
Simon Peyton Jones

Microsoft Research

Video of this tutorial (3 hrs)

http://research.microsoft.com/~simonpj/papers/haskell-tutorial

A tutorial presented at the O‟Reilly Open Source Convention, July 2007

 Haskell is a programming language that is
 purely functional

 lazy

 higher order

 strongly typed

 general purpose

 Functional programming will make you think
differently about programming
 Mainstream languages are all about state

 Functional programming is all about values

 Whether or not you drink the Haskell Kool-
Aid, you‟ll be a better programmer in
whatever language you regularly use

1yr 5yr 10yr 15yr

1,000,000

1

100

10,000

The quick death

G
ee

k
s

P
ra

ct
it

io
n

er
s

1yr 5yr 10yr 15yr

1,000,000

1

100

10,000

The slow death

G
ee

k
s

P
ra

ct
it

io
n

er
s

1yr 5yr 10yr 15yr

1,000,000

1

100

10,000

The complete
absence of death

G
ee

k
s

P
ra

ct
it

io
n

er
s Threshold of immortality

1,000,000

1

100

10,000

The second life?

G
ee

k
s

P
ra

ct
it

io
n

er
s

“Learning Haskell is a great way of
training yourself to think functionally

so you are ready to take full advantage
of C# 3.0 when it comes out”

(blog Apr 2007)

“I'm already looking at
coding problems and my

mental perspective is now
shifting back and forth

between purely OO and more
FP styled solutions”

(blog Mar 2007)

1990 1995 2000 2005 2010

 xmonad is an X11 tiling window manager
written entirely in Haskell

Window
manager

X11

Client Client

Client

Window
placement

Screen

Keyboard

M
o

u
se

Client

Events
(mouse, kbd,

client)

 Because it‟s
 A real program

 of manageable size

 that illustrates many Haskell programming
techniques

 is open-source software

 is being actively developed

 by an active community

Code Comments Language

metacity >50k C

ion3 20k 7k C

larswm 6k 1.3k C

wmii 6k 1k C

dwm 4.2 1.5k 0.2k C

xmonad 0.2 0.5k 0.7k Haskell

Demo xmonad

Window
placement

Events
(mouse, kbd,

client)

State machine

Configuration
data

Layout
algorithm

Session state

FFIX11

module Stack(Stack, insert, swap, ...) where

import Graphics.X11(Window)

type Stack = ...

insert :: Window -> Stack

-- Newly inserted window has focus

insert = ...

swap :: Stack -> Stack

-- Swap focus with next

swap = ...

Export
list

Import things
defined elsewhere

Define
new types

Specify type
of insert

Comments

A ring of windows
One has the focus

module Stack(Stack, insert, swap, ...) where

type Stack w = ...

insert :: w -> Stack w

-- Newly inserted window has focus

insert = ...

swap :: Stack w -> Stack w

-- Swap focus with next

swap = ...

Stack should not exploit the fact that it‟s a stack of windows

A stack of values of
type w

Insert a „w‟
into a stack

of w‟s

No import
any more

type Stack w = [w]

-- Focus is first element of list,

-- rest follow clockwise

swap :: Stack w -> Stack w

-- Swap topmost pair

swap [] = []

swap (w : []) = w : []

swap (w1 : w2 : ws) = w2 : w1 : ws

The type “[w]”
means “list of w”

A list takes one of two forms:
• [], the empty list
• (w:ws), a list whose head is w, and tail is ws

Functions are
defined by pattern

matching

w1:w2:ws means w1 : (w2 : ws)

A ring of windows
One has the focus

a b
c

d
e

The ring above is
represented
[c,d,e,...,a,b]

swap [] = []

swap (w:[]) = w:[]

swap (w1:w2:ws) = w2:w1:ws

swap [] = []

swap [w] = [w]

swap (w1:w2:ws) = w2:w1:ws

[a,b,c]
means
a:b:c:[]

swap (w1:w2:ws) = w2:w1:ws

swap ws = ws

Equations are
matched top-to-

bottom

swap ws = case ws of

[] -> []

