
Termination Combinators Forever

Maximilian Bolingbroke
University of Cambridge

mb566@cam.ac.uk

Simon Peyton Jones Dimitrios Vytiniotis
Microsoft Research Cambridge

{simonpj,dimitris}@microsoft.com

Abstract
We describe a library-based approach to constructing termination
tests suitable for controlling termination of symbolic methods such
as partial evaluation, supercompilation and theorem proving. With
our combinators, all termination tests are correct by construction.
We show how the library can be designed to embody various
optimisations of the termination tests, which the user of the library
takes advantage of entirely transparently.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications – Applicative (functional) lan-
guages

General Terms Algorithms, Theory

1. Introduction
The question of termination arises over and over again when build-
ing compilers, theorem provers, or program analysers. For exam-
ple, a compiler may inline a recursive function once, or twice, but
should not do so forever. One way to extract the essence of the
problem is this:

The online termination problem. Given a finite or infinite
sequence of terms (often syntax trees), x0, x1, x2, ..., with
the elements presented one by one, shout “stop” if the se-
quence looks as if it is diverging. Try not to shout “stop” for
any finite sequence; but guarantee to shout “stop” at some
point in every infinite sequence.

The test is “online” in the sense that the terms are presented one by
one, and the entity producing the terms is a black box. In contrast,
static, offline termination checkers analyse the producing entity and
try to prove that it will never generate an infinite sequence.

Termination is a well-studied problem (Section 8) and many
termination tests are known. But building good online termination
tests is hard. A good test is

• Sound: every infinite sequence is caught by the test.
• Lenient: it does not prematurely terminate a sequence that is

actually finite. As an extreme example, shouting ”stop” imme-
diately is sound, but not very lenient.

• Vigilant: sequences of terms that are clearly growing in an “un-
interesting” way are quickly reported as such — the termination
test “wait for a million items then say stop” is not what we want.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Haskell’11, September 22, 2011, Tokyo, Japan.
Copyright © 2011 ACM 978-1-4503-0860-1/11/09. . . $10.00

These properties are in direct conflict: making a test more lenient
risks making it less vigilant, or indeed unsound. Termination tests
are typically tailored for a particular application, and it is all too
easy to inadvertently build tests that are either unsound or too
conservative.

Our contribution is to describe how to encapsulate termination
tests in a library. Termination tests built using our library are guar-
anteed sound, and the library embodies standard (but tricky) tech-
niques that support leniency and vigilance. Our specific contribu-
tions are these:

• We give the API of a combinator library that allows the client
to construct sound, lenient, and vigilant termination tests (Sec-
tion 2). Our API is modular and compositional: that is, you can
build complex tests by combining simpler ones.

• An API is not much good unless you can implement it. Building
on classical work we show how to implement a termination
test in terms of a so-called well-quasi-order (WQO) on the
underlying type (Section 3). WQOs compose well, and we give
combinators for sums, products, finite maps, and so on.

• Termination tests for recursive types are particularly interesting
(Section 5). We generalise the classic homeomorphic embed-
ding to our setting, and show what proof obligations arise.

• We show that some useful improvements to termination tests
can be incorporated, once and for all, in our library: Section 6.

• We show that our library subsumes several well-studied termi-
nation tests, including homeomorphic embedding [1], and tag-
bags [2] (Section 7). We further show how our combinators can
capture a novel and slightly stronger version of the tag-bag ter-
mination test (Section 7.4).

To our knowledge, this is the first time that anyone has even iden-
tified an online termination tester as a separable abstraction, let
alone provided a library to let you build such a thing. Yet an on-
line termination-testing heuristic is built into the guts of many sym-
bolic programs, including compilers (don’t inline recursive func-
tions forever) and theorem provers (don’t explore unproductive
proofs forever). We do not claim that our termination testers are
better than any particular competing ones; rather, our library is a
domain-specific language that makes it easy to explore a rich vari-
ety of online termination testers, while still guaranteeing that each
is sound.

2. The client’s eye view: tests and histories
Our goal is to define termination tests over terms whose type
is under the control of the user. Recall that the client produces
successive terms x0, x1, x2..., and the business of the termination
test is to shout “stop” if the sequence looks as if it might diverge.
(In the literature the term “blow the whistle” is often used instead
of “shout stop”.) A possible API is thus:

data TTest a -- Abstract
testSequence ∶∶TTest a → [a]→ Bool

Here a TTest A is a termination tester for type A. If we have
such a tester, we can test a sequence of values of type [A] using
the function testSequence; a result of True means that the tester
shouts “stop”.

We will return to the question of construction of TTest val-
ues shortly, but we can already see one problem with the API. The
client produces values x0, x1, ..., one a time. As each value is pro-
duced we want to ask “should we stop now”. We can certainly do
this with testSequence , by calling it on arguments [x0], [x0, x1],
[x0, x1, x2], and so on, but it could be terribly inefficient to do so.
Each call to testSequence may have to check the entire sequence in
case earlier elements have changed, rather than just looking at the
most recent addition. A better API would allow you to say “here is
one new value to add to the ones you already have”. Thus:

data History a -- Abstract
initHistory ∶∶TTest a → History a
test ∶∶History a → a → TestResult a
data TestResult a = Stop ∣ Continue (History a)

A History A is an abstract type that embodies the knowledge about
the terms (of type A) seen so far. The function initHistory creates
an empty history from a termination test. Given such a history, a
client can use test to extend the history with one new term. The
test indicates that it has blown the whistle by returning Stop.
Otherwise it returns a new history, augmented with the new term.

That leaves the question of how one creates a termination test in
the first place. The exact test you want to use will depend greatly
on the application, and so it is crucial that there is significant
flexibility in defining them. Our library is therefore structured as
a number of composable combinators to allow flexibility and rapid
experimentation.

Our combinator library uses a type directed approach. A subset
of the API is as follows:

intT ∶∶TTest Int
boolT ∶∶TTest Bool
pairT ∶∶TTest a → TTest b → TTest (a, b)
eitherT ∶∶TTest a → TTest b → TTest (Either a b)
cofmap ∶∶ (a → b)→ TTest b → TTest a

We provide built-in tests for Int and Bool , and a way to compose
simple tests together to make more complex ones. (We will tackle
the question of recursive types in Section 5.)

Note that TTest is abstract, so that the client can only construct
termination tests using the combinators of the library. That is the
basis for our guarantee that the termination test is sound.

As an example, here is how a client could make a History that
(via test) can be use to monitor sequences of (Int ,Bool) pairs:

myHistory ∶∶History (Int ,Bool)
myHistory = initHistory (intT ‘pairT ‘ boolT)

An artificial example of how this History could be used to im-
plement an online termination test follows. Let’s say that we have
a possibly-infinite list vals ∶∶ [(Int ,Bool)] from which we would
like to take the last item. However, the list is potentially infinite, and
we would like to give up and return an intermediate element if we
don’t reach the end of the list promptly. A suitable value vals last
can be obtained as follows:

vals last ∶∶ (Int ,Bool)
vals last = go myHistory init lst init rst

where
(init lst ∶ init rst) = vals
go hist lst rst = case test hist lst of

Continue hist ′ ∣ (lst ′ ∶ rst ′)← rst
→ go hist ′ lst ′ rst ′

→ lst

We know that vals last will be defined (if the elements of vals are,
and vals has at least one item in it) because the termination test
promises to eventually shout “stop”. As long as our termination test
intT ‘pairT ‘ boolT is reasonably lenient we can expect to extract
the final value from a truly finite vals list with high probability,
while still gracefully failing for “bad” infinite lists.

More realistic (but more complicated) examples can be found
in Section 7.

3. Termination tests and well-quasi-orders
Now that we have sketched the API for our library, we turn to the
question of implementing it. The way that humans intuitively look
for termination is to find a totally-ordered, well-founded “measure”
and check that it is decreasing. For example, if each member of a
sequence of syntax trees has strictly fewer nodes than the preceding
member, the sequence cannot be infinite; here the measure is the
number of nodes in the tree.

The trouble is that it can be difficult to find a simple, strictly-
decreasing measure, except ones that are absurdly conservative,
especially when the elements are trees. For example, the size-
reduction criterion on syntax trees is sound, but far too conserva-
tive: in a compiler, inlining a function often increases the size of
the syntax tree, even though progress is being made.

This is a well-studied problem [3]. The most widely-used ap-
proach is to use a so-called well-quasi-order (WQO) instead of a
well-founded order. In this section we’ll explore what WQOs are,
why they are good for termination testing, and how to build WQOs
using our library.

