
ZU064-05-FPR demand-jfp 2 March 2017 9:23

Under consideration for publication in J. Functional Programming 1

Theory and Practice of Demand Analysis
in Haskell

ILYA SERGEY
IMDEA Software Institute, Spain

(e-mail: ilya.sergey@imdea.org)

SIMON PEYTON JONES
Microsoft Research, Cambridge, UK

(e-mail: simonpj@microsoft.com)

DIMITRIOS VYTINIOTIS
Microsoft Research, Cambridge, UK

(e-mail: dimitris@microsoft.com)

Abstract

This paper presents the fruits of a decade-long experience with strictness analysis, in the context of
the Glasgow Haskell Compiler, an optimising compiler for Haskell.

Contents

1 Introduction 2
2 Characterising the problem 3

2.1 The worker-wrapper split in GHC 4
2.2 seq and error 6
2.3 Shortcomings of the existing analyser 7

3 Backwards analysis 7
4 Projections and Projection-Based Program Analyses 8

4.1 The Core language and its semantics 8
4.2 Projections 10
4.3 Properties of projections 11
4.4 Useful projections for D∞ 11
4.5 Projection environments 12
4.6 Projection types and projection transformers 13
4.7 Safety of projection-based analysis 14

5 Absence Analysis 16
5.1 Motivation 16
5.2 A definition of the analysis 17

6 Strictness Analysis 17
6.1 Extending the domain for strictness 19

ZU064-05-FPR demand-jfp 2 March 2017 9:23

2 S. Peyton Jones et al.

6.2 Conjunction of demands 20
6.3 A hyperstrict demand 21
6.4 Projection-based strictness analysis 21

7 Making Projection-Based Analysis Practical 23
7.1 Sums and products 23
7.2 Returning an annotated expression 23
7.3 Dealing with seq 23
7.4 Finding fixpoints 24
7.5 Splitting θ 24

8 Implementation and Evaluation 25
8.1 Experimental results 25

9 Related Work 26
References 26
A Proofs of the Analysis Safety Results 27

1 Introduction

Any decent optimising compiler for a lazy language like Haskell must include a strictness
analyser. The results of this analysis allow the compiler to use call-by-value instead of
call-by-need, and that leads to big performance improvements. It turns out that strictness
analysis is an interesting problem from a theoretical point of view, and the 1980’s saw
a huge rash of papers on the subject. There were fewer, many, many fewer, papers that
described real implementations.

This paper presents the fruits of a decade-long experience with strictness analysis, in
the context of the Glasgow Haskell Compiler, an optimising compiler for Haskell. In
particular, we recently re-engineered the existing strictness analyser that used forward
abstract interpretation, replacing it with a new one that uses backward analysis instead.

In one sense therefore, this paper contains nothing new: we apply well-understood backward-
analysis techniques. However, it turns out that the application is not at all straightforward,
and we make the following contributions:

• Although backwards analysis is not higher order, in the sense that it does not track the
effect of functional arguments, our analysis must apply to a higher-order language
(Haskell). We give an elegant formulation of backwards analysis for a higher-order
language, based on higher-order projections in Section 4. These higher-order pro-
jections, are new, and constitute our most substantial technical contribution. They
lead directly to a rather compact, compositional implementation using call demands
(Section ??).

• Beyond strictness analysis, we show that it is essential to perform absence analysis.
The goal is to pass only the needed parts of a value in a function call, and to
perform unboxing, passing only naked machine integers instead of boxed values
when possible.

• While we introduce these two analyses separately, we show how to combine them
into a single analysis over a cartesian product domain. Previously, GHC has had to do

ZU064-05-FPR demand-jfp 2 March 2017 9:23

Theory and Practice of Demand Analysis in Haskell 3

two separate analyses. In fact, a third analysis, Constructed Product Result analysis,
fits in beautifully as well, so in reality the new analyser does all three analyses at
once. CPR analysis is described elsewhere (Baker-Finch et al., 2004), and we do not
discuss it further in this paper.

• Backwards analysis eschews the accuracy that can be achieved by higher-order ab-
stract interpretation, but it is a great deal faster, especially for deeply-nested func-
tions. How much faster? And how much accuracy is lost? We give some indicative
answers in Section 8. Furthermore, the implementation has proved to be reassuringly
generic; during development of the new analysis we repeatedly changed the domain
and its two operations (“lub” and “both”) while hardly changing the analysis function
at all.

• We describe and motivate a range of theoretical and engineering design choices. For
example, we have found that it is very important to “look inside” products (§ 4.4);
that nested definitions are very common and must be handled well (§ 4.5); and that
simple approximations to the full demand transformer for a function work well in
practice (§ 4.6).

• Implementing our new analysis in a real compiler forced us to confront several issues
that were completely hidden before we tried the implementation. Two particular
examples are: correct analysis of the error function (§2.2); and accurate analysis
of nested function definitions, which are very common in GHC (§??).

• We use a clever folk-lore technique to improve the speed of convergence, and give
measurements of its effectiveness (§??).

The focus of the paper is twofold. The theory supports a wide spectrum of analyses,
ranging from accurate-but-expensive to cheap-but-coarse. The context of a real compiler
guides our choices in this multi-dimensional space. We give a formal specification of the
domains, their operations, and the analysis function itself and prove soundness of the
analysi with respect to a standard denotation semantics (Ilya: Actually, this is nove wrt.
to the old draft.)

2 Characterising the problem

The default parameter-passing mechanism in Haskell is call-by-need, in which an argu-
ment must be passed as a heap-allocated thunk, or suspension, encapsulating the argument
expression. At the first use of the parameter, the thunk is evaluated and overwritten with
the result, which is then ready at all later uses.

An optimising Haskell compiler can often replace this general calling mechanism by a
specialised, more efficient one:

• Using call-by-value. When the called function will definitely evaluate its argument,
the caller can evaluate the argument early and pass the value itself instead of a thunk.
Program analyses that find such strictness information have been studied intensively
(Mycroft, 1980; ?; ?; ?).

• Unboxing arguments. If the called function needs only the components of a tuple,
not the tuple itself, then the caller can pass the components instead of building a
tuple. For example:

ZU064-05-FPR demand-jfp 2 March 2017 9:23

4 S. Peyton Jones et al.

lenFst :: ([a],b)→ Int
lenFst x = case x of {(p,q)→ length p}

Here, lenFst’s caller can not only evaluate the argument, because lenFst is strict, but
also extract the components of the pair and pass only the first one to lenFst. A call
site like (lenFst (g t)) can then be transformed to

case (g t) of {(p,q)→ wlenFst p}

where wlenFst is the specialised-calling-convention version of lenFst.
Program analyses that find such so-called boxing information or absence information
have been described in (?; Henglein & Jørgensen, 1994).

The compiler’s task splits into two: (a) perform a static demand analysis of the program,
and (b) exploit the information thus discovered. In the literature, much more attention is
paid to analysis than to exploitation, yet one can only understand what information we
need from the demand analyis by understanding the use to which that information is put.
So we focus initially on exploitation, to provide the context for the design decisions we
subsequently make for the analysis itself.

2.1 The worker-wrapper split in GHC

In GHC, the results of demand analysis are exploited in two ways:

• It drives the worker-wrapper transformation, which exposes specialised calling con-
ventions to the rest of the compiler. In particular, the worker-wrapper transformation
implements the unboxing optimisation.

• During code generation, the code generator uses call-by-value for strict functions,
instead of call-by-need.

The worker-wrapper transformation splits each function f into a wrapper, with the
ordinary calling convention, and a worker, with a specialised calling convention. The
wrapper serves as an impedance-matcher to the worker; it simply calls the worker using
the specialised calling convention. The transformation can be expressed directly in GHC’s
intermediate language. Suppose that f is defined thus:

f :: (Int, Int)→ Int
f p =<rhs>

and that we know that f is strict in its argument (the pair, that is), and uses its components.
What worker-wrapper split shall we make? Here is one possibility:1

f :: (Int, Int)→ Int
f p = case p of

(a,b)→ wf a b

1A real compiler would avoid splitting very small functions, such as f above, since they can
be inlined bodily, which is better than splitting. For presentational purposes we use small examples
regardless of this; you can always make them bigger!

ZU064-05-FPR demand-jfp 2 March 2017 9:23

Theory and Practice of Demand Analysis in Haskell 5

wf :: Int→ Int→ Int
wf a b = let p = (a,b) in< rhs>

Now the wrapper, f , can be inlined at every call site, so that the caller evaluates p, passing
only the components to the worker wf , thereby implementing the unboxing transformation.

But what if f did not use a, or b? Then it would be silly to pass them to the worker wf .
Hence the need for absence analysis. Suppose, then, that we know that b is not needed.
Then we can transform to:

f :: (Int, Int)→ Int
f p = case p of (a,b)→ wf a

wf :: Int→ Int
wf a = let p = (a,error "abs") in< rhs>

Since b is not needed, we can avoid passing it from the wrapper to the worker; while in the
worker, we can use error "abs" instead of b.

There’s a more obvious problem, though: we seem to take apart p in the wrapper, only
to rebuild it in the worker. We describe the re-construction of p in the worker as reboxing;
it is plainly a Bad Thing.

However, the idea is that since <rhs> is strict in p it must presumably take it it apart.
So inside <rhs> we may see “case p of...”. Since p is explicitly bound to a pair in wf , we
can eliminate the case in <rhs>, and that in turn will usually mean that p is dead, and the
reboxing can be discarded. For example, suppose f was like this:

f :: (Int, Int)→ Int
f p = (case p of (a,b)→ a)+1

Then the worker-wrapper transformation will produce:

f :: (Int, Int)→ Int
f p = case p of (a,b)→ wf a

wf :: Int→ Int
wf a = let p = (a,error "Urk")

in (case p of (a,b)→ a)+1

Now, in the code for wf , we can inline the definition of p at its use in the case, simplify the
case, and discard the now-dead binding for p, giving:

wf :: Int→ Int
wf a = a+1

Does the reboxing binding still disappear if p is not scrutinised by an explicit case? For
example, what if it is instead passed to another strict function, g? In that case g will get a
wrapper that takes the pair apart; that wrapper will get inlined into wf , and the case will
cancel as before. Is all reboxing eliminated in this way? No, it is not, a problem that we
discuss in §2.3.