[w] -> [w]

(w1:w2:ws) -> w2:w1:ws

case
expressions

 Download:
 ghc: http://haskell.org/ghc
 Hugs: http://haskell.org/hugs

 Interactive:
 ghci Stack.hs
 hugs Stack.hs

 Compiled:
 ghc –c Stack.hs

Demo ghci

http://haskell.org/ghc
http://haskell.org/hugs

focusNext :: Stack -> Stack

focusNext (w:ws) = ws ++ [w]

focusnext [] = [] Pattern matching
forces us to think

of all cases

(++) :: [a] -> [a] -> [a]

-- List append; e.g. [1,2] ++ [4,5] = [1,2,4,5]

Definition in Prelude
(implicitly imported)

Type says “this function takes two arguments, of type
[a], and returns a result of type [a]”

A ring of windows
One has the focus

(++) :: [a] -> [a] -> [a]

-- List append; e.g. [1,2] ++ [4,5] = [1,2,4,5]

[] ++ ys = ys

(x:xs) ++ ys = x : (xs ++ ys)

Recursive call

[1,2] ++ [4,5]

= (1:2:[]) ++ (4:5:[])

= 1 : ((2:[]) ++ (4:5:[]))

= 1 : 2 : ([] ++ (4:5:[]))

= 1 : 2 : 4 : 5 : []

Execution model is simple rewriting:

focusPrev :: Stack -> Stack

focusPrev ws = reverse (focusNext (reverse ws))

Function
application

by mere
juxtaposition

reverse :: [a] -> [a]

-- e.g. reverse [1,2,3] = [3,2,1]

reverse [] = []

reverse (x:xs) = reverse xs ++ [x]

Function application
binds more tightly than anything else:

(reverse xs) ++ [x]

A ring of windows
One has the focus

focusPrev

focusPrev :: Stack -> Stack

focusPrev ws = reverse (focusNext (reverse ws))

(f . g) x = f (g x)

focusPrev :: Stack -> Stack

focusPrev = reverse . focusNext . reverse

can also be written

Definition of (.)
from Prelude

reverse focusNext reverse

f.g

(.) :: (b->c) -> (a->b) -> (a->c)

(f . g) x = f (g x)

f g
abc

Functions as
arguments

 It‟s good to write tests as you write code

 E.g. focusPrev undoes focusNext; swap
undoes itself; etc

module Stack where

...definitions...

-- Write properties in Haskell

type TS = Stack Int -- Test at this type

prop_focusNP :: TS -> Bool

prop_focusNP s = focusNext (focusPrev s) == s

prop_swap :: TS -> Bool

prop_swap s = swap (swap s) == s

Prelude Test.QuickCheck> :t quickCheck

quickCheck :: Testable prop => prop -> IO ()

bash$ ghci Stack.hs

Prelude> :m +Test.QuickCheck

Prelude Test.QuickCheck> quickCheck prop_swap

+++ OK, passed 100 tests

Prelude Test.QuickCheck> quickCheck prop_focusNP

+++ OK, passed 100 tests

Test.QuickCheck is
simply a Haskell

library (not a “tool”)

...with a strange-
looking type

Demo QuickCheck

bash$ runhaskell QC.hs Stack.hs

prop_swap: +++ OK, passed 100 tests

prop_focusNP: +++ OK, passed 100 tests

runHaskell Foo.hs <args>
runs Foo.hs, passing it <args>

A 25-line Haskell script

Look for “prop_” tests
in here

No side effects. At all.

 A call to swap returns a new stack; the old
one is unaffected.

 A variable „s‟ stands for an immutable value,
not for a location whose value can change
with time. Think spreadsheets!

swap :: Stack w -> Stack w

prop_swap s = swap (swap s) == s

Purity makes the interface explicit

 Takes a stack, and returns a stack; that‟s all

 Takes a stack; may modify it; may modify
other persistent state; may do I/O

swap :: Stack w -> Stack w -- Haskell

void swap(stack s) /* C */

Pure functions are easy to test

 In an imperative or OO language, you have to
 set up the state of the object, and the external

state it reads or writes
 make the call
 inspect the state of the object, and the external

state
 perhaps copy part of the object or global state,

so that you can use it in the postcondition

prop_swap s = swap (swap s) == s

Types are everywhere

 Usual static-typing rant omitted...