3.1 What is a WQO?
Definition 3.1. A well-quasi-order on A is a transitive binary
relation ⊴ ∈ A × A, such that for any infinite sequence x∞ ∈ A∞,
there exist i, j > i such that xi ⊴ xj .

For example ≤ is a WQO on the natural numbers; in any infinite
sequence of natural numbers there must be an xi, xj with i < j,
and xi ≤ xj . However, a WQO ⊴ is not total; that is, there may be
pairs of elements of A that are not related by ⊴ in either direction.
A WQO is transitive by definition, and is necessarily reflexive:

Lemma 3.1. All well-quasi-orders are reflexive.

Proof. For any x ∈ A, form the infinite sequence x,x, x, By the
well-quasi-order property it immediately follows that x ⊴ x.

The significance of a WQO is that every infinite sequence has
at least one pair related by the WQO. (In fact, infinitely many such
pairs, since the sequence remains infinite if you delete the pair thus
identified.) We say that a sequence x is rejected by ⊴ if there exists
such a pair:

Definition 3.2. A finite or infinite sequence x ∈ A is rejected by
relation R if ∃i, j > i. R(xi, xj). A sequence is accepted if it is
not rejected.

The relation ⊴ is a WQO if and only if every infinite sequence is
rejected by ⊴1. Hence, given an implementation of TTest that uses
WQOs, it is easy to implement a History :

data TTest a = WQO {(⊴) ∶∶ a → a → Bool }
newtype History a = H {test ∶∶ a → TestResult a }

1 In the literature, a sequence is “good for ⊴” iff it is rejected by ⊴. This
terminology seems back to front in our application, so we do not use it.

initHistory ∶∶ ∀a.TTest a → History a
initHistory (WQO (⊴)) = H (go [])

where
go ∶∶ [a]→ a → TestResult a
go xs x

∣ any (⊴ x) xs = Stop
∣ otherwise = Continue (H (go (x ∶ xs)))

A termination test, of type TTest , is represented simply by a WQO.
A History closes over both the WQO ⊴ and a list xs of all the
values seen so far. The invariant is that xs is accepted by ⊴. When
testing a new value, we compare it with all values in xs; if any
are related to it by wqo, we blow the whistle by returning Stop;
otherwise we extend xs and Continue .

Notice that basing a termination test on a WQO is somewhat
less efficient than basing it on a total, well-founded measure, be-
cause in the latter case we could maintain a single monotonically-
decreasing value, and blow the whistle if the newly presented value
is not smaller. In exchange WQOs are simpler, more composable,
and more lenient. In Section 6.1, we will show how we can use the
fact that well-quasi-orders are transitive to reduce the length of his-
tory, which would otherwise get extended by one element each and
every time test is called.

3.2 Why WQOs are good for termination tests
WQOs make it easier to construct good termination tests. For
example, suppose we are interested in termination of a sequence
of finite strings, consisting only of the 26 lower-case letters; for
example

[abc,ac,a] (1)
[a, b, c] (2)
[c, b,a] (3)
[aa, ccc, bbbbaa, ca] (4)

One can invent a total order on such strings, based on their length,
or on their lexicographic ordering, but it is not altogether easy
to think of one for which all the above sequences are strictly
decreasing.

Here is a WQO on such strings, inspired by Mitchell [2]:

s1 ⊴s s2 iff set(s1) = set(s2) and #s1 ≤#s2

where set(s) is the set of characters mentioned in s, and #s is
the length of s. Notice that strings for which set(s1) /= set(s2)
are unrelated by ⊴s, which makes it harder for ⊴s to hold, and
hence makes the corresponding termination test more lenient. For
example, all the sequences (1-4) above are good for this WQO.

But is this relation really a WQO? The reader is invited to pause
for a moment, to prove that it is. Doing so is not immediate – which
is a very good reason for encapsulating such proofs in a library and
do them once rather than repeatedly for each application. Anyway,
here is a proof:

Theorem 3.2. The relation ⊴s is a well-quasi-order.

Proof. Transitivity of ⊴s is straightforward, but we must also check
that every infinite sequence is rejected by ⊴s. Suppose we have
an infinite sequence of strings. Partition the sequence into at most
226 sub-sequences by set equality. At least one of these sequences
must also be infinite, say x∞. The length of the strings in this
sequence cannot be strictly decreasing (since lengths are bounded
below by zero). So we can find two elements xi, xj with i < j and
xi ⊴s xj .

It is often useful to find a relation that is as sparse as possi-
ble, while still remaining a WQO. For example, when solving the
online termination problem we wish to delay signalling possible
divergence for as long as we reasonably can.

Following this principle, me can make our string example
sparser still like this:

s1 ⊴t s2 iff set(s1) = set(s2) and
∀c ∈ [a...z]. N(s1, c) ≤ N(s2, c)

where N(s, c) is the number of occurrences of letter c in string s.
So s1 ⊴t s2 only if s1 has no more a’s than s2, and no more b’s,
and no more c’s, etc. These conjunctions make it even harder for
s1 ⊴t s2 to hold. Exercise: prove that this too is a WQO.

We can quantify how lenient a WQO is by asking how long a
sequence it can tolerate. One measure of lenience is something we
call the characteristic index.

Definition 3.3 (Characteristic index). The characteristic index
K(⊴, x∞) of a WQO ⊴, relative to a finite or infinite sequence
x∞, is the largest index n for which x0, . . . , xn is accepted by ⊴.

One WQO is (strictly) more lenient than another if it always has a
bigger characteristic index:

Definition 3.4 (Lenience). A WQO ⊴1 is more lenient than ⊴2 if
K(⊴1, x) >K(⊴2, x) for every infinite sequence x.

This is a rather strong definition of lenience: in practice, we
are also interested in well-quasi-orders that tend to be more lenient
than others on commonly-encountered sequences. However, this
definition will suffice for this paper.

4. Termination combinators
In this section we describe the primitive combinators provided by
our library, and prove that they construct correct WQOs.

4.1 The trivial test
The simplest WQO is one that relates everything, and hence blows
the whistle immediately:

alwaysT ∶∶TTest a
alwaysT = WQO (λx y → True)

This alwaysT is trivially correct, and not at all lenient. Nonethe-
less, it can be usefully deployed as a “placeholder” well-quasi-order
when we have yet to elaborate a well-quasi-order, or a natural well-
quasi-order does not exist (e.g. consider well-quasi-ordering values
of type IO Int).

4.2 Termination for finite sets
Our next combinator deals with termination over finite sets:

finiteT ∶∶ ∀a.Finite a ⇒ TTest a
finiteT = WQO (≡)

class Eq a ⇒ Finite a where
elements ∶∶ [a] -- Members of the type

This WQO relates equal elements, leaving unequal elements unre-
lated. Provided all the elements are drawn from a finite set, (≡) is
indeed a WQO:

Proof. Consider an arbitrary sequence x∞ ∈ A∞ where there are
a finite number of elements of A. Since A is finite, the sequence
must repeat itself at some point — i.e. ∃jk.j ≠ k ∧ xj = xk.
The existence of this pair proves that finiteT defines a well-quasi-
order. Meanwhile, transitivity follows trivially from the transitivity
of (≡).

Using finiteT , we can trivially define the boolT combinator
used in the introduction:

boolT ∶∶TTest Bool
boolT = finiteT

The combinator finiteT is polymorphic. The fact that the ele-
ment type a must be finite using the “Finite a ⇒” constraint
in finiteT ’s type. But there is clearly something odd here. First,
‘finiteT‘ does not use any methods of class Finite , and second, it
is the the client who makes a new type T into an instance of Finite ,
and the library has no way to check that the instance is telling the
truth. For example, a client could bogusly say:

instance Finite Integer where
elements = []

Moreover, the user could give a bogus implementation of equality:

data T = A ∣ B
instance Eq T where

(≡) p q = False
istance Finite T where

elements = [A,B]

Here the new type T is finite, but since the equality function always
returns False , the whistle will never blow.

So our library guarantees the soundness of the termination
testers under the assumption that the instances of certain classes
at the element type A satisfy corresponding correctness conditions.
Specifically:

• (≡) must be reflexive and transitive at type A.
• The type A must have only a finite number of distinct elements

(distinct according to (≡), that is).

Another way to say this is that the instances of Eq and Finite
form part of the trusted code base. This is not unreasonable. On the
one hand, these proof obligations are simple for the programmer
to undertake — much, much simpler than proving that a particular
boolean-valued function is a WQO.

On the other hand, it is unrealistic for the library to check that
elements is a finite list and that the two values we compare are
elements of that finite list, for instance, by using runtime assertions.
In the example of Section 3.2 there are 226 elements of the type
Set Char , so making these checks at runtime would be a very bad
idea.