In short, the worker-wrapper transformation allows the knowledge gained from strictness
and absence analysis to be exposed to the rest of the compiler simply by performing a local

ZU064-05-FPR demand-jfp 2 March 2017 9:23

6 S. Peyton Jones et al.

transformation on the function definition. Then ordinary inlining and case elimination will
do the rest, transformations the compiler does anyway. More details are in (?; ?).

2.2 seq and error

Demand analysis in Haskell is made trickier by two functions that are part of Haskell 98:
error and seq. We briefly introduce their difficulties here, by way of background.

The Haskell 98 function error :: String→ a takes a String, prints the string, and brings
execution to a halt2. From a semantic point of view, error s should be considered identical
to ⊥, or divergence. For example, consider this function:

f [] y = error "urk"
f (x : xs) y = y

Is it safe to use call-by-value for y? Yes, because f either evaluates y or else calls error "urk".
If we use call-by-value, the call (f loop), where loop goes into a loop, will diverge instead
of printing “urk”, but we deem that acceptable behaviour; the program goes wrong in either
case, and we allow the compiler to change the particular manifestation of going-wrong-
ness.

However, consider these two functions:

g1 x y = g1 y x
g2 x y = error x

The first function goes into a loop, and does not use either of its two arguments. We could
safely treat them as absent, and not pass them at all. The second function also “diverges”;
it does not use y, but it does use x. Even though error “diverges”, you must pass its
argument so that it can be printed. More concretely, it is not acceptable to perform this
worker/wrapper split for g2:

g2 x y = wg2
wg2 = let x = error "abs"

y = error "abs"
in error x

This is obviously wrong, because the call error x will attempt to print the string x, but we
have not passed x to wg2! In short, we must be careful not to assume that x is absent simply
because it is consumed by a “divergent” computation: the error function diverges, but uses
its argument.

A different difficulty is raised by seq :: a→ b→ b, which evaluates its first argument
before returning its second. The existence of seq, with a polymorphic type, has subtle but
pervasive effect. For example, eta reduction is not valid in general:

g3 a b 6≡ (λx→ g3 a b x)

The former is ⊥, while the latter is not, and the two can be distinguished by seq. So far as
strictness and absence analysis is concerned, is this function strict in x?

2In GHC, error raises an exception, a nice generalisation of the Haskell 98 behaviour (?).

ZU064-05-FPR demand-jfp 2 March 2017 9:23

Theory and Practice of Demand Analysis in Haskell 7

g4 x = (λy→ x) ‘seq‘ True

No, it is not: evaluating the lambda does not evaluate its body; indeed we can even treat
g2 as absent in x, since the latter will never be used. In short, seq can evaluate a function
without calling it, and our analysis must recognise this distinction. (A sound alternative
would be to treat seq as lazy in its first argument, but that would be foolish becaues
programmers often use seq precisely to make their functions strict.)

SLPJ: Need to explain why this makes things difficult. John: Does it make things diffi-
cult? Isn’t the only implication that, for function demands, S(S) 6= S(L)? It would be more
of a problem if they were the same!

2.3 Shortcomings of the existing analyser

In the past, GHC used an analyser based on the classic technique of abstract interpretation
(Cousot & Cousot, 1977; ?) to derive strictness and absence information; this informa-
tion in turn drives the generation of specialised calling conventions. The old analyser is
described in our earlier papers (?; Peyton Jones, 1996).

The worker-wrapper transformation works fine, but the preceding analysis phase, which
drives the worker-wrapper transform, is very slow for deeply nested definitions. Given:

f x y z =<rhs>

the analyser figures out whether f is strict in x, y, and z by computing (f ⊥>>), (f >⊥>),
and (f > > ⊥), where > is the top-most abstract value, and ⊥ is the bottom-most.
If f is recursive, it iterates the process using the newly-computed approximation to f .
The difficulty here comes when <rhs> contains nested recursive definitions. Then to
compute (f ⊥ > >), for example, we must compute the abstract values of the nested
definitions, given these particular bindings: x = ⊥, y = >, and z = >. And then do it
all again for the next set of bindings. Computing these abstract values itself involves the
same sort of iterative process for each recursive nested definition. Result: the running
time is exponential in the nesting depth of definitions. This problem can be fixed, but that
would further complicate the analyser. Backwards analysis is, as we shall see, much more
efficient.

Furthermore, once we looked into it, we found that we could express the backwards
analysis rather elegantly. As a direct result, the new analyser is significantly shorter than
its predecessor (in source code terms). Even if it were no more efficient, this would be a
worthwhile gain. (This is, of course, a “soft” claim: perhaps a re-engineered version of the
forwards analysis would be equally concise.)

3 Backwards analysis

The previous section should have convinced you that we want two sorts of information
from our demand analysis:

• Evaluation demand, or strictness, describes the extent to which the expression is
guaranteed to be evaluated. The compiler uses strictness information to replace call-
by-need with call-by-value.

ZU064-05-FPR demand-jfp 2 March 2017 9:23

8 S. Peyton Jones et al.

• Usage demand, or absence, describes what parts of the expression’s value are used.
Absence analysis would, for example, distinguish g1 and g2 in Section 2. The com-
piler uses usage-demand information to decide which fragments of the argument to
pass to the specialised version of the function.

Earlier work by Wadler and Hughes (1987) showed that using backward analyis acco-
modates both strictness and absence analysis, and handles (recursive) data structures as
well. Backwards analysis answers the following question

If an expression e is consumed by a demand d,
what demand is placed on e’s free variables?

A demand expresses the degree to which a value is evaluated. For example, a pair might
not be evaluated at all (A), or be evaluated to head normal form (S), or its first or second
components might be evaluated ((S,A), or (A,S)), or both (S,S). The parentheses give
a suggestive textual notation for these demands, which we formalise later. Similarly a
function might be evaluated to head normal form (S), or might be applied and its result
evaluated (C (S)), and so on.

Seen in this light, an expression e is a demand transformer, that transforms a demand on
e into demands on e’s free variables. For example the expression (fst x+ y) transforms the
demand S on the result into a demand (A,S) on x, and S on y.

Similarly a function

f x y =<rhs>

is a demand transformer that transforms a demand on the result of a call to f to demands
on the arguments of that call.

Backwards analysis is called “backward” because it computes information about the
inputs of an expression from information about its output.

Before we can make an analysis we need to formalise what exactly a “demand” might
be, which we do in Section 4. Then we show how to apply this theory to build absence
(Section 5) and strictness (Section 6) analyses in the context of higher-order functions.
Finally, we show that the two can be combined into a single analysis that does the whole
job in one blow Ilya: Do we need to show this?.

4 Projections and Projection-Based Program Analyses

In this section we follow Wadler and Hughes by formalising demands as projections (1987).
The original analysis and its experimental implementation for a subset of Haskell (Kubiak
et al., 1991) was able to handle only first-order language. The main new twist of this work
is that we introduce higher order projections to deal with curried functions.

SLPJ: Did W&B handle only a first-order language? Ilya: Correct, added a line about
this.

4.1 The Core language and its semantics

SLPJ: Are we only handling product contructors? Then we’d at least have to add if so that
we get the lub behaviour of the RHSs. Or else we can handle sums directly.

ZU064-05-FPR demand-jfp 2 March 2017 9:23

Theory and Practice of Demand Analysis in Haskell 9

Types

τ ::= P τ | τ → τ | a | ∀a.τ

Expressions

e ::= x Variables
| e e Applications
| λx→ e Lambda-expressions
| P Data constructors
| let x = e in e Let-bindings
| letrec x = e in e Letrec-bindings
| case e as x of P y→ eP Case-expressions

Constructor signatures

Σ ::= /0 | Σ, Pα : ∀a.τα → P a

Fig. 1. Syntax of the Core language

Env = Var⇒c D∞

JeK : Env⇒c D∞

JxKρ = ρ(x)

Je1 e2Kρ = app(Je1Kρ ,Je2Kρ)

JPKρ = Fun(λd1 . . .λdn.(d1, . . . ,dn))

Jλx→ eKρ = Fun(λd.JeKρ ′) where ρ
′ = ρ[x 7→ d]

Jlet x = e1 in e2Kρ = Je1Kρ ′ where ρ
′ = ρ[x 7→ Je1Kρ]

Jletrec x = e1 in e2Kρ = Je2Klfp(E(x,e,ρ)) where E(x,e,ρ) = λρ
′.ρtρ

′[x 7→ JeKρ ′]

Jcase e as x of P y→ ePKρ =

{
JePK

ρ[y7→d] if JeKρ = P d and P is a case-branch
⊥ otherwise

Fig. 2. Denotational semantics of Core

Ilya: I guess, you mean that we don’t a type for sums? If so, I’m not sure whether we
should focus on types at all. The semantics handle sums, indeed, as case expression has
multiple branches.

Figure 1 presents the syntax of expressions of the Core language, which is entirely
conventional. Types include datatypes, function types τ→ τ or type variables a. Signatures
Σ provide definitions of the datatype constructors Pα coupled with their arities α .

SLPJ: Is “domain” identical to “cpo”? Let’s use one or the other consistently.
SLPJ: Do we really want to define the denotation of e as a continuous function from

environments? There’s no need for this, and we don’t define Env as an element of D∞.
Don’t we rather define a two-argument function from expression and environment to D∞?

We use denotational semantics to give meaning to Core, as shown in Figure 2. The
denotation JeKρ of an expression e in an environment ρ is an element of the domain D∞.

