Lemma B.19 (Strong-Commutativity). If 𝑅 strongly commutes with 𝑆 then 𝑅 commutes with 𝑆 .
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𝑎

𝑏 𝑐
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𝑆𝑅

𝑆 𝑅

𝑎

𝑏 𝑐

𝑑

𝑆𝑅

𝑆 𝑅

𝑎

𝑏 𝑐

𝑑

𝑆𝑅

𝑆 𝑅

Fig. 9. Commutativity (L), Strong Commutativity (C), ∗-Commutativity (R)

Proof. Via the following “chase” diagram (probably well known?)

• • • •

• • • •

• • • •

• • • •

𝑆 𝑆 𝑆

𝑅

𝑅

𝑅

𝑆

𝑅

𝑆 𝑆

𝑅 𝑅

𝑅𝑅𝑅

𝑆

𝑆 𝑆

𝑅 𝑅 𝑅

𝑆

𝑆 𝑆

□

Lemma B.20 (Union). If 𝑅 and 𝑆
1
commute and 𝑅 and 𝑆

2
commute then 𝑅 and 𝑆

1
∪ 𝑆

2
commute.

Proof. Via the following chase diagram (probably well known?)

• • • • • •

• • • • • •

𝑆1 𝑆2

𝑅

𝑆1

𝑅

𝑆2

𝑅 𝑅

𝑆1 𝑆2

𝑅 𝑅

𝑆1 𝑆2

□

Definition B.21 (Postpones). A reduction relation 𝑅 strongly postpones after 𝑆 if 𝑒 −→𝑅 · −→𝑆 𝑒 ′

implies 𝑒 −→→𝑆 · −→𝑅 𝑒 ′.

Lemma B.22 ([Hindley 1964]). If 𝑅 strongly postpones after 𝑆 then if 𝑒 −→→𝑅∪𝑆 𝑒 ′ then 𝑒 −→→𝑆 · −→→𝑅

𝑒 ′.

Definition B.23 (Hops). A reduction relation 𝑅 hops after 𝑆 if 𝑒 −→𝑅 · −→𝑆 𝑒 ′ implies there is an 𝑒 ′′

such that 𝑒 ′ −→→𝑅 𝑒 ′′ and 𝑒 −→𝑆 · −→→𝑅 𝑒 ′′.

𝑒 • 𝑒 ′

• 𝑒 ′′

𝑅 𝑆

𝑆

𝑅

𝑅

Lemma B.24. If 𝑅 is confluent and hops after 𝑆 then

𝑒 • 𝑒 ′

• 𝑒 ′′

𝑅 𝑆

𝑆

𝑅

𝑅

32



1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

The Verse Calculus: a Core Calculus for Functional Logic Programming
In submission, March 2023,

Proof. By induction on size of −→→𝑅 .

Base case By definition of hops after.

Inductive case Assume the lemma for reductions of size upto 𝑘 and complete the proof via

the following diagram where (1) is from the induction hypothesis, (2) is from the definition

of hops over, and (3) is from the assumption that 𝑅 is confluent.

• • • •

• • (1)

(2) (3)

𝑅 𝑅𝑘 𝑆

𝑆 𝑆

𝑅

𝑅

𝑅
𝑅

𝑅

𝑅

□

Lemma B.25. If 𝑅 is confluent and hops after 𝑆 then

𝑒 𝑒 ′

• 𝑒 ′′
𝑆

𝑅

𝑅

𝑅∪𝑆

Proof. By induction on the number of 𝑆 steps in −→→𝑅∪𝑆 , via the following diagram.

• • • •

• • •

• •

𝑅 𝑆

𝑆 𝑅

(𝑅∗∪𝑆)𝑘

𝑅

𝐿𝑒𝑚𝑚𝑎 𝐵.24

(𝑅∗∪𝑆)𝑘

𝑅𝐿𝑒𝑚𝑚𝑎 𝐵.29

𝑆

𝑅

𝑅
𝐼𝐻

□

Definition B.26 (half-commutes). A reduction relation𝑅 half-commuteswith 𝑆 if whenever 𝑒 −→𝑅 𝑒
1

and 𝑒 −→𝑆 𝑒
2
there exists 𝑒 ′ such that 𝑒

2
−→→𝑅 𝑒 ′ and 𝑒

1
−→𝑆𝜖 · −→→𝑅 𝑒 ′.

𝑒 𝑒
2

𝑒
1

• 𝑒 ′

𝑆

𝑅

𝑆𝜖 𝑅

𝑅

Lemma B.27. If 𝑅 is confluent and 𝑅 half-commutes with 𝑆 then 𝑅 commutes with 𝑅 ∪ 𝑆 .

Proof. Via the following diagram, where: (1) is 𝑅 is confluent, and (2) is Lemma B.28.

• • • • • •

• (1) (2) (1) (2) (2)

𝑅 𝑆 𝑅 𝑆

𝑅 𝑅 𝑅 𝑅 𝑅 𝑅

𝑅 𝑅∪𝑆 𝑅 𝑅∪𝑆

□
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Lemma B.28. If 𝑅 is confluent and 𝑅 half-commutes with 𝑆 then if 𝑒 −→→𝑅 𝑒
1
and 𝑒 −→→𝑆 𝑒

2
then

exists 𝑒 ′ such that 𝑒
1
−→→𝑅∪𝑆 𝑒 ′ and 𝑒

2
−→→𝑅 𝑒 ′.

𝑒 𝑒
2

𝑒
1

𝑒 ′

𝑅

𝑆𝑘

𝑅

(𝑅∗∪𝑆)𝑘

Proof. By repeatedly tiling (1) Lemma B.30 as follows

• • • • •

• (1) (1) (1) (1)

𝑆1 𝑆2 𝑆 𝑆𝑘

𝑅 𝑅 𝑅 𝑅 𝑅

(𝑅∗∪𝑆)1 (𝑅∗∪𝑆)2 (𝑅∗∪𝑆) (𝑅∗∪𝑆)𝑘

□

Lemma B.29. If 𝑅 is confluent and 𝑅 half-commutes with 𝑆 then if 𝑒 −→→𝑅 𝑒
1
and 𝑒 −→(𝑅∗∪𝑆)𝑘 𝑒

2
then

exists 𝑒 ′ such that 𝑒
1
−→→(𝑅∗∪𝑆)𝑘 𝑒 ′ and 𝑒

2
−→→𝑅 𝑒 ′.

𝑒 𝑒
2

𝑒
1

𝑒 ′

𝑅

(𝑅∗∪𝑆)𝑘

𝑅

(𝑅∗∪𝑆)𝑘

Proof. Similar to Lemma B.28, by repeatedly “tiling” (1) Lemma B.30 and using (2) 𝑅 is confluent

to match the 𝑅∗ reductions.

• • • • •

• (2) (1) (1) (1)

𝑅 𝑆1 𝑆𝑘

𝑅 𝑅 𝑅 𝑅 𝑅

𝑅 (𝑅∗∪𝑆)1 (𝑅∗∪𝑆)𝑘

□

Lemma B.30. If 𝑅 is confluent and 𝑅 half-commutes with 𝑆 then if 𝑒 −→→𝑅 𝑒
1
and 𝑒 −→𝑆 𝑒

2
then exists

𝑒 ′ such that 𝑒
1

𝜖−→𝑆 · −→→𝑅 𝑒 ′ and 𝑒
2
−→→𝑅 𝑒 ′.

𝑒 𝑒
2

𝑒
1

• 𝑒 ′

𝑅

𝑆

𝑅

𝑆𝜖 𝑅

Proof. By induction on the size of 𝑒 −→→𝑅 𝑒
1
.

Base Case Immediate from the definition of half-commutes.

Inductive Case Assume the lemma holds for reductions of size 𝑘 , complete the proof via the

following diagram where (1) is due to the induction hypothesis, (2) is from the definition of
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𝑅 half-commutes with 𝑆 and, (3) follows from the fact that 𝑅 is confluent.

𝑒 𝑒
2

• • (1)

𝑒
1

• (2) (3)

𝑅𝑘

𝑅

𝑆

𝑅

𝑅𝑆𝜖

𝑅

𝑅

𝑅

𝑆𝜖 𝑅

□

B.4 ∗-Commutativity
Definition B.31 (∗-Commutativity). A reduction relation 𝑅 ∗-commutes with 𝑆 if for all terms

𝑎, 𝑏, 𝑐 such that 𝑎 −→𝑅 𝑏 and 𝑎 −→𝑆 𝑐 there exists 𝑑 such that 𝑏 −→→𝑆 𝑑 and 𝑐
𝜖−→𝑅 𝑑 (right in Fig. 9.)

Lemma B.32. If 𝑅 ∗-commutes with 𝑆 then for all 𝑎, 𝑏, 𝑐 if 𝑎 −→𝑅 𝑏 and 𝑎 −→→𝑆 𝑐 then there exists 𝑑

such that 𝑏 −→→𝑆 𝑑 and 𝑐
𝜖−→𝑅 𝑑 .

Proof. By induction on the size of the reduction 𝑎 −→→𝑆 𝑐 .

(Base case) Here 𝑐 is the same as 𝑎, so just pick 𝑑 = 𝑏.

(Ind. case) Assume the lemma for reductions of size less than or equal to 𝑛. Suppose that

𝑎
𝑛+1−−−→→𝑆 𝑐 . Then there exists 𝑐 ′ such that 𝑎

𝑛−→→𝑆 𝑐 ′ and 𝑐 ′ −→𝑆 𝑐 . The proof is completed by

the diagram:

𝑎

𝑏 𝑐 ′

𝑑 ′ 𝑐

𝑑

𝑆𝑛𝑅

𝑆 𝑅𝐼𝐻
𝑆

𝑆 𝑅𝐵.31

□

Lemma B.33. If 𝑅 ∗-commutes with 𝑆 then for all 𝑎, 𝑏, 𝑐 if 𝑎 −→→𝑅 𝑏 and 𝑎 −→𝑆 𝑐 then there exists 𝑑

such that 𝑏 −→→𝑆 𝑑 and 𝑐 −→→𝑅 𝑑 .

Proof. By induction on the size of the reduction 𝑎 −→→𝑅 𝑏.

(Base case) Here 𝑏 is the same as 𝑎, so just pick 𝑑 = 𝑐 .

(Ind. case) Assume the lemma for reductions of size less than or equal to 𝑛. Suppose that

𝑎
𝑛+1−−−→→𝑅 𝑏. Then there exists some 𝑏 ′ such that 𝑎

𝑛−→→𝑅 𝑏 ′ and 𝑏 ′ −→𝑅 𝑏. The proof is completed

by the diagram below.
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𝑎

𝑏 ′ 𝑐

𝑏 𝑑 ′

𝑑

𝑆𝑅𝑛

𝑆 𝑅

𝑅

𝑆 𝑅

𝐼𝐻

𝐵.32

□

Lemma B.34 (∗-Commutativity). If 𝑅 ∗-commutes with 𝑆 then 𝑅 commutes with 𝑆 .

Proof. By induction on the size of the reduction 𝑎 −→→𝑆 𝑐 .

(Base case) Here 𝑐 is the same as 𝑎, so just pick 𝑑 = 𝑏.

(Ind. case) Assume the lemma for reductions of size less than or equal to 𝑛. Suppose that

𝑎
𝑛+1−−−→→𝑆 𝑐 . Then there exists some 𝑐 ′ such that 𝑎

𝑛−→→𝑆 𝑐
′
and 𝑐 ′ −→𝑆 𝑐 . The proof is completed

by the diagram below.

𝑎

𝑏 𝑐 ′

𝑑 ′ 𝑐

𝑑

𝑆𝑛𝑅

𝑆 𝑅𝐼𝐻
𝑆

𝑆 𝑅𝐵.33

□

B.5 Commutativity and Confluence
Lemma B.35 (Commutativity). If 𝑅 and 𝑆 are confluent and commute, then 𝑅 ∪ 𝑆 is confluent.

Lemma B.36 (N-Commutativity). If (i) ∀0 ⩽ 𝑖 ⩽ 𝑛, the reduction relation 𝑅𝑖 is confluent, and

(ii) ∀0 ⩽ 𝑖 < 𝑗 ⩽ 𝑛, the reduction relations 𝑅𝑖 and 𝑅 𝑗 commute then ∪𝑛𝑖=0𝑅𝑖 is confluent.

Proof. By induction on 𝑛 using Lemma B.35 and Lemma B.20. □

B.6 Confluent Kernels
Definition B.37 (Kernel). A reduction relation 𝑆 is a kernel of 𝑅, written 𝑆 ⪯ 𝑅 if (1) 𝑆 ⊆ 𝑅 and

(2) If 𝑎 −→𝑅 𝑏 there exists 𝑐 such that 𝑎, 𝑏 −→→𝑆 𝑐 .

Lemma B.38 (Kernel-Steps). If 𝑆 ⪯ 𝑅 and 𝑆 is confluent and 𝑎 −→→𝑅 𝑏 then ∃𝑐. 𝑎, 𝑏 −→→𝑆 𝑐 .

Proof. By induction on 𝑎 −→→𝑅 𝑏.

Base Case: 𝑎 ≡ 𝑏 so trivially 𝑎, 𝑏 −→→𝑆 𝑎.
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𝑎

𝑏 𝑐

𝑅
𝑆

𝑆

Fig. 10. 𝑆 is a kernel of 𝑅 written 𝑆 ⪯ 𝑅

Inductive Case: Assume theorem for 𝑎
𝑛−→→𝑅 𝑏. Suppose that 𝑎

𝑛−→→𝑅 𝑏 ′ via 𝑎
𝑛−→→𝑅 𝑏 and 𝑏 −→𝑅 𝑏 ′.

The proof follows from the diagram below: 𝑐 is from the IH, 𝑐 ′ from 𝑆 ⪯ 𝑅 and 𝑐 ′′ from the

confluence of 𝑆 .

𝑎

𝑏 𝑐

𝑏 ′ 𝑐 ′ 𝑐 ′′

𝑅𝑛 𝑆

𝑆

𝑅

𝑆

𝑆

𝑆

𝑆

□

Theorem B.39. Kernel Confluence If 𝑆 ⪯ 𝑅 and 𝑆 is confluent, then 𝑅 is confluent.

Proof. Suppose that 𝑎 −→→𝑅 𝑏
1
and 𝑎 −→→𝑅 𝑏

2
. The following diagram shows how to construct 𝑐

such that 𝑏
1
−→→𝑅 𝑐 and 𝑏

2
−→→𝑅 𝑐 . 𝑐

1
(resp. 𝑐

2
) follows from Lemma B.38 using 𝑎 and 𝑏

1
(resp. 𝑏

2
).

Recall that 𝑆 ⪯ 𝑅 implies every 𝑆 reduction is also an 𝑅 reduction.

𝑎

𝑏
1

𝑐
1

𝑐
2

𝑏
2

𝑐

𝑅 𝑅

𝑆,𝑅

𝑆𝑆

𝑆,𝑅

𝑆,𝑅 𝑆,𝑅

□

C CONFLUENCE OFVC: PROOF
Definition C.1 (Reductions). LetR be the reduction relation defined as the unionU∪N∪A∪G∪C

of five distinct reduction relations, each of which is defined as the compatible closure of a prototype

reduction relation that is in turn defined by rewrite rules in Fig. 3, as follows:

• U (Unification) is the compatible closure of Û, which is the union of the prototype reduction

relations specified by rules u-lit, u-tup, u-fail, u-occurs, subst, hnf-swap, var-swap, choose,

seq-assoc, eqn-float, and seq-swap.

• N (Normalization) is the compatible closure of N̂ , which is the union of the prototype

reduction relations specified by rules exi-swap, exi-float, subst (restricted to x = y), and

var-swap.

• A (Application) is the compatible closure of Â, which is the union of the prototype reduction

relations specified by rules app-add, app-gt, app-gt-fail, app-beta, app-tup, and app-tup-0.

• G (Garbage Collection) is the compatible closure of Ĝ, which is the union of the prototype

reduction relations specified by rules fail-elim, val-elim, exi-elim, and eqn-elim.
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U and Û N and N̂ A and Â G and Ĝ C and Ĉ
u-lit exi-swap app-add fail-elim one-fail

u-tup exi-float app-gt val-elim one-value

u-fail subst (restricted to x =y) app-gt-fail exi-elim one-choice

u-occurs var-swap app-beta eqn-elim all-fail

subst app-tup all-value

hnf-swap app-tup-0 all-choice

var-swap choose-l

choose choose-r

seq-assoc

eqn-float

seq-swap

Fig. 11. Division of the rewrite rules shown in Fig. 3 into groups

U N A G C

Unification U C.19 C.42 C.49 C.50 C.51

Normalization N C.31 C.52 C.53 C.54

Application A C.55 C.56 C.57

Garbage Collection G C.58 C.59

Choice C C.60

Fig. 12. Summary of the confluence and commutativity of the reductions in Definition C.1. The lemmas
on the diagonal (resp. non-diagonal) entries establish confluence (resp. commutativity) for the respective
relation (resp. pairs of relations).

• C (Choice) is the compatible closure of Ĉ, which is the union of the prototype reduction

relations specified by rules one-fail, one-value, one-choice, all-fail, all-value, all-choice,

choose-l, and choose-r.

Let R̂ = Û ∪ N̂ ∪ Â ∪ Ĝ ∪ Ĉ; then R may also be described as the compatible closure of R̂ (because

the operation of taking a compatible closure distributes over ∪).

These groups correspond approximately to the sub-headings in Fig. 3, but not precisely. In particular,

some rewrite rules appear in more than one group: var-swap is used in bothU andN , and subst is

used in bothU and (in restricted form)N . Moreover, choose is used inU but not in C, although it

is listed under “Choice” in Fig. 3.

For convenient reference, the five lists of rules are also displayed in tabular form in Fig. 11.