 In Haskell, types express high-level design,
in the same way that UML diagrams do; with
the advantage that the type signatures are
machine-checked

 Types are (almost always) optional: type
inference fills them in if you leave them out

swap :: Stack w -> Stack w

 Changing focus moves the windows around:
confusing!

type Stack w = [w]

-- Focus is head of list

enumerate:: Stack w -> [w]

-- Enumerate the windows in layout order

enumerate s = s

A ring of windows
One has the focus

 Want: a fixed layout, still with one window
having focus

data Stack w = MkStk [w] [w] -- left and right resp

-- Focus is head of „right‟ list

-- Left list is *reversed*

-- INVARIANT: if „right‟ is empty, so is „left‟

A sequence of windows
One has the focus

left right

a b c d e f g

Represented as
MkStk [b,a] [c,d,e,f,g]

Data type declaration

Constructor of the type

 Want: a fixed layout, still with one window
having focus

data Stack w = MkStk [w] [w] -- left and right resp

-- Focus is head of „right‟ list

-- Left list is *reversed*

-- INVARIANT: if „right‟ is empty, so is „left‟

enumerate :: Stack w -> [w]

enumerate (MkStack ls rs) = reverse ls ++ rs

A sequence of windows
One has the focus

left right

a b c d e f g
Represented as
MkStk [b,a] [c,d,e,f,g]

data Stack w = MkStk [w] [w] -- left and right resp

focusPrev :: Stack w -> Stack w

focusPrev (MkStk (l:ls) rs) = MkStk ls (l:rs)

focusPrev (MkStk [] rs) = ...???...

left right

left rightChoices for left=[]:
• no-op
• move focus to end

Nested pattern matching

We choose this one

data Stack w = MkStk [w] [w] -- left and right resp

-- Focus is head of „right‟

focusPrev :: Stack w -> Stack w

focusPrev (MkStk (l:ls) rs) = MkStk ls (l:rs)

focusPrev (MkStk [] rs) = case (reverse rs) of

(l:ls) -> MkStk ls [l]

left right

a

left right

Choices:
• no-op
• move focus to end

left right

b c d e f g

a b c d e f g

Note: I fixed a bug on this slide
subsequent to presenting the tutorial

 Pattern matching forces us to confront all the
cases

 Efficiency note: reverse costs O(n), but that
only happens once every n calls to focusPrev, so
amortised cost is O(1).

Warning: Pattern match(es) are non-exhaustive

In the case expression: ...

Patterns not matched: []

data Stack w = MkStk [w] [w] -- left and right resp

-- Focus is head of „right‟

focusPrev :: Stack w -> Stack w

focusPrev (MkStk (l:ls) rs) = MkStk ls (l:rs)

focusPrev (MkStk [] rs) = case (reverse rs) of

(l:ls) -> MkStk ls [l]

[] -> MkStk [] []

data Stack w = MkStk [w] [w]

data Bool = False | True

data Colour = Red | Green | Blue

data Maybe a = Nothing | Just a

 A new data type has one or more constructors

 Each constructor has zero or more arguments

data [a] = []

| a : [a]

Built-in syntactic sugar
for lists, but otherwise
lists are just another
data type

data Stack w = MkStk [w] [w]

data Bool = False | True

data Colour = Red | Green | Blue

data Maybe a = Nothing | Just a

 Constructors are used:
 as a function to construct values (“right hand side”)
 in patterns to deconstruct values (“left hand side”)

isRed :: Colour -> Bool

isRed Red = True

isRed Green = False

isRed Blue = False

Patterns Values

data Maybe a = Nothing | Just a

data Stack w = MkStk [w] [w]

-- Invariant for (MkStk ls rs)

-- rs is empty => ls is empty

 Data types are used
 to describe data (obviously)
 to describe “outcomes” or “control”

module Stack(focus, ...) where

focus :: Stack w -> Maybe w

-- Returns the focused window of the stack

-- or Nothing if the stack is empty

focus (MkStk _ []) = Nothing

focus (MkStk _ (w:_)) = Just w

A bit like an
exception...

module Foo where

import Stack

foo s = ...case (focus s) of

Nothing -> ...do this in empty case...