4.3 Termination for well-ordered sets
Another very useful primitive well-quasi-order is that on elements
drawn from well-ordered sets: every well-order is a well-quasi-
order (but clearly not vice-versa):

wellOrderedT ∶∶WellOrdered a ⇒ TTest a
wellOrderedT = WQO (≤)

class Ord a ⇒WellOrdered a

Similar to Finite , the WellOrdered predicate picks out types with
least elements; that is ones have a total order (hence the Ord
superclass) and a least element. The client’s proof obligations about
instances of a type A are:

• (≤) defines a total order (i.e. it is antisymmetric, transitive and
total)

• For every (possibly infinite) non-empty set X ⊆ A of elements,
∃(y ∶∶A) ∈X.∀(x ∶∶A) ∈X.y ≤ x .

Under these conditions, (≤) is a WQO:

Proof. Transitivity is immediate by assumption. Now consider an
arbitrary sequence x∞. Each pair of adjacent elements xj , xj+1
in the sequence is either shrinking (so ¬(xj ≤ xj+1)) or non-
decreasing (so xj ≤ xj+1). If we have at least one pair of the
latter kind, the well-quasi-order property holds. The dangerous
possibility is that all our pairs may be of the former sort.

Because we have that ∀j.¬(xj ≤ xj+1), by the reflexivity of
≤ we know that ∀j.¬(xj < xj+1) — i.e. we have an infinitely
descending chain. However, this fact contradicts the assumption
that ≤ is a well-order.

Given wellOrderedT and an instance WellOrdered Int , it is
trivial to define a suitable intT (as used in the introduction):

intT ∶∶TTest Int
intT = wellOrderedT

4.4 Functorality of termination tests
Now that we have defined a number of primitive termination tests,
we are interested in defining some combinators that let us combine
these tests into more powerful ones. The first of these shows that
TTest is a contravariant functor:

class Cofunctor f where
cofmap ∶∶ (b → a)→ f a → f b

instance Cofunctor TTest where
cofmap f (WQO (⊴)) = WQO $ λx y → f x ⊴ f y

So, for example, here is how a client could build a (not very good)
termination test for labelled rose trees:

data Tree = Node Label [Tree]

size ∶∶Tree → Int
size (Tree n ts) = 1 + sum (map size ts)

treeT ∶∶TTest Tree
treeT = cofmap size wellOrderedT

Here we use size to take the size of a tree, and use the fact that Int
is well-ordered by ≤ as the underlying termination test.

The defining laws of contravariant functors (cofunctors) are:

1. Identity: cofmap id = id

2. Composition: cofmap f ○ cofmap g = cofmap (g ○ f)

These two laws are easy to verify for TTest instance above. Simi-
larly, it is easy to to show that (cofmap f t) is a well-quasi-order
if t is.

Intuitively, the reason that TTest is a contravariant functor is
that it TTest a is a consumer rather than a producer of values of
type a . For the same reason, the arrow type (→) is contravariant in
its first type argument.

In section Section 6.2, we show how this definition of cofmap f
can be improved.

4.5 Termination for sums
We are able to build termination test for sum types, given tests for
the components:

eitherT ∶∶TTest a → TTest b → TTest (Either a b)
eitherT (WQO (⊴a)) (WQO (⊴b)) = WQO (⊴)

where
(Left a1) ⊴ (Left a2) = a1 ⊴a a2

(Right b1) ⊴ (Right b2) = b1 ⊴b b2
⊴ = False

The ordering used here treats elements from the same side of
the sum (i.e. both Left or both Right) using the corresponding
component ordering, and otherwise treats them as unordered.

Does this test define a WQO? Yes:

Proof. Consider an arbitrary sequence x∞ ∈ (Either A B)
∞.

Form the subsequences a∞ = {ai ∈ A ∣ Left ai ∈ x∞} and
b
∞

= {bi ∈ B ∣ Right bi ∈ x∞}. Since the x sequence is infi-
nite, at least one of these subsequences must be infinite. Without

loss of generality, assume that the a∞ sequence is infinite. Now, the
fact that eitherT wqoa wqob is a well-quasi-order follows directly
from the fact that wqoa is a well-quasi-order.

Incidentally, notice that if the component types are both (),
the test boils down to the same as the finite-set test for Bool in
Section 4.2. Conversely, it is straightforward (albeit inefficient)
to define finiteT by iterating eitherT once for each item in the
elements list, and the reader is urged to do so as an exercise.

The test eitherT t1 t2 is at least as lenient as t1 or t2 (in
the sense of Definition 3.4), and is often strictly more lenient.
Specifically, if x ∈ Either A B , and L(x) = {x ∣ Left x ∈ x},
and similarly for R(x), then

min(K(t1, L(x)), K(t2,R(x)))
≤ K(Either t1 t2, x)

≤ K(t1, L(x)) + K(t2,R(x))

Both the upper and lower bounds of this inequality can actually be
realised. For example, with the test

eitherT finiteT finiteT ∶∶TTest (Either () Bool)

the lower bound is realised by x∞ = L (),L (),L (), . . ., and the
upper bound by x∞ = L (),R True,R False,L (),R True,

Although we haven’t defined many combinators, we already
have enough to be able to define natural well-quasi-orders on many
simple data types. For example, we can well-quasi-order Maybe T
if we can well-quasi-order T itself:

maybeT ∶∶TTest a → TTest (Maybe a)
maybeT wqo = cofmap inject (eitherT alwaysT wqo)

where
inject Nothing = Left ()

inject (Just x) = Right x

To define maybeT we have adopted a strategy — repeated later in
this document — of “injecting” the Maybe data type (which our
combinators cannot yet handle) into a simpler data type which is
handled by a primitive combinator — in this case, Either 2.

Note that we use alwaysT from Section 4.1 to well-quasi-order
values of unit type — there really is no non-trivial way to order a
type with only one value.

4.6 Termination for products
Just like we could for sum types, we can define a combinator for
well-quasi-ordering product types, given WQOs on the component
types:

pairT ∶∶TTest a → TTest b → TTest (a, b)
pairT (WQO (⊴a)) (WQO (⊴b)) = WQO (⊴)

where
(a1, b1) ⊴ (a2, b2) = (a1 ⊴a a2) ∧ (b1 ⊴b b2)

The fact that pairT defines a WQO is quite surprising. We can
assume that ⊴a and ⊴b are WQOs, but that only means that given
input sequences a∞ and b

∞
respectively, there exists some i <

j. ai ⊴a aj and k < l. bk ⊴b bl. Yet for pairT to define a WQO
there must exist a p < q such that ap ⊴a aq and simultaneously
bp ⊴b bq . How can we know that the related elements of the two
sequences will ever “line up”?

Nonetheless, it is indeed the case, as the following proof demon-
strates. First we need a lemma:

Lemma 4.1. For any well-quasi-order ⊴∈ A × A and x∞ ∈ A∞,
there exists some n ≥ 0 such that ∀j > n.∃k > j. xj ⊴ xk.

2 In this and many other examples, the Glasgow Haskell Compiler’s opti-
misation passes ensure that the intermediate Either value is not actually
constructed at runtime.

This lemma states that, beyond some some threshold value
n, every element xj (where j > n) has a related element xk
somewhere later in the sequence.

Proof. This lemma can be shown by a Ramsey argument. Consider
an arbitrary sequence x∞. Consider the sequence

y = {xi ∣ xi ∈ x
∞,∀j > i.¬(xi ⊴ xj)}

of elements of x∞ which are embedded into no later element. If this
sequence was infinite it would violate the well-quasi-order prop-
erty, since by definition none of the elements of the sequence are
related by ⊴. Hence we have a constructive proof of the proposition
if we take n to be max{i ∣ xi ∈ y}.

A proof of the fact that pairT defines a well-quasi-order as long
as its two arguments does — a result that e.g. Kruskal [1] calls the
Cartesian Product Lemma — now follows:

Proof. Consider an arbitrary sequence (a, b)
∞

∈ (A × B)
∞. By

Lemma 4.1, there must be a n such that ∀j > n.∃k > j.aj ⊴a ak.
Hence there must be at least one infinite subsequence of a∞ where
adjacent elements are related by ⊴a — i.e. an ⊴a al0 ⊴a al1 ⊴a . . .
where n < l0 < l1 <

Now form the infinite sequence bj , bl0 , bl1 By the properties
of ⊴b, there must exist some m and n such that m < n and
blm ⊴b bln . Because ⊴a is transitive, we also know that alm ⊴a aln .