Definition C.2 (Recursive Equations). A recursive equation is a term of the form

x =V [_y. e ] where 𝑥 ∈ fvs(𝑒)
where the LHS is a variable and the RHS is a value that is or contains a _ in which x occurs free. A

term 𝑒 is recursive if it contains a recursive equation. A term 𝑒 is transitively recursive if 𝑒 −→→R 𝑒 ′

where 𝑒 ′ is recursive. A term 𝑒 has no recursion if it is not transitively recursive.

Our main confluence theorem is as follows:

Theorem C.3 (Confluence). If 𝑒 has no recursion and 𝑒 −→→R 𝑒
1
and 𝑒 −→→R 𝑒

2
then 𝑒

1
↓R 𝑒

2
.
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Notation

𝑎, 𝑏, 𝑐, 𝑑, 𝑒 Expressions (syntax in Fig. 1)

Δ An expression 𝑒 that has a redex at the root

𝑒
1
⊂ 𝑒

2
The expression 𝑒

1
is a strict sub-term of 𝑒

2

𝑒
1
⊆ 𝑒

2
The expression 𝑒

1
is a sub-term of 𝑒

2
, including 𝑒

2
itself

𝑎 −→R̂ 𝑏 𝑎 reduces to 𝑏 via one root-level step of R
𝑎 −→R 𝑏 𝑎 reduces to 𝑏 in one step of R
𝑎

𝜖−→R 𝑏 𝑎 reduces to 𝑏 in zero or one step of R
𝑎 −→→R 𝑏 𝑎 reduces to 𝑏 in zero or more steps of R
𝑎

𝑘−→→R 𝑏 𝑎 reduces to 𝑏 in 𝑘 steps of R

Expression contexts

𝐸 ::= □ | E; e | v =E; e | ∃x . E | E e | e E | one{E} | all{E}
| E(v) | v(E) | ⟨v

1
, ···, E, ···, v

n
⟩ | _x . E

Note: 𝑒
1
⊆ 𝑒

2
is equivalent to ∃𝐸. 𝐸 [𝑒

1
] ≡ 𝑒

2
.

Fig. 13. Summary of notation

Proof. First, we partition R into the relationsU ∪N , A, G and C. Next, we show that each

of these relations is confluent and pairwise commutative (Fig. 12). Finally, we use Lemma B.36 to

prove their union R is confluent. □

The no-recursion condition is only needed to proveU is confluent, but we assume it globally for

clarity.

C.1 Disjointness, Reduction under, and the Diamond property
In talking about confluence we often speak of two different reduction steps with a common starting

point, thus 𝑒 −→R 𝑒
1
and 𝑒 −→R 𝑒

2
. In the first of these there is a sub-term of 𝑒 , say Δ

1
, that is the

actual redex; the root of Δ
1
matches some rule in R. Δ

1
is just an ordinary expression, but we use

the notation “Δ” to stress that it is the root of a redex (see Fig. 13). Δ
1
is a sub-term of 𝑒 (or possibly

Δ = 𝑒), which we write Δ
1
⊆ 𝑒 (again in Fig. 13). Note that 𝑒

1
⊆ 𝑒

2
is equivalent to saying that there

exists some expression context 𝐸 such that 𝐸 [𝑒
1
] ≡ 𝑒

2
, i.e. that 𝑒

2
can be decomposed into a context

𝐸 whose hole is filled by 𝑒
1
.

Similarly we may identify Δ
2
, the redex that is reduced by 𝑒 −→R 𝑒

2
. Now there are two cases to

consider:

(1) Δ
1
is disjoint from Δ

2
in 𝑒; or

(2) Δ
1
⊆ Δ

2
, or Δ

2
⊆ Δ

1
.

One might wonder if Δ
1
can overlap Δ

2
, but that is not possible: we are discussing syntax trees, not

graphs, and so for distinct Δ
1
and Δ

2
, either the root of Δ

1
is a child of the root of Δ

2
, or vice versa,

or neither.

In the first case (a) we have the diamond property immediately:

Lemma C.4 (Disjoint). Let 𝑒 ≡ . . . Δ
1
. . . Δ

2
. . . be an expression with two disjoint redexes Δ

1
and

Δ
2
. If 𝑒 −→ . . . Δ′

1
. . . Δ

2
. . . ≡ 𝑒

1
and 𝑒 −→ . . . Δ

1
. . . Δ′

2
. . . ≡ 𝑒

2
then there exists 𝑒 ′ such that 𝑒

1
−→ 𝑒 ′

and 𝑒
2
−→ 𝑒 ′.

Proof. Trivial: 𝑒 ′ = . . . Δ′
1
. . . Δ′

2
. . .. □
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C.2 Lemmas for Reductions-Under
So to prove the diamond property for a relation R, we should focus attention only on case (b) where

the redexes are not disjoint, i.e. one occurs under the other. To this end, it suffices to consider the

case where one of the reductions is at the root, written 𝑒 −→R̂ 𝑒
1
(see Fig. 13 and Appendix B.1), and

the other occurs under 𝑒 i.e. is of the form 𝐸 [Δ] −→R 𝑒
2
where 𝑒

2
≡ 𝐸 [Δ′], and Δ −→R̂ Δ′.

Next, we prove a set of “reductions-under” 𝑅 lemmas that say that if a term 𝑒 can be (1) reduced

using two different rules 𝑅 and 𝑆 as 𝑒 −→𝑅 𝑒𝑅 and 𝑒𝑆 −→𝑆 , such that (2) the redex for the 𝑆 reduction

occurs under the redex for the 𝑅 reduction, then there exists some 𝑒 ′ such that 𝑒𝑅 (resp. 𝑒𝑆 ) can be

reduced to 𝑒 ′ using some number of 𝑆 (resp. 𝑅) reductions.

The lemmas will be used in two ways. First, to show that two different relations commute. Second,

that a relation (strongly) commutes with itself, i.e. has the diamond property, and hence is confluent.

In each case, we will split cases on which relation is the “outer” reduction and which is the “inner”

and then applying the appropriate “reduction-under” lemma for the outer relation, and using

Lemma C.4 for the case where the redexes are disjoint.

C.2.1 Application. The following lemma says that if a term ΔA is the root of an A reduction

ΔA −→A Δ′A and the ΔA additionally contains under it a subterm Δ that is the root of some R
reduction Δ −→R Δ′ then it is possible to join the result of the R and A reduction at a common

term Δ′′A by executing a single step of the other reduction, i.e. A and R respectively. (Recall that

𝐸 [𝑒 ′] ≡ 𝑒 means that 𝑒 ′ ⊆ 𝑒 i.e. 𝑒 ′ occurs under or is a sub-term of 𝑒).

Lemma C.5 (Under-A). If ΔA −→Â Δ′A and ΔA ≡ 𝐸 [Δ] and Δ −→R̂ Δ′ then there exists Δ′′A such

that Δ′A −→R Δ′′A and 𝐸 [Δ′] −→Â Δ′′A .

ΔA ≡ 𝐸 [Δ] 𝐸 [Δ′]

Δ′A Δ′′A

Â

R

Â

R

Proof. Split cases on the rule used in Â.

Case: app-beta i.e. ΔA −→A Δ′A ≡ (_x . e)v −→ ∃x . x =v; e. If Δ ⊆ e, i.e. R : 𝑒 −→ 𝑒 ′, then join

at Δ′′A ≡ ∃x . x =v; e
′
. If Δ ⊆ v, i.e. R : v −→ v

′
, then join at Δ′′A ≡ ∃x . x =v

′
; e.

Case: app-tup i.e. ΔA −→A Δ′A ≡ ⟨v0 . . . v
n
⟩v −→ ∃x . x = v; (x = 0; v

0
. . . x = n; v

n
). If

Δ ⊆ v
i
, i.e. R : v

i
−→ v

′
i
, then join at ∃x . x = v; (x = 0; v

0
. . . x = i; v

′
i
. . . x = n; v

n
). If

Δ ⊆ v, i.e. R : v −→ v
′
, then join at ∃x . x =v

′
; (x =0; v

0
. . . x =n; v

n
).

Case: app-tup0 i.e. ΔA −→A Δ′A ≡ ⟨⟩v −→ fail. Here, Δ ⊆ 𝑣 , i.e. R : v −→ v
′
, then join at

Δ′′A ≡ fail.

Case: app-add, app-gt-* In any of the primitive application rules, Δ ̸⊆ ΔA .

□

C.2.2 Unification.

Lemma C.6 (Under-U). Let R ′ ≡ R − subst − var-swap. If ΔU −→Û Δ′U and ΔU ≡ 𝐸 [Δ] and
Δ −→R̂′ Δ′ then there exists Δ′′U such that Δ′U −→→R′ Δ′′U and 𝐸 [Δ′] −→Û Δ′′U .

ΔU ≡ 𝐸 [Δ] 𝐸 [Δ′]

Δ′U Δ′′U

Û

R′

Û

R′
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Proof. Split cases on the rule used in Û.

Case subst : Here, ΔU ≡ 𝑋 [x =v ]. Split cases on the occurrence of Δ.
Case Δ ⊆ 𝑋 , i.e. 𝑋 ≡ 𝑋 ′[Δ].

𝑋 ′[Δ] [𝑥 = 𝑣] 𝑋 ′{𝑣/𝑥}[Δ{𝑣/𝑥}] [𝑥 = 𝑣]

𝑋 ′[Δ′] [𝑥 = 𝑣] 𝑋 ′{𝑣/𝑥}[Δ′{𝑣/𝑥}] [𝑥 = 𝑣]
R′

U

U
R′ via 𝐿𝑒𝑚𝑚𝑎 𝐶.11

Case Δ ⊆ 𝑣 , i.e. 𝑣 −→R′ 𝑣 ′

𝑋 [𝑥 = 𝑣] 𝑋 {𝑣/𝑥}[𝑥 = 𝑣]

𝑋 [𝑥 = 𝑣 ′] 𝑋 {𝑣 ′/𝑥}[𝑥 = 𝑣 ′]
R′

U

U
R′ (repeat at each 𝑣)

Case hnf-swap : ΔU ≡ hnf =x and ℎ −→R′ ℎ′, so join at Δ′′U ≡ x = hnf
′
.

hnf = 𝑥 𝑥 = hnf

hnf
′ = 𝑥 𝑥 = hnf

′

U

R′ R′

U

Case u-occurs : ΔU ≡ 𝑥 = 𝑉 [𝑥] and 𝑉 [𝑥] −→R′ 𝑉 ′[𝑥], so join at Δ′′U ≡ fail.

𝑥 = 𝑉 [𝑥] fail

𝑥 = 𝑉 ′[𝑥]

U

R′ U

Case var-swap : Impossible, no Δ ⊆ ΔU
Case u-lit : Impossible, no Δ ⊆ ΔU
Case u-fail : Join at Δ′′U ≡ fail.

Case u-tup : ΔU ≡ (u1
... u

n
) == (v

1
... v

n
).

Case Δ ⊆ 𝑢𝑖 i.e. 𝑢𝑖 −→R′ 𝑢 ′𝑖 Join at Δ′′U ≡ 𝑢1 = 𝑣
1
; . . . 𝑢 ′𝑖 = 𝑣𝑖 ; . . . 𝑢𝑛 = 𝑣𝑛 .

Case Δ ⊆ 𝑣 𝑗 i.e. 𝑣 𝑗 −→R′ 𝑣 ′𝑗 Join at Δ′′U ≡ 𝑢1 = 𝑣
1
; . . . 𝑢 𝑗 = 𝑣 ′𝑗 ; . . . 𝑢𝑛 = 𝑣𝑛 .

Case seq-assoc : ΔU ≡ (𝑒𝑞; 𝑒1); 𝑒2 −→ 𝑒𝑞; (𝑒
1
; 𝑒

2
) ≡ Δ′U . Split cases on where Δ occurs, which

as we’re precluding subst is either in 𝑒𝑞 or in 𝑒
1
or in 𝑒

2
.

Case Δ ⊆ 𝑒𝑞 i.e. 𝑒𝑞 −→R′ 𝑒𝑢 ′ Join at Δ′′U ≡ 𝑒𝑢 ′; (𝑒1; 𝑒2).
Case Δ ⊆ 𝑒

1
i.e. 𝑒

1
−→R′ 𝑒 ′1 Join at Δ′′U ≡ 𝑒𝑞; (𝑒 ′1; 𝑒2).

Case Δ ⊆ 𝑒
2
i.e. 𝑒

2
−→R′ 𝑒 ′2 Join at Δ′′U ≡ 𝑒𝑞; (𝑒1; 𝑒 ′2).

Case Δ spans (𝑒𝑞; 𝑒
1
) or (𝑒𝑞; 𝑒

1
); 𝑒

2
via fail-elim. Join at fail.

Case eqn-float : ΔU ≡ 𝑣 = (𝑒𝑞; 𝑒
1
); 𝑒

2
−→ 𝑒𝑞; (𝑣 = 𝑒

1
; 𝑒

2
) ≡ Δ′U . Split cases on where Δ occurs,

which as we’re precluding subst is either in 𝑣 , 𝑒𝑞, 𝑒
1
or in 𝑒

2
.

Case Δ ⊆ 𝑣 i.e. 𝑣 −→R′ 𝑣 ′ Join at Δ′′U ≡ 𝑒𝑞; (𝑣 ′ = 𝑒
1
; 𝑒

2
).

Case Δ ⊆ 𝑒𝑞 i.e. 𝑒𝑞 −→R′ 𝑒𝑢 ′ Join at Δ′′U ≡ 𝑒𝑢 ′; (𝑣 = 𝑒
1
; 𝑒

2
).

Case Δ ⊆ 𝑒
1
i.e. 𝑒

1
−→R′ 𝑒 ′1 Join at Δ′′U ≡ 𝑒𝑞; (𝑣 = 𝑒 ′

1
; 𝑒

2
).

Case Δ ⊆ 𝑒
2
i.e. 𝑒

2
−→R′ 𝑒 ′2 Join at Δ′′U ≡ 𝑒𝑞; (𝑣 = 𝑒

1
; 𝑒 ′

2
).

Case Δ spans (𝑒𝑞; 𝑒
1
) or 𝑣 = (𝑒𝑞; 𝑒

1
); 𝑒

2
via fail-elim. Join at fail.

Case choose : via Lemma C.7.

□
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Lemma C.7 (Under-choose). If Δ𝑐ℎ −→�choose Δ′𝑐ℎ and Δ𝑐ℎ ≡ 𝐸 [Δ] and Δ −→R̂ Δ′ then there exists

Δ′′𝑐ℎ such that Δ′𝑐ℎ −→→R Δ′′𝑐ℎ and 𝐸 [Δ′] −→�choose Δ′′𝑐ℎ .

Δ𝑐ℎ ≡ 𝐸 [Δ] 𝐸 [Δ′]

Δ′𝑐ℎ Δ′′𝑐ℎ

�choose
R

�choose
R

Proof. By the definition of choose we have

Δ𝑐ℎ ≡ SX [𝐶𝑋 [e
1

e
2
] ] −→ SX [𝐶𝑋 [e

1
] 𝐶𝑋 [e

2
] ] ≡ Δ′𝑐ℎ

Split cases on where Δ occurs

Case Δ ⊆ 𝑒
1
i.e. 𝑒

1
−→R 𝑒 ′

1
, so join at SX [𝐶𝑋 [e′

1
] 𝐶𝑋 [e

2
] ].

Case Δ ⊆ 𝑒
2
i.e. 𝑒

2
−→R 𝑒 ′

2
, so join at SX [𝐶𝑋 [e

1
e
′
2
] ].

Case Δ ⊆ e
1

e
2
i.e. e

1
e
2
−→R e

i
where 𝑒

3−𝑖 is fail so join at SX [𝐶𝑋 [e
i
] ].

Case Δ ⊆ 𝐶𝑋 i.e. 𝐶𝑋 −→R 𝐶𝑋 ′ so join (via two R steps) at SX [CX
′[e

1
] CX

′[e
2
] ].

Case Δ ⊆ 𝐶𝑋 [e
1

e
2
] i.e. 𝐶𝑋 [e

1
e
2
] −→R CX

′[e′
1

e
′
2
], so join at SX [CX

′[e′
1
] CX

′[e′
2
] ].
□

C.2.3 Normalization.

Lemma C.8 (Under-N ). Let R ′ = R − N − U. If ΔN −→N̂ Δ′N and ΔN ≡ 𝐸 [Δ] and Δ −→R̂′ Δ′
then exists Δ′′N such that Δ′N −→R′ Δ′′N and 𝐸 [Δ′] −→N̂ Δ′′N .

Proof. Split cases on the reduction rule used in ΔN −→N̂ Δ′N
Case exi-swap : i.e. N : ∃x . ∃y. e −→ ∃y. ∃x . e. Split cases on the position of Δ.
Case Δ ⊆ 𝑒 : i.e. 𝑒 −→R′ 𝑒 ′; join at ∃x . ∃y. e′.
Case Δ ⊆ (∃y. e) : i.e. 𝑦 eliminated via an exi-elim or eqn-elim ∃y. e −→R′ 𝑒 ′; join at ∃x . e′.
Case Δ ⊆ (∃x . ∃y. e) : i.e. 𝑥 eliminated via an exi-elim or eqn-elim ∃x . ∃y. e −→R′ ∃y. e′; join

at ∃y. e′.
Case exi-float : i.e. N : 𝑋 [∃x . e ] −→ ∃x . 𝑋 [e ]. Split cases on the position of Δ.
Case Δ ⊆ 𝑒 : i.e. 𝑒 −→R′ 𝑒 ′; join at ∃x . 𝑋 [e′ ].
Case Δ ⊆ (∃x . e) : i.e. 𝑥 eliminated via an exi-elim or eqn-elim ∃x . e −→R′ 𝑒 ′; join at 𝑋 [e′ ].
Case Δ ⊆ 𝑋 : i.e. 𝑋 [∃x . e ] −→R′ X

′[∃x . e′ ]; join at ∃x .X ′[e′ ].
Case subst-var : i.e. N : 𝑋 [x = y ] −→ (𝑋 {y/x}) [x = y ]. The only possible position of Δ is

Δ ⊆ 𝑋 i.e. 𝑋 [𝑥 = 𝑦] −→R′ 𝑋 ′[𝑥 = 𝑦]; join at (X ′{y/x}) [x = y ].
Case var-swap : i.e. N : x = y −→ y = x. Impossible to have Δ ⊆ x = y.