Just w -> ...do this when there is a focus...

...but you can‟t forget
to catch it

No “null-pointer
dereference”

exceptions

module Stack(Stack, focusNext, focusPrev, ...) where

data Stack w = MkStk [w] [w]

focusNext :: Stack w -> Stack w

focusNext (MkStk ls rs) = ...

module Operations(...) where

import Stack(Stack, focusNext)

f :: Stack w -> Stack w

f (MkStk as bs) = ...

OK: Stack is imported

NOT OK: MkStk is not
imported

Stack is exported,
but not its constructors;

so its representation is hidden

 Module system is
merely a name-space
control mechanism

 Compiler
typically does
lots of cross-module
inlining

 Modules can be
grouped into
packages

module X where

import P

import Q

h = (P.f, Q.f, g)

module P(f,g) where

import Z(f)

g = ...

module Z where

f = ...

module Q(f) where

f = ...

 Can this work for ANY type w?

 No – only for w‟s that support equality

delete :: Stack w -> w -> Stack w

-- Remove a window from the stack

sort :: [a] -> [a]

-- Sort the list

 Can this work for ANY type a?

 No – only for a‟s that support ordering

delete :: w. Stack w -> w -> Stack w

 Only for w‟s that support serialisation

serialise :: a -> String

-- Serialise a value into a string

square :: n -> n

square x = x*x

 Only for numbers that support multiplication

 But square should work for any number that
does; e.g. Int, Integer, Float, Double, Rational

 If a function works for every type that has particular
properties, the type of the function says just that

 Otherwise, it must work for any type whatsoever

delete :: w. Eq w => Stack w -> w -> Stack w

sort :: Ord a => [a] -> [a]

serialise :: Show a => a -> String

square :: Num n => n -> n

“for all types w
that support the
Eq operations”

reverse :: [a] -> [a]

filter :: (a -> Bool) -> [a] -> [a]

square :: Num n => n -> n

square x = x*x

class Num a where

(+) :: a -> a -> a

(*) :: a -> a -> a

negate :: a -> a

...etc..

FORGET all
you know
about OO
classes!

The class
declaration says
what the Num
operations are

Works for any type „n‟
that supports the
Num operations

instance Num Int where

a + b = plusInt a b

a * b = mulInt a b

negate a = negInt a

...etc..

An instance
declaration for a

type T says how the
Num operations are
implemented on T‟s

plusInt :: Int -> Int -> Int

mulInt :: Int -> Int -> Int

etc, defined as primitives

square :: Num n => n -> n

square x = x*x

square :: Num n -> n -> n

square d x = (*) d x x

The “Num n =>” turns into an
extra value argument to the

function.
It is a value of data type Num n

When you write this... ...the compiler generates this

A value of type (Num T) is a
vector of the Num operations for

type T

square :: Num n => n -> n

square x = x*x

class Num a where

(+) :: a -> a -> a

(*) :: a -> a -> a

negate :: a -> a

...etc..

The class decl translates to:
• A data type decl for Num
• A selector function for

each class operation

square :: Num n -> n -> n

square d x = (*) d x x

When you write this... ...the compiler generates this

data Num a

= MkNum (a->a->a)

(a->a->a)

(a->a)

...etc...