This inference, combined with the fact that ⊴a and ⊴b are valid
WQOs, and that transitivity follows by the transitivity of both
the component WQOs, proves that pairT ⊴a ⊴b is a well-quasi-
order.

From a leniency point of view, we have a lower bound on the
leniency of a test built with pairT :

max(
K(t1,{ai ∣ (ai, bi) ∈ x

∞
}),

K(t2,{bi ∣ (ai, bi) ∈ x
∞
})

) ≤ K(pairT t1 t2, x
∞
)

However, there is no obvious upper bound on the characteristic
index. Not even

K(t1,{ai ∣ (ai, bi) ∈ x
∞
}) ∗K(t2,{bi ∣ (ai, bi) ∈ x

∞
})

is an upper bound for the characteristic index of pairT wqoa wqob
— for example, the proposed upper bound is violated by the
well-quasi-order pairT finiteT wellOrderedT and the sequence
(T ,100), (F ,100), (T ,99), (F ,99), ..., (F ,0), which has char-
acteristic index 300, despite the component characteristic indexes
being 2 and 1 respectively.

We now have enough combinators to build the string termina-
tion test from Section 3.2:

stringT ∶∶TTest String
stringT = cofmap inject (pairT finiteT wellOrderedT)

where inject s = (mkSet s, length s)

We assume a type of sets with the following interface:

instance (Ord a,Finite a)⇒ Finite (Set a) where ...
mkSet ∶∶Ord a ⇒ [a]→ Set a

(We use the bounded Int length of a string in our stringT , but
note that this would work equally well with a hypothetical type
of unbounded natural numbers Nat , should you define a suitable
WellOrdered Nat instance.)

The big advantage in defining stringT with our combinator li-
brary is that Theorem 3.2 in Section 3.2 is not needed: the termina-
tion test is sound by construction, provided only that (a) there are
only a finite number of distinct sets of characters, and (b) the Ints
are well ordered.

4.7 Finite maps
It is often convenient to have termination tests over finite mappings,
where the domain is a finite type — for example, we will need such
a test in Section 7.4. One way to implement such a test is to think
of the mapping as a large (but bounded) arity tuple. To compare
m1 and m2 , where m1 and m2 are finite maps, you may imagine
forming two big tuples

(lookup k1 m1 , lookup k2 m1 , ..., lookup kn m1)

(lookup k1 m2 , lookup k2 m2 , ..., lookup kn m2)

where k1 ...kn are all the elements of the key type. The lookup
returns a Maybe and, using the rules for products (Section 4.6),
we return False if any of the constructors differ; that is, if the two
maps have different domains. If the domains are the same, we will
simply compare the corresponding elements pairwise, and we are
done.

We can implement this idea as a new combinator, finiteMapT .
We assume the following standard interface for finite maps:

assocs ∶∶Ord k ⇒Map k v → [(k , v)]
keysSet ∶∶Ord k ⇒Map k v → Set k
elems ∶∶Ord k ⇒Map k v → [v]

lookup ∶∶Ord k ⇒ k →Map k v →Maybe v

From which the combinator follows:

finiteMapT ∶∶ ∀k v .(Ord k ,Finite k)
⇒ TTest v → TTest (Map k v)

finiteMapT (WQO (⊴)) = WQO test
where

test ∶∶Map k v →Map k v → Bool
test m1 m2 = keysSet m1 ≡ keysSet m2

∧ all (ok m1) (assocs m2)

ok ∶∶Map k v → (k , v)→ Bool
ok m1 (k2 , v2) = case lookup k2 m1 of

Just v1 → v1 ⊴ v2
Nothing → error "finiteMapT"

In fact, the finiteMapT combinator can be defined in terms of our
existing combinators, by iterating the pairT combinator (we also
make use of maybeT from Section 4.5):

finiteMapT indirect ∶∶ ∀k v .(Ord k ,Finite k)
⇒ TTest v → TTest (Map k v)

finiteMapT indirect wqo val
= go (const ()) finiteT elements
where

go ∶∶ ∀vtup.(Map k v → vtup)→ TTest vtup → [k]

→ TTest (Map k v)
go acc test [] = cofmap acc test
go acc test (key ∶ keys)

= go acc′ (pairT (maybeT wqo val) test) keys
where acc′ mp = (lookup key mp,acc mp)

Unfortunately, this definition involves enumerating all the elements
of the type (via the call to elements), and there might be an
unreasonably large number of such elements, even though any
particular Map might be small. For these reasons we prefer the
direct implementation.

5. Termination tests for recursive data types
Now that we have defined well-quasi-order combinators for both
sum and product types, you may very well be tempted to define a
WQO for a data type such as lists like this:

list bad ∶∶ ∀a.TTest a → TTest [a]

list bad test x = test xs

where
test xs ∶∶TTest [a]

test xs = cofmap inject (eitherT finiteT
(pairT test x test xs))

inject [] = Left ()

inject (y ∶ ys) = Right (y , ys)

Unfortunately the list bad combinator would be totally bogus.
Notice that list bad only relates two lists if they have exactly the
same “spines” (i.e. their lengths are the same) — but unfortunately,
there are infinitely many possible list spines. Thus in particular, it
would be the case that the following infinite sequence would be
accepted by the (non!) well-quasi-order list bad finite:

[], [()], [(), ()], [(), (), ()], . . .

We would like to prevent such bogus definitions, to preserve the
safety property of our combinator library. The fundamental prob-
lem is that list bad isn’t well-founded in some sense: our proof
of the correctness of cofmap, eitherT and so on are sufficient to
show only that test xs is a well-quasi-order if and only if test xs is
a well-quasi-order — a rather uninformative statement! This issue
fundamentally arises because our mathematics is set-theoretical,
whereas Haskell is a language with complete partial order (cpo)
semantics.

Our approach is to rule out such definitions by making all of
our combinators strict in their well-quasi-order arguments. Note
that we originally defined TTest using the Haskell data keyword,
rather than newtype, which means that all the combinator def-
initions presented so far are in fact strict in this sense. This trick
means that the attempt at recursion in list bad just builds a loop
instead — ∀w .list bad w = �.

It is clear that making our well-quasi-order combinators non-
strict — and thus allowing value recursion — immediately makes
the combinator library unsafe. However, we still need to be able to
define well-quasi-orders on recursive data types like lists and trees,
which — with the combinators introduced so far — is impossible
without value-recursion. To deal with recursive data types, we need
to introduce an explicit combinator for reasoning about fixed points
in a safe way that is lazy in its well-quasi-order argument, and hence
can be used to break loops that would otherwise lead to divergence.

5.1 Well-quasi-ordering any data type
You might wonder if it is possible to naturally well-quasi-order
recursive data types at all. To show that we can, we consider well-
quasi-ordering a “universal data type”, UnivDT :

data UnivDT = U String [UnivDT]

The idea is that the String models a constructor name, and the
list the fields of the constructor. By analogy with real data types,
we impose the restrictions that there are only a finite number of
constructor names, and for any given constructor the length of the
associated list is fixed. In particular, the finite list of constructors
will contain "Nil" (of arity 0) and "Cons" (of arity 2), with which
we can model the lists of the previous section.

We can impose a well-quasi-order on the suitably-restricted data
type UnivDT like so:

univT ∶∶TTest UnivDT
univT = WQO test

where test u1@(U c1 us1) (U c2 us2)

= (c1 ≡ c2 ∧ and (zipWith test us1 us2)) ∨

any (u1 ‘test ‘) us2

Elements u1 and u2 of UnivDT are related by the well-quasi-
order if either:

• The constructors c1 and c2 match, and all the children us1 and
us2 match (remember that the length of the list of children is
fixed for a particular constructor, so us1 and us2 have the same
length). When this happens, the standard terminology is that u1
and u2 couple.

• The constructors don’t match, but u1 is related by the well-
quasi-order to one of the children of u2 . The terminology is
that u1 dives into u2 .

Although not immediately obvious, this test does indeed define
a well-quasi-order on these tree-like structures (the proof is similar
to that we present later in Section 5.2), and it is this well-quasi-
order (sometimes called the “homeomorphic embedding”) which
is used in most classical supercompilation work (see e.g. [4]).

Once again, we stress that for this test to be correct, the con-
structor name must determine the number of children: without this
assumption, given at least two constructors F and G you can con-
struct a chain such as

U "F" [],U "F" [U "G" []],U "F" [U "G" [],U "G" []], . . .

which is not well-quasi-ordered by the definition above.