□

C.2.4 Garbage Collection.

Lemma C.9 (Under-G). If ΔG −→Ĝ Δ′G and ΔG ≡ 𝐸 [Δ] and Δ −→R̂ Δ′ then there exists Δ′′G such

that Δ′G
𝜖−→R Δ′′G and 𝐸 [Δ′] −→Ĝ Δ′′G .

Proof. Let ΔG −→Ĝ Δ′G be the G redex and split cases on the reduction rule used in the step.

Case val-elim : i.e. G : v; e −→ e. Split cases on position of Δ
Case Δ ⊆ v : Join at e.

Case Δ ⊆ e : i.e. 𝑒 −→R 𝑒 ′; join at e
′
.

Case Δ ⊆ v; e : i.e. 𝑣 ; 𝑒 −→
fail-elim

fail as 𝑒 ≡ 𝑋 [fail]; join at fail.

Case fail-elim : i.e. G : 𝑋 [fail] −→ fail. Then 𝑋 [fail] −→R X
′[fail] hence join at fail.
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Case exi-elim : i.e. G : ∃𝑦, x, 𝑧. e −→ ∃𝑦, 𝑧. e; (We can generalize exi-elim to first use a sequence

of exi-swap to bring the x binder to the end before applying exi-elim as this does not change

the order of the remaining binders.) Split cases on position of Δ
Case Δ ⊆ e : i.e. 𝑒 −→R 𝑒 ′; join at ∃𝑦, 𝑧. e′.
Case Δ ⊆ ∃𝑦, x, 𝑧. e : i.e. via exi-swap; join at ∃𝑦, 𝑧. e.

Case eqn-elim : i.e. G : ∃x . 𝑋 [x = v; e ] −→ 𝑋 [e ] where 𝑥 ∉ fvs(𝑋 [v; e ]). (We can generalize

exi-elim to first use a sequence of exi-swap to bring the x binder to the end before applying

eqn-elim as this does not change the order of the remaining binders.) Split cases on position

of Δ
Case Δ ⊆ v : i.e. 𝑣 −→R 𝑣 ′; join at 𝑋 [e ].
Case Δ ⊆ e : i.e. 𝑒 −→R 𝑒 ′ (where fvs(𝑒 ′) = fvs(𝑒)); join at 𝑋 [e′ ].
Case Δ ⊆ 𝑋 : i.e. 𝑋 [x = v; e ] −→R X

′[x = v; e ] (where fvs(𝑋 ′) = fvs(𝑋 )); join at X
′[e ].

□

C.2.5 Choice.

Lemma C.10 (Under-C). If ΔC −→Ĉ Δ′C and ΔC ≡ 𝐸 [Δ] and Δ −→R Δ′ then there exists Δ′′C such

that Δ′C
𝜖−→R Δ′′C and 𝐸 [Δ′] −→Ĉ Δ′′C .

Proof. Split cases on the rule used in ΔC −→Ĉ Δ′C .

Case one-fail (symmetric all-fail) Impossible as Δ ̸⊆ ΔC .
Case one-value : Here ΔC −→C Δ′C ≡ one{v} −→ v. Hence Δ ⊆ v i.e. R : v −→ v

′
, so join at

v
′
.

Case all-value : Here ΔC −→C Δ′C ≡ all{v} −→ ⟨v⟩. Hence Δ ⊆ v i.e. R : v −→ v
′
, so join at

(v ′).
Case one-choice : Here ΔC −→C Δ′C ≡ one{v e} −→ v. If Δ ⊆ v, i.e. R : v −→ v

′
then join

at v
′
. If Δ ⊆ e, i.e. R : e −→ e

′
then join at v.

Case all-choice : Here ΔC −→C Δ′C ≡ all{v
1

. . . v
n
} −→ ⟨v

1
,. . ., v

n
⟩. If Δ ⊆ v

i
ie R : v

i
−→

v
′
i
then join at ⟨v

1
,. . ., v ′

i
,. . ., v

n
⟩.

Case choose-l : (symmetric choose-r) Here ΔC −→C Δ′C ≡ fail e −→ 𝑒 . Here, Δ ⊆ 𝑒 , i.e.

R : 𝑒 −→ 𝑒 ′ so join at e
′
.

Case choose-assoc : i.e. ΔC −→C Δ′C ≡ (𝑒1 𝑒2) 𝑒3 −→ 𝑒
1
(𝑒

2
𝑒
3
). Split cases on where Δ occurs.

Case Δ ⊆ 𝑒
1
, i.e. R : 𝑒

1
−→ 𝑒 ′

1
so join at 𝑒 ′

1
(𝑒

2
𝑒
3
).

Case Δ ⊆ 𝑒
2
, i.e. R : 𝑒

2
−→ 𝑒 ′

2
so join at 𝑒

1
(𝑒 ′

2
𝑒
3
).

Case Δ ⊆ 𝑒
3
, i.e. R : 𝑒

3
−→ 𝑒 ′

3
so join at 𝑒

1
(𝑒

2
𝑒 ′
3
).

Case Δ ≡ e
1

fail, i.e. R : e
1

fail −→ 𝑒
1
so join at 𝑒

1
𝑒
3
.

Case Δ ≡ fail e
2
, i.e. R : fail e

2
−→ 𝑒

2
so join at 𝑒

2
𝑒
3
.

□

C.3 Lemmas for Substitution and Unification
Lemma C.11 (Substitution). Let R ′ ≡ R −U. If Δ −→R̂′ Δ′ then Δ{𝑣/𝑥} −→R̂′ Δ′{𝑣/𝑥}.

Proof. By induction on the structure of Δ, splitting cases on the reduction rule used and using

the fact that e, v, 𝑋,𝐶𝑋, SX are all closed under value substitution. □

Lemma C.12 (Subst-Swap). If 𝑒 −→
subst

𝑒
1
and 𝑒 −→

swap
𝑒
2
then exists 𝑒 ′ such that 𝑒

1
, 𝑒

2
−→→U 𝑒 ′.

Proof. Let Δ
1
−→
subst

Δ′
1
and Δ

2
−→
swap

Δ′
2
be the respective reducts. Via Lemma C.4 it suffices

to consider two cases:

Case swap under subst : i.e. Δ
2
⊆ Δ

1
Let Δ

1
≡ 𝑋 [x =v ]; split cases on Δ

2
position.
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Case Δ
2
≡ x =v : via rule var-swap:

𝑋 [𝑥 = 𝑦] 𝑋 {𝑦/𝑥}[𝑥 = 𝑦]

𝑋 {𝑦/𝑥}[𝑦 = 𝑥]

𝑋 [𝑦 = 𝑥] 𝑋 {𝑥/𝑦}[𝑦 = 𝑥]

U

R′

R′

U
U

Case Δ
2
⊆ 𝑣 : i.e. 𝑣 −→

swap
𝑣 ′.

𝑋 [𝑥 = 𝑣] 𝑋 {𝑣/𝑥}[𝑥 = 𝑣]

𝑋 [𝑥 = 𝑣 ′] 𝑋 {𝑣 ′/𝑥}[𝑥 = 𝑣 ′]

subst

swap

subst

swap (repeat at each 𝑣)

Case Δ
2
⊆ 𝑋 : i.e. 𝑋 ≡ 𝑋 ′[. . . Δ

2
. . .]. Let 𝑢 ′ ≡ 𝑢{𝑣/𝑥}, split cases on swap RHS.

Case same variable : Δ
2
≡ u=x where 𝑢 is HNF or variable.

𝑋 ′[. . . 𝑢 = 𝑥 . . .] [𝑥 = 𝑣] 𝑋 ′{𝑣/𝑥}[. . . 𝑢 ′ = 𝑣 . . .] [𝑥 = 𝑣]

•

𝑋 ′[. . . 𝑥 = 𝑢 . . .] [𝑥 = 𝑣] 𝑋 ′{𝑣/𝑥}[. . . 𝑣 = 𝑢 ′ . . .] [𝑥 = 𝑣]

subst

*-swap

subst

𝐿𝑒𝑚𝑚𝑎 𝐶.18

Case different variable : Δ
2
≡ u=y where 𝑢 is HNF or variable.

𝑋 ′[. . . 𝑢 = 𝑦 . . .] [𝑥 = 𝑣] 𝑋 ′{𝑣/𝑥}[. . . 𝑢 ′ = 𝑦 . . .] [𝑥 = 𝑣]

𝑋 ′[. . . 𝑦 = 𝑢 . . .] [𝑥 = 𝑣] 𝑋 ′{𝑣/𝑥}[. . . 𝑦 = 𝑢 ′ . . .] [𝑥 = 𝑣]

subst

swap

subst

swap

Case subst under swap : i.e. Δ
1
⊆ Δ

2
Let Δ

2
≡ hnf =x, so Δ

1
⊆ hnf , i.e. hnf −→

subst
hnf

′
, so

join at x = hnf
′
.

hnf = 𝑥 hnf
′ = 𝑥

𝑥 = hnf 𝑥 = hnf
′

subst

swap swap

subst

□

Definition C.13 (Levels). Let 𝑒𝑞
1
≡ x

1
=v

1
and 𝑒𝑞

2
≡ x

2
=v

2
be two equations in a term 𝑒 . We say

𝑒𝑞
2
is under 𝑒𝑞

1
if 𝑒𝑞

2
⊆ 𝑋 and 𝑋 [𝑒𝑞

1
] ⊆ 𝑒 .

Lemma C.14 (Subst-Subst). If 𝑒 −→
subst

𝑒
1
and 𝑒 −→

subst
𝑒
2
then 𝑒

1
↓U 𝑒

2
.

Proof. Suppose that the redex 𝑒 −→ 𝑒𝑖 is using the equation 𝑒𝑞𝑖 ≡ x
i
=v

i
. Split cases on

Case 𝑒𝑞
1
is under 𝑒𝑞

2
and 𝑒𝑞

2
is under 𝑒𝑞

1
: Lemma C.15 completes the proof.

Case 𝑒𝑞
1
is under 𝑒𝑞

2
and 𝑒𝑞

2
is not under 𝑒𝑞

1
: Lemma C.16 completes the proof.

Case 𝑒𝑞
1
is not under 𝑒𝑞

2
and 𝑒𝑞

2
is under 𝑒𝑞

1
: Lemma C.16 completes the proof.
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Case 𝑒𝑞
1
is not under 𝑒𝑞

2
and 𝑒𝑞

2
is not under 𝑒𝑞

1
: The substitutions are disjoint, so Lemma C.4

completes the proof.

□

Lemma C.15 (Subst-Same). If 𝑒 −→
subst

𝑒
1
using 𝑒𝑞

1
and 𝑒 −→

subst
𝑒
2
using 𝑒𝑞

2
such that 𝑒𝑞

1
is

under 𝑒𝑞
2
and 𝑒𝑞

2
is under 𝑒𝑞

1
, then 𝑒

1
↓U 𝑒

2
.

Proof. As 𝑒𝑞
1
is under 𝑒𝑞

2
and 𝑒𝑞

2
is under 𝑒𝑞

1
, we have 𝑒 ≡ 𝑋 [x = v

1
; y = v

2
], i.e. wlog the

equations 𝑒𝑞
1
and 𝑒𝑞

2
are adjacent. Let us split cases on whether 𝑥 ≡ 𝑦

Case 𝑥 ≡ 𝑦 : We join 𝑒
1
and 𝑒

2
using Lemma C.18 via the context 𝑋 ′ ≡ 𝑋 {z/x} [𝑥 = 𝑧] where 𝑧

is a fresh variable.

𝑋 [𝑥 = 𝑢;𝑥 = 𝑣] 𝑋 {𝑢/𝑥}[𝑥 = 𝑢;𝑢 = 𝑣]

𝑋 {𝑣/𝑥}[𝑣 = 𝑢;𝑥 = 𝑣] •

𝑒𝑞2

𝑒𝑞1

𝐿𝑒𝑚𝑚𝑎 𝐶.18

Case 𝑥 . 𝑦 : Let us split cases on whether 𝑥,𝑦 appear in fvs(𝑢), fvs(𝑣) respectively.
Case 𝑥 ∉ fvs(𝑣), 𝑦 ∉ fvs(𝑢) :

𝑋 [𝑥 = 𝑢;𝑦 = 𝑣] 𝑋 {𝑢/𝑥}[𝑥 = 𝑢;𝑦 = 𝑣]

𝑋 {𝑣/𝑥}[𝑥 = 𝑢;𝑦 = 𝑣] 𝑋 {𝑣/𝑥}[𝑥 = 𝑢;𝑦 = 𝑣]

𝑒𝑞2

𝑒𝑞1

𝑒𝑞2

𝑒𝑞1

Case 𝑥 ∉ fvs(𝑣), 𝑦 ∈ fvs(𝑢) :

𝑋 [𝑥 = 𝑢;𝑦 = 𝑣] 𝑋 {𝑢/𝑥}[𝑥 = 𝑢;𝑦 = 𝑣]

𝑋 {𝑣/𝑦}[𝑥 = 𝑢{𝑣/𝑦};𝑦 = 𝑣] 𝑋 {𝑢{𝑣/𝑦}/𝑥, 𝑣/𝑦}[𝑥 = 𝑢{𝑣/𝑦};𝑦 = 𝑣]

𝑒𝑞2

𝑒𝑞1

𝑒𝑞2

𝑒𝑞1

Case 𝑥 ∈ fvs(𝑣), 𝑦 ∉ fvs(𝑢) : Symmetric to previous case.

Case 𝑥 ∈ fvs(𝑣), 𝑦 ∈ fvs(𝑢) : Join at fail if u-occurs, else impossible due to no recursion.

□

Lemma C.16 (Subst-Diff). If 𝑒 −→
subst

𝑒
1
using 𝑒𝑞

1
and 𝑒 −→

subst
𝑒
2
using 𝑒𝑞

2
such that 𝑒𝑞

1
is

not under 𝑒𝑞
2
and 𝑒𝑞

2
is under 𝑒𝑞

1
, then 𝑒

1
↓U 𝑒

2
.

Proof. Here, we have 𝑒 ≡ 𝑋
1
[...𝑋

2
[𝑥

2
= 𝑣

2
] ...] [𝑥

1
= 𝑣

1
] where the substitution with x

2
= v

2

does not affect 𝑋
1
, 𝑥

1
, 𝑣

1
. Split cases on whether 𝑥

1
≡ 𝑥

2
.

Case 𝑥
1
≡ 𝑥

2
≡ 𝑥 : By no recursion we have 𝑥 ∉ fvs(𝑣

1
), 𝑥 ∉ fvs(𝑣

2
). Hence, we can join 𝑒

1
and

𝑒
2
using Lemma C.17 on the sub-terms 𝑋

2
{𝑣

1
/𝑥}[𝑣

1
= 𝑣

2
] and 𝑋

2
{𝑣

2
/𝑥}[𝑣

1
= 𝑣

2
].

𝑋
1
[. . . 𝑋

2
[𝑥 = 𝑣

2
] . . .] [𝑥 = 𝑣

1
] 𝑋

1
[. . . 𝑋

2
{𝑣

2
/𝑥}[𝑥 = 𝑣

2
] . . .] [𝑥 = 𝑣

1
]

𝑋
1
{𝑣

1
/𝑥}[. . . 𝑋

2
{𝑣

1
/𝑥}[𝑣

1
= 𝑣

2
] . . .] [𝑥 = 𝑣

1
] • 𝑋

1
{𝑣

1
/𝑥}[. . . 𝑋

2
{𝑣

2
/𝑥}[𝑣

1
= 𝑣

2
] . . .] [𝑥 = 𝑣

1
]

𝑒𝑞1

𝑒𝑞2

𝑒𝑞1

𝐿𝑒𝑚𝑚𝑎 𝐶.17

Case 𝑥
1
. 𝑥

2
: Let v_1

′ ≡ 𝑣
1
{𝑣

2
/𝑥

2
} and v_2

′ ≡ 𝑣
2
{𝑣

1
/𝑥

1
}. Split cases on whether 𝑥𝑖 ∈ fvs(𝑣3−𝑖 ).
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Case 𝑥
2
∉ fvs(𝑣

1
)

𝑋
1
[. . . 𝑋

2
[𝑥

2
= 𝑣

2
] . . .] [𝑥

1
= 𝑣

1
] 𝑋

1
[. . . 𝑋

2
{𝑣

2
/𝑥

2
}[𝑥

2
= 𝑣

2
] . . .] [𝑥

1
= 𝑣

1
]

𝑋
1
{𝑣

1
/𝑥

1
}[. . . 𝑋

2
{𝑣

1
/𝑥}[𝑥

2
= 𝑣 ′

2
] . . .] [𝑥

1
= 𝑣

1
] 𝑋

1
{𝑣

1
/𝑥}[. . . 𝑋

2
{𝑣 ′

2
/𝑥

2
, 𝑣

1
/𝑥

1
}[𝑥

2
= 𝑣 ′

2
] . . .] [𝑥

1
= 𝑣

1
]

𝑒𝑞1

𝑒𝑞2

𝑒𝑞2

𝑒𝑞1

Case 𝑥
2
∈ fvs(𝑣

1
), 𝑥

1
∉ fvs(𝑣

2
)

𝑋
1
[. . . 𝑋

2
[𝑥

2
= 𝑣

2
] . . .] [𝑥

1
= 𝑣

1
] 𝑋

1
[. . . 𝑋

2
{𝑣

2
/𝑥

2
}[𝑥

2
= 𝑣

2
] . . .] [𝑥

1
= 𝑣

1
]

𝑋
1
{𝑣

1
/𝑥

1
}[. . . 𝑋

2
{𝑣

1
/𝑥

1
}[𝑥

2
= 𝑣

2
] . . .] [𝑥

1
= 𝑣

1
] 𝑋

1
{𝑣

1
/𝑥

1
}[. . . 𝑋

2
{𝑣

1
/𝑥

1
, 𝑣

2
/𝑥

2
}[𝑥

2
= 𝑣

2
] . . .] [𝑥

1
= 𝑣

1
]

𝑋
1
{𝑣

1
/𝑥

1
}[. . . 𝑋

2
{𝑣 ′

1
/𝑥

1
, 𝑣

2
/𝑥

2
}[𝑥

2
= 𝑣

2
] . . .] [𝑥

1
= 𝑣

1
]

𝑒𝑞1

𝑒𝑞2

𝑒𝑞1

𝑒𝑞2
𝑒𝑞2

Case 𝑥
2
∈ fvs(𝑣

1
), 𝑥

1
∈ fvs(𝑣

2
) In this case, we get the below diagram where, since 𝑥

2
∈

fvs(𝑣 ′
2
), the term 𝑥

2
= 𝑣 ′

2
either steps to fail (and so we can join at fail) or the term violates

the no recursion assumption.