(*) :: Num a -> a -> a -> a

(*) (MkNum _ m _ ...) = m

A value of type (Num T) is a
vector of the Num operations for

type T

dNumInt :: Num Int

dNumInt = MkNum plusInt

mulInt

negInt

...

square :: Num n => n -> n

square x = x*x

An instance decl for type T
translates to a value

declaration for the Num
dictionary for T

square :: Num n -> n -> n

square d x = (*) d x x

When you write this... ...the compiler generates this

A value of type (Num T) is a
vector of the Num operations for

type T

instance Num Int where

a + b = plusInt a b

a * b = mulInt a b

negate a = negInt a

...etc..

sumSq :: Num n => n -> n -> n

sumSq x y = square x + square y

sumSq :: Num n -> n -> n -> n

sumSq d x y = (+) d (square d x)

(square d y)

Pass on d to squareExtract addition
operation from d

 You can build big overloaded functions by
calling smaller overloaded functions

class Eq a where

(==) :: a -> a -> Bool

instance Eq a => Eq [a] where

(==) [] [] = True

(==) (x:xs) (y:ys) = x==y && xs == ys

(==) _ _ = False

data Eq = MkEq (a->a->Bool)

(==) (MkEq eq) = eq

dEqList :: Eq a -> Eq [a]

dEqList d = MkEq eql

where

eql [] [] = True

eql (x:xs) (y:ys) = (==) d x y && eql xs ys

eql _ _ = False

 You can build big instances by building on
smaller instances

data Cpx a = Cpx a a

instance Num a => Num (Cpx a) where

(Cpx r1 i1) + (Cpx r2 i2) = Cpx (r1+r2) (i1+i2)

fromInteger n = Cpx (fromInteger n) 0

class Num a where

(+) :: a -> a -> a

(-) :: a -> a -> a

fromInteger :: Integer -> a

....

inc :: Num a => a -> a

inc x = x + 1

Even literals are
overloaded

“1” means
“fromInteger 1”

quickCheck :: Test a => a -> IO ()

class Testable a where

test :: a -> RandSupply -> Bool

class Arbitrary a where

arby :: RandSupply -> a

instance Testable Bool where

test b r = b

instance (Arbitrary a, Testable b)

=> Testable (a->b) where

test f r = test (f (arby r1)) r2

where (r1,r2) = split r

split :: RandSupply -> (RandSupply, RandSupply)

test prop_swap r

= test (prop_swap (arby r1)) r2

where (r1,r2) = split r

= prop_swap (arby r1)

prop_swap :: TS -> Bool

Using instance for (->)

Using instance for Bool

class Arbitrary a where

arby :: RandSupply -> a

instance Arbitrary Int where

arby r = randInt r

instance Arbitrary a

=> Arbitrary [a] where

arby r | even r1 = []

| otherwise = arby r2 : arby r3

where

(r1,r‟) = split r

(r2,r3) = split r‟

split :: RandSupply -> (RandSupply, RandSupply)

randInt :: RandSupply -> Int

Generate cons value

Generate Nil value

 QuickCheck uses type classes to auto-generate
 random values

 testing functions

based on the type of the function under test

 Nothing is built into Haskell; QuickCheck is
just a library

 Plenty of wrinkles, esp
 test data should satisfy preconditions

 generating test data in sparse domains

 In OOP, a value carries a method suite

 With type classes, the method suite travels
separately from the value
 Old types can be made instances of new type

classes (e.g. introduce new Serialise class, make
existing types an instance of it)

 Method suite can depend on result type
e.g. fromInteger :: Num a => Integer -> a

 Polymorphism, not subtyping

 Equality, ordering, serialisation

 Numerical operations. Even numeric
constants are overloaded; e.g. f x = x*2

 And on and on....time-varying
values, pretty-printing, collections,
reflection, generic programming,
marshalling, monads, monad transformers....

 Type classes are the most unusual feature of
Haskell‟s type system

1987 1989 1993 1997

Implementation begins

Despair Hack,
hack,
hack

Hey, what’s
the big deal?