5.2 Well-quasi-ordering functor fixed points
We could add the well-quasi-order on our “universal data type” as
a primitive to our library. This would be sufficient to allow the user
to well-quasi-order their own data types – for example, we could
define an ordering on lists as follows:

list univ ∶∶TTest [UnivDT]

list univ = cofmap to univ univT

to univ ∶∶ [UnivDT]→ UnivDT
to univ [] = U "Nil" []

to univ (x ∶ xs) = U "Cons" [x , to univ xs]

However, this solution leaves something to be desired: for one,
we would like to be able to well-quasi-order lists [a] for an ar-
bitrary element type a , given a well-quasi-ordering on those ele-
ments. Furthermore, with this approach there is scope for the user
to make an error in writing to univ which violates the invariants
on the UnivDT type. This would break the safety promises of the
well-quasi-order library.

We propose a different solution that does not suffer from these
problems. The first step is to represent data types as fixed points
of functors in the standard way. For example, lists are encoded as
follows:

newtype Fix t = Roll {unroll ∶∶ t (Fix t)}

data ListF a rec = NilF ∣ ConsF a rec
deriving (Functor ,Foldable,Traversable)

fromList ∶∶ [a]→ Fix (ListF a)
fromList [] = Roll NilF
fromList (y ∶ ys) = Roll (ConsF y (fromList ys))

The fixT combinator Our library then provides a single primitive
that can be used to well-quasi-order any data type built out of this
sort of explicit fixed point scheme:

fixT ∶∶ ∀t .Functor t
⇒ (∀rec.t rec → [rec])
→ (∀rec.t rec → t rec)
→ (∀rec.TTest rec → TTest (t rec))
→ TTest (Fix t)

fixT kids p f = wqo
where

wqo = WQO (λ(Roll a) (Roll b)→ test a b)

test a b = (⊴) (f wqo) (p a) (p b) ∨
any (test a ○ unroll) (kids b)

The arguments of fixT are as follows:

• A type constructor t ∶∶ ∗ → ∗ that is equipped with the usual
functorial lifting function fmap ∶∶ ∀a b.(a → b) → t a → t b.
(By chance, we do not in fact use fmap in our definition, though
it will show up in our proof that fixT is correct. Alternative rep-
resentations for TTest — such as that discussed in Section 6.2
— may indeed use fmap in their definition of fixT .)

• A function kids with which to extract the (or some of the)
“children” of a functor application.

• A function p that we will call the calibrator whose purpose is
to map elements of type t rec to elements of type t rec but
where the holes in the returned shape are filled in with elements
returned from the kids function. We explain this in detail later
in this section.

• Finally, a function which determines how we will create a well-
quasi-order t rec given a well-quasi-order for some arbitrary
rec. The only invariant we require on this is that if given a
correct well-quasi-order it returns a correct well-quasi-order.
This invariant will be trivially satisfied as long as the user
constructs all TTests using the combinators of our library.

The definition of test in fixT is analogous to the test we saw in
univT — the first argument of ∨ tests whether the left side couples
with the right, and the second argument determines whether the
left side dives into one of the kids of the right. The coupling case is
actually slightly more general than the coupling we have seen until
now, due to the calibrator p being applied to a and b before we
compare them.

We now present the preconditions for fixT to define a well-
quasi-order.

Definition 5.1 (fixT preconditions). For a particular type construc-
tor t ∶∶ ∗ → ∗ equipped with the usual fmap ∶∶ ∀a b.(a → b) →
t a → t b, and functions kids , p and f (suitably typed) we say that
they jointly satisfy the fixT preconditions if:

• All elements x of type Fix t must be finite, in the sense that
size x is defined, where size is as follows:

size ∶∶ Fix t → Integer
size = (1+) ○ sum ○map size ○ kids ○ unroll

• The calibrator function p must satisfy the (non-Haskell) depen-
dent type:

g ∶∶ (y ∶ t a)→ t {x ∶ a ∣ x ∈ kids y}

The first condition is not interesting3 – it ensures that we can’t
be calling kids forever while comparing two elements. The second
condition is the interesting one. Typically one thinks of kids as
returning all the children of a functor. For instance, consider the
BTreeF functor below, that defines labelled binary trees:

data BTreeF a rec = BNil ∣ BNode a rec rec

kids tree ∶∶ ∀a rec.BTreeF a rec → [rec]
kids tree BNil = []

kids tree (BNode x y) = [x , y]

In this case, a valid calibrator is simply the identity

p ∶∶ ∀a rec.BTreeF a rec → BTreeF a rec
p BNil = BNil
p (BNode a x y) = BNode a x y

3 Again, this constraint arises from our attempt to use Haskell (a language
with cpo semantics) as if it had set semantics.

since both x and y are returned by kids tree . Consider however, a
different version of kids that only returns the left branch of a node:

kids tree alt ∶∶ ∀a rec.BTreeF a rec → [rec]
kids tree alt BNil = []

kids tree alt (BNode x y) = [x]

A valid calibrator for this kids tree alt can only plug in the holes
of the functor elements that can be returned from kids tree alt .
Consider:

p ok ,p bad ∶∶BTreeF a rec → BTreeF a rec
p ok BNil = BNil
p ok (BNode a x y) = BNode a x x

p bad BNil = BNil
p bad (BNode a x y) = BNode a x y

In this example p ok is a valid calibrator, as it only uses x , which
belongs in kids tree alt (BNode a x y). However p bad is not a
valid calibrator as it uses y , which is not returned by kids tree alt .
So, the role of the calibrator is to correct the behaviour of the test,
depending on the implementation of kids .

Arguably, the extra generality of a kids function that does not
return all kids or may have even more exotic behaviour is rarely
used but provides for an elegant generic proof of correctness of
fixT .

Using fixT with lists One correct way to use the fixT combinator
is with the following kids list function

kids list ∶∶ ∀a rec.ListF a rec → [rec]
kids list NilF = []

kids list (ConsF xs) = [xs]

along with the identity calibrator to define a correct-by-construction
well-quasi-order for lists (realising the “Finite Sequence Theorem”
of Kruskal [1]):

listT ∶∶ ∀a.TTest a → TTest [a]

listT wqo elt
= cofmap fromList (fixT kids list id wqo fix)
where

wqo fix ∶∶ ∀rec.TTest rec → TTest (ListF a rec)
wqo fix wqo tail

= cofmap inject $
eitherT finiteT (wqo elt ‘pairT ‘ wqo tail)

inject ∶∶ ∀rec.ListF a rec → Either () (a, rec)
inject NilF = Left ()

inject (ConsF y ys) = Right (y , ys)

Is fixT correct? Now we have seen an example of the use of
fixT , we are in a position to tackle the important question as to
whether it actually defines a well-quasi-order:

Theorem 5.1 (Correctness of fixT). If the preconditions of fixT
(Definition 5.1) are satisfied then fixT kids p f defines a well-
quasi-order.

Proof. By contradiction, assume that under our assumptions, there
exists at least one accepted infinite sequence ∈ (Fix t)∞ for the
relation (⊴) (fixT kids p f).

We pick the minimal such accepted sequence t∞, such that for
all n ∈ N and accepted sequences s∞ such that ∀i.0 ≤ i < n.ti = si,
we have that size tn ≤ size sn.

We now form the possibly infinite set of children, D:

D = {k ∣ i ∈ N, k ∈ kids (unroll ti)}

As a subgoal, we claim that fixT kids p f ∶∶ TTest D is a
WQO. In other words, the union of all children of the minimal

sequence is well-quasi ordered by fixT kids p f . To see this, we
proceed by contradiction: assume there is some accepted infinite
sequence r∞ ∈ D∞. Because each kids (unroll ti) is finite (since
size ti is finite), the accepted sequence r∞ must have an infinite
subsequence q∞ such that qi ∈ kids (unroll tf(i)) for some f
such that ∀j.f(0) ≤ f(j). Given such a q∞, we can define a new
infinite sequence s∞ ∈ (Fix t)∞:

s∞ = t0, t1, . . . , tf(0)−1, qf(0), qf(1), . . .

The sequence s∞ must be accepted because otherwise, by the
definition of fixT the original t∞ would be rejected (by the
“dive” rule). But if it is accepted then we have a contradic-
tion to the minimality of t∞ since size qf(0) < size tf(0),
qf(0) ∈ kids (unroll tf(0)), and the children of an element have
smaller size than their parent. We conclude that fixT kids p f is a
WQO.