𝑋
1
[. . . 𝑋

2
[𝑥

2
= 𝑣

2
] . . .] [𝑥

1
= 𝑣

1
] 𝑋

1
[. . . 𝑋

2
{𝑣

2
/𝑥

2
}[𝑥

2
= 𝑣

2
] . . .] [𝑥

1
= 𝑣

1
]

𝑋
1
{𝑣

1
/𝑥

1
}[. . . 𝑋

2
{𝑣

1
/𝑥

1
}[𝑥

2
= 𝑣 ′

2
] . . .] [𝑥

1
= 𝑣

1
] 𝑋

1
{𝑣

1
/𝑥

1
}[. . . 𝑋

2
{𝑣

1
/𝑥

1
, 𝑣 ′

2
/𝑥

2
}[𝑥

2
= 𝑣 ′

2
] . . .] [𝑥

1
= 𝑣

1
]

𝑒𝑞1

𝑒𝑞2

𝑒𝑞1

□

Unification Lemmas The next two unification lemmas state that our rewrite rules encode classical

unification algorithms.

Lemma C.17 (Unify). If 𝑧 ∩ (fvs(𝑢) ∪ fvs(𝑣)) = ∅ then 𝑋 {𝑢/𝑧}[𝑢 = 𝑣] ↓U 𝑋 {𝑣/𝑧}[𝑢 = 𝑣]

Proof. Let 𝑋𝑢 ≡ 𝑋 {𝑢/𝑧} and 𝑋𝑣 ≡ 𝑋 {𝑣/𝑧}. The proof follows by induction on the triple

(♯free, ♯size, ♯𝑛) where

♯free � ♯fvs(𝑢) + ♯fvs(𝑣)
♯size � Σ𝑛𝑖=1size(𝑢𝑖 ) + size(𝑣𝑖 )

♯𝑛 � the cardinality of 𝑢, 𝑣

Split cases on the first equation 𝑢
1
= 𝑣

1
.

Case hnf
1
= hnf

2
with incompatible values: Here,

𝑋𝑢 [hnf
1
= hnf

2
;𝑢 ′ = 𝑣 ′] −→

u-fail
𝑋𝑢 [fail]

and

𝑋𝑣 [hnf
1
= hnf

2
;𝑢 ′ = 𝑣 ′] −→

u-fail
𝑋𝑣 [fail]

after which we can join at fail via fail-elim.
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Case ⟨u
1
,. . ., u_k⟩ = ⟨v

1
,. . ., v

k
⟩ with tuples of the same arity 𝑘 : use u-tup to get equations per

component and join using the induction hypothesis, which is well-founded as the ♯size is

strictly smaller:

𝑋𝑢 [⟨𝑢1, ..., 𝑢𝑘⟩ = ⟨𝑣1, ..., 𝑣𝑘⟩;𝑢 ′ = 𝑣 ′] 𝑋𝑢 [𝑢1 = 𝑣
1
, ..., 𝑢𝑘 = 𝑣𝑘 ;𝑢

′ = 𝑣 ′]

•

𝑋𝑣 [⟨𝑢1, ..., 𝑢𝑘⟩ = ⟨𝑣1, ..., 𝑣𝑘⟩;𝑢 ′ = 𝑣 ′] 𝑋𝑣 [𝑢1 = 𝑣
1
, ..., 𝑢𝑘 = 𝑣𝑘 ;𝑢

′ = 𝑣 ′]

u-tup

u-tup

𝐼𝐻

Case x = y use subst to replace all occurrences of 𝑥 with 𝑦, and then apply the IH on the

remaining 𝑛 − 1 equations 𝑢 ′ = 𝑣 ′. Note that the induction is well-founded as in this case

♯free and ♯size are unchanged but the number of equations decreases by one.

𝑋𝑢 [𝑥 = 𝑦;𝑢 ′ = 𝑣 ′] 𝑋𝑢{𝑦/𝑥}[𝑥 = 𝑦;𝑢 ′{𝑦/𝑥} = 𝑣 ′{𝑦/𝑥}]

•

𝑋𝑣 [𝑥 = 𝑦;𝑢 ′ = 𝑣 ′] 𝑋𝑣{𝑦/𝑥}[𝑥 = 𝑦;𝑢 ′{𝑦/𝑥} = 𝑣 ′{𝑦/𝑥}]

subst

subst

𝐼𝐻

Case x = h where ℎ is an HNF value and 𝑥 ∉ fvs(ℎ): use subst to replace all occurrences of 𝑥

withℎ, and then apply the IH on the remaining 𝑛−1 equations𝑢 ′ = 𝑣 ′. Note that the induction
is well-founded in this case as ♯free decreases since 𝑥 is removed from the free variables of

𝑢 ′ and 𝑣 ′ and 𝑋𝑢 and 𝑋𝑣 even though the ♯size may increase due to the substitution.

𝑋𝑢 [𝑥 = ℎ;𝑢 ′ = 𝑣 ′] 𝑋𝑢{ℎ/𝑥}[𝑥 = ℎ;𝑢 ′{ℎ/𝑥} = 𝑣 ′{ℎ/𝑥}]

•

𝑋𝑣 [𝑥 = ℎ;𝑢 ′ = 𝑣 ′] 𝑋𝑣{ℎ/𝑥}[𝑥 = ℎ;𝑢 ′{ℎ/𝑥} = 𝑣 ′{ℎ/𝑥}]

subst

subst

𝐼𝐻

Case x = v where 𝑥 ∈ fvs(𝑣): either join at fail via u-occurs or violates the no recursion

assumption.

□

Lemma C.18 (Unify-Flip). If 𝑧 ∩ (fvs(𝑢) ∪ fvs(𝑣)) = ∅ then 𝑋 {𝑢/𝑧}[𝑢 = 𝑣] ↓U 𝑋 {𝑣/𝑧}[𝑣 = 𝑢]

Proof. Same as Lemma C.17 except using hnf-swap and var-swap to make the equations the

same on both sides. □

C.4 Unification is Confluent
Lemma C.19 (U-Confluent). U is confluent.

Proof. We prove thatU is confluent via the following strategy inspired by labeled reductions

[Lévy 1976]. LetU𝑘 which is a subset ofU that only applies reductions to terms that are under less

than 𝑘 _s.
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Block b ::= {v = r ; b}ℓ | {𝑏;𝑏}ℓ | 𝑡
RHS r ::= b | t

Tail t ::= v | v
1

v
2
| ∃x . e | e

1
e
2
| one{e} | all{e} | fail

Fig. 14. Labeled Blocks

(1) First, we show thatU𝑘 is locally confluent for all 𝑘 (Lemma C.21).

(2) Second, we show thatU𝑘 is terminating for all 𝑘 (Lemma C.23).

(3) Third, consequently, by Lemma B.14 we obtain thatU𝑘 is confluent for all 𝑘 .

(4) Finally, we show thatU is confluent by using the largest 𝑘 in two traces, to join two arbitrary

sequences ofU reductions Lemma C.22.

□

Definition C.20 (𝑘-Unification). A 𝑘-labeled term is a term where each subterm occurring under

at most 𝑘 _’s is marked by a special label ℓ . LetU𝑘 be defined as the set of allU reductions where:

(1) theU-redex is a ℓ-labeled or occurs under ⩽ 𝑘 _s, and (2) the subst preserves labels.

Lemma C.21. U𝑘 is locally confluent.

Proof. For simplicity, we directly prove thatU is locally confluent (Lemma C.28). The proof

carries over toU𝑘 as the only requiredU-reductions under > 𝑘 _s are on labeled subterms. □

We can now prove that any twoU𝑘 reductions (and henceU reductions) can be joined.

Lemma C.22 (U𝑘 -join). If 𝑒 −→→U𝑖
𝑒𝑖 and 𝑒 −→→U𝑗

𝑒 𝑗 then there exists 𝑒 ′ such that 𝑒𝑖 , 𝑒 𝑗 −→→U 𝑒 ′.

Proof. Let 𝑘 = max(𝑖, 𝑗). AsU𝑖 ,U𝑗 ⊆ U𝑘 we have 𝑒 −→→U𝑘
𝑒𝑖 and 𝑒 −→→U𝑘

𝑒 𝑗 . By Lemma C.23

and Lemma C.21 and Lemma B.14,U𝑘 is confluent, hence there exists 𝑒 ′ such that 𝑒𝑖 , 𝑒 𝑗 −→→U𝑘
𝑒 ′,

after whichU𝑘 ⊆ U completes the proof. □

Lemma C.23. U𝑘 is Noetherian.

Proof. By induction on 𝑘 .

Base case (𝑘 ≡ 0) via Lemma C.27.

Inductive case Assume the induction hypothesis that U𝑘 is Noetherian and prove U𝑘+1 is
Noetherian. Let 𝜎 be aU𝑘+1 reduction sequence 𝑒 −→ . . .. We will prove that 𝜎 is finite. By

the IH there is some finite prefix of the trace 𝑒 −→→U𝑘+1 𝑒
′
after which there are no moreU

steps at level⩽ 𝑘 . Note that 𝑒 ′ is finite and of the form . . . (_x
1
. e

1
) . . . (_x

n
. e

n
) . . . comprising

𝑛 disjoint _ terms. EveryU𝑘+1 reduction from 𝑒 ′ is aU𝑘 reduction from some e
i
, that occur

“in parallel” i.e. without influencing each other, and which can be sequenced to get aU𝑘+1
reduction sequence. Again, by the induction hypothesis, each of these reduction sequences

(for each 𝑒𝑖 ) is finite, and hence their sequencing is finite, hence 𝜎 must be finite.

□

Labeled Blocks We prove the base case of Lemma C.23 by stratifying expressions into labeled

blocks, tails, rhs and expressions as shown in Fig. 14. A tail is a term that is “inert” for the purposes

ofU
0
reduction: namely a value, application, existential, one, all or choice. An rhs is either a block

or a tail (which includes a value). A labeled block is a sequence of equations v = r of a value and

an RHS r followed by a tail t. We assume each block carries a unique “ghost” label ℓ (that will be

used to prove termination). In any block 𝑏, for any two labels ℓ
1
and ℓ

2
we write ℓ

1
≺𝑏 ℓ

2
if the

48



2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

The Verse Calculus: a Core Calculus for Functional Logic Programming
In submission, March 2023,

block labelled by ℓ
2
occurs inside (under) the block labelled by ℓ

1
in 𝑏. We will use 𝑏ℓ to denote the

(unique) sub-block of 𝑏 labeled by ℓ . For rewrites like choose, seq-assoc, seq-swap and eqn-float, we

assume that the rewritten term is given a fresh set of distinct block labels. For rewrites with u-tup,

we assume fresh labels are given to the new (inner) blocks created by tuple matching equations.

All otherU rewrites preserve blocks or delete them, so we assume that the same labels carry over

to the rewritten terms.

Lemma C.24. seq-swap strongly postpones afterU.

Proof. Split cases on each reduction of U; the diamond is completed as the rules are non-

overlapping. □

Definition C.25 (Elimination). We say a reduction eliminates a variable 𝑥 from a block 𝑏 if the

reduction is (1) a subst reduction spanning 𝑏 or an enclosing block (2) using an equation x = v

where (3) v is either an HNF or a variable 𝑦 such that 𝑥 ≺ 𝑦. A reduction sequence eliminates a

variable 𝑥 from a block 𝑏 if there is some reduction in the sequence that eliminates 𝑥 from 𝑏, and

the sequence contains no subsequent subst reductions spanning any block strictly enclosing 𝑏.

Lemma C.26. U
0
is Noetherian for all blocks b.

Proof. We prove that for any term b that it is only possible to take finitely manyU
0
steps from

b. Let 𝜎 � 𝑏 −→ 𝑏
1
−→ 𝑏

2
−→ . . . be aU

0
reduction sequence starting at 𝑏. Write 𝜎𝑖 for the prefix

𝑏 −→ . . . −→ 𝑏𝑖 . We will show that 𝜎 must be finite. LetU ′
0
� U

0
− seq-swap. As seq-swap strongly

postpones afterU Lemma C.24, any infinite 𝜎 can be translated to a either: (a) A sequence with a

finite prefix ofU ′
0
reductions followed by infinitely many seq-swap, or (b) An infinite sequence of

U ′
0
reductions. Next, we show neither case is possible.

Case (a) This case is ruled out by the ordering restriction on seq-swap which ensures that after

the finite prefix ofU ′
0
reductions, we can only keep swapping equations till they reach a canonical

linear order after which no further swaps are possible.

Case (b) Next, we (ignore seq-swap to) show there is no infinite sequence ofU ′
0
reductions. To

do so, suppose that 𝜎 is such a reduction sequence. For each prefix (𝜎𝑖 , 𝑒𝑖 ) we define the following
lexicographic termination metric

♯(𝜎𝑖 , 𝑏𝑖 ) � (♯choose(𝑏𝑖 ), ♯semi(𝑏𝑖 ), cands(𝜎𝑖 , 𝑏𝑖 ), size(𝑏𝑖 ), ♯swaps(𝑏𝑖 ))
where

choose(𝑏𝑖 ) � choose redexes in 𝑏𝑖

semi(𝑏𝑖 ) � seq-assoc or eqn-float redexes in 𝑏𝑖

cands(𝜎𝑖 , 𝑒𝑖 ) � [. . . ℓ ↦→ (♯cand(𝜎𝑖 , 𝑏𝑖 , ℓ) . . . | ℓ ∈ 𝑏𝑖 ]
where labels are ordered by ≺𝑏𝑖

size(𝑏𝑖 ) � size of the block 𝑏𝑖

swaps(𝑏𝑖 ) � var-swap redexes in 𝑏𝑖

and where, for a finite reduction (prefix) 𝜎 ′ block 𝑏 and label ℓ

cand(𝜎 ′, 𝑏, ℓ) � fvs(𝑏ℓ ) − elim(𝜎 ′, 𝑏, ℓ)
elim(𝜎 ′, 𝑏, ℓ) � {𝑥 | 𝜎 ′ eliminates 𝑥 from 𝑏ℓ }

The unification reductions preserve the following invariant: once a variable 𝑥 has been eliminated

from a block, it appears at most once in the block as an LHS of an equation x = v, and that equation
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can never again be used to perform a substitution in that block unless new occurrences of 𝑥 are

injected into the block by a substitution performed in an enclosing block, in which case, the block
metric for the outer block will be strictly smaller. Specifically, each application of

• choose strictly reduces ♯choose;
• seq-assoc or eqn-float strictly reduces ♯semi (leaving ♯choose unchanged);
• subst strictly reduces ♯cands (leaving ♯semi, ♯choose unchanged), as it eliminates a variable

from the block ℓ that the substitution spans;

• u-tup strictly reduces size (leaving cands, ♯semi, ♯choose unchanged), as it preserves elim
and hence cand, but reduces the size of ℓ ;
• u-lit, u-fail, u-occurs strictly reduces size (leaving cands, ♯semi, ♯choose unchanged);
• var-swap strictly reduces swaps leaving the other components unchanged.

Thus, as ♯(𝜎𝑖 , 𝑏𝑖 ) is a strictly decreasing well-founded metric, the sequence (𝜎
1
, 𝑏

1
), . . . , is finite,

and so any sequence ofU
0
’ steps is guaranteed to terminate. □

Lemma C.27. U
0
is Noetherian for all tails 𝑡 , rhs 𝑟 and expressions 𝑒 .

Proof. By induction on the structure of t, r and e, using Lemma C.26 for the base case. □

Lemma C.28. U is locally confluent.

Proof. Let Δ
1
−→

1
Δ′
1
and Δ

2
−→

2
Δ′
2
denote the twoU reducts. If the reducts are disjoint, then

the terms can be joined trivially in a single step via Lemma C.4. By symmetry it suffices to consider

the case where Δ
1
occurs under Δ

2
. Let us split cases on the rule used for Δ

1
.

Case Δ
1
viaU − subst − var-swap join using Lemma C.6.

Case Δ
1
via var-swap join using Lemma C.29.

Case Δ
1
via subst join using Lemma C.30.

□

Lemma C.29 (var-swap under). If ΔU −→U Δ′U and ΔU ≡ 𝐸 [Δ] and Δ −→
swap

Δ′ then there

exists Δ′′U such that Δ′U −→→swap
Δ′′U and 𝐸 [Δ′] −→U Δ′′R .

ΔU ≡ 𝐸 [Δ] 𝐸 [Δ′]

Δ′U Δ′′U

U

var-swap

U

var-swap

Proof. Split cases on the rule used inU.