ZU064-05-FPR demand-jfp 2 March 2017 9:23

10 S. Peyton Jones et al.

Following Benton et al. (2009), D∞ is defined as the least fixed point of the equation

D∞ = F D∞

where F is a strict bi-functor F on cpos as follows:

F(D−,D+) = ((D−⇒c D+)

+ ∏α1
D+ Pα1

1 ∈ Σ

+

+ ∏αk
D+ Pαk

k ∈ Σ

+ 1bad)⊥

Ilya: Say something about criteria for signature well-formedness.
The notation D+×D+ denotes a cartesian product, ∏n D abbreviates n-ary products (1

if n = 0). The notation C ⇒c D stands for the cpo induced by the space of continuous
functions from the cpo C to the cpo D. We use 1bad notation to simply denote a single-
element cpo—the bad subscript is added for readability. The notation D⊥ is lifting that
instruments a domain with a new bottom element ⊥.

Environments ρ are just continuous functions Var⇒c D∞ from syntactic variables to
elements of the domain D∞. SLPJ: Really? I thought it was a partial function, and not in
D∞ at all.

In Figure 2 we use the special “tag” Fun to construct elements of the summand D∞⇒c

D∞ of the domain D∞. Similarly, we construct elements of other summands using product
constructors Pαi

i as tags for embeddings D∞× . . .×D∞︸ ︷︷ ︸
αi

⇒c D∞. The combinator app refers

to the continuous embedding D∞×D∞⇒c D∞ (Ilya: Define it formally!).

Proposition 4.1. There exists a solution to the domain-recursive equation induced by FΣ.

4.2 Projections

Wadler and Blott’s key insight was that we can use projections to model our informal
notion of a “demand” or “degree of evaluation”.

Definition 4.1. A continuous function p ∈ D⇒c D is a projection (Scott, 1981) on a cpo
D if for every d ∈ D,

p d v d
p (p d) = p d

In words, projections are idempotent and only remove information from an object, so
one can reformulate these properties in a point-free as follows (Wadler & Hughes, 1987):

p v ID = λx.x
p ◦ p = p

Projections model demands in the following way: a demand that evaluates certain parts
of a data structure (and not others) can be modeled by a projection that does not touch
the evaluated parts of the data structure, but smashes the un-evaluated parts to ⊥. So,
for example, the function fst places a demand on its argument that evaluates the first

ZU064-05-FPR demand-jfp 2 March 2017 9:23

Theory and Practice of Demand Analysis in Haskell 11

component of a pair, and ignores the second. This demand can be modeled by the projection

p = λ (a,b).(a,⊥)

Now we can formalise our claim that this is indeed the demand placed by fst, by showing
that

fst = fst ◦ p

That is, you can apply p to fst’s argument to throw information away, and fst will not notice.

4.3 Properties of projections

We will refer to a set of all projections on a domain D as Pr(D). Projections possess a
number of useful properties. For instance, they form a complete lattice under the point-wise
v ordering, with >= ID and ⊥= λx→⊥D. The least upper bound is defined point-wise
on projections, so the following proposition holds:

Proposition 4.2 (Wadler and Hughes (1987)). If P is a set of projections then tP exists
and is a projection.

Lemma 4.1. Let p1 and p2 be projections. Then p1 v p2 =⇒ p1 ◦ p2 = p1.

Proof. By the definition of projections, p1 = p1 ◦ p1 v p1 ◦ p2, since p1 v p2. Conversely,
since p2 v ID, we have p1 ◦ p2 v p1 ◦ ID = p1.

Wadler and Hughes employ the projections to describe an analysis that, given a pro-
jection p and an element d ∈ D will infer the least possible projection q, such that the
following safety condition is satisfied:

p d = p(q d).

That is, if an element d is used in the context of p (i.e., only the result of application
of p to d is considered), than the projection q describes how much information can be
“removed” from d so the result would remain the same. Given the idempotence of projec-
tions, one can think of p as the best possible candidate for the role of q. However, we can
do better for some interesting cases, e.g., for d being a function. We will elaborate on this
in Section 4.4.

Finding the best possible (i.e., the least) projection q for given p and d is the goal
of a projection-based analysis. The following context strengthening lemma establish the
connection between results of the analysis with respect to projection ordering:

Lemma 4.2 (Context strengthening). If p2 d = p2 (q d) and p1 v p2 then p1 d = p1 (q d).

Proof. Straightforward from Lemma 4.1: p1 d = p1 (p2 d) = p1 (p2 (q d)) = p1 (q d).

4.4 Useful projections for D∞

In our development we will be considering projections over the semantic domain D∞. Four
particular projections will be particularly useful:

• ID = λx.x, the identity projection. This corresponds to a demand that uses all of its
argument.

ZU064-05-FPR demand-jfp 2 March 2017 9:23

12 S. Peyton Jones et al.

• BOT = λx.⊥, the bottom projection, corresponding to a demand that ignores its
argument.

• (p,q) a product projection, corresponding to a demand that uses a pair with its
components demands described by p and q.

• p→ q, a higher-order projection, to be discussed shortly.

Here are the definitions of pair and higher-order projections:

Definition 4.2 (Higher-order projections). Let p, q be projections, f ∈ D∞. Then

(p,q) f =
{

(p d1,q d2) if f ∈ (D∞×D∞) and f = (d1,d2)

⊥ otherwise

(p→ q) f =
{

q ◦ f ◦ p if f ∈ (D∞⇒c D∞)

⊥ otherwise

As usual, we assume the operator (· → ·) to be right-associative. The following proposi-
tion ensures that defined above operators indeed yield projections.

Proposition 4.3. Let p,q ∈ Pr(D∞). Then (p→ q) ∈ Pr(D∞) and (p,q) ∈ Pr(D∞).

Proof. For the (p→ q) case, let us take some f ∈ (D∞ ⇒c D∞), otherwise the proof is
trivial as (p→ q) f ≡ ⊥. That is, f is a continuous (and, hence, monotonic) function on
D∞. Since q is a projection, we have q v ID, therefore f ◦ q v f (by monotonicity of f).
Similarly, p v ID implies ∀g.p ◦ g v g. Taking g = f ◦ q, we obtain p ◦ f ◦ q v f ◦ q v f ,
i.e., (p→ q)v ID. Idempotence of (p→ q) follows from idempotence of p and q.

For the (p,q) case, recall that the order on pairs in D∞ is established component-wise,
so for any g = (d1,d2), we have (p,q)g = (p d1,q d2)v (d1,d2) = g.

In the remainder of the paper we will consider projections on D∞ only, referring to them
simply as to “projections”. We will be also employing projections of tuples of arbitrary
arity rather than only pairs.

Example 4.1. A simple family of projections that allow one to detect the “absence” of
components can be defined taking two basic projections: ID and BOT = λx → ⊥ and
deriving higher-order projections using (· → ·) and (·, ·) operators.

For instance, let us consider a function f = λx→ λy→ x. One can wonder, when f is
called, which of its arguments may not be passed at all due to this absence. This question
can be formalized via the following reified form of the safety condition ??: what is the least
projection q, such that d : p⇒ q, where p = ID→ ID→ ID. The answer for this particular
example is easy to find, taking q = ID→ BOT→ ID.

4.5 Projection environments

Value environments as partial functions Var⇀ D∞ play a crucial role in defining a denota-
tional semantics for the Core language. In order to reason about correctness of projection
derivation procedures with respect to the denotational semantics, we introduce projection
environments: projections on value environments.

ZU064-05-FPR demand-jfp 2 March 2017 9:23

Theory and Practice of Demand Analysis in Haskell 13

An intentionally defined projection environment is a pair θ = 〈φ ,r〉 where φ a partial
function from variables to projections and a r is default projection. An application @ of a
projection environment θ to a value environment ρ is defined point-wise as follows:

(θ@ρ)(x) = φ(x)(ρ(x)) if x ∈ dom(φ)

r(ρ(x)) otherwise
The least upper bound of two projection environments is computed as follows:

θ1tθ2 = 〈[x 7→ θ1(x)tθ2(x) | x ∈ dom(θ1))∪dom(θ2)],r1tr2〉
where θ1 = 〈φ1,r1〉 and θ2 = 〈φ2,r1〉

We refer to the projection environment of the form 〈{},⊥〉 as θ⊥ and 〈{},>〉 as θ>.
The next proposition follows naturally:

Proposition 4.4. Projection environments with the defined above application operation are
projections on value environments (seen as a cpo of continuous functions of type (Var ⇀
D∞)⇒c (Var ⇀ D∞)).

We use the notation θ t[x 7→ p] for least upper bound of θ ’s φ and a partial function
[x 7→ p] (the lub exists because of Proposition 4.2). Finally, θ \{x,y, . . .} denotes removing
variables {x,y, . . .} from the domain of θ ’s φ .

4.6 Projection types and projection transformers

In order to start building projection-based analyses as procedures to infer projections by
expressions, we need to state a few more extra definitions.

Definition 4.3 (Projection types). A projection type τ̂ is a pair 〈θ ,q〉 for some projection
q and a projection environment θ .

Intuitively, projection types describe results of a projection analysis for open expres-
sions, i.e., those containing free variables, hence the environment θ . Projection types form
a cpo, and t is established correspondingly component-wise.

Definition 4.4 (Projection transformers). Projection transformer T is a continuous func-
tion mapping a projection to a projection type.

One can think of an open expression as of a projection transformer. One can imagine a
transformer, corresponding to some d as a table mapping a “put” projection p to a resulting
“safe” projection q, such that d : p⇒ q.

Example 4.2. For the following function

g :: (Int, Int, Int)→ [a]→ (Int,Bool)
g (a,b,c) = case a of

0→ error "urk"
→ λy→ case b of 0→ (c,null y)

→ (c,False)

a part of the projection transformer table will look as follows (projection environment
components are omitted, as g does not contain free variables):

ZU064-05-FPR demand-jfp 2 March 2017 9:23

14 S. Peyton Jones et al.

Put projection on g Safe projection

ID ID
ID→ ID ID→ ID
ID→ ID→ (BOT, ID) (ID, ID,BOT)→ ID→ ID
ID→ ID→ (ID,BOT) ID→ BOT→ ID

In the first line of the table the projections put do not provide enough information
about what is going to happen with arguments so any non-trivial safe projection could
be computed. However, in the third and forth lines the put projection indicates that the
appropriate components of the result tuple are going to projected to ⊥. This information
makes it possible to compute interesting safe projections on the right-hand side.