This fact means that f (fixT kids p f) ∶∶ TTest (t D) is
a WQO. Consider now the infinite minimal sequence t∞ again
and the mapping of each element through the calibrator p: ui =

p (unroll ti). Each ui has type: ui ∶∶ t {x ∣ x ∈ kids ti}. Fur-
thermore, because t is a functor and ∀i.kids ti ⊆ D, we have
that ui ∶∶ t {x ∣ x ∈ D} and hence we have an infinite se-
quence of elements of type t D . Hence there exist two elements
p (unroll ti) and p (unroll tj) such that they are related in the
WQO f (fixT kids p f). By the definition of fixT , this contra-
dicts the initial assumption that the sequence t∞ is accepted by
fixT kids p f .

Our proof is essentially a proof of the Tree Theorem [1] to our
setting, though the proof itself follows the simpler scheme in Nash-
Williams [5].

Generality is good, but the calibrator has an complex type which
may be somewhat hard for Haskell programmers to check. In the
next section we show how kids and the calibrator p can be written
generically, and hence can be entirely eliminated from the precon-
ditions for fixT .

Further remarks on lists Inlining our combinators and simplify-
ing, we find that our earlier definition of listT is equivalent to the
following:

listT ′
∶∶TTest a → TTest [a]

listT ′
(WQO (⊴)) = WQO go

where
go (x ∶ xs) (y ∶ ys)

∣ x ⊴ y , go xs ys = True
∣ otherwise = go (x ∶ xs) ys

go (∶) [] = False
go [] [] = True
go [] (∶ ys) = go [] ys

It is interesting to note that listT ′ could be more efficient:

• By noticing that ∀ys.go [] ys = True , the last clause of go can
be replaced with go [] (∶ys) = True . This avoids a redundant
deconstruction of the list in the second argument (at the cost of
changing the meaning if the second argument is in fact infinite
— a possibility we explicitly excluded when defining fixT).

• By noticing that ∀x,xs, ys.go (x ∶ xs) ys Ô⇒ go xs ys , the
first clause of go can avoid falling through to test go (x ∶xs) ys
if it finds that go xs ys ≡ False .

Both of these observations are specific to the special case of lists:
for other data types (such as binary trees) fixT will generate an
implementation that does not have any opportunity to apply these
“obvious” improvements.

5.3 From functors to Traversables
As we have presented it, the user of fixT still has the responsibility
of providing a correct kids and a calibrator p with a strange de-
pendent type (which Haskell does not even support!). Happily, we
can greatly simplify things by combining the recently-added abil-
ity of the Glasgow Haskell Compiler [6] to automatically derive
Traversable instances. The Traversable [7] type class allows us
to write the following:

kids traverse ∶∶ ∀t a.Traversable t ⇒ t a → [a]

kids traverse = unGather ○ traverse (λx → Gather [x])

newtype Gather a b = Gather {unGather ∶∶ [a]}

instance Functor (Gather a) where
fmap (Gather xs) = Gather xs

instance Applicative (Gather a) where
pure x = Gather []

Gather xs ⟨∗⟩Gather ys = Gather (xs ++ys)

It follows from the Traversable laws that kids traverse collects “all
the children” of t rec, and as a consequence (See Section 4.1 of
[7]) the corresponding projector is just id . We can therefore satisfy
the preconditions of Definition 5.1 by setting:

kids ∶= kids traverse

p ∶= id

The corresponding generic definition gfixT becomes:

gfixT ∶∶Traversable t
⇒ (∀rec.TTest rec → TTest (t rec))
→ TTest (Fix t)

gfixT = fixT kids traverse id

Therefore, if the user of the library has a correct Traversable
instance (possibly compiler-generated), they need not worry about
the calibrator or kids functions at all, and cannot violate the safety
guarantees of the library.

6. Optimisation opportunities
Having defined our combinators, we pause here to consider two op-
timisations we can apply to our definitions. Thanks to our clearly-
defined abstract interface to the TTest and History types these
optimisations are entirely transparent to the user.

6.1 Pruning histories using transitivity
In this section we consider an improvement to the definition of
initHistory in Section 3.1.

Normally, whenever a History a receives a new element x ′ ∶∶ a
to compare against its existing xn, we test all elements to see if
∃i < n.xi ⊴ x

′. If we do not find such an i, we append x′ to form
the new sequence x′

n+1
which will be tested against subsequently.

Thus at every step the number of tests that need to be done grows
by one.

There is an interesting possibility for optimisation here: we may
in fact exclude from x′ any element xj (0 ≤ j < n) such that
x′ ⊴ xj . The reason is that if a later element x ′′ ∶∶a is tested against
x′, then by transitivity of ⊴, xj ⊴ x′′ Ô⇒ x′ ⊴ x′′ — thus it is
sufficient to test x ′′ only against x ′, skipping the test against the
“older” element xj entirely.

To actually make use of this optimisation in our implementation,
our implementation must (for all 0 ≤ j < n), test x′ ⊴ xj as well as
xj ⊴ x

′. To make this test more efficient, we could redefine TTest
so when evaluated on x and y it returns a pair of Bool representing
x ⊴ y and y ⊴ x respectively:

data TTest a = WQO {(⊴) ∶∶ a → a → (Bool ,Bool)}

Returning a pair of results improves efficiency because there is al-
most always significant work to be shared across the two “direc-
tions”.

A version of the core data types improved by this new TTest
representation and the transitivity optimisation is sketched below:

data TTest a = WQO (a → a → (Bool ,Bool))
newtype History a = H {test ∶∶ a → TestResult a }

initHistory ∶∶ ∀a.TTest a → History a
initHistory (WQO (⊴)) = H (go [])

where
go ∶∶ [a]→ a → TestResult a
go xs x

∣ or gts = Stop
∣ otherwise
= Continue (H (go (x ∶ [x ∣ (False, x)← lts ‘zip‘ xs])))
where (gts, lts) = unzip (map (⊴ x) xs)

It is unproblematic to redefine all of our later combinators for the
elaborated TTest type so we can take advantage of this transitivity
optimisation.

6.2 Making cofmap more efficient
The alert reader may wonder about how efficient the definition
of cofmap in Section 4.4 is. Every use of a WQO of the form
cofmap f wqo will run f afresh on each of the two arguments
to the WQO. This behaviour might lead to a lot of redundant work
in the implementation of test (Section 3.1), as repeated uses of test
will repeatedly invoke the WQO with the same first argument. By a
change of representation inside the library, we can help ensure that
this per-argument work is cached and hence only performed once
for each value presented to test :

data TTest a where
TT ∶∶ (a → b)→ (b → b → Bool)→ TTest a

newtype History a = H {test ∶∶ a → TestResult a }

initHistory ∶∶TTest a → History a
initHistory (TT f (⊴)) = H (go [])

where
go fxs x

∣ any (⊴ fx) fxs = Stop
∣ otherwise = Continue (H (go (fx ∶ fxs)))
where fx = f x

A History now includes a function f mapping the client’s data a to
the maintained history list [b]. When testing, we apply the function
to get a value fx ∶∶ b, which we compare with the values seen so far.

With this new representation of TTest , cofmap may be defined
as follows:

instance Cofunctor TTest where
cofmap f (WQO prep (⊴)) = WQO (prep ○ f) (⊴)

The ability to redefine TTest to be more than simply a WQO
is one of the reasons why we distinguish “termination tests”, which
the client builds using the combinators, and “WQOs” which are
part of the implementation of a termination test, and are hidden
from the client.

All the TTest-using code we present is easily adapted for the
above, more efficient, representation of TTest . Furthermore, this
technique can further be combined with the optimisation described
in Section 6.1 with no difficulties.

7. Supercompilation termination tests
Now that we have defined a combinator library for termination
tests, you might wonder whether it is actually general enough to

capture those tests of interest in supercompilation. In this section,
we demonstrate that this is so.

7.1 Terminating evaluators
Before we discuss those well-quasi-orders used for supercompila-
tion, we would like to motivate them with an example of their use.

A supercompiler is, at its heart, an evaluator, and as such it
implements the operational semantics for the language being su-
percompiled. However, the language in question is usually Turing
complete, and we would like our supercompiler to terminate on
all inputs — therefore, a termination test is required to control the
amount of evaluation we perform. We would like to evaluate as
much as possible (so the test should be lenient). Equally, if evalu-
ation appears to start looping without achieving any simplification,
then we would like to stop evaluating promptly (so the test should
be vigilant).

Clearly, any test of this form will prevent us reducing some
genuinely terminating terms to normal form (due to the Halting
Problem), so all we can hope for is an approximation which does
well in practice.