Case u-lit or var-swap : impossible as no var-swap redex under k
1
=k

2
or x =y.

Case u-tup : Here, ΔU ≡ ⟨u1
,. . ., u

n
⟩ = ⟨v

1
,. . ., v

n
⟩ and wlog the var-swap redex is 𝑢 ′

1
−→𝑢1

so

join at u_1
′=v

1
; . . .; u

n
=v

n
.

Case u-fail : Here, ΔU ≡ hnf 𝑖 −→ hnf
′
𝑖 so join at fail

Case u-occurs : Here, ΔU ≡ x =V [x ] and the var-swap redex is under V [x ], i.e.𝑉 [𝑥] −→
subst

𝑉 [𝑥] ′ as the free variables are preserved by var-swap hence we can join at fail.

Case hnf-swap : Here, ΔU ≡ hnf = 𝑥 and the var-swap redex is under hnf i.e. hnf −→
subst

hnf
′
, hence join at 𝑥 = hnf

′
.

Case subst : via Lemma C.12.

Case choose : via Lemma C.7.

Case seq-assoc : Here, ΔU ≡ (𝑒𝑞; 𝑒1); 𝑒2 −→ 𝑒𝑞; (𝑒
1
; 𝑒

2
) ≡ Δ′U . Split cases on where Δ occurs.

Case Δ ⊆ 𝑒𝑞 i.e. 𝑒𝑞 −→
var-swap

𝑒𝑢 ′ Join at Δ′′U ≡ 𝑒𝑢 ′; (𝑒1; 𝑒2).
Case Δ ⊆ 𝑒

1
i.e. 𝑒

1
−→
var-swap

𝑒 ′
1
Join at Δ′′U ≡ 𝑒𝑞; (𝑒 ′1; 𝑒2).
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Case Δ ⊆ 𝑒
2
i.e. 𝑒

2
−→
var-swap

𝑒 ′
2
Join at Δ′′U ≡ 𝑒𝑞; (𝑒1; 𝑒 ′2).

Case eqn-float : ΔU ≡ 𝑣 = (𝑒𝑞; 𝑒
1
); 𝑒

2
−→ 𝑒𝑞; (𝑣 = 𝑒

1
; 𝑒

2
) ≡ Δ′U . Split cases on where Δ occurs.

Case Δ ⊆ 𝑣 i.e. 𝑣 −→
var-swap

𝑣 ′ Join at Δ′′U ≡ 𝑒𝑞; (𝑣 ′ = 𝑒
1
; 𝑒

2
).

Case Δ ⊆ 𝑒𝑞 i.e. 𝑒𝑞 −→
var-swap

𝑒𝑢 ′ Join at Δ′′U ≡ 𝑒𝑢 ′; (𝑣 = 𝑒
1
; 𝑒

2
).

Case Δ ⊆ 𝑒
1
i.e. 𝑒

1
−→
var-swap

𝑒 ′
1
Join at Δ′′U ≡ 𝑒𝑞; (𝑣 = 𝑒 ′

1
; 𝑒

2
).

Case Δ ⊆ 𝑒
2
i.e. 𝑒

2
−→
var-swap

𝑒 ′
2
Join at Δ′′U ≡ 𝑒𝑞; (𝑣 = 𝑒

1
; 𝑒 ′

2
).

□

Lemma C.30 (subst-under). If ΔU −→U Δ′U and ΔU ≡ 𝐸 [Δ] and Δ −→
subst

Δ′ then there exists

Δ′′U such that Δ′U −→→subst
Δ′′U and 𝐸 [Δ′] −→U Δ′′U .

ΔU ≡ 𝐸 [Δ] 𝐸 [Δ′]

Δ′U Δ′′U

U

subst

U

subst

Proof. Split cases on the rule used inU.

Case u-lit or var-swap : impossible as no subst redex under k
1
=k

2
or x =y.

Case u-tup : Here, ΔU ≡ ⟨u1,. . ., un
⟩ = ⟨v

1
,. . ., v

n
⟩ and wlog the subst redex is 𝑢 ′

1
−→𝑢1

so join at

u_1
′=v

1
; . . .; u

n
=v

n
.

Case u-fail : Here, ΔU ≡ hnf 𝑖 −→ hnf
′
𝑖 so join at fail

Case u-occurs : Here, ΔU ≡ x = V [x ] and the subst redex is under V [x ], i.e. 𝑉 [𝑥] −→
subst

𝑉 [𝑥] ′ as the free variables are preserved by subst hence we can join at fail.

Case hnf-swap : Here, ΔU ≡ hnf = 𝑥 and the subst redex is under hnf i.e. hnf −→
subst

hnf
′
,

hence join at 𝑥 = hnf
′
.

Case subst : via Lemma C.14.

Case choose : via Lemma C.7.

Case seq-assoc : ΔU ≡ (𝑒𝑞; 𝑒1); 𝑒2 −→ 𝑒𝑞; (𝑒
1
; 𝑒

2
) ≡ Δ′U . Split cases on where Δ occurs.

Case Δ ⊆ 𝑒𝑞 i.e. 𝑒𝑞 −→R′ 𝑒𝑢 ′ Join at Δ′′U ≡ 𝑒𝑢 ′; (𝑒1; 𝑒2).
Case Δ ⊆ 𝑒

1
i.e. 𝑒

1
−→R′ 𝑒 ′1 Join at Δ′′U ≡ 𝑒𝑞; (𝑒 ′1; 𝑒2).

Case Δ ⊆ 𝑒
2
i.e. 𝑒

2
−→R′ 𝑒 ′2 Join at Δ′′U ≡ 𝑒𝑞; (𝑒1; 𝑒 ′2).

Case Δ ⊆ (𝑒𝑞; 𝑒
1
) i.e. subst : (𝑒𝑞; 𝑒

1
) −→ (𝑒𝑢 ′; 𝑒 ′

1
) Join at Δ′′U ≡ 𝑒𝑢 ′; (𝑒 ′1; 𝑒2).

Case Δ ⊆ ((𝑒𝑞; 𝑒
1
); 𝑒

2
) i.e. subst : (𝑒𝑞; 𝑒

1
); 𝑒

2
−→ (𝑒𝑢 ′; 𝑒 ′

1
); 𝑒 ′

2
Join at Δ′′U ≡ 𝑒𝑢 ′; (𝑒 ′1; 𝑒 ′2).

Case eqn-float : ΔU ≡ 𝑣 = (𝑒𝑞; 𝑒
1
); 𝑒

2
−→ 𝑒𝑞; (𝑣 = 𝑒

1
; 𝑒

2
) ≡ Δ′U . Split cases on where Δ occurs.

Case Δ ⊆ 𝑣 i.e. 𝑣 −→R′ 𝑣 ′ Join at Δ′′U ≡ 𝑒𝑞; (𝑣 ′ = 𝑒
1
; 𝑒

2
).

Case Δ ⊆ 𝑒𝑞 i.e. 𝑒𝑞 −→R′ 𝑒𝑢 ′ Join at Δ′′U ≡ 𝑒𝑢 ′; (𝑣 = 𝑒
1
; 𝑒

2
).

Case Δ ⊆ 𝑒
1
i.e. 𝑒

1
−→R′ 𝑒 ′1 Join at Δ′′U ≡ 𝑒𝑞; (𝑣 = 𝑒 ′

1
; 𝑒

2
).

Case Δ ⊆ 𝑒
2
i.e. 𝑒

2
−→R′ 𝑒 ′2 Join at Δ′′U ≡ 𝑒𝑞; (𝑣 = 𝑒

1
; 𝑒 ′

2
).

Case Δ ⊆ (𝑒𝑞; 𝑒
1
) i.e. subst : 𝑣 = (𝑒𝑞; 𝑒

1
); 𝑒

2
−→ 𝑣 = (𝑒𝑢 ′; 𝑒 ′

1
); 𝑒

2
. Join at Δ′′U ≡ 𝑒𝑢 ′; (𝑣 =

𝑒 ′
1
; 𝑒

2
).

Case Δ ⊆ 𝑣 = (𝑒𝑞; 𝑒
1
); 𝑒

2
i.e. subst : (𝑣 = 𝑒𝑞; 𝑒

1
); 𝑒

2
−→ (𝑣 ′ = 𝑒𝑢 ′; 𝑒 ′

1
); 𝑒 ′

2
Join at Δ′′U ≡

𝑒𝑢 ′; (𝑣 ′ = 𝑒 ′
1
; 𝑒 ′

2
).

□

C.5 Normalization is Confluent
Recall that N ≡ exi-swap + exi-float + var-swap + subst-var where

subst-var 𝑋 [x =y; e ] −→ (𝑋 {y/x}) [x =y; e{y/x}]

51



2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

In submission, March 2023,
Augustsson, Breitner, Claessen, Jhala, Peyton Jones, Shivers, Steele, Sweeney

It will be convenient to factor out exi-float so let

SS � subst-var + var-swap
N ′ � SS + exi-swap
N � N ′ + exi-float

Lemma C.31 (N -Confluent). N is confluent.

Proof. The above result follows in two steps. First we show thatN ′– i.e. normalization-without-

exi-float – is confluent in Lemma C.35. Second we show that N ′strongly postpones after exi-

float Lemma C.34. Consequently, each −→→N can be rewritten as the composition of −→→
exi-float

followed by −→→N′ after which the following diagram completes the proof, where (1) Lemma C.32

(2) Lemma C.33 (3) Lemma C.35. (4) Lemma C.35

•

• •

• •

• (1) •

(2) (2)

(3) (3)

(4)

exi-float exi-float

exi-float exi-float

N′ N′

N′

N′ N′

N′

N′ N′

N′

N′

exi-float

N′

exi-float

□

LemmaC.32. If 𝑒 −→→
exi-float

𝑒
1
and 𝑒 −→→

exi-float
𝑒
2
then exists 𝑒

1
−→→

exi-float
𝑒 ′
1
, 𝑒

2
−→→

exi-float

𝑒 ′
2
, such that 𝑒 ′

1
↓
exi-swap

𝑒 ′
2
.

Proof. On each side add the (missing) exi-float steps on the other side, and then use (multiple)

exi-swap to join. □

Lemma C.33. exi-float strongly commutes with N ′.

Proof. Split cases on each possible case of N ′, the diamond is completed trivially as the rules

are non-overlapping. □

Lemma C.34. N ′strongly postpones after exi-float, so N∗ ≡ exi-float
∗ · N ′∗.

Proof. Split cases on each possible case of N ′; the diamond is completed trivially as the rules

are non-overlapping. □

Lemma C.35. N ′is confluent.
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Proof. Via the following diagram, where: (1) is LemmaC.36; (2) is LemmaC.40; (3) is LemmaC.39;

(4) is Lemma C.38.

•

• • • •

(1) (4) (1)

(2) (2)

(3)

N′ N′
𝐸 𝐸

SSSS SS SS𝐸 𝐸

SS SSN′ N′

SS SS

□

Lemma C.36. If 𝑒 −→→N′ 𝑒 ′ there exists 𝑒 ′′ such that 𝑒 ′ −→→SS 𝑒 ′′ and 𝑒 −→→
exi-swap

· −→→SS 𝑒 ′′.

𝑒 𝑒 ′

• 𝑒 ′′
exi-swap

SS

SS

N′

Proof. By using Lemma B.25 with the facts that SS is confluent (Lemma C.39) and SS hops

after exi-swap (Lemma C.37). □

Lemma C.37. SS(resp.U) hops after exi-swap.

Proof. By splitting cases on the SS(resp.U) reduction that precedes the exi-swap.

Case var-swap Let the Δ
swap

≡ 𝑋 [x =y ]. If the exi-swap preserves the order of 𝑥 and 𝑦 then

the result follows trivially (as the reductions are non-overlapping.) If the exi-swap toggles the

order then the result follows via the diagram

∃𝑥,𝑦. . . . 𝑋 [𝑥 = 𝑦] ∃𝑥,𝑦. . . . 𝑋 [𝑦 = 𝑥]

∃𝑦, 𝑥 . . . . 𝑋 [𝑥 = 𝑦] ∃𝑦, 𝑥 . . . . 𝑋 [𝑦 = 𝑥]
exi-swap

var-swap

exi-swap

var-swap

Case non-var-swap AnU reduction other than var-swap is variable-order independent, so the

sequence ofU-step followed by exi-swap is equivalent to first doing the exi-swap and then

theUstep.

□

Lemma C.38. exi-swap is confluent.

Proof. Trivial, via the diamond property. □

Lemma C.39. SS = subst-var + swap is confluent.

Proof. Note that SS is a subset of U; the proof follows similar to the proof of Lemma C.19

(ignoring the bits about u-tup and u-lit and u-fail and substituting HNF values.) □

Lemma C.40. SScommutes with N ′.
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Proof. Recall thatN ′ ≡ SS + exi-swap. The proof follows by observing that SS half-commutes

with exi-swap Lemma C.41, recalling that SS is confluent Lemma C.39, after which Lemma B.27

yields the conclusion SS commutes with SS + exi-swap ≡ N ′. □

Lemma C.41. SS half-commutes with exi-swap.

Proof. Recall that SS ≡ subst-var + var-swap. Split cases and show each reduction half-

commutes with exi-swap.

Case subst-var If the exi-swap occurs under subst-var then they trivially commute as the

variable order is unaffected by the exi-swap. If the subst-var occurs under exi-swap the proof

is completed by the following diagram.

∃𝑦, 𝑥 . . . . 𝑋 [𝑥 = 𝑦] ∃𝑥,𝑦. . . . 𝑋 [𝑥 = 𝑦]

∃𝑥,𝑦. . . . 𝑋 [𝑦 = 𝑥]

∃𝑦, 𝑥 . . . . 𝑋 {𝑦/𝑥}[𝑥 = 𝑦] ∃𝑥,𝑦. . . . 𝑋 {𝑦/𝑥}[𝑥 = 𝑦] ∃𝑥,𝑦. . . . 𝑋 {𝑥/𝑦}[𝑦 = 𝑥]

exi-swap

var-swap

subst-var

subst-var

exi-swap var-swap+subst-var

Case var-swap (under exi-swap) The non-trivial cases are where the same variables 𝑥 , 𝑦 are

being swapped by both rules (otherwise, the reductions half-commutes trivially via the

diamond property). For the variables to be the same, the var-swap must occur under the

exi-swap (as otherwise the same variables are not in scope.) Hence, the proof is completed by

the following diagram.

∃𝑥,𝑦. . . . 𝑋 [𝑥 = 𝑦] ∃𝑦, 𝑥 . . . . 𝑋 [𝑥 = 𝑦]

∃𝑥,𝑦. . . . 𝑋 [𝑦 = 𝑥] ∃𝑦, 𝑥 . . . . 𝑋 [𝑦 = 𝑥]
var-swap

exi-swap

var-swap

exi-swap

□

C.6 Unification + Normalization is Confluent
Recall that

N � exi-float + exi-swap + SS

and define

U ′ � U + exi-swap

Lemma C.42. U ∪N is confluent.

Proof. We proveU∪N is confluent by a generalization of the proof of LemmaC.31 where we use

the fullU relation (instead of the subset SS). First we show thatU’ – i.e.U∪N without-exi-float

– is confluent Lemma C.45. Second we show thatU’ strongly postpones after exi-float Lemma C.44.

Consequently, each −→→U∪N can be rewritten as the composition of −→→
exi-float

followed by −→→U′
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after which the following diagram completes the proof.

•

• •

• •

• • •

• •

• •

•

exi-float exi-float

exi-float exi-float

U′ U′

U′

U′ U′

U′

U′ U′

𝐿𝑒𝑚𝑚𝑎 𝐶.32

𝐿𝑒𝑚𝑚𝑎 𝐶.45

U′

exi-float

U′
𝐿𝑒𝑚𝑚𝑎 𝐶.43

𝐿𝑒𝑚𝑚𝑎 𝐶.45

U′

exi-float

𝐿𝑒𝑚𝑚𝑎 𝐶.43

U′

𝐿𝑒𝑚𝑚𝑎 𝐶.45

□

Lemma C.43. exi-float strongly commutes withU’.

Proof. Split cases on each possible case ofU’; the diamond is completed trivially as the rules

are non-overlapping. □

Lemma C.44. LetU ′ � U+exi-swap.Ustrongly postpones after exi-float, soU ′∗ ≡ exi-float
∗ ·U∗.

Proof. Same as Lemma C.34. □

Lemma C.45. LetU ′ � U + exi-swap.U ′ is confluent.

Proof. Via the following diagram, where: (1) is LemmaC.46; (2) is LemmaC.47; (3) is LemmaC.19;

(4) is Lemma C.38.

•

• • • •

(1) (4) (1)

(2) (2)

(3)

U′ U′
𝐸 𝐸

UU U U𝐸 𝐸

U UU′ U′

U U

□
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Lemma C.46. Let U ′ = U + exi-swap. If 𝑒 −→→U′ 𝑒 ′ there exists 𝑒 ′′ such that 𝑒 ′ −→→U 𝑒 ′′ and
𝑒 −→→

exi-swap
· −→→U 𝑒 ′′.

𝑒 𝑒 ′

• 𝑒 ′′
exi-swap

U

U

U′

Proof. (Similar to Lemma C.36), By using Lemma B.25 with the facts that U is confluent

(Lemma C.19) andU hops after exi-swap (Lemma C.37). □

Lemma C.47. LetU ′ = U + exi-swap.U’ commutes withU.

Proof. The proof follows by observing thatU half-commutes with exi-swap Lemma C.48, recall-

ing thatU is confluent Lemma C.19, after which Lemma B.27 yields the conclusionU commutes

withU + exi-swap ≡ U ′. □

Lemma C.48. U half-commutes with exi-swap.

Proof. Same as Lemma C.41; the rules in Uother than those in the subset SS trivially half-

commutes as they do not overlap with exi-swap. □

C.7 U ∪N Commute With A ∪ G ∪ C
Lemma C.49 (U-A-Comm). U and A commute.