Lemma 4.2 hints a nice way to approximate a projection transformer by an abstract
transformer T̂ by taking a finite sequence of input projections p1 < . . .< pn, such that the
value T (pi) = τ̂i = T̂ (pi) is computed precisely, and for any p′ we have

T̂ (p′) = τ̂i if pi−1 < p′ v pi

T̂ (p′) = τ̂0 if p′ v p0

T̂ (p′) = > otherwise.

In practice, it makes sense to take n = 1, i.e., approximate a transformer T by a “step”
function for a particular p, such that T (p) = τ̂ and for any p′

T̂ (p′) = τ̂ if p′ v p
T̂ (p′) = > otherwise.

Ilya: Draw a simple rectangular picture illustrating the above.
The transformer environments we are going to use in the remainder of the paper will

be binding variables with two-point abstract transformers of the form (p, τ̂), where p is
a “threshold” projection and τ̂ is a projection type returned by the transformers for all
p′ v p. The “update” operation for a transformer environment ρ̂ , a variable x, a separator
projection p and a projection type τ̂ is denoted as ρ̂ [x 7→ (p, τ̂)].

4.7 Safety of projection-based analysis

At this point we can already picture a syntax-driven projection-based analysis for Core as
a function PJ·K from expressions to projection transformers, such that if

PJeK p = 〈θ ,q〉,

then

p JeKρ = p(q JeKθ@ρ).

This implication is close to what we need as a definition of a safe analysis, however,
it does not account to modularity. More precisely, we might have already precomputed

ZU064-05-FPR demand-jfp 2 March 2017 9:23

Theory and Practice of Demand Analysis in Haskell 15

transformers for some of free variables from ρ , which we want our analysis to take into
account. Therefore, we need to pass this information to the analysis PJ·K as an extra
component, hence the following definition.

Definition 4.5 (Transformer environments). A transformer environment ρ̂ is a partial
function from variables to abstract projection transformers.

The following definition establishes a connection between value environments and trans-
former environments. Since projection types form a lattice and projection transformers are
continuous functions, we can define a partial order on transformer environments.

As it follows from Definition 4.5, the transformers from ρ̂ return not only projections,
but also projection environments (i.e., ρ̂(x)(p) = 〈θ ,q〉). What does this environment part
mean? In fact it says, that if ρ̂(x)(px) = 〈θx,qx〉 then when a projection px is put on a
value corresponding to x, the projections at least as big as in θ , should be put on other free
variables in the scope. The following example gives the essence of this phenomenon:

let x = 42
in let y = x+ y

in (y,1)

If the analysis proceeds compositionally and we are interested in demands, put on all
variables, defined above some point, then it would be incorrect to analyse the expres-
sion (y,1) with a transformer environment ρ̂ = {y 7→ (ID,〈θ⊥, ID〉)}, as the projection
environment θ⊥ does not indicate that x should not be “bottomed”. Therefore, a correct
environment would be ρ̂ ′ = {y 7→ (ID,〈{x 7→ ID}, ID〉)}. I.e., if a projection ID is put on
y, it unleashes the projection at least as big as ID to be put on x as well.

It is clear that in order to get an adequate statement about safety of an analysis with
respect to the denotational semantics, we need to relate an actual value environment ρ with
a transformer environment ρ̂ . However, it is problematic because of the θ -components
in the results of ρ̂ , which provide information about variables, whereas ρ operates with
pure values only. In order to resolve this issue, we introduce an extra level of indirection,
“expanding” value environments to a “closure-converted” representation.

Definition 4.6 (Expanded value environments). An expanded value environment σ is an
element of Σ = Var ⇀ (Env× (Env⇒c D∞)). The flattening operation σ : Σ→ Env on
expanded environments is defined point-wise as follows:

σ(x) = f (ρ) where 〈ρ, f 〉= σ(x)

We relate expanded environments with transformer environments by the following defi-
nition:

Definition 4.7 (Related expanded and transformer environments). σ ./ ρ̂ iff dom(ρ̂) ⊆
dom(σ) and for all projections p

p (f ρ) = p (q (f (θ@ρ))) if x ∈ dom(ρ̂)

f ≡ const otherwise

where 〈ρ, f 〉= σ(x) and 〈θ ,q〉= ρ̂(x)(p).

ZU064-05-FPR demand-jfp 2 March 2017 9:23

16 S. Peyton Jones et al.

In words, Definition 4.7 means that the transformer ρ̂(x) for any projection p delivers
a safe projection type 〈θ ,q〉 for the correspondent pair 〈ρ, f 〉 = σ(x), otherwise, if x ∈
dom(σ)\dom(ρ̂), f is a constant function. The later condition means that if no information
about x is provided by ρ̂ , its value in σ does not depend on any variables.

A second attempt to define safety of a projection-based analysis Armed with a defi-
nition of projection environments, expanded environments and the relation between them,
we can define a safe analysis as a function PJ·K· from expressions and transformer envi-
ronments to projection transformers.

Definition 4.8. A projection-based analysis PJ·K· is safe with respect to the denotational
semantics J·K·, if for all σ , ρ̂ , such that σ ./ ρ̂ , and for all projections p

PJeKρ̂ p = 〈θ ,q〉 =⇒ p JeKσ = p (q JeKθ ∇σ),

where θ ∇σ = λx.(θ(x))(fx(θ@ρx)) for 〈ρx, fx〉= σ(x).

It is noteworthy that the deep application (θ ∇σ) for any x restricts not only arguments
ρx of the appropriate expanded environment component σ(x) = 〈ρx, fx〉, but also the result
of the application fx(θ@ρx). This is how the knot is tied for free variables of e. For
instance, if x /∈ dom(ρ̂) then fx is a constant function, and by taking (θ ∇σ)(x)= θ(x)(fx),
we take a projected value, corresponding to a variable x in e. Ilya: should I say more words
about this beast?

In the remainder of the paper we will refer to projections as to demands.

5 Absence Analysis

This section provides a motivation and gives a formal description for a projection-based
absence analysis.

5.1 Motivation

The absence analysis answers the following question: “given an expression e and an envi-
ronment ρ , which components of e and ρ are unused when computing a value JeKρ ?”. For
example, in the definition:

f x y = if x≡ 0 then f (x−1) y else x

it is clear that x is used; it is slightly less obvious that y is not. Programmers seldom pass
arguments that are entirely unused, but they often pass arguments that are only partly used,
as in the following example:

st p = case p of {(x,y)→ x}

Here, the second component of the pair is unused. These two examples make it clear
that absence analysis entails more than simply computing free variables.

It is easy to define in terms of projections, given the background from Section 4.2.
The BOT projection can be applied to a component of a value, which is never used.
Application of the projection ID, therefore, means that the value is going to be used,

ZU064-05-FPR demand-jfp 2 March 2017 9:23

Theory and Practice of Demand Analysis in Haskell 17

without specifying any other details.3 However, working with pairs or functions, we can
infer more information about absence. The table for Example 4.2 gives a good intuition
about making use of elaborated demands for absence. The demand p = U →U →U for
a function of type τ1 → τ2 → τ3 means that the function is going to be applied to both
arguments and its result is going to be used. Having q =U → A→U as a safe demand put
on this function before p would mean that the second argument can be safely ignored (i.e.,
mapped to ⊥ before the function is applied). The same intuition is applied to products of
demands.

5.2 A definition of the analysis

The formal definition of the absence analysis is presented in Figure 3. Several cases are
worth mentioning in its description. Since the constant absent demand A is “oblivious”,
being put, it allows one not to compute the demands for constituents of the expression, so
the result of the analysis for A is 〈θ⊥,A〉, i.e., one is free to omit any of the free variables
in the demand environment (i.e., map them to ⊥) θ and put the absent demand A on the
expression itself.

It is notable, that in the case (A JxKρ̂ p) when analyzing a variable x, such that x ∈
dom(ρ̂), but pw p′, where p′ is a threshold demand for a two-point transformer ρ̂(x), the
transformer ρ̂(x) should return a safe demand type 〈θ ,q〉 = 〈θ>,U〉, which maps all free
variables to U , according to the definition of θ>. However, in the case of absence analysis
we can do better by taking θ = 〈[y 7→U | y ∈ FV (e)],A〉 instead of θ>, where e is a right-
hand side of a binding, defining x. I.e., variables not participating in evaluation of x are
still turned into bottoms, which does not affect the semantics, but is crucial for the analysis
precision in other cases, when demand environments are combined.

The following theorem states the correctness of the analysis A J·K with respect to the
denotational semantics.

Theorem 5.1. The projection-based absence analysis A J·K is safe with respect to the
denotational semantics J·K.

Proof. Taking the constant absence demand p = A, the proof becomes trivial, as the analy-
sis is represented then by the first rule only and taking q = A and θ = θ⊥ is safe. For p 6= A
the proof is by induction on the size of an analysed expression, since the analysis is defined
compositionally. For the full proof, see Appendix A.

6 Strictness Analysis

The theory from Section 4 above models absence analysis nicely, but is not sufficient to
model strictness analysis. Intuitively, the problem is that, having used ⊥ to represent a
missing value — something which will trigger divergence if evaluated — we cannot at the
same time use it to represent divergence itself.

3In the remainder of this section we are going to refer to the BOT projection as A (for “absent”)
and to ID as U (for “used”).

ZU064-05-FPR demand-jfp 2 March 2017 9:23

18 S. Peyton Jones et al.

A JeKρ̂ p takes an expression e, a transformer environment ρ̂ and a demand p and computes a
demand type 〈θ ,q〉 for e.