Incomprehension

Wild enthusiasm

Wadler/
Blott
type

classes
(1989)

Multi-
parameter

type classes
(1991) Functional

dependencies
(2000)

Higher kinded
type variables

(1995)

Associated
types (2005)

Implicit
parameters (2000)

Generic
programming

Testing

Extensible
records (1996) Computation

at the type
level

“newtype
deriving”

Derivable
type classes

Overlapping
instances

Variations

Applications

 A much more far-reaching idea than we
first realised: the automatic, type-driven
generation of executable “evidence”

 Many interesting generalisations, still
being explored

 Variants adopted in Isabel, Clean,
Mercury, Hal, Escher

 Long term impact yet to become clear

 All this pure stuff is very well, but sooner or
later we have to
 talk to X11, whose interface is not at all pure

 do input/output (other programs)

A functional program
defines a pure

function, with no side
effects

The whole point of
running a program is
to have some side

effectTension

 All this pure stuff is very well, but sooner or
later we have to
 talk to X11, whose interface is not at all pure

 do input/output (other programs)

Window
placement

Events
(mouse, kbd,

client)

State machine

Configuration
data

Layout
algorithm

Session state

FFIX11

 Idea:

 BUT: now
might do arbitrary stateful things

 And what does this do?

 What order are the things printed?

 Are they printed at all?

putStr :: String -> ()

-- Print a string on the console

swap :: Stack w -> Stack w

[putStr “yes”, putStr “no”]

Laziness!

Order of
evaluation!

 “Actions” sometimes called “computations”

 An action is a first class value

 Evaluating an action has no effect;
performing the action has an effect

A value of type (IO t) is an “action” that,
when performed, may do some input/output

before delivering a result of type t.

putStr :: String -> IO ()

-- Print a string on the console

type IO a = World -> (a, World)

-- An approximation

IO a
World outWorld in

result :: a

A value of type (IO t) is an “action” that,
when performed, may do some input/output

before delivering a result of type t.

putStr

()

getLine

String String

getLine :: IO String

putStr :: String -> IO ()

main :: IO ()

main = putStr “Hello world”

Main program is an
action of type IO ()

70

putStr

()

getLine

String

Goal:
read a line and then write it back out

putStr

()

getLine

String

We have connected two actions to
make a new, bigger action.

echo :: IO ()

echo = do { l <- getLine; putStr l }

echo

72

getTwoLines :: IO (String,String)

getTwoLines = do { s1 <- getLine

; s2 <- getLine

; ???? }

We want to just return (s1,s2)

73

return :: a -> IO a

return

getTwoLines :: IO (String,String)

getTwoLines = do { s1 <- getLine

; s2 <- getLine

; return (s1, s2) }

74

do { x<-e; s } = e >>= (\x -> do { s })

do { e } = e

• “do” notation adds only syntactic sugar

• Deliberately imperative look and feel

(>>=) :: IO a -> (a -> IO b) -> IO b

75

A “lambda abstraction”
(\x -> e) means

“a function taking one parameter, x, and returning e”

echo :: IO ()

echo = do { l <- getLine; putStr l }

echo = getLine >>= (\l -> putStr l)

(>>=) :: IO a -> (a -> IO b) -> IO b

 You can use
 explicit braces/semicolons

 or layout

 or any mixture of the two

getTwoLines :: IO (String,String)

getTwoLines = do s1 <- getLine

s2 <- getLine

return (s1, s2)

Stack.hs

Run
QuickCheck on
all functions

called
“prop_xxx”

Write this script
in Haskell

bash$ runhaskell QC.hs Stack.hs

prop_swap: +++ OK, passed 100 tests

prop_focusNP: +++ OK, passed 100 tests

module Main where

import System; import List

main :: IO ()

main = do { as <- getArgs

; mapM_ process as }

process :: String -> IO ()

process file = do { cts <- readFile file

; let tests = getTests cts

; if null tests then

putStrLn (file ++ ": no properties to check")

else do

{ writeFile "script" $

unlines ([":l " ++ file] ++ concatMap makeTest tests)

; system ("ghci -v0 < script")

; return () }}

getTests :: String -> [String]

getTests cts = nub $ filter ("prop_" `isPrefixOf`) $

map (fst . head . lex) $ lines cts

makeTest :: String -> [String]

makeTest test = ["putStr \"" ++ p ++ ": \"", “quickCheck " ++ p]

module Main where

import System

import List

main :: IO ()

main = do { as <- getArgs

; mapM_ process as }

Executables have
module Main at top

Import libraries

Module Main must define
main :: IO ()

getArgs :: IO [String]

-- Gets command line args

mapM_ :: (a -> IO b) -> [a] -> IO ()

-- mapM_ f [x1, ..., xn]

-- = do { f x1;

-- ...