Proof. We show thatU ∗-commutes withA and hence commutes via Lemma B.34. Let ΔU −→U
Δ′U and ΔA −→A Δ′A denote the reducts forU and A respectively.

Case: ΔU and ΔA disjoint via Lemma C.4.

Case: ΔU ⊆ ΔA via Lemma C.5.

Case: ΔA ⊆ ΔU via Lemma C.6.

□

Lemma C.50 (U − G-Comm). U and G commute.

Proof. We show thatU ∗-commutes commutes wth G, and hence by Lemma B.34,U commutes

wth G. Let ΔU −→U Δ′U and ΔG −→G Δ′G denote the reducts forU and G respectively. If the reducts

are disjoint then terms can be trivially joined. Let us split cases on whether ΔU occurs under ΔG
or vice versa.

Case ΔU ⊆ ΔG : via Lemma C.9.

Case ΔG ⊆ ΔU : via Lemma C.6.

□

Lemma C.51 (U − C-Comm). U and C commute.

Proof. We show thatU ∗-commutes with C, and hence by Lemma B.34,U commutes wth C.
Let ΔU −→U Δ′U and ΔC −→C Δ′C denote the reducts forU and C respectively. If the reducts are

disjoint then terms can be trivially joined. Let us split cases on whether ΔU occurs under ΔC or
vice versa.

Case ΔU ⊆ ΔC via Lemma C.10.

Case ΔC ⊆ ΔU via Lemma C.6.

□

Lemma C.52. N and A commute.
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Proof. We show that N strongly commutes with A, hence commutes via Lemma B.19. Let

ΔA −→A Δ′A and ΔN −→N Δ′N denote the reducts for A and N respectively. If the reducts are

disjoint then terms can be trivially joined in a single step. Let us split cases on whether ΔA occurs

under ΔN or vice versa.

Case ΔA ⊆ ΔN via Lemma C.8.

Case ΔN ⊆ ΔA via Lemma C.5.

□

Lemma C.53. N and G commute.

Proof. We show that N strongly commutes with G, hence commutes via Lemma B.19. Let

ΔG −→G Δ′G and ΔN −→N Δ′N denote the reducts for G andN respectively. If the reducts are disjoint

then terms can be trivially joined in a single step. Let us split cases on whether ΔG occurs under

ΔN or vice versa.

Case ΔG ⊆ ΔN via Lemma C.8.

Case ΔN ⊆ ΔG via Lemma C.9.

□

Lemma C.54. N and C commute.

Proof. We show that N strongly commutes with C, hence commutes via Lemma B.19. Let

ΔC −→C Δ′C and ΔN −→N Δ′N denote the reducts for C andN respectively. If the reducts are disjoint

then terms can be trivially joined in a single step. Split cases on whether ΔC occurs under ΔN or

vice versa.

Case ΔC ⊆ ΔN via Lemma C.8.

Case ΔN ⊆ ΔC via Lemma C.10.

□

C.8 Application
Lemma C.55. A is confluent.

Proof. We show that A satisfies the diamond property and hence, is confluent by Lemma B.10.

Suppose that 𝑒 −→A 𝑒
1
via the redux Δ

1
−→A Δ′

1
, and 𝑒 −→A 𝑒

2
via the redux Δ

2
−→A Δ′

2
. If Δ

1
and Δ

2

are disjoint in 𝑒 , the terms 𝑒
1
and 𝑒

2
can be trivially joined in a single step. If Δ

1
⊆ Δ

2
(or Δ

2
⊆ Δ

1
)

then Lemma C.5 completes the proof. □

Lemma C.56. A and G commute.

Proof. We show that A strongly commutes with G, hence commutes via Lemma B.19. Let

ΔA −→A Δ′A and ΔG −→G Δ′G denote the reducts for A and G respectively. If the reducts are

disjoint then terms can be trivially joined in a single step. Let us split cases on whether ΔA occurs

under ΔN or vice versa.

Case ΔA ⊆ ΔG via Lemma C.9.

Case ΔG ⊆ ΔA via Lemma C.5.

□

Lemma C.57. A and C commute.

Proof. We show that A strongly commutes with C, hence commutes via Lemma B.19. Let

ΔA −→A Δ′A and ΔC −→C Δ′C denote the reducts forA and C respectively. If the reducts are disjoint
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then terms can be trivially joined in a single step. Let us split cases on whether ΔA occurs under

ΔC or vice versa.

Case ΔC ⊆ ΔA via Lemma C.5.

Case ΔA ⊆ ΔC via Lemma C.10.

□

C.9 Garbage Collection
Lemma C.58. G is confluent.

Proof. We show that G satisfies the diamond property and hence, is confluent by Lemma B.10.

Suppose that 𝑒 −→G 𝑒
1
via the redux Δ

1
−→G Δ′

1
𝑒 −→G 𝑒

2
via the redux Δ

2
−→G Δ′

2
. If Δ

1
and Δ

2
are

disjoint, the terms 𝑒
1
and 𝑒

2
can be trivially joined in a single step. If Δ

1
⊆ Δ

2
(or Δ

2
⊆ Δ

1
) then

Lemma C.9 completes the proof. □

Lemma C.59. G and C commute.

Proof. We show that G and C strongly commute. Let ΔG −→G Δ′G and ΔC −→C Δ′C denote the
reducts for G and G respectively. If the reducts are disjoint then terms can be trivially joined in a

single step. Let us split cases on whether ΔG occurs under ΔC or vice versa.

Case ΔG ⊆ ΔC : via Lemma C.10.

Case ΔC ⊆ ΔG : via Lemma C.9.

□

C.10 Choice
Lemma C.60. C is confluent.

Proof. Lemma C.10 shows that C has the diamond property (as C ⊆ R), and hence C is confluent

via Lemma B.10. □
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D SKEW CONFLUENCE

[This is a sketch of an incomplete proof of skew confluence.]

We now consider a version of VC that fully supports recursive substitution, and lifts the

pesky no-recursion precondition on the confluence theorem. Rather than lifting the side condition

x ∉ fvs(𝑣) on rule subst, which avoids using a recursive equation for substitution, we take another

approach that we believe leads to a simpler proof: we introduce the familiar, conventional fixpoint

operator `x . hnf , but allow it to be applied only to head values, not to general expressions. A

new unification rule u-occurs-wrap can turn a recursive equation into one that is not recursive

(by packaging up the right-hand side within a fixpoint), after which rule subst may be applied.

A corresponding new rule u-unwrap can expand a fixpoint by applying the conventional rewrite

rule `x . hnf −→ hnf {`x . hnf /x}. While this rule allows infinite application, a sensible evaluation

strategy would apply this rule “only when needed”—when it is on either side of an equation, or

when it is in the function position of an application. If we regard anyVC data structure as tree, the

fixpoint construct in effect can label any subtree in such a way that any node beneath it can have a

“back pointer” up to the labeled node by referring to the bound variable that serves as the label.

D.1 Free Variables
We use the conventional notation fvs(e) to denote the set of variables that occur free in the

expression e. Variables are bound by the constructs ∃x . e, _x . e, and `x . hnf . Figure 15 contains a

formal definition of this function forVC.
We use the variation fvsol(e) to denote the set of variables that occur free in the expression

e in at least one position that is not within the body of a lambda expression
13
. As an example,

fvsol(∃x . ⟨x, f , g, _y. ⟨x, g, y, z⟩⟩) = {𝑓 , 𝑔} because:
• x is bound by ∃, so it is not free.

• f is free in a position not within the body of a lambda expression.

• g is free in at least one position not within the body of a lambda expression (it also happens

to be free in a second position that is within the body of a lambda expression).

• y is bound by _, so it is not free.

• z is free, but appears only in a position that is within the body of a lambda expression.

Figure 16 contains a formal definition of this function. Unlike fvs(𝑒), fvsol(v) is only ever appplied

to a value v.

D.2 Substitution
We use the notation e{v/x} to denote the expression that results from performing standard capture-

avoiding substitution of the value v for every occurrence of the variable x within the expression e

(it turns out that, forVC, substitution of general expressions for variables is not required, only

substitution of values for variables). Figure 17 contains a formal definition of how this notation

applies to theVC grammar (compare [Barendregt 1984, §2.1.15]).

D.3 Modified grammar and rewrite rules
Let us modify the grammar forVC to have one additional kind of value, a fixpoint value `x . hnf :

Values v ::= x | hnf | `x . hnf

and a modify the set of Unification rewrite rulesU so that rule u-occurs

u-occurs x = V [x ] −→ fail if V ≠ □

13
“fvsol( ·)” abbreviates “free variables outside lambda”
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fvs(x) = {x}
fvs(k) = { }
fvs(op) = { }

fvs(⟨v
1
, . . . , v

n
⟩) = fvs(v

1
) ∪ · · · ∪ fvs(v

n
)

fvs(_x . e) = fvs(e) \ {𝑥}
fvs(`x . e) = fvs(e) \ {𝑥}
fvs(𝑒𝑞; e) = fvs(𝑒𝑞) ∪ fvs(e)
fvs(v = e) = fvs(v) ∪ fvs(e)
fvs(∃x . e) = fvs(e) \ {𝑥}
fvs(fail) = { }

fvs(e
1

e
2
) = fvs(e

1
) ∪ fvs(e

2
)

fvs(v
1

v
2
) = fvs(v

1
) ∪ fvs(v

2
)

fvs(one{e}) = fvs(e)
fvs(all{e}) = fvs(e)

Fig. 15. Definition of the free-variables function fvs(e)

fvsol(x) = {x}
fvsol(k) = { }
fvsol(op) = { }

fvsol(⟨v
1
, . . . , v

n
⟩) = fvsol(v

1
) ∪ · · · ∪ fvsol(v

n
)

fvsol(_x . e) = { }
Fig. 16. Definition of the free-variables-outside-lambdas function fvsol(v)

is replaced by the two rules
1415

u-occurs-fail x = hnf ; e −→ fail if x ∈ fvsol(hnf )
u-occurs-wrap x = hnf ; e −→ x = `x . hnf ; e if x ∈ fvs(hnf ) and x ∉ fvsol(hnf )

Let us also add this rewrite rule:

u-unwrap `x . hnf −→ hnf {`x . hnf /x}
As we will see, rule u-unwrap is confluent but not Noetherian.

The resulting grammar is not confluent; in particular, it suffers from the even-odd problem

described in Section 4.1 [Ariola and Blom 2002, Example 4.1]. Therefore we will modify the proof

of confluence forU to become a proof of skew confluence [Ariola and Blom 2002], and then go on

to prove thatVC itself, with this modification, is skew confluent.

D.4 Unwrapping of Fixpoints is Confluent but not Noetherian
Lemma D.1. The rule u-unwrap is confluent.

14
These two rules allow equations to be recursive through lambda expressions and possibly also tuples, but not through

tuples only; thus equations such as f = _y. ⟨y, f ⟩ and x = ⟨1, _y. ⟨y, x ⟩⟩ can be processed by rule u-occurs-wrap, but

the equation x = ⟨1, x ⟩ can be processed only by rule u-occurs-fail. An alternate design using the single rule

u-occurs-wrap x = hnf −→ x = `x . hnf if x ∈ fvs(hnf )
plus rule u-unwrap could be used instead to support recursion through tuples only as well as through lambda expressions.

15
u-occurs-fail is identical to u-occurs in its effect, but it is re-expressed using fvsol( ·) , which we need anyway for

u-occurs-wrap. Now we can drop the context𝑉 , which was only used in u-occurs.
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x{v/x} ≡ v

y{v/x} ≡ y if 𝑦 ≠ 𝑥

k{v/x} ≡ k

op{v/x} ≡ op

⟨v
1
,. . ., v

n
⟩{v/x} ≡ ⟨v

1
{v/x},. . ., v

n
{v/x}⟩

(_y. e){v/x} ≡ _y. e{v/x} if 𝑦 ∉ fvs(x, v) [use 𝛼]
(`y. v ′){v/x} ≡ `y. v ′{v/x} if 𝑦 ∉ fvs(x, v) [use 𝛼]
(𝑒𝑞; e){v/x} ≡ 𝑒𝑞{v/x}; e{v/x}
(v ′ = e){v/x} ≡ v

′{v/x} = e{v/x}
(∃y. e){v/x} ≡ ∃y. e{v/x} if 𝑦 ∉ fvs(x, v) [use 𝛼]

fail{v/x} ≡ fail

(e
1

e
2
){v/x} ≡ e

1
{v/x} e

2
{v/x}

(v
1

v
2
){v/x} ≡ v

1
{v/x} v

2
{v/x}

(one{e}){v/x} ≡ one{e{v/x}}
(all{e}){v/x} ≡ all{e{v/x}}

Fig. 17. Definition of the substitution notation e{v/x}

Proof. Suppose that e −→
u-unwrap

e
1
and e −→

u-unwrap
e
2
for distinct redexes within 𝑒 .

If the redexes are disjoint, then Lemma C.4 applies.

Otherwise, without loss of generality assume the redex for e −→
u-unwrap

e
1
contains the redex

for e −→
u-unwrap

e
2
; let 𝑒 must be of the form C

1
[`x . C

2
[`y. hnf ] ] (𝛼-conversion may be used to

ensure that 𝑥 and 𝑦 are distinct variables).

Then e
1
= C

1
[C

2
[`y. hnf ]{`x .C

2
[`y. hnf ]/x}] and e

2
= C

1
[`x .C

2
[hnf {`y. hnf /y}] ].

From e
2
we can take just one more u-unwrap step, using the outermost redex `x .C

2
[cdots ],

obtaining e
′ = C

1
[ (C

2
[hnf {`y. hnf /y}]){`x .C

2
[hnf {`y. hnf /y}]/x}].

[More to come.]

Thus we have e
1
−→→

u-unwrap
e
′
and e

2
−→
u-unwrap

e
′
, so u-unwrap is strongly confluent, and

therefore by Lemma B.16 is confluent. □

To see that u-unwrap is not Noetherian, observe that

`x . ⟨1, x⟩ −→
u-unwrap

⟨1, `x . ⟨1, x⟩⟩ −→
u-unwrap

⟨1, ⟨1, `x . ⟨1, x⟩⟩⟩ −→
u-unwrap

· · ·
is an unending sequence of reduction steps.

D.5 Information Content
We define a second grammar, for a second language VC

Ω
, by adding one more value Ω, which

indicates a lack of information as to just what will be computed. When Ω appears in a context

where only a value is permitted, it indicates uncertainty as to what value will be provided; when Ω

appears in a context where any expression permitted, it furthermore indicates uncertainty as to

how many values will be provided (possibly none).

Values v ::= x | hnf | `x . hnf | Ω

For every term ofVC there is a corresponding term ofVC
Ω
, identical in structure and appearance

and containing no occurrence of Ω; we identify such terms and regard the set of terms ofVC as

simply a subset of the terms ofVC
Ω
.

The definition of substitution (Fig. 17) is extended in the expected trivial manner: Ω{v/x} ≡ Ω.
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Information Content: I
info-fix `x . v −→ Ω

info-seq 𝑒𝑞; e −→ Ω

info-exi ∃x . e −→ Ω

info-fail-l fail e −→ Ω

info-fail-r e fail −→ Ω

info-choice-omega Ω e −→ Ω

info-choice-assoc (e
1

e
2
) e

3
−→ Ω

info-app-omega Ω v −→ Ω

info-app-hnf hnf v −→ Ω

info-one one{e} −→ Ω

info-all all{e} −→ Ω

Fig. 18. Rewrite rules onVCΩ for defining the function 𝜔
VC
(𝑒)

Definition D.2. (after [Ariola and Blom 2002, Definition 2.3]) Let T be a set of terms over a

signature that includes the constant Ω. Define ⩽𝜔
𝑇
be the relation such that Ω ⩽𝜔

𝑇
M for every

term M ∈ T ; then define ⩽𝜔 to be the transitive, reflexive, and compatible closure of ⩽𝜔
𝑇
.

Figure 18 shows a system I of rewrite rules onVC
Ω
. These may be compared to similar rules

for the _◦ calculus [Ariola and Blom 2002, Definition 5.20].

Lemma D.3. [Huet 1980, Lemma 3.1] The relation −→R is locally confluent iff for every critical pair

(e
1
, e

2
) of R, e

1
and e

2
can be joined—that is, there exists e

3
such that e

1
−→R e

3
and e

2
−→R e

3
.

Lemma D.4 (I-Confluent). I is locally confluent and Noetherian; therefore I is confluent.

Proof. Consider all critical pairs of I:
• Rules info-fail-l and info-fail-r produce the critical pair (Ω,Ω).
• Rules info-fail-l and info-choice-omega produce no critical pairs.

• Rules info-fail-l and info-choice-assoc produce the critical pair (Ω e,Ω).
• Rules info-fail-r and info-choice-omega produce the critical pair (Ω,Ω).
• Rules info-fail-r and info-choice-assoc produce the critical pairs (Ω,Ω) and (Ω e,Ω).
• Rules info-choice-omega and info-choice-assoc produce the critical pair (Ω e,Ω).
• No other pairs of rules produce any critical pairs.

The critical pair (Ω,Ω) can be trivially joined at Ω. The critical pair (Ω e,Ω) can be joined at Ω in

one step by using rule info-choice-omega on Ω e.

All critical pairs can be joined; therefore by Lemma D.3 I is locally confluent.

Let the size of a term ofVC
Ω
be the number of tokens it contains other than parentheses. Each

of the rewrite rules in Fig. 18 strictly decreases the number of such tokens. Because any given term

has a finite number 𝑛 of such tokens, and the number of tokens cannot be less than zero, for every

term every rewriting sequence from that term can have no more than 𝑛 steps. So I is bounded and

therefore Noetherian.

Because I is locally confluent and Noetherian, it is confluent by Newman’s lemma. □

Because I is confluent and Noetherian, it follows that I defines unique normal forms forVC
Ω
.