A JeKρ̂ A = 〈θ⊥,A〉

A JxKρ̂ p =
let 〈θ ,q〉 =

{
ρ̂(x)(p) if x ∈ dom(ρ̂)
〈θ⊥,U〉 otherwise

in 〈θ t[x 7→ p],q〉

A Je1 e2Kρ̂ p =

let 〈θ1,qa→ q1〉 = A Je1Kρ̂ (U → p)
〈θ2,q2〉 = A Je2Kρ̂ qa

in 〈θ1tθ2,q1〉

A JPKρ̂ p = PT(P, p)

A Jλx→ eKρ̂ p =

let pr = if p = (U → p′) then p′ else U
〈θ ,q〉 = A JeKρ̂ pr

qx = θ(x)
in 〈θ \{x},qx→ q〉

A Jcase e as z of (x,y)→ aKρ̂ p =

let 〈θa,qa〉 = A JaKρ̂ p
〈θe, 〉 = A JeKρ̂ (θa(x),θa(y))

in 〈(θa \{x,y,z}tθe),qa〉

A Jcase e as x of Pi yi→ eiKρ̂ p =

let 〈θi,qi〉 = A JeiKρ̂ p
〈θa,qa〉 = 〈ti θi \ yi,ti qi〉
〈θe, 〉 = A JeKρ̂ U

in 〈((θa \{x})tθe),qa〉

A Jlet x = e1 in e2Kρ̂ p =

let p′ =

arity(e1)︷ ︸︸ ︷
U → . . .→U →U

〈θx,qx〉 = A Je1Kρ̂ p′

ρ̂ ′ = ρ̂t[x 7→ 〈p′,〈θx \{x},qx〉〉]
〈θ ,q〉 = A Je2Kρ̂ ′ p

in 〈θ \{x},q〉

A Jletrec x = e1 in e2Kρ̂ p =

let p′ =

arity(e1)︷ ︸︸ ︷
U → . . .→U →U

ρ̂ ′ = ρ̂t[x 7→ 〈p′,〈θ⊥,A〉〉]
ρ̂ ′′ = lfp

(
Ê(x,e1, ρ̂

′, p′)
)

〈θ ,q〉 = A Je2Kρ̂ ′′ p
in 〈θ \{x},q〉

Ê(x,e, ρ̂, p) = λρ̂
′.
(

let 〈θx,qx〉= (A JeKρ̂t ρ̂ ′ p) in ρ̂t ρ̂
′ [x 7→ (p,〈θx \{x},qx〉)]

)
PT(P, p) takes a product constructor P and a demand p and returns an approximation of the

constructor’s demand type given that demand.

PT(P,U → . . .→U︸ ︷︷ ︸
m

→ (p1, . . . , pn)) = 〈θ⊥, p1→ . . .→ pn→U〉 if n = m = arity(P)

= 〈θ⊥,U〉 otherwise

Fig. 3. Absence analysis

ZU064-05-FPR demand-jfp 2 March 2017 9:23

Theory and Practice of Demand Analysis in Haskell 19

6.1 Extending the domain for strictness

Wadler and Hughes’ solution to mode strictness was to add a new bottom element to the
semantic domain, below the existing one (i.e. lifting the domain), with the new element
representing divergence itself. To avoid confusion, the new bottom will be called (“light-
ning bolt”), such that <⊥ (Wadler & Hughes, 1987). It is important to realize that we do
not need to give a new semantics to Haskell, in which lightning bolts appear. We interpret
Haskell programs as usual, but we model demands by projections on the semantic domain
with one additional element, lightning bolt, rather than the original semantic domain. We
will need to lift the semantics of Haskell functions to the extended domain, but given a
function f this is easily done by taking f = . At every other point, f retains the usual
semantics.

Now, in the extended domain we distinguish between the bottom element, corresponding
to non-termination if evaluated (⊥), and non-termination itself . We can therefore model
evaluating a value as a projection S, such that

S =

S ⊥ =

S x = x, otherwise

I.e., evaluating ⊥ leads to divergence.
In order to deal with a new bottom , we replace the projection combinators (· → ·),

(·, ·) with new ones, (·� ·), ((·, ·)), evaluating their arguments, defined correspondingly:

(p � q) f =
{

λd.p(f (q d)) if f ∈ (D∞⇒c D∞)

 otherwise

((p,q)) f =
{

(p d1,q d2) if f = (d1,d2), p d1 6= and q d2 6=
 otherwise

Employing the definition of ((·, ·)), it is straightforward to show that ((ID, ID)) d = S d if
d = (d1,d2). Similarly (ID � ID)d = d for d ∈ D∞⇒c D∞.

S is the projection that models strict demand; we can ask f uses its argument strictly
when called in a strict context, just be asking whether

(ID � S) f = (S � S) f

Applying both sides to ⊥ we see

(S ◦ f) ⊥ = (S ◦ f ◦ S) ⊥
=⇒ S (f ⊥) = S (f (S ⊥))
=⇒ S (f ⊥) = S (f)
=⇒ S (f ⊥) = S
=⇒ S (f ⊥) =
=⇒ f ⊥ = ⊥

so this condition does indeed imply that f is strict.

ZU064-05-FPR demand-jfp 2 March 2017 9:23

20 S. Peyton Jones et al.

6.2 Conjunction of demands

It is often a case that strictness projections should be combined in a safe way employing
additional context information. The following example illustrates this necessity.

Example 6.1. Let us consider a function g = λ (x,y)→ ..., and for a fixed projection p we
know that ((ID, ID)� p) g = ((qx,qy)� p) g for some qx and qy. Assume now that for a
function f = λ z→ g (z,z) we are interested in finding a non-trivial projection qz, such that

(ID � p) f = (qz � p) f

by combining information from qx and qy.

The example above leads to the following definition.

Definition 6.1 (Projection conjunction). Let p be a fixed projection. Then the operator &
is conjunction operator with respect to p iff for all g ∈ D∞ and projections q1,q2

(((ID, ID))� p)g = (((q1,q2))� p)g

=⇒ (ID � p)(g ◦ mult2) = ((q1 &q2)� p)(g ◦ mult2)

where mult2 = λd→ (d,d).

In the presence of an isomorphism between curried and uncurried functions, Defini-
tion 6.1 could be formulated in terms of functions of the form D∞ ⇒c D∞ ⇒c D∞ rather
than D∞×D∞ ⇒c D∞. However, we preferred to do it for uncurried counterparts for the
sake of clarity.

The & operation is commutative, associative and idempotent. It distributes over t and
has ID as unit.

It is obvious that the least upper bound operator t is a good (i.e., safe) candidate for the
role of &, as (((q1,q2))� p)v (((q1tq2,q1tq2))� p). However, in the case of strictness
projections we can do slightly better if p = S:

(p1 & p2) x =
{

 if p1 x = or p2 x =
(p1 x)t(p2 x) otherwise

The correctness of the construction above with respect to Definition 6.1 is easy to show
basing on the definition of the combinator ((·, ·)). The following lemma allows one to reuse
the same construction for & with respect to a family of projections, smaller than S:

Lemma 6.1. If pv S and & is a conjunction operator with respect to S then & is conjunc-
tion with respect to p.

Proof. Straightforward by Lemma 4.1 and expanding p from Definition 6.1 to (p ◦ S).

Considering projection environments (Section 4.5) as projections (together with appli-
cation operation @), we extend the operation & to them in an obvious way, as shown
on Figure 4. Correctness of the definition of conjunction for projection environments as
presented in Figure 4 follows from Definition 6.1 applied point-wise (i.e, considering q1

and q2 for each variable involved) for some g ∈ ((Var⇀ D∞)× (Var⇀ D∞))⇒c D∞.

ZU064-05-FPR demand-jfp 2 March 2017 9:23

Theory and Practice of Demand Analysis in Haskell 21

θ1 &θ2 = 〈[x 7→ θ1(x)&θ2(x) | x ∈ dom(θ1)∪dom(θ2)],r1 &r2〉
where θ1 = 〈φ1,r1〉 and θ2 = 〈φ2,r1〉

Fig. 4. & operation for projection environments

Definition 6.1 of the conjunction of projections is crucial to construct compositional
analyses that combine results from sub-cases. It is less obvious that the default projection
environment θ should be chosen in a way that it’s default projection r is a unit of the &
operation. Ilya: Explain it better!

6.3 A hyperstrict demand

We consider a distinguished projection H, such that H d ≡ for any d. It is convenient
to model a hyperstrict demand. The demand H can be placed on the value d before S
if evaluation of d is guaranteed to diverge. Therefore, the following equivalences are
straightforward to demonstrate:

((H, p)) = ((p,H)) = ((H,H)) = H
H � p = p � H = H

6.4 Projection-based strictness analysis

In the remainder of this section we will refer to the identity projections ID as L (for
“lazy”). A projection-based strictness analysis is defined formally in Figure 5. For the
topmost expression the strictness analysis is typically initialized with a strict demand

n︷ ︸︸ ︷
L � . . .� L � S, where n is the arity of the expression.

In order to show the correctness of the strictness analysis, namely, restrict the set of
input projections, so the safety theorem for strictness is formulated slightly different than
for absence.

Theorem 6.1. The projection-based strictness analysis S J·K is safe with respect to the
denotational semantics J·K for any input projection p such that either p = L or p v S.
In particular, this restriction allowed us to replace t by & in several cases according to
Lemma 6.1 in order to improve the analysis precision.

Proof. The proof of the safety of the strictness analysis is mostly similar to the one of
Theorem 5.1 except a few notable differences.

• The first clause of the analysis handles the case when a put projection p = L. In this
case the result of the analysis is trivial and returns a projection type 〈θ>,L〉 assuming
that only trivial projections can be put on free variables and arguments of e (if there
are any). It is important to realize that the demand p put in all other cases is less or
equal than a strict demand S (i.e., pv S).