Concretely, let us say that we have a small-step evaluator for
some language:

step ∶∶Exp →Maybe Exp

The small-step evaluator is a partial function because some terms
are already in normal form, and hence are irreducible. Given this
small-step semantics we wish to define a big step semantics that
evaluates an Exp to normal form:

reduce ∶∶Exp → Exp

We would like reduce to be guaranteed to execute in finite time.
How can we build such a function for a language for which strong
normalisation does not hold? Clearly, we cannot, because many
terms will never reduce to a normal form even if stepped an infinite
number of times. To work around this problem, supercompilers
relax the constraints on reduce: instead of returning a normal form,
we would like reduce to return a normal form, except when it looks
like we will never reach one.

Assuming a well-quasi-order test ∶∶ TTest Exp It is easy to
define reduce:

reduce = go (initHistory test)
where

go hist s = case hist ‘test ‘ s of
Continue hist ′ ∣ Just s ′ ← step s → go hist ′ s ′

→ s

The choice of the test well-quasi-order is what determines which
heuristic is used for termination. The following three sections
demonstrate how our combinators can capture the two most pop-
ular choices of termination test: the homeomorphic embedding on
syntax trees (used in e.g. Klyuchnikov [8], Jonsson and Nordlander
[9], Hamilton [10]), and the tag-bag well-quasi-order (used in e.g.
Mitchell [2], Bolingbroke and Peyton Jones [11]).

7.2 Homeomorphic embedding on syntax trees
The homeomorphic embedding — previous alluded to in Sec-
tion 5.1 — is a particular relation between (finite) labelled rose
trees. The proof that it does indeed define a well-quasi-order is the
famous “Tree Theorem” of Kruskal [1]. We can define it straight-
forwardly for the Tree type using our gfixT combinator:

type Tree a = Fix (TreeF a)
data TreeF a rec = NodeF a [rec]

deriving (Functor ,Foldable,Traversable)

node ∶∶ a → [Tree a]→ Tree a

node x ys = Roll (NodeF x ys)

treeT ∶∶ ∀a.TTest a → TTest (Tree a)
treeT wqo elt = gfixT wqo fix

where
wqo fix ∶∶ ∀rec.TTest rec → TTest (TreeF a rec)
wqo fix wqo subtree

= cofmap inject (pairT wqo elt (listT wqo subtree))

inject ∶∶ ∀rec.TreeF a rec → (a, [rec])
inject (NodeF x ts) = (x , ts)

Now we have treeT — the homeomorphic embedding on rose
trees — we can straightforwardly reuse it to define a homeomorphic
embedding on syntax trees. To show how this test can be captured,
we first define a simple data type of expressions, Exp:

data FnName = Map ∣ Foldr ∣ Even
deriving (Enum,Bounded ,Eq)

instance Finite FnName where
elements = [minBound . .maxBound]

data Exp = FnVar FnName ∣ Var String
∣ App Exp Exp ∣ Lam String Exp
∣ Let String Exp Exp

As is standard, we identify a finite set of function names FnName
that occur in the program to be supercompiled, distinct from the
set of variables bound by lambads or lets. The purpose of this
distinction is that we usually wish that ¬(map ⊴ foldr) but (since
we assume an infinite supply of bound variables) we need that x ⊴ y
within λx → x ⊴ λy → y .

Our goal is to define a termination test test1 ∶∶TTest Exp. We
proceed as follows:

data Node = FnVarN FnName ∣ VarN
∣ AppN ∣ LamN ∣ LetN
deriving (Eq)

instance Finite Node where
elements = VarN ∶AppN ∶ LamN ∶ LetN ∶

map FnVarN elements

test1 ∶∶TTest Exp
test1 = cofmap inject (treeT finiteT)

where
inject (FnVar x) = node (FnVarN x) []

inject (Var) = node VarN []

inject (App e1 e2) = node AppN [inject e1 , inject e2]

inject (Lam e) = node LamN [inject e]

inject (Let e1 e2) = node LetN [inject e1 , inject e2]

The correctness of the Finite Node predicate is easy to verify, and
thus this termination test is indeed a WQO. This test captures the
standard use of the homeomorphic embedding in supercompilation.

More typically, the FnName data type will be a string, and the
supercompiler will ensure that in any one execution of the super-
compiler only a finite number of strings (the function names de-
fined at the top level of the program to supercompile) will be placed
into a FnVar constructor. In this case, the code for the termination
test remains unchanged — but it is up to the supercompiler pro-
grammer to ensure that the new instance Finite Node declara-
tion is justified.

7.3 Quasi-ordering tagged syntax trees
Observing that typical supercompiler implementations spent most
of their time testing the termination criteria, Mitchell [2] proposed
a simpler termination test based on “tag bags”. Our combinators
are sufficient to capture this test, as we will demonstrate.

The idea of tags is that the syntax tree of the initial program
has every node tagged with a unique number. As supercompilation
proceeds, new syntax trees derived from the input syntax tree are
created. This new syntax tree contains tags that may be copied and
moved relative to their position in the original tree — but crucially
the supercompiler will never tag a node with a totally new tag that
comes “out of thin air”. This property means that in any one run of
the supercompiler we can assume that there are a finite number of
tags.

We first require a type for these tags, for which we reuse
Haskell’s Int type. Crucially, Int is a bounded integer type (un-
like Integer), so we can safely make the claim that Tag is Finite:

newtype Tag = Tag {unTag ∶∶ Int } deriving (Eq ,Ord)

instance Finite Tag where
elements = map Tag [minBound . .maxBound]

As there are rather a lot of distinct Ints, the well-quasi-order
finiteT ∶∶ TTest Tag may potentially not reject sequences until
they become very large indeed (i.e. it is not very vigilant). In
practice, we will only have as many Int tags as we have nodes
in the input program. Furthermore, most term sequences observed
during supercompilation only use a fraction of these possible tags.
For these reasons, these long sequences are never a problem in
practice.

Continuing, we define the type of syntax trees where each node
in the tree has a tag:

type TaggedExp = (Tag ,TaggedExp′)
data TaggedExp′

= TFnVar FnName ∣ TVar String
∣ TApp TaggedExp TaggedExp
∣ TLam String TaggedExp
∣ TLet String TaggedExp TaggedExp

We also need some utility functions for gathering all the tags
from a tagged expression. There are many different subsets of the
tags that you may choose to gather — one particular choice that
closely follows Mitchell is as follows:

type TagBag = Map Tag Int

gather ∶∶TaggedExp → TagBag
gather = go False

where
go lazy (tg , e) = singleton tg 1 ‘plus‘ go′ lazy e

go′ lazy (TFnVar) = empty
go′ lazy (TVar) = empty
go′ lazy (TApp e1 e2) = go lazy e1 ‘plus‘ go lazy lazy e2
go′ lazy (TLam e) = empty
go′ lazy (TLet e1 e2) = go lazy lazy e1 ‘plus‘ go lazy e2

go lazy True (tg ,) = singleton tg 1
go lazy False e = go True e

plus ∶∶TagBag → TagBag → TagBag
plus = unionWith (+)

We have assumed the following interface for constructing finite
maps, with the standard meaning:

unionWith ∶∶Ord k ⇒ (v → v → v)
→Map k v →Map k v →Map k v

empty ∶∶Ord k ⇒Map k v
singleton ∶∶Ord k ⇒ k → v →Map k v

We can now define the tag-bag termination test of Mitchell [2]
itself, test2 :

test2 ∶∶TTest TaggedExp
test2 = cofmap (summarise ○ gather)

(pairT finiteT wellOrderedT)

where
summarise ∶∶TagBag → (Set Tag , Int)
summarise tagbag

= (keysSet tagbag , sum (elems tagbag))

7.4 Improved tag bags for tagged syntax trees
In fact, there is a variant of the tag-bag termination test that is
more lenient than that of Mitchell [2]. Observe that the tag bag
test as defined above causes the supercompiler to terminate when
the domain of the tag bag is equal to a prior one and where the
total number of elements in the bag has not decreased. However,
since there are a finite number of tags, we can think of a tag-
bag as simply a very large (but bounded) arity tuple — so by
the Cartesian Product Lemma we need only terminate if each of
the tags considered individually occur a non-decreasing number of
times.

Our more lenient variant of the test can be defined in terms of the
finiteMapT combinator of Section 4.7 almost trivially by reusing
gather . It is straightforward to verify that if the finiteMap well-
quasi-order relates two maps, those maps have exactly the same
domains — so one of the parts of the original tag-bag termination
test just falls out:

test3 ∶∶TTest TaggedExp
test3 = cofmap gather (finiteMapT wellOrderedT)

All three of these termination tests — test1 , test2 and test3 —
are sound by construction, and straightforward to define using our
library.