Therefore we are justified in defining 𝜔
VC
(𝑒) to be the function that takes any term inVC

Ω
and

returns the term that is its normal form under I.
Definition D.5. The comparison 𝑒 ⩽𝜔VC

𝑒 ′ is defined to mean 𝜔
VC
(𝑒) ⩽𝜔 𝜔

VC
(𝑒 ′).
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[Need to prove that ⩽𝜔VC

is monotonic with respect to ⩽𝜔 ; this should be routine [Ari-

ola and Blom 2002, Proposition 5.21].]

Lemma D.6 (VC monotonic). Every rewrite rule inVC is monotonic with respect to ⩽𝜔VC

.

Proof. For every rewrite rule inA ∪U ∪N ∪ G ∪ C, the left-hand side is an expression that is

mapped to Ω by the function 𝜔
VC
, and no matter what expression e is the result of applying 𝜔

VC
to

the right-hand side, we have Ω ⩽𝜔 e. □

D.6 Preliminaries about Skew Confluence
Why use skew confluence? Ordinary confluence is useful because if term e has an R-normal form,

then that normal form is unique if R is confluent. Ariola and Blom define a related notion, which

we will refer to as R-skew-normal form
16
, and prove that under certain conditions, if term e has an

R-skew-normal form, then that normal form is unique if R is skew confluent.

A R-skew-normal form is not a single term, but rather a possibly infinite set of erased terms. We

summarize this idea, using our own terminology, as follows:

• Let an erasure of a term be a copy in which some number of subterms (possibly zero, and

possibly the entire term) have been replaced with Ω, a special term that means “unknown”

or “we don’t know yet.”

• We can compare erased terms with the partial order ⩽𝜔 , which is the transitive, reflexive,

and compatible closure of the relation in which Ω is less than any other term. Observe that if

e
′
is any erasure of e (including e itself) then e

′ ⩽𝜔 e.

• Define theR-information content 𝜔R (e) of a term e to be the unique erasure of e in which every

redex has been replaced by Ω. Any non-Ω structure in the result is therefore “permanent”:

no further reductions under R can alter that structure.

• Define the downward closure ⇓⩽𝜔
𝐴 of a set of terms 𝐴 to be the set of all elements of 𝐴 and

all possible erasures of those elements, that is, ⇓⩽𝜔
𝐴 = {e′ | e ∈ 𝐴, e′ ⩽𝜔 }.

• Define the R-skew-normal form of e to be the downward closure of the set of information

contents of all possible R-reducts of e, that is, ⇓⩽𝜔
{𝜔 (e′) | 𝑒 −→→R 𝑒 ′}.

Taking the downward closure with respect to ⩽𝜔 is crucial; without that step, it would not be

possible to prove that skew-normal forms are unique for certain reduction relations.

Skew confluence is a natural extension of confluence, in this sense: if R is skew confluent,

then an expression e has a unique R-normal form if and only if its R-skew-normal form is

the (finite) set consisting of all possible erasures of that R-normal form. (For example, ⟨1, 2⟩
is the unique normal form of ∃x . x = 2; ⟨1, x⟩, and the R-skew-normal form of that same term is

{⟨1, 2⟩, ⟨Ω, 2⟩, ⟨1,Ω⟩, ⟨Ω,Ω⟩,Ω}.)
But working with possibly infinite sets directly is tricky. Fortunately, there is a simpler path,

because Ariola and Blom prove an important theorem: Define the partial order e ⪯𝜔R e
′
to mean

𝜔R (e) ⩽𝜔 𝜔R (e′); then a reduction relation that is monotonic in ⪯𝜔R (𝑒 −→R 𝑒 ′ =⇒ 𝑒 ⪯𝜔R 𝑒 ′)
has unique skew-normal forms if and only if the reduction relation is skew confluent [Ariola and

Blom 2002, Theorem 5.4]—and skew confluence is much easier to prove, using techniques that do

not involve possibly infinite sets, but are fairly similar to proofs of ordinary confluence that use

commutative diagrams and case analysis. They also prove that if a reduction relation is confluent

and monotonic, then it is skew confluent [Ariola and Blom 2002, Corollary 5.5].

Definition D.7. Reduction relation R over the set of terms 𝑇 is skew confluent using quasi order

⪯ if for all 𝑎, 𝑏, 𝑐 ∈ 𝑇 , if 𝑎 −→→R 𝑏 and 𝑎 −→→R 𝑐 , there exists 𝑑 ∈ 𝑇 such that 𝑏 −→→R 𝑑 and 𝑐 ⪯ 𝑑 . As a

diagram:

16
Ariola and Blom call it the “infinite normal form”; this is a bit misleading because in fact not all such forms are infinite.
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𝑎 𝑏

𝑐 𝑑

R

RR

R
⪯

[More to come.]

D.7 New Lemmas about Skew Confluence
Lemma D.8. If relation R is monotonic in some quasi order ⪯ and confluent, then it is skew confluent

using ⪯.

Proof. By the definition of confluence,

𝑎 𝑐

𝑏 𝑑

R

R

R

R

Because R is monotonic, −→→R⊂
⪯←←−→→R , therefore

𝑎 𝑐

𝑏 𝑑

R

R

R

R
⪯

□

Definition D.9. Let reduction relation R be monotonic in quasi order ⪯ and skew confluent using

⪯. Let reduction relation R←⪯ be defined by a set of rewrite rules that are converses of those rewrite

rules of R whose converses are used in the proof that R is skew confluent. Then we say that R is

skew confluent using ⪯ and R←⪯ .

Lemma D.10. Let relation R be monotonic in quasi order ⪯ and skew confluent using ⪯ and R←⪯ ;
similarly let S be monotonic in the same quasi order ⪯ and skew confluent using ⪯ and S←⪯ . Suppose
furthermore that R and S commute and that R and S←⪯ commute. Then the following four diagrams

hold:

𝑎 𝑏

𝑐 𝑑

R
RR

R∪S
⪯

𝑎 𝑏

𝑐 𝑑

S
RR

R∪S
⪯

𝑎 𝑏

𝑐 𝑑

R
RR

R∪S
⪯

𝑎 𝑏

𝑐 𝑑

S
RR

R∪S
⪯

Proof. (1) Because R is skew confluent, we have

𝑎 𝑏

𝑐 𝑑

R
RR

R
⪯

Because
⪯←←−→→R ⊂ ⪯←←−→→R∪S , the first diagram follows.

(2) Because R and S commute, we have
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𝑎 𝑏

𝑐 𝑑

S
RR

S
Because −→→S⊂

⪯←←−→→R∪S , the second diagram follows.

(3) The following diagram clearly holds if the sequence of reduction steps from b to d is the same

as the sequence of reduction steps from b to a to d:

𝑎 𝑏

𝑐 𝑑

R
RR

≡

Because ≡⊂ ⪯←←−→→R∪S , the third diagram follows.

(4) Because R and S←⪯ commute, we have

𝑎 𝑏

𝑐 𝑑

S
RR

S
Because←←−S⊂

⪯←←−→→R∪S , the fourth diagram follows.

[It may turn out to be impossible to prove for our specific application that R and S←⪯
commute. In that case, it may be necessary to use a more complicated or more subtle

precondition. The important thing is to prove the fourth diagram somehow.]

□

Lemma D.11. Let relation R be monotonic in quasi order ⪯ and skew confluent using ⪯ and R←⪯ ;
similarly let S be monotonic in the same quasi order ⪯ and skew confluent using ⪯ and S←⪯ . Suppose
furthermore that R and S commute and that R and S←⪯ commute. Then

𝑎 𝑏

𝑐 𝑑

R∪S
⪯

RR

R∪S
⪯

Proof. By induction on the size of the top edge of the diagram. At each step one of the four

diagrams from Lemma D.10 will be used.

[More to come.]

□

Lemma D.12. Let relation R be monotonic in quasi order ⪯ and skew confluent using ⪯ and R←⪯ ;
similarly let S be monotonic in the same quasi order ⪯ and skew confluent using ⪯ and S←⪯ . Then

𝑎 𝑏

𝑐 𝑑

R∪S
⪯

R∪SR∪S

R∪S
⪯
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Proof. By case analysis on whether left edge uses R or S; then project that left edge into R∗ or
S∗ respectively and apply Lemma D.11.

[More to come.]

□

Lemma D.13. Let relation R be monotonic in quasi order ⪯ and skew confluent using ⪯ and R←⪯ ;
similarly let S be monotonic in the same quasi order ⪯ and skew confluent using ⪯ and S←⪯ . Then

𝑎 𝑏

𝑐 𝑑

R∪S
R∪S

R∪S

R∪S
⪯

⪯

Proof. By induction on the size of the left edge of the diagram.

Base case This diagram clearly holds by letting the bottom edge be the same as the top edge:

𝑎 𝑏

𝑐 𝑑

≡
R∪S

≡

R∪S
⪯

⪯

and it implies this diagram:

𝑎 𝑏

𝑐 𝑑

(R∪S)0
R∪S

R∪S

R∪S
⪯

⪯

Inductive case Assume the diagram holds for left edges of all sizes up to 𝑛. Then this diagram:

𝑎 𝑏

𝑐 𝑑

(R∪S)𝑛+1
R∪S

R∪S

R∪S
⪯

⪯

follows from this diagram:

𝑎 𝑏

𝑐 𝑑

𝑒 𝑓

(R∪S)𝑛
R∪S

R∪S

R∪S
⪯

⪯

R∪S R∪S

R∪S
⪯

𝐷.12

where the top half is the inductive hypothesis and the bottom half follows from Lemma D.12.

□

Lemma D.14. Let relation R be monotonic in quasi order ⪯ and skew confluent using ⪯ and R←⪯ ;
similarly let S be monotonic in the same quasi order ⪯ and skew confluent using ⪯ and S←⪯ . If R
commutes with S, then T = R ∪ S is monotonic in ⪯ and skew confluent using ⪯ and T←⪯ .
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Proof. □

D.8 Proof thatVC Is Skew Confluent

[This is just a brief proof sketch.]

First prove that the modifiedU is skew confluent. (In doing so we will defineU←⩽𝜔
VC

.)

Then use existing proofs to demonstrate thatA ∪N ∪ G ∪ C is confluent. Because they are also

monotonic, they are therefore skew confluent, and (A ∪ N ∪ G ∪ C)←⩽𝜔
VC

is trivial.

Prove that A ∪N ∪ G ∪ C commutes withU←⩽𝜔
VC

.

Then apply Lemma D.14 to show thatU ∪ (A ∪N ∪ G ∪ C) is skew confluent.
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Domains

𝑊 = Z + ⟨𝑊 ⟩ + (𝑊 →𝑊 ∗)
⟨𝑊 ⟩ = a finite tuple of values𝑊

𝐸𝑛𝑣 = 𝐼𝑑𝑒𝑛𝑡 →𝑊

Semantics of expressions and values

EJeK : 𝐸𝑛𝑣 →𝑊 ∗

EJvK 𝜌 = unit (VJ𝑣K 𝜌)
EJfailK 𝜌 = empty

EJe
1

e
2
K 𝜌 = EJe

1
K 𝜌 ⋓ EJe

2
K 𝜌

EJe
1
= e

2
K 𝜌 = EJe

1
K 𝜌 ⋒ EJe

2
K 𝜌

EJe
1
; e

2
K 𝜌 = EJe

1
K 𝜌 # EJe

2
K 𝜌

EJv
1

v
2
K 𝜌 = apply(VJv

1
K 𝜌, VJv

2
K 𝜌)

EJ∃x . eK 𝜌 =
⋃

𝑤∈𝑊 EJ𝑒K (𝜌 [𝑥 ↦→ 𝑤])
EJone{e}K 𝜌 = one(EJ𝑒K 𝜌)
EJall{e}K 𝜌 = unit (all(EJ𝑒K 𝜌))

VJvK : 𝐸𝑛𝑣 →𝑊

VJxK 𝜌 = 𝜌 (𝑥)
VJkK 𝜌 = 𝑘

VJ𝑜𝑝K 𝜌 = OJ𝑜𝑝K
VJ_x . eK 𝜌 = _𝑤.EJ𝑒K (𝜌 [𝑥 ↦→ 𝑤])

VJ⟨v
1
, ···, v

n
⟩K 𝜌 = ⟨VJ𝑣

1
K 𝜌, ···,VJ𝑣𝑛K 𝜌⟩

OJopK : 𝑊

OJaddK = _𝑤. if (𝑤 = ⟨k
1
, k

2
⟩) then unit (𝑘

1
+ 𝑘

2
) elseWRONG

OJgtK = _𝑤. if (𝑤 = ⟨k
1
, k

2
⟩ ∧ 𝑘

1
> 𝑘

2
) then unit (𝑘

1
) else empty

OJintK = _𝑤. if (𝑤 = 𝑘) then unit (𝑘) else empty

𝑎𝑝𝑝𝑙𝑦 : (𝑊 ×𝑊 ) →𝑊 ∗

𝑎𝑝𝑝𝑙𝑦 (𝑘,𝑤) = WRONG 𝑘 ∈ Z
𝑎𝑝𝑝𝑙𝑦 (⟨𝑣

0
, ···, 𝑣𝑛⟩, 𝑘) = unit (𝑣𝑘 ) 0 ⩽ 𝑘 ⩽ 𝑛

= empty otherwise

𝑎𝑝𝑝𝑙𝑦 (𝑓 ,𝑤) = 𝑓 (𝑤) 𝑓 ∈𝑊 →𝑊 ∗

Fig. 19. Expression semantics

E A DENOTATIONAL SEMANTICS FORVC
It is highly desirable to have a denotational semantics for VC. A denotational semantics says

directly what an expression means rather than how it behaves, and that meaning can be very

perspicuous. Equipped with a denotational semantics we can, for example, prove that the left hand

side and right hand side of each rewrite rule have the same denotation; that is, the rewrites are

meaning-preserving.
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Domains

𝑊 ∗ = (WRONG + P(𝑊 ))⊥
Operations

Empty empty : 𝑊 ∗

empty = { }
Unit unit : 𝑊 →𝑊 ∗

unit (𝑤) = {𝑤}
Union ⋓ : 𝑊 ∗ →𝑊 ∗ →𝑊 ∗

𝑠
1
⋓ 𝑠

2
= 𝑠

1
∪ 𝑠

2

Intersection ⋒ : 𝑊 ∗ →𝑊 ∗ →𝑊 ∗

𝑠
1
⋒ 𝑠

2
= 𝑠

1
∩ 𝑠

2

Sequencing # : 𝑊 ∗ →𝑊 ∗ →𝑊 ∗

𝑠
1
# 𝑠

2
= 𝑠

2
if 𝑠

1
is non-empty

= { } otherwise

One one : 𝑊 ∗ →𝑊 ∗ The result is either empty or a singleton

one(𝑠) = ???

All all : 𝑊 ∗ → ⟨𝑊 ⟩
all(𝑠) = ???

All operations over𝑊 ∗ implicitly propagate ⊥ and WRONG. E.g.

𝑠
1
⋓ 𝑠

2
= ⊥ if 𝑠

1
= ⊥ or 𝑠

2
= ⊥

= WRONG if (𝑠
1
= WRONG and 𝑠

2
≠ ⊥) or (𝑠

2
= WRONG and 𝑠

1
≠ ⊥)

= 𝑠
1
∪ 𝑠

2
otherwise

Fig. 20. Set semantics for𝑊 ∗

But a denotational semantics for a functional logic language is tricky. Typically one writes a

denotation function something like

EJeK : 𝐸𝑛𝑣 →𝑊

where 𝐸𝑛𝑣 = 𝐼𝑑𝑒𝑛𝑡 →𝑊 . So E takes an expession e and an environment 𝜌 : 𝐸𝑛𝑣 and returns the

value, or denotation, of the expresssion. The environment binds each free variable of e to its value.

But what is the semantics of ∃x . e? We need to extend 𝜌 with a binding for x, but what is x bound

to? In a functional logic language x is given its value by various equalities scattered throughout e.

This section sketches our approach to this challenge. It is not finished work, and does not count

as a contribution of our paper. We offer it because we have found it an illuminating alternative way

to understandVC, one that complements the rewrite rules that are the substance of the paper.

E.1 A first attempt at a denotational semantics
Our denotational semantics forVC is given in Fig. 19.

• We have one semantic function (here E andV) for each syntactic non terminal (here 𝑒 and 𝑣

respectively.)

• Each function has one equation for each form of the construct.
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• Both functions take an environment 𝜌 that maps in-scope identifiers to a single value; see

the definition 𝐸𝑛𝑣 = 𝐼𝑑𝑒𝑛𝑡 →𝑊 .

• The value functionV returns a single value𝑊 , while the expression function E returns a

collection of values𝑊 ∗ (Appendix E.1).

The semantics is parameterised over the meaning of a “collection of values 𝑊 ∗”. To a first

approximation, think of𝑊 ∗ a (possibly infinite) set of values𝑊 , with union, intersection etc having

their ordinary meaning.

Our first interpretation, given in Figure 20, is a little more refined:𝑊 ∗ includes⊥ andWRONG as

well as a set of values. Our second interpretation is given in Figure 21, and discussed in Appendix E.4.

The equations themselves, in Fig. 19 are beautifully simple and compositional, as a denotational

semantics should be.

The equations forV are mostly self-explanatory, but an equation likeVJkK 𝜌 = 𝑘 needs some

explanation: the 𝑘 on the left hand side (e.g. “3”) is a piece of syntax, but the 𝑘 on the right is

the corresponding element of the semantic world of values𝑊 (e.g. 3). As is conventional, albeit

a bit confusing, we use the same 𝑘 for both. Same for 𝑜𝑝 , where the semantic equivalent is the

corresponding mathematical function.

The equations for E are more interesting.

• Values EJvK 𝜌 : compute the single value for v, and return a singleton sequence of results.

The auxiliary function unit is defined at the bottom of Fig. 19.