• Every time when a result projection environment θ for e is obtained from two other,
say, θ1 and θ2, resulting from analysis sub-expressions, each of which are evaluated

ZU064-05-FPR demand-jfp 2 March 2017 9:23

22 S. Peyton Jones et al.

S JeKρ̂ p takes an expression e, a transformer environment ρ̂ and a demand p and computes a
demand type 〈θ ,q〉 for e.

S JeKρ̂ L = 〈θ>,L〉

S JxKρ̂ p =
let 〈θ ,q〉 =

{
ρ̂(x)(p) if x ∈ dom(ρ̂)
〈θ>,L〉 otherwise

in 〈θ &[x 7→ p],q〉

S Je1 e2Kρ̂ p =

let 〈θ1,qa→ q1〉 = S Je1Kρ̂ (L � p)
〈θ2,q2〉 = S Je2Kρ̂ qa

in 〈θ1 &θ2,q1〉

S JPKρ̂ p = PT(P, p)

S Jλx→ eKρ̂ p =

let pr = if p = (L � p′) then p′ else S
〈θ ,q〉 = S JeKρ̂ pr

qx = θ(x)
in 〈θ \{x},qx→ q〉

S Jcase e as z of (x,y)→ aKρ̂ p =

let 〈θa,qa〉 = S JaKρ̂ p
〈θe, 〉 = S JeKρ̂ ((θa(x),θa(y)))

in 〈(θa \{x,y,z}&θe),qa〉

S Jcase e as x of Pi yi→ eiKρ̂ p =

let 〈θi,qi〉 = S JeiKρ̂ p
〈θa,qa〉 = 〈ti θi \ yi,ti qi〉
〈θe, 〉 = S JeKρ̂ S

in 〈((θa \{x})&θe),qa〉

S Jletrec x = e1 in e2Kρ̂ p =

let p′ =

arity(e1)︷ ︸︸ ︷
L � . . .� L � S

ρ̂ ′ = ρ̂t[x 7→ 〈p′,〈θ⊥,H〉〉]
ρ̂ ′′ = lfp

(
Ê(x,e1, ρ̂

′, p′)
)

〈θ ,q〉 = S Je2Kρ̂ ′′ p
in 〈θ \{x},q〉

Ê(x,e, ρ̂, p) is a monotonic function defined in the same way as for absence (Figure 3).
PT(P, p) takes a product constructor P and a demand p and returns an approximation of the

constructor’s demand type given that demand.

PT(P,L � . . .� L︸ ︷︷ ︸
m

� ((p1, . . . , pn))) = 〈θ>, p1 � . . .� pn→ L〉 if n = m = arity(P)

= 〈θ>,L〉 otherwise

Fig. 5. Strictness analysis

ZU064-05-FPR demand-jfp 2 March 2017 9:23

Theory and Practice of Demand Analysis in Haskell 23

in the process of evaluating e, θ1 and θ2 are combined via & operator as a better
alternative for t (since pv S for all analysis clauses except the first one). The safety
result is obtained by combining the definition of the operator ∇ with Definition 6.1
of the operator &.

• θ> is used instead of θ⊥, as it provides a “default demand” L = ID, which is a unit
for &.

• If a demand put on a lambda-expression is not of the shape (L � p) or smaller,
the body is analysed with a strictness demand S in order to get non-trivial strictness
demands on parameters and free variables. This is justified by the fact that S is,
indeed, a safe demand in the context of S.

• When analyzing an expression of the form (case e as x of Pi yi→ ei), the scrutinized
expression e is analyzed with a strict demand S on, which is justified by observation
that it is safe to replace JeKρ with S(JeKρ) if the demand S or smaller is put on the
whole case-expression.

7 Making Projection-Based Analysis Practical

Ilya: Describe representation of demands in GHC and intuition behind them
Ilya: Write down a section about result types that help to track bottoming functions
Next, we turn our attention to some issues that turn out to be important in practice,

principally to do with fixpoints. These issues never occurred to us before we began, but
they are crucial to good practical performance.

7.1 Sums and products

In the presentation so far we have focused exclusively on product types, such as tuples and
other single-constructor algebraic data types. But what about sum types, that is, algebraic
data types with more than one constructor, such as Boolean or lists?

SLPJ: more to come here...

7.2 Returning an annotated expression

In our implementation, the demand analyser returns not only a demand type, but also an
annotated expression, in which:

• Each let(rec) binder is annotated with its demand signature.
• Each binder (lambda, case, and let(rec)) is annotated with the demand placed on it if

the expression is evaluated at all.

The former information is used to drive the worker/wrapper split that follows. Both anno-
tations are used during program transformation and code generation to transform call-by-
name into call-by-value.

7.3 Dealing with seq

TODO: Describe the head-strict and head-used demands.

ZU064-05-FPR demand-jfp 2 March 2017 9:23

24 S. Peyton Jones et al.

7.4 Finding fixpoints

As we have already remarked, finding fixpoints for nested recursive functions can be
expensive. For example, consider the following Haskell function:

f xs = [y+1 | x← xs,y← h x]

GHC will turn the list comprehension (which really has two nested loops) into something
like the following:

f [] = []

f (x : xs) = let g [] = f xs
g (y : ys) = y+1 : g ys

in g (h x)

The trouble is that the analyser must find a fixpoint for the inner function, g, on each
iteration of the fixpoint finder for the outer function, f . If functions (or list comprehensions)
are deeply nested, as can occur, this can lead to exponential behaviour, even if each fixpoint
iteration converges after only two cycles.

While this remains the worst-case behaviour, there is a simple trick that dramatically
improves the behaviour of common cases. It relies on the following observation. The
iterations of the fixpoint process for f generates a monotonically increasing sequence of
demand signatures for f . Therefore, each time we begin the fixpoint process for g, the
environment contains values that are greater (in the demand lattice) than the corresponding
values the previous time we encountered g. It follows that the correct fixpoint for g will
be greater than the correct fixpoint found on the previous iteration of f . Therefore we can
begin the fixpoint process for g not with the bottom value, but rather with the result of the
previous analysis.

It is simple to implement this idea. Each iteration of the f ’s fixpoint process yields a
new right-hand side for f , as well as its demand type. We simply feed that new right hand
side, whose binders are decorated with their demand signatures, into the next iteration.
Then, when beginning the fixpoint process for g, we can start from the demand signature
computed, conveniently attached to the binding occurrence of g.

In practice, most of the fixpoint processes of the inner function then converge in a single
iteration, which prevents exponential behaviour.

This technique is fairly well-known as folk lore, but it was not written down until
Henglein’s paper (1994). (This paper is fairly dense, and the fact that it contains this
extremely useful implementation hack may not be immediately apparent.)

SLPJ: The explanation is a bit armwavey; can it be improved? There should be some
nunbers to back this up. John: I like it! Of course, numbers would be good. Analysis times
on some benchmarks with and without the optimisation?

7.5 Splitting θ

Ilya: Bring this section up to the chosen terminology

ZU064-05-FPR demand-jfp 2 March 2017 9:23

Theory and Practice of Demand Analysis in Haskell 25

Table 1. The effect of the worker/wrapper split

Program
Absence only Strictness only Absence + Strictness

Allocations Run time Allocations Run time Allocations Run time

anna -0.0% 0.1% -1.8% 0.1% -5.4% 0.1%
atom 0.0% 1.1% -0.0% 0.0% -0.1% -0.8%
boyer2 0.0% 0.0% -31.8% 0.0% -31.8% 0.0%
cacheprof -0.1% 1.2% -2.3% 1.6% -18.2% 1.2%
comp lab zift 5.0% 0.0% -2.6% 0.0% 0.2% 0.0%
compress2 0.0% 2.8% -12.5% -0.7% -32.7% 1.4%
expert -0.0% -0.0% -0.3% -0.0% -11.3% -0.0%
fibheaps -0.1% -0.0% -15.5% 0.0% -15.6% 0.0%
fulsom -0.3% -4.5% -5.2% -4.5% -6.7% -6.2%
hpg 0.0% 0.0% -1.2% 0.1% -11.4% 0.1%
knights -0.0% 0.0% -0.0% 1.4% -2.8% 1.4%
multiplier -3.0% 0.0% -10.9% 0.0% -16.2% 0.0%
nucleic2 0.0% 0.0% -16.8% 0.1% -20.0% 0.0%
parser -0.1% 0.0% -2.1% 0.0% -19.5% 0.0%
pic -3.0% 0.0% -5.7% 0.0% -7.4% 0.0%
pretty 0.0% 0.0% -0.1% -0.0% -10.4% -0.0%
puzzle 0.0% 0.1% 16.6% 0.1% 16.5% 0.1%
reptile 0.0% 0.0% -0.2% 0.0% -12.3% 0.0%
sphere 0.0% 0.0% 1.8% 0.0% -8.4% 0.0%
symalg 0.0% 0.0% -17.8% 0.0% -45.5% 0.0%
treejoin 0.0% -1.8% -0.0% 9.5% -24.7% -7.7%
x2n1 0.0% 0.0% -81.2% 0.0% -81.2% 0.0%

... and 60 more programs

Summary of results
Min -3.0% -4.5% -95.0% -9.5% -95.0% -16.2%
Max 5.0% 4.3% 16.6% 15.7% 16.5% 3.2%
Geometric mean 0.0% 0.1% -12.3% 0.4% -16.9% -3.3%

8 Implementation and Evaluation

The demand analyzer, as described in the current work, is implemented in the Glasgow
Haskell Compiler, version 7.6.

TODO: What else?

8.1 Experimental results

In this section, we report on the comparison of the performance results of programs,
compiled by four different modifications of the compiler:

1. A compiler, which did not employ the worker-wrapper transformation;
2. A compiler, employing the worker-wrapeer transformation, basing only on “flat”

absence information (i.e., optimizing away non-used function arguments);

ZU064-05-FPR demand-jfp 2 March 2017 9:23

26 S. Peyton Jones et al.

3. A compiler, employing the worker-wrapeer transformation, basing only on strictness
information;

4. A compiler, employing a full-fledged worker-wrapper split, which takes both strict-
ness and absence information into the account.