-- f xn;

-- return () }

process :: String -> IO ()

-- Test one file

process file

= do { cts <- readFile file

; let tests = getTests cts

...

readFile:: String -> IO String

-- Gets contents of file

getTests:: String -> [String]

-- Extracts test functions

-- from file contents

e.g. tests = [“prop_rev”, “prop_focus”]

process file = do { cts <- readFile file

; let tests = getTests cts

; if null tests then

putStrLn (file ++ ": no properties to check")

else do

{ writeFile "script" (

unlines ([":l " ++ file] ++

concatMap makeTest tests))

; system ("ghci -v0 < script")

; return () }}

:l Stack.hs
putStr “prop_rev”
quickCheck prop_rev
putStr “prop_focus”
quickCheck prop_focus

putStrLn :: String -> IO ()

writeFile :: String -> String -> IO ()

system :: String -> IO ExitCode

null :: [a] -> Bool

makeTest :: String -> [String]

concatMap :: (a->[b]) -> [a] -> [b]

unlines :: [String] -> String

script

getTests :: String -> [String]

getTests cts = nub (

filter ("prop_" `isPrefixOf`) (

map (fst . head . lex) (

lines cts)))

lines

map (fst.head.lex)

filter (“prop_” `isPrefixOf`)

nub

[“module Main where”, “import System”, ...]

“module Main where\nimport System...”

[“module”, “import”, ..., “prop_rev”, ...]

[“prop_rev”, ...]

[“prop_rev”, ...]

getTests :: String -> [String]

getTests cts = nub (

filter ("prop_" `isPrefixOf`) (

map (fst . head . lex) (

lines cts)))

lines

map (fst.head.lex)

filter (“prop_” `isPrefixOf`)

nub

lines :: String -> [String]

filter :: (a->Bool) -> [a] -> [a]

isPrefixOf :: String -> String -> Bool

nub :: [String] -> [String]

-- Remove duplicates

lex :: String -> [(String,String)]

makeTest :: String -> [String]

makeTest test = ["putStr \"" ++ p ++ ": \"“,

"quickCheck " ++ p]

makeTest “prop_rev”

= [“putStr \”prop_rev: \””,

“quickCheck prop_rev”]

e.g

 Scripting in Haskell is quick and easy (e.g. no
need to compile, although you can)

 It is strongly typed; catches many errors

 But there are still many un-handled error
conditions (no such file, not lexically-
analysable, ...)

 Libraries are important; Haskell has a respectable
selection
 Regular expressions

 Http

 File-path manipulation

 Lots of data structures (sets, bags, finite maps etc)

 GUI toolkits (both bindings to regular toolkits such as Wx
and GTK, and more radical approaches)

 Database bindings

...but not (yet) as many as Perl, Python, C# etc

type Company = String

sort :: [Company] -> [Company]

-- Sort lexicographically

-- Two calls given the same

-- arguments will give the

-- same results

sortBySharePrice :: [Company] -> IO [Company]

-- Consult current prices, and sort by them

-- Two calls given the same arguments may not

-- deliver the same results

I deliver a list of
Company

I may do some I/O
and then deliver a list

of Company

 Program divides into a mixture of
 Purely functional code (most)

 Necessarily imperative code (some)

 The type system keeps them rigorously
separate

 Actions are first class, and that enables new
forms of program composition (e.g. mapM_)

90

Values of type (IO t) are first class

So we can define our own “control structures”

forever :: IO () -> IO ()

forever a = a >> forever a

repeatN :: Int -> IO () -> IO ()

repeatN 0 a = return ()

repeatN n a = a >> repeatN (n-1) a

e.g. forever (do { e <- getNextEvent

; handleEvent e })

In the end we have to call C!

foreign import ccall unsafe "HsXlib.h XMapWindow"

mapWindow :: Display -> Window -> IO ()

void XMapWindow(Display *d, Window *w) {

...