• In particular, values include lambdas. The semantics says that a lambda evaluates to a singleton

collection, whose only element is a function value. But that function value has type𝑊 →𝑊 ∗;
that is, it is a function that takes a single value and returns a collection of values.

• Function application EJv
1

v
2
K 𝜌 is easy, because V returns a single value: just apply the

meaning of the function to the meaning of the argument. The apply function is defined in

Figure 19.

• Choice EJe
1

e
2
K 𝜌 : take the union (written ⋓) of the values returned by e

1
and e

2
respectively.

For bags this union operator is just bag union (Figure 20).

• Unification EJe
1

e
2
K 𝜌 : take the intersection of the values returned by e

1
and e

2
respectively.

For bags, this “intersection” operator ⋒ is defined in Fig. 20. In this definition, the equality is

mathematical equality of functions; which we can’t implement for functions; see Appendix E.1.

• Sequencing EJe
1
; e

2
K 𝜌 . Again we use an auxiliary function # to combine the meanings of

e
1
and e

2
. For bags, the function # (Fig. 20 again) uses a bag comprehension. Again it does a

cartesian product, but without the equality constraint of ⋒.
• The semantics of (one{e}) simply applies the semantic function one : 𝑊 ∗ → 𝑊 ∗ to the

collection of values returned by e. If e returns no values, so does (one{e}); but if e returns one

or more values, (one{e}) returns the first. Of course that begs the question of what “the first”

means – for bags it would be non-deterministic. We will fix this problem in Appendix E.4,

but for now we simply ignore it.

• The semantics of (all{e}) is similar, but it always returns a singleton collection (hence the

unit in the semantics of all) whose element is a (possibly-empty) tuple that contains all the

values in the collection returned by e.

The fact that unification “=” maps onto intersection, and choice “ ” onto union, is very satisfying.

The big excitement is the treatment of ∃. We must extend 𝜌 , but what should we bind x to?

(Compare the equation forVJ_x . eK , where we have a value𝑤 to hand.) Our answer is simple: try

all possible values, and union the results:

EJ∃x . eK 𝜌 =
⋃
𝑤∈𝑊

EJ𝑒K (𝜌 [𝑥 ↦→ 𝑤])
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That

⋃
𝑤∈𝑊 means: enumerate all values in𝑤 ∈𝑊 , in some arbitrary order, and for each: bind 𝑥 to

𝑤 , find the semantics of 𝑒 for that value of 𝑥 , namely EJ𝑒K (𝜌 [𝑥 ↦→ 𝑤]), and take the union (in the

sense of ⋓) of the results.
Of course we can’t possibly implement it like this, but it makes a great specification. For example

∃x . x = 3 tries all possible values for x, but only one of them succeeds, namely 3, so the semantics

is a singleton sequence [3].

E.2 The denotational semantics is un-implementable
This semantics is nice and simple, but we definitely can’t implement it! Consider

∃x . (x2 − x − 6) = 0; x

The semantics will iterate over all possible values for x, returning all those that satisfy the equality;

including 3, for example. But unless our implementation can guarantee to solve quadratic equations,

we can’t expect it to return 3. Instead it’ll get stuck.

Another way in which the implementation might get stuck is through unifying functions:

(_x . x + x) = (_y. y ∗ 2) or even (_x . x + 1) = (_y. y + 1)
But not all unification-over-functions is ruled out. We do expect the implementation to succeed

with

∃f . ((_x . x + 1) = f ); f 3

Here the ∃ will “iterate” over all values of f , and the equality will pick out the (unique) iteration in

which f is bound to the incrementing function.

So our touchstone must be:

• If the implementation returns a value at all, it must be the value given by the semantics.

• Ideally, the verifier will guarantee that the implementation does not get stuck, or goWRONG.

E.3 Getting WRONG right
Getting WRONG right is a bit tricky.

• What is the value of (3 = ⟨⟩)? The intersection semantics would say empty, the empty

collection of results, but we might want to say WRONG.

• ShouldWRONG be an element of𝑊 or of𝑊 ∗? We probably want (one{3 wrong} to return
a unit (3) rather thenWRONG?

• What about fst (⟨3,wrong⟩)? Is that wrong or 3?
There is probably more than one possible choice here.

E.4 An order-sensitive denotational semantics
There is a Big Problem with this approach. Consider ∃x . x = (4 3). The existential enumerates

all possible values of x in some arbitrary order, and takes the union (i.e., “concatentation”) of the

results from each of these bindings. Suppose that ∃ enumerates 3 before 4; then the semantics of

this expression is the sequence [3, 4], and not [4, 3] as it should be. And yet returning a sequence

(not a set nor a bag) is a key design choice in Verse. What can we do?

Figure 21 give a new denotational semantics that does account for order. The key idea (due to

Joachim Breitner) is this: return a sequence of labelled values; and then sort that sequence (in one

and all) into canonical order before exposing it to the programmer.

We do not change the equations for E, V , and O at all; they remain precisely as they are in

Figure 19. However the semantics of a collection of values, 𝑊 ∗, does change, and is given in

Figure 21:
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Domains

𝑊 ∗ = (WRONG + P(𝐿𝑊 ))⊥
𝑊 ? = {𝑊 } Set with 0 or 1 elements

𝐿𝑊 = [𝐿] ×𝑊 Sequence of 𝐿 and a value

𝐿 = L + R

Operations

Empty empty : 𝑊 ∗

empty = ∅
Singleton unit : 𝑊 →𝑊 ∗

unit (𝑤) = {([],𝑤)}
Union ⋓ : 𝑊 ∗ →𝑊 ∗ →𝑊 ∗

𝑠
1
⋓ 𝑠

2
= {(L : 𝑙,𝑤) | (𝑙,𝑤) ∈ 𝑠

1
} ∪ {(R : 𝑙,𝑤) | (𝑙,𝑤) ∈ 𝑠

2
}

Intersection ⋒ : 𝑊 ∗ →𝑊 ∗ →𝑊 ∗

𝑠
1
⋒ 𝑠

2
= {(𝑙

1
⊲⊳ 𝑙

2
,𝑤

1
) | (𝑙

1
,𝑤

1
) ∈ 𝑠

1
, (𝑙

2
,𝑤

2
) ∈ 𝑠

2
,𝑤

1
= 𝑤

2
}

Sequencing # : 𝑊 ∗ →𝑊 ∗ →𝑊 ∗

𝑠
1
# 𝑠

2
= {(𝑙

1
⊲⊳ 𝑙

2
,𝑤

2
) | (𝑙

1
,𝑤

1
) ∈ 𝑠

1
, (𝑙

2
,𝑤

2
) ∈ 𝑠

2
}

One one : 𝑊 ∗ →𝑊 ∗

one(𝑠) = head (sort (𝑠))
All all : 𝑊 ∗ →𝑊 ∗

all(𝑠) = tuple(sort (𝑠))
Head head : ( [𝑊 ] +WRONG) →𝑊 ∗

head (WRONG) = WRONG

head [] = 𝑒𝑚𝑝𝑡𝑦

head (𝑤 : 𝑠) = unit (𝑤)
To tuple tuple : ( [𝑊 ] +WRONG) → ⟨𝑊 ⟩

tuple(WRONG) = WRONG

tuple[𝑤
1
, ···,𝑤𝑛] = ⟨𝑤

1
, ···,𝑤𝑛⟩

Sort sort : 𝐿𝑊 ∗ → ([𝑊 ] +WRONG)⊥
sort (𝑠) = [] if 𝑠 is empty

= WRONG if𝑤𝑠 has more than one element

= 𝑤𝑠 otherwise

⊲⊳ sort{(𝑙,𝑤) | (L : 𝑙,𝑤) ∈ 𝑠}
⊲⊳ sort{(𝑙,𝑤) | (R : 𝑙,𝑤) ∈ 𝑠}

where𝑤𝑠 = [𝑤 | ( [],𝑤) ∈ 𝑠]

Fig. 21. Labelled set semantics for𝑊 ∗
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• A collection of values𝑊 ∗ is now ⊥ or WRONG (as before), or a set of labelled values, each of

type 𝐿𝑊 .

• A labelled value (of type 𝐿𝑊 ) is just a pair ( [𝐿] ×𝑊 ) of a label and a value.

• A label is a sequence of tags 𝐿, where a tag is just L or R, similar to Section 5.1.

• The union (or concatentation) operation ⋓, defined in Fig. 21, adds a L tag to the labels of the

values in the left branch of the choice, and a R tag to those coming from the right. So the

labels specify where in the tree the value comes from.

• Sequencing # and ⋒ both concatenate the labels from the values they combine.

• Finally sort puts everything in the “right” order: first the values with an empty label, then the

values whose label starts with L (notice the recursive sort of the trimmed-down sequence),

and then those that start with R. Notice that sort removes all the labels, leaving just a bare

sequence of values𝑊 ∗.
• Note that if sort encounters a set with more than one unlabelled element then this considered

WRONG. This makes ambiguous expressions, like one{∃x . x}, WRONG.

Let us look at our troublesome example ∃x . x = (4 3), and assume that ∃ binds x to 3 and then 4.

The meaning of this expression will be

EJ∃x . x = (4 3)K 𝜖 = [(R, 3), (L, 4)]
Now if we take all of that expression we will get a singleton sequence containing ⟨4, 3⟩, because
all does a sort, stripping off all the tags.

EJall{∃x . x = (4 3)}K 𝜖 = [( [], ⟨4, 3⟩)]

E.5 Related work
[Christiansen et al. 2011] gives another approach to a denotational semantics for a functional logic

language. We are keen to learn of others.
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F UPDATEABLE REFERENCES
The full Verse language has updatable references (à la ML). There are three new primitive operations,

alloc, read, and write. The alloc creates a new reference with an initial value, read extracts the

value from a reference, and write sets the value of a referene.

Modifying these references is transactional in the sense that if a computation fails, then any

updates will not be visible outside the construct that handles the failures. E.g.,

r B alloc(0); (if (write⟨r, 1⟩; fail) then 1 else 2); read(r)
will have the value 0, because the write is part of an expression that fails, and so its effect is not

visible.

To add updateable references we extend the system with syntax and rules from figure 22. The

store h in {e} indicates that e should be reduced using the heap h. A heap is simply a mapping from

references to values (one mapping being r ↦→v). A reference is some opaque type that supports

equality (unification) and creation of a new reference.

The interaction of the new primitives with the store can be seen from the axioms. The alloc(v)
operation creates a new reference and adds a binding with v to the store. The read(r) operation
retrieves the value for reference r from the store, and write⟨r, v⟩ updates the reference r with v in

the store. All of these operations use the context S which ensures that there are no store operations

to the left of the hole, i.e., a store operation in the hole is the next one that should execute.

The interesting rules involve choice and split because store operations are transactional in the

sense that when an expressions fails, none of its store operations will happen.

When reducing split(e){f , g} in an S hole, rule st-split-dup, the store is duplicated. Any store

operations inside the split will happen in this local copy of the store. Note the two occurrences

of h in the right hand side of st-split-dup. If the reduction of e results in fail then rule fail-elim

is used, and the store from the failing computation is simply thrown away. If the reduction of e

results in a value (with or without more alternatives) then rule st-split is used. This rule replaces

the outer store with the inner store, since we know the inner computation has succeeded.

Similarely, the reduction of e
1

e
2
will duplicate the store into the first branch, st-choice-dup.

Here e
1
must not contain any store operation nor be a value. And again, similarely, st-choice

commits the new store and throws away the old.

The use of oe in the rules is to ensure that the rules cannot get stuck in a loop. Using e instead of

oe would mean that failing or committing would make the expression match the duplication rule

again. It also prevents the duplication rule from repeatedly duplicating the store.

Note that store is part of the 𝑋 context, which means that the store can float inside existentials.

This is necessary for the store rules to fire since the S context does not allow going under existentials.

The semantics of for(d) do e with respect to store effects is somewhat intricate. The expression

d is possibly multi-valued; any effects that happens when computing the first value of d will be

visible the first time e is computed. Both these effects are then visible when computing the second

value of d, and so on. If any iteration of d fails, then the effects of that computation are not visible

outside d. This means that the desugaring of for into split needs to be more elaborate.

for(∃x
1
···x

n
. d) do e

means

f ⟨⟩ B ⟨⟩;
g(v) (r) B (v = ⟨x

1
, ···, x

n
⟩; cons⟨e, split(r ⟨⟩){f , g}⟩;

split(∃x
1
··· x

n
. d; ⟨x

1
, ···, x

n
⟩){f , g}

To support limited store operations (e.g., read, but not write) we can equip the store with a set

of currently allowed operations. We also need some extra primitives that modify this set.
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Syntax extension

References 𝑟

Expressions 𝑒 ::= · · · | store h in {e}
Primops 𝑜𝑝 ::= · · · | alloc | read | write

Head values ℎ𝑛𝑓 ::= · · · | 𝑟
Execution contexts 𝑋 ::= · · · | store h in {𝑋 }
Scope contexts 𝑆𝐶 ::= · · · | store h in {SC}
Heap ℎ ::= 𝜖 | r ↦→v, h

Heap context 𝐻 ::= □, h | r ↦→v,H

Store contexts 𝑆 ::= □ | v = S | S; e | 𝑠𝑒 ; S | ∃x . S

Store-op free exprs 𝑠𝑒 ::= v | 𝑠𝑒
1
= 𝑠𝑒

2
| 𝑠𝑒

1
; 𝑠𝑒

2
| ∃x . 𝑠𝑒 | sp(v)

Results 𝑤 ::= v | v e

Non-store primops 𝑠𝑝 ::= any, except alloc, read,write

Non-store expression 𝑜𝑒 ::= like e, but not w, store, or fail

Axiom extensions

Normalization change

exi-float 𝑋 [∃x . e ] −→ ∃x . 𝑋 [e ] if 𝑋 ≠ □, 𝑥 ∉ fvs(𝑋 ), use 𝛼
if there is store in 𝑋 then e ∈ ce

Reference ops

ref-alloc store h in {S[alloc(v) ]} −→ store r ↦→v, h in {S[ r ]}
fvs(v)#bvs(S), r fresh

ref-read store H [ r ↦→v ] in {S[read(r) ]} −→ store H [ r ↦→v ] in {S[v ]}
fvs(v)#bvs(S), use 𝛼

ref-write store H [ r ↦→v
1
] in {S[write⟨r, v

2
⟩ ]} −→ store H [ r ↦→v

2
] in {S[ ⟨⟩ ]}

fvs(v
2
)#bvs(S)

Store duplication

st-split-dup store h in {S[split(oe){f , g}]} −→ store h in {S[split(store h in {oe}){f , g}]}
fvs(h)#bvs(S), use 𝛼

st-choice-dup store h in {oe e} −→ store h in {store h in {oe} e}

Store commit

st-split store h
1
in {S[split(store h

2
in {w}){f , g}]} −→ store h

2
in {S[split(w){f , g}]}

fvs(h
2
)#bvs(S)

st-choice store h
1
in {S[ (store h

2
in {w}) e ]} −→ store h

2
in {S[w e ]}

fvs(h
2
)#bvs(S)

Unification

Extension with the obvious axioms making equal references unify, and anything else fail.

Top level

Start top level reduction of e with store 𝜖 in {e}.

Fig. 22. The Verse calculus: store axioms
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F.1 Examples
[LA: Not yet]

76


	Abstract
	1 Introduction
	2 The Verse calculus, informally
	2.1 Logical variables and equations
	2.2 Choice
	2.3 Mixing choice and equations
	2.4 Pattern matching and narrowing
	2.5 Conditionals and ``one''
	2.6 Tuples and ``all''
	2.7 Programming in Verse
	2.8 ``for'' loops

	3 Rewrite rules
	3.1 Functions and function application rules
	3.2 Unification rules
	3.3 Swapping and binding order
	3.4 Local substitution
	3.5 Elimination and normalization rules
	3.6 Rules for choice
	3.7 The Verse calculus is lenient
	3.8 Evaluation strategy
	3.9 Developing and debugging rules

	4 Metatheory
	4.1 Recursion, and the notorious even/odd problem
	4.2 Proof of confluence
	4.3 Design for confluence
	4.4 Overview of skew confluence

	5 Variations and choices
	5.1 Ordering and choices
	5.2 Generalizing ``one'' and ``all''

	6 The Verse calculus in context: reflections and related work
	6.1 Choice and non-determinism
	6.2 One and all
	6.3 The semantics of logical variables
	6.4 Flat vs. higher order
	6.5 Intermediate language
	6.6 Comparison with Icon

	7 Looking back, looking forward
	Acknowledgments
	References
	A Example
	B Confluence: Preliminaries
	B.1 Reduction relations
	B.2 Confluence
	B.3 Commutativity
	B.4 *-Commutativity
	B.5 Commutativity and Confluence
	B.6 Confluent Kernels

	C Confluence of the Verse calculus: Proof
	C.1 Disjointness, Reduction under, and the Diamond property
	C.2 Lemmas for Reductions-Under
	C.3 Lemmas for Substitution and Unification
	C.4 Unification is Confluent
	C.5 Normalization is Confluent
	C.6 Unification + Normalization is Confluent
	C.7 U and N Commute With A and G and C
	C.8 Application
	C.9 Garbage Collection
	C.10 Choice

	D Skew Confluence
	D.1 Free Variables
	D.2 Substitution
	D.3 Modified grammar and rewrite rules
	D.4 Unwrapping of Fixpoints is Confluent but not Noetherian
	D.5 Information Content
	D.6 Preliminaries about Skew Confluence
	D.7 New Lemmas about Skew Confluence
	D.8 Proof that VC Is Skew Confluent

	E A denotational semantics for VC
	E.1 A first attempt at a denotational semantics
	E.2 The denotational semantics is un-implementable
	E.3 Getting ``wrong'' right
	E.4 An order-sensitive denotational semantics
	E.5 Related work

	F Updateable references
	F.1 Examples