We take the performance results of the programs, compiled by the first compiler, as a
baseline, so the numbers we report are relative to it. The results are represented on Figure 1.
The numbers are differences in percent with respect to the results obtained by the baseline
compiler, performing no optimizations.

9 Related Work

In the work Making “Strictness” More Relevant, the authors refer to the property, captured
by our call demands as to applicativeness. It would be interesting to compare our analysis
and the mentioned type systems in terms of efficiency and expressiveness.

References

Abadi, Martı́n. (2000). >->-closed relations and admissibility. Mathematical structures in computer
science, 10(3), 313–320.

Baker-Finch, Clement A., Glynn, Kevin, & Jones, Simon L. Peyton. (2004). Constructed product
result analysis for Haskell. Journal of functional programming, 14(2), 211–245.

Benton, Nick, Kennedy, Andrew, & Varming, Carsten. (2009). Some Domain Theory and
Denotational Semantics in Coq. Pages 115–130 of: Berghofer, Stefan, Nipkow, Tobias, Urban,
Christian, & Wenzel, Makarius (eds), Proceedings of the 22nd International Conference Theorem
Proving in Higher Order Logics (TPHOLs 2009). Lecture Notes in Computer Science, vol. 5674.
Munich, Germany: Springer.

Cousot, Patrick, & Cousot, Radhia. (1977). Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. Pages 238–252 of: Sethi, Ravi
(ed), of the fourth Annual ACM Symposium on Principles of programming languages.

Henglein, Fritz. (1994). Iterative fixed point computation for type-based strictness analysis. Pages
395–407 of: Le Charlier, Baudouin (ed), Static Analysis, First International Symposium, SAS’94.
Lecture Notes in Computer Science, vol. 864. Namur, Belgium: Springer-Verlag.

Henglein, Fritz, & Jørgensen, Jesper. 1994 (Jan.). Formally optimal boxing. Pages 213–226
of: Boehm, Hans-J. (ed), of the 21st Annual ACM Symposium on Principles of programming
languages.

Kubiak, Ryszard, Hughes, John, & Launchbury, John. (1991). Implementing projection-based
strictness analysis. Pages 207–224 of: Rogardt Heldal, Carsten Kehler Holst, Philip Wadler (ed),
Proceedings of the 1991 Glasgow Workshop on Functional Programming.

Mycroft, Alan. (1980). The theory and practice of transforming call-by-need into call-by-value.
Pages 269–281 of: Robinet, Bernard (ed), Symposium on Programming. Lecture Notes in
Computer Science, vol. 83. Springer.

Peyton Jones, Simon L. (1996). Compiling Haskell by Program Transformation: A Report from
the Trenches. Pages 18–44 of: Nielson, Hanne Riis (ed), of the sixth European Symposium on
Programming. Lecture Notes in Computer Science, vol. 1058. Linköping, Sweden: Springer-
Verlag.

Scott, Dana S. (1981). Lectures on a mathematical theory of computation. Tech. rept. PRG19.
Department of Computer Science, University of Oxford.

ZU064-05-FPR demand-jfp 2 March 2017 9:23

Theory and Practice of Demand Analysis in Haskell 27

Wadler, Philip, & Hughes, R. John M. (1987). Projections for strictness analysis. Pages 385–407 of:
Kahn, Gilles (ed), Functional programming languages and computer architecture. Lecture Notes
in Computer Science, vol. 274. Portland, Oregon: Springer-Verlag.

A Proofs of the Analysis Safety Results

Theorem 5.1. The projection-based absence analysis A J·K is safe with respect to the
denotational semantics J·K.

Proof. Taking the constant absence demand p = A, the proof becomes trivial, as the analy-
sis is represented then by the first rule only and taking q = A and θ = θ⊥ is safe. For p 6= A
the proof is by induction on the size of an analysed expression, since the analysis is defined
compositionally.

Case (A JxKρ̂ p). Assume x /∈ dom(ρ̂), then the resulting demand type is 〈θ ′,q〉, where
θ ′ = θ⊥t[x 7→ p] and q =U = ID. So, taking 〈 , fx〉= σ(x) (f ≡ const), we have p JxKσ =

p fx. From another side p (q JxKθ ′∇σ) = p (ID ((θ ′(x))(fx))) = p (p fx) = p fx, so the
statement of the theorem is true.

Otherwise, assume x ∈ dom(ρ̂), 〈ρx, fx〉= σ(x), 〈θ ,q〉= ρ̂(x)(p) and θ ′ = θ t[x 7→ p].
Having in mind that ρ̂(x) is a two-point demand transformer with a threshold demand p′,
consider two possibilities:

(pv p′) By condition σ ./ ρ̂ , we have p (q fx(θ@ρx)) = p (fx ρx). What we need to show
is, in fact that p (σ(x)) = p (q ((θ ′∇σ)(x))). We do it by showing two inclusions.
First,

p (q ((θ ′∇σ)(x)))

= H by defintion of (θ ′∇σ) I

p (q ((θ ′(x))(fx(θ
′@ρ))))

v H since θ
′(x) is a projection I

p (q (fx(θ
′@ρ)))

v H since θ
′ is a projection and fx is monotone I

p (q (fx ρ))

v H q is a projection I

p (fx ρ)

= H by definition of σ I

p (σ(x))

Conversely,

ZU064-05-FPR demand-jfp 2 March 2017 9:23

28 S. Peyton Jones et al.

p (q ((θ ′∇σ)(x)))

= H by defintion of (θ ′∇σ) I

p (q ((θ ′(x))(fx(θ
′@ρ))))

w H since θ
′(x) = θ t[x 7→ p] I

(p ◦ q ◦ p)(fx(θ
′@ρ))

w H just inserting an additional projection q I

(p ◦ q ◦ p ◦ q)(fx(θ
′@ρ))

= H (p ◦ q) is a projection I

(p ◦ q)(fx(θ
′@ρ))

w H θ v θ
′ I

p (q (fx(θ@ρx)))

= H by condition that σ ./ ρ̂ I

p (fx ρx)

= H by definition of σ I

p (σ(x)).

(p′ < p) By the definition of a two-point demand transformer, we have ρ̂(x)(p) = 〈θ>,U〉,4
so the statement of the theorem follows straightforwardly.

Case (A Jlet x = e1 in e2Kρ̂ p). By the induction hypothesis, we have p′ (Je1Kσ)= p′ (qx Je1Kθx ∇σ).
Our goal is to construct σ ′, such that

1. σ ′ = σ [x 7→ Je1Kσ], and
2. σ ′ ./ ρ̂ ′,

so the induction hypothesis could be applied to e2. We define the required σ ′ as follows:

σ
′ = σ t[x 7→ 〈σ |FV (e1),λρ.Je1Kρ〉], (A 1)

where FV (e1) is a set of free variables of e1. It is straightforward to show that σ ′ = σ [x 7→
Je1Kσ] (just unfolding the definition of σ(x)), so our goal is to show that σ ′ ./ ρ̂ ′. Since
σ ./ ρ̂ , and σ ′ and ρ̂ ′ are different only in binding corresponding to x, we need to show that
for any px,

px (fx ρx) = px (qx (fx (θ
′
x@ρx))), (A 2)

where 〈ρx, fx〉= σ ′(x) and 〈θ ′x,qx〉= ρ̂ ′(x)(px). Again, since ρ̂ ′(x) is a two-point demand
transformer with a threshold demand p′, we consider two cases.

(p′ v px) This case is trivial, since then ρ̂ ′(x)(px)= 〈θ>,U〉.5 Therefore, px (qx (fx (θ
′
x@ρx)))=

px (U (fx (θ>@ρx))) = px (fx ρx), and the case is done.

4In practice, we do slightly better by taking θ = 〈[y 7→U | y ∈ dom(ρx)],A〉 instead of θ>. I.e.,
variables not participating in ρx are turned into bottoms, which does not affect the semantics, but is
crucial for the analysis precision in other cases, when demand environments are combined.

5In fact, a safe refinement 〈[y 7→U | y ∈ FV (e1)],A〉 is returned instead of mere θ>.

ZU064-05-FPR demand-jfp 2 March 2017 9:23

Theory and Practice of Demand Analysis in Haskell 29

(px v p′) By the induction hypothesis and Lemma 4.2, we have px (Je1Kσ) = px (qx Je1Kθ ′x ∇σ).
One can notice that px (Je1Kσ |FV (e1)

) = px (Je1Kσ) = px (fx ρx). So, taking the
definition (A 1), the required equality (A 2) can be reformulated as

px (Je1Kσ) = px (qx Je1Kσ ′x@σ), (A 3)

which, in its order, by the induction hypothesis, can be reformulated as

px (qx Je1Kθ ′x ∇σ) = px (qx Je1Kσ ′x@σ), (A 4)

In order to prove the equality (A 4), we notice, that point-wise θ ′x ∇σ = λy.(θ ′x(y))(fy (θ
′
x@ρy))

and θ ′x@σ = λy. fy (θ
′
x@ρy), where 〈ρy, fy〉= σ(y). Since θ ′x(y) is a projection, we

have (θ ′x ∇σ)v θ ′x@σ and therefore, since J·K is monotone in its arguments,

px (qx Je1Kθ ′x ∇σ)v px (qx Je1Kσ ′x@σ).

But by the induction hypothesis, px (qx Je1Kθ ′x ∇σ) = px (qx Je1Kσ) and θ ′x is a
projection, so

px (qx Je1Kθ ′x ∇σ) = px (qx Je1Kσ)w px (qx Je1Kσ ′x@σ),

which proves the equality (A 4), and, hence, (A 2).

Finally, removing {x} from the component θ of the result of (A Je2Kρ̂ ′ p) is safe with
respect to the theorem statement, since x is not free in (let x = e1 in e2).