8. Related work
Leuschel [3] articulated why well-quasi-orders (and not, say, mere
well-orders) are a particularly attractive choice for solving the
online termination problem.

Our combinators all correspond to well-known lemmas about
well-quasi-orders. A more complete survey of these lemmas can be
found in Gallier [12] or Kruskal [1].

Perhaps surprisingly, similar ideas as those used for testing ter-
mination in the supercompilation literature have appeared in one
of the most successful and influential static analysis approaches for
program termination: the work stemming from transition invari-
ants [13] and the Terminator tool [14]. In our case, we test that
no subsequence of an input sequence is contained in a WQO. In
the Terminator literature, static analysis guarantees that the transi-
tive closure of the transition relation of a program is contained in a
union of well-founded relations. It can be shown that the Termina-
tor condition is closely related to the product formation for WQOs
and we are currently preparing an article to explain these connec-
tions. It would be interesting to determine if techniques developed
independently for testing with WQOs and the terminator literature
can be ported over from one to the other. Finally, the use of home-
omorphic embedding is also present in the static analysis world,
where it is used to statically detect the termination of higher-order
functions [15].

9. Conclusions and further work
We have shown that a library-based approach to constructing well-
quasi-orders is practical: a small combinator set captures many
common well-quasi-orders. Furthermore, well-quasi-orders con-
structed with these combinators are correct by construction — al-
though combinators such as finiteT are only correct if some (sim-

ple) assumptions hold. We hope that verifying these base assump-
tions will prove much easier for the programmer than verifying
whether or not something is a well-quasi-order. Our early expe-
rience using these combinators in a supercompiler indicates that
their performance is quite acceptable for practical use: termination
testing takes up only a fraction of the runtime of our supercompiler.

Hiding the implementation of the library allows it to be transpar-
ently replaced implementations that cache per-element work (Sec-
tion 6.2) or prune the history of items seen (Section 6.1).

It would be interesting to try to extend the combinator language
to capture the “refined” homeomorphic embedding of Klyuchnikov
[16] – it does not seem to be expressible with the current set of
combinators.

Implementing the combinators in a dependently typed language,
such as Agda [17], would allow us to make the library truly correct-
by-construction, as we could require the user of the library to sup-
ply proofs of things that we currently just assume – such as the
finiteness of types tagged by Finite , or the more expressive depen-
dent type of the “calibrator” function argument for the recursive
types construction, or the correctness of the instantiation of fixT
using Traversable .

The combinator library as described could be encoded as an in-
stance of data-type-generic programming [18], and implemented in
a language that supports such a paradigm (such as Generic Haskell
[19]). This would give users of the library the option to take a
generic implementation of a termination test for their data type,
supplying well-quasi-orders only for the type constants in their sys-
tem. It may also be interesting to extend fixT to support mutually-
recursive systems of data types. It seems likely that existing work
in the area of data-type-generics [20] would solve this problem
straightforwardly.

Acknowledgments The authors would like to thank John Hughes
for first suggesting an optimisation along the lines of Section 6.1
and Jeremy Gibbons for extensive discussions of Traversable func-
tor properties. We would also like to thank the anonymous review-
ers for their thought-provoking comments.

This work was partly supported by a PhD studentship gener-
ously provided by Microsoft Research.

References
[1] JB Kruskal. Well-quasi-ordering, the Tree Theorem, and Vazsonyi’s

conjecture. Trans. Amer. Math. Soc, 95:210–225, 1960.
[2] Neil Mitchell. Rethinking supercompilation. In Proceedings of the

ACM SIGPLAN International Conference on Functional Program-
ming, ICFP 2010. ACM, 2010.

[3] Michael Leuschel. On the power of homeomorphic embed-
ding for online termination. In Static Analysis, volume 1503
of Lecture Notes in Computer Science, pages 230–245. Springer
Berlin / Heidelberg, 1998. ISBN 978-3-540-65014-0. doi: 10.
1007/3-540-49727-7 14. URL http://www.springerlink.com/
content/g93wxkkwpfvvmnmg/.

[4] Valentin F. Turchin. The algorithm of generalization in the supercom-
piler. Dines Bjørner, Andrei P. Ershov, and Neil D. Jones, editors,
Partial Evaluation and Mixed Computation, pages 531–549, 1988.

[5] Crispin S.J.A. Nash-Williams. On well-quasi-ordering finite trees. In
Mathematical Proceedings of the Cambridge Philosophical Society,
volume 59, pages 833–835. Cambridge Univ Press, 1963.

[6] Simon Peyton Jones, Cordy Hall, Kevin Hammond, Jones Cordy,
Kevin Hall, Will Partain, and Phil Wadler. The Glasgow Haskell
compiler: a technical overview, 1992.

[7] Jeremy Gibbons and Bruno C. d. S. Oliveira. The essence of the
iterator pattern. Journal of Functional Programming, 19, 2009. doi:
10.1017/S0956796809007291.

[8] Ilya Klyuchnikov. Supercompiler HOSC 1.0: under the hood.
Preprint 63, Keldysh Institute of Applied Mathematics, Moscow,

2009. URL http://library.keldysh.ru/preprint.asp?lg=
e&id=2009-63.

[9] Peter A. Jonsson and Johan Nordlander. Positive supercompilation for
a higher order call-by-value language. In POPL ’09: Proceedings of
the 36th ACM SIGPLAN-SIGACT symposium on Principles of Pro-
gramming Languages, 2009.

[10] G. W. Hamilton. Distillation: extracting the essence of programs. In
Proceedings of the 2007 ACM SIGPLAN symposium on Partial eval-
uation and semantics-based program manipulation, PEPM ’07, pages
61–70, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-620-
2. doi: http://doi.acm.org/10.1145/1244381.1244391. URL http:
//doi.acm.org/10.1145/1244381.1244391.

[11] Max Bolingbroke and Simon Peyton Jones. Supercompilation by eval-
uation. In Proceedings of the 2010 ACM SIGPLAN Haskell Sympo-
sium, September 2010.

[12] Jean H. Gallier. What’s so special about Kruskal’s theorem and the
ordinal γ0? a survey of some results in proof theory. Annals of Pure
and Applied Logic, 53(3):199–260, 1991.

[13] Andreas Podelski and Andrey Rybalchenko. Transition invari-
ants. In Proceedings of the 19th Annual IEEE Symposium on Logic
in Computer Science, pages 32–41, Washington, DC, USA, 2004.
IEEE Computer Society. ISBN 0-7695-2192-4. doi: 10.1109/
LICS.2004.50. URL http://portal.acm.org/citation.cfm?
id=1018438.1021840.

[14] Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Ter-
mination proofs for systems code. In Proceedings of the 2006
ACM SIGPLAN conference on Programming language design and
implementation, PLDI ’06, pages 415–426, New York, NY, USA,
2006. ACM. ISBN 1-59593-320-4. doi: http://doi.acm.org/10.
1145/1133981.1134029. URL http://doi.acm.org/10.1145/
1133981.1134029.

[15] Neil D. Jones and Nina Bohr. Termination analysis of the untyped
lamba-calculus. In RTA, pages 1–23, 2004.

[16] Ilya Klyuchnikov. Supercompiler HOSC 1.5: homeomorphic em-
bedding and generalization in a higher-order setting. Preprint 62,
Keldysh Institute of Applied Mathematics, Moscow, 2010. URL
http://pat.keldysh.ru/~ilya/preprints/HOSC15_en.pdf.

[17] Ulf Norell. Towards a practical programming language based on
dependent type theory. PhD thesis, Department of Computer Sci-
ence and Engineering, Chalmers University of Technology, SE-412
96 Göteborg, Sweden, September 2007.

[18] Jeremy Gibbons. Datatype-generic programming. In Roland Back-
house, Jeremy Gibbons, Ralf Hinze, and Johan Jeuring, editors,
Datatype-Generic Programming, volume 4719 of Lecture Notes in
Computer Science, pages 1–71. Springer Berlin / Heidelberg, 2007.
URL http://dx.doi.org/10.1007/978-3-540-76786-2_1.

[19] Ralf Hinze and Johan Jeuring. Generic Haskell: Practice and theory.
In Roland Backhouse and Jeremy Gibbons, editors, Generic Program-
ming, volume 2793 of Lecture Notes in Computer Science, pages 1–56.
Springer Berlin / Heidelberg, 2003. URL http://dx.doi.org/10.
1007/978-3-540-45191-4_1.

[20] A.R. Yakushev, S. Holdermans, A. Löh, and J. Jeuring. Generic
programming with fixed points for mutually recursive datatypes. ACM
SIGPLAN Notices, 44(9):233–244, 2009.