Case (A Je1 e2Kρ̂ p). By the induction hypothesis about the analysis safety, we have

(U → p) (Je1Kσ) = (qa→ (p ◦ q1))(Je1Kθ1 ∇σ) (A 5)

qa (Je2Kσ) = qa (q2 Je2Kθ2 ∇σ). (A 6)

The demand q2 can be omitted and safely replaced by U .On can notice that if θ = θ1tθ2,
then θ1 ∇σ v θ ∇σ and θ2 ∇σ v θ ∇σ , so we can replace both (θ1 ∇σ) and (θ2 ∇σ)

in equations (A 5) and (A 6) by (θ ∇σ). By unfolding the operator app and applying
equations above, we obtain p(Je1 e2Kσ) = p (q1 Je1 e2Kθ ∇σ), which is the desired result.

Case (A JPKρ̂ p). The proof for this case is based on the analysis of the auxiliary function
PT and an observation that product constructors do not contain free variables, hence, the
“empty” projection environment θ⊥ is safe. The non-conservative result of PT just puts the
same projections on arguments as those put on components of the product.

Case (A Jλx→ eKρ̂ p). If a put demand p is of the shape U→ p′, then the body is analysed
with a demand p′, otherwise it is analysed with the most conservative demand U in order
to gather information about free variables. By the induction hypothesis, taking σ , such that
x /∈ σ , σ ′ = σ t[x 7→ 〈 ,d〉], d ≡ const (i.e., σ ′ ./ ρ̂), one has pr (JeKσ ′) = pr (q JeKθ ∇σ ′).

ZU064-05-FPR demand-jfp 2 March 2017 9:23

30 S. Peyton Jones et al.

Therefore,

(U → pr) (Jλx→ eKσ)

= H by definition of Jλx→ eKσ and shape of σ
′ I

Fun(λd.(pr JeKσ t[x 7→〈 ,d〉]))

= H by the induction hypothesis I

Fun
(
λd.(pr (q JeKθ ∇(σ t[x 7→〈 ,d〉])))

)
= H by taking qx = θ(x) and definition of ∇ I

Fun
(
λd.(pr (q JeK((θ\{x})∇σ)t[x 7→qx(d)]))

)
= H by folding λd.(. . .) and the defitinion of (q→ p) I

(U → pr)(qx→ q)
(
Jλx→ eK(θ\{x})∇σ

)
.

Case (A Jcase e as z of (x,y)→ aKρ̂ p). Let us consider the case when

Jcase e as z of (x,y)→ aKσ 6=⊥,

otherwise the proof is trivial. So we have for any σ ./ ρ̂

JeKσ = (dx,dy)

Jcase e as z of (x,y)→ aKσ = JaKσ t[x 7→dx,y7→dy,z 7→(dx,dy)]

Let us take σ ′ = σ t[x 7→ 〈 ,dx〉,y 7→ 〈 ,dy〉,z 7→ 〈 ,(dx,dy)〉]. It is straightforward to
show that

• σ ′ = σ t[x 7→ dx,y 7→ dy,z 7→ (dx,dy)]

• σ ′ ./ ρ̂

ZU064-05-FPR demand-jfp 2 March 2017 9:23

Theory and Practice of Demand Analysis in Haskell 31

Therefore, we have

p Jcase e as z of (x,y)→ aKσ

= H by chosen σ
′ I

p JaK
σ ′

= H by the induction hypothesis I

p (qa (JaKθa ∇σ ′))

= H by the defintion of ∇ and chosen σ
′ I

p (qa (JaK(θa ∇σ)t[x 7→(θa(x))(dx),y 7→(θa(y))(dy),z 7→(θa(x),θa(y))(dx,dy)])), where (dx,dy) = JeKσ

= H by moving projections to the result of JeKσ I

p (qa (JaK(θa ∇σ)t[x 7→d′x,y7→d′y,z 7→(d′x,d′y)])), where (d′x,d
′
y) = (θa(x),θa(y))JeKσ

= H by the induction hypothesis for e I

p (qa (JaK(θa ∇σ)t[x 7→d′x,y7→d′y,z 7→(d′x,d′y)])), where (d′x,d
′
y) = (θa(x),θa(y))JeKθe ∇σ

= H taking θ = θatθe I

p (qa (JaK(θ ∇σ)t[x 7→d′x,y7→d′y,z 7→(d′x,d′y)])), where (d′x,d
′
y) = (θa(x),θa(y))JeKθ ∇σ

= H equivalent rewriting I

p (qa (JaK(θ ∇σ)t[x 7→(θa(x))(dx),y 7→(θa(y))(dy),z 7→(θa(x),θa(y))(dx,dy)])),

where (dx,dy) = JeKθ ∇σ

= H monotonicity I

p (qa (JaK(θ ∇σ)t[x 7→dx,y7→dy,z 7→(dx,dy)])), where (dx,dy) = JeKθ ∇σ

= H by definition of the semantics I

p (qa Jcase e as z of (x,y)→ aK(θ\{x,y,z})∇σ)

Case (A Jcase e as x of Pi yi→ eiKρ̂ p). The proof is similar to the previous case with just
one product constructor, except that the safe approximation is taken as t over the results of
analyses for all branches and the scrutinized expression e is analysed with a conservative
demand U , rather than a refined one.

Case (A Jletrec x = e1 in e2Kρ̂ p). The proof of this case is similar to the analysis of a non-
recursive binding A Jlet x = e1 in e2Kρ̂ p. However, it is essential to show that ρ̂ ′′ ./σ ′,
where σ ′ = lfp(E(x,e,(σ))), so the result could be obtained by induction hypothesis, pro-
ceeding to the result of A Je2Kρ̂ ′′ p. The required relation ρ̂ ′′ ./σ ′ is proved by establishing
three facts:

1. We show that the relation ./ is inductive (or chain-closed), i.e., for every chain σ0 v
σ1 v . . . and every chain ρ̂0 v ρ̂ v . . . if σi ./ ρ̂i for all i then (tσi)./(t ρ̂i) (Abadi,
2000);

2. We take appropriate σ0 = σ t[x 7→ 〈{},λρ.⊥〉] and ρ̂0 = ρ̂t[x 7→ 〈p′,〈θ⊥,A〉〉] (σ ,
ρ̂ are from the formulation of the theorem) and show that σ0 ./ ρ̂0;

3. Finally we show that for every σ ′ and ρ̂ ′, if σ ′ ./ ρ̂ ′ then

E(x,e1,σ0)(σ
′) ./ Ê(x,e1, ρ̂0, p′)(ρ̂ ′),

ZU064-05-FPR demand-jfp 2 March 2017 9:23

32 S. Peyton Jones et al.

where E(x,e1,σ0) = λσ ′.σ t[x 7→ 〈σ ′,λρ.Je1Kρ〉]6 and Ê(x,e1, ρ̂0, p′) is defined in
Figure 3.

By combining 1–3, we obtain

σ ′ = lfp E(x,e1,σ0) = ti E
i(x,e1,σ0)

ρ̂ ′′ = lfp Ê(x,e1, ρ̂0, p′) = ti Ê
i(x,e1, ρ̂0, p′),

such that σ ′ ./ ρ̂ ′′, which is the desired statement.

1. Let us consider special chains σi and ρ̂i, such that for any i and y 6= x

• σi(y) = σ0(y);
• ρ̂i(y) = ρ̂0(y);

and σi(x) = 〈ρi, f 〉 for any i, where f is the same for all i > 0. One can notice that the
described chains σi, ρ̂i are exactly those, generated by E(x,e1,σ0) and Ê(x,e1, ρ̂0, p′).
So, in fact we need to show only that for any p

p (f (tρi)) = p (q∗ (f (θ ∗@(tρi)))), (A 7)

where 〈θ ∗,q∗〉 = (t ρ̂i)(x) = t(ρ̂i(x)) (which exists and is a projection thanks to
Proposition 4.2) and 〈ρi, f 〉= σi(x) (since (tσi)(x) = t(σi)(x) = 〈tρi, f 〉).
What comes immediately is that θ ∗ w θi for any i and therefore by σi ./ ρ̂i, for any i:

p (f ρi) = p (q∗ (f (θ ∗@ρi))) (A 8)

Also, p, q∗, f and θ ∗ are continuous, so is their composition. Therefore,

p (q∗ (f (θ ∗@(tρi))))

= H by continuity I

t(p (q∗ (f (θ ∗@ρi))))

= H by (A 8) I

t(p (f ρi))

= H by continuity I

p (f (tρi))

2. Since we take
σ0 = σ t[x 7→ 〈{},λρ.⊥〉]
ρ̂0 = ρ̂t[x 7→ 〈p′,〈θ⊥,A〉〉],

by assumptions we already have σ ./ ρ̂ , and it is straightforward to show that p (⊥)=
p (A (A ⊥)) =⊥, for any pv p′, which delivers the result σ0 = ρ̂0.

3. We have σ0 ./ ρ̂0, σ ′ ./ ρ̂ ′ and

E(x,e1,σ0) = λσ ′.σ t[x 7→ 〈σ ′,λρ.Je1Kρ〉]
Ê(x,e1, ρ̂0, p′) = λρ̂ ′.(let 〈θx,qx〉= (A Je1Kρ̂0t ρ̂ ′ p′)

in ρ̂t ρ̂ ′[x 7→ (p′,〈θx \{x},qx〉)])

6It is straightforward to show that if ρ0 = σ0 and ρ ′ = σ ′ then E(x,e1,ρ0)(ρ
′) = E(x,e1,σ0)(σ ′).

ZU064-05-FPR demand-jfp 2 March 2017 9:23

Theory and Practice of Demand Analysis in Haskell 33

By unfolding the definitions above, the proof of the fact

E(x,e1,σ0)(σ
′) ./ Ê(x,e1, ρ̂0, p′)(ρ̂ ′)

is exactly the same as the proof of the relation ./ in the case (A Jlet x = e1 in e2Kρ̂ p)
for a non-recursive let-binding.

ZU064-05-FPR demand-jfp 2 March 2017 9:23