}

C

Haskell

Calling convention

This call does not block

Header file and name
of C procedure

Haskell name and type
of imported function

mapWindow

calls XMapWindow

data Display = MkDisplay Addr#

data Window = MkWindow Addr#

All the fun is getting data across the border

foreign import ccall unsafe "HsXlib.h XMapWindow"

mapWindow :: Display -> Window -> IO ()

Addr#: a built-in type
representing a C pointer

„foreign import‟ knows how to
unwrap a single-constructor type,

and pass it to C

data Display = MkDisplay Addr#

data XEventPtr = MkXEvent Addr#

foreign import ccall safe "HsXlib.h XNextEvent"

xNextEvent:: Display -> XEventPtr -> IO ()

All the fun is getting data across the border

But what we want is
data XEvent = KeyEvent ... | ButtonEvent ...

| DestroyWindowEvent ... | ...

nextEvent:: Display -> IO XEvent

data Display = MkDisplay Addr#

data XEventPtr = MkXEvent Addr#

foreign import ccall safe

"HsXlib.h XNextEvent"

xNextEvent:: Display -> XEventPtr -> IO ()

Getting what we want is tedious...
data XEvent = KeyEvent ... | ButtonEvent ...

| DestroyWindowEvent ... | ...

nextEvent:: Display -> IO XEvent

nextEvent d

= do { xep <- allocateXEventPtr

; xNextEvent d xep

; type <- peek xep 3

; if type == 92 then

do { a <- peek xep 5

; b <- peek xep 6

; return (KeyEvent a b) }

else if ... }

...but there are tools that automate much of
the grotesque pain (hsc2hs, c2hs etc).

 Haskell is a lazy language

 Functions and data constructors don‟t
evaluate their arguments until they need
them

 Same with local definitions

cond :: Bool -> a -> a -> a

cond True t e = t

cond False t e = e

abs :: Int -> Int

abs x | x>0 = x

| otherwise = neg_x

where

neg_x = negate x

NB: new
syntax
guards

 Laziness supports modular programming

 Programmer-written functions instead of
built-in language constructs

(||) :: Bool -> Bool -> Bool

True || x = True

False || x = x

Short-
circuiting

“or”

isSubString :: String -> String -> Bool

x `isSubStringOf` s = or [x `isPrefixOf` t

| t <- tails s]

tails :: String -> [String]

-- All suffixes of s

tails [] = [[]]

tails (x:xs) = (x:xs) : tails xs

or :: [Bool] -> Bool

-- (or bs) returns True if any of the bs is True

or [] = False

or (b:bs) = b || or bs

type String = [Char]

 Typical paradigm:
 generate all solutions (an enormous tree)

 walk the tree to find the solution you want

nextMove :: Board -> Move

nextMove b = selectMove allMoves

where

allMoves = allMovesFrom b

A gigantic (perhaps
infinite) tree of possible

moves

 Generally, laziness unifies data with control

 Laziness also keeps Haskell pure, which is a
Good Thing

Haskell
language

Concurrent Haskell
(threads,

communication,
synchronisation)

Software
Transactional
Memory (STM)

Nested Data Parallel
Haskell

Advanced types
• Unboxed types
• Multi-parameter type classes
• Functional dependencies
• GADTs
• Implicit parameters
• Existential types
• etc etc

Generic programming
One program that works
over lots of different

data structures
Monads, monad

transformers, and arrows

Template Haskell
(meta programming)

Rewrite rules
(domain-specific

compiler extensions)

Haskell
language

Interpreters
(e.g. GHCi, Hugs)

Generators
• parser (cf yacc)
• lexer (cf lex)
• FFI

Coverage
testing

Testing
(e.g. QuickCheck, Hunit)

Space and
time profiling

Programming
environments
(emacs, vim,

Visual Studio)

Debugger

Documentation
generation
(Haddock)

Packaging and
distribution

(Cabal, Hackage)LIBRARIES

Compilers
(e.g. GHC, Jhc, Yhc)

Viewer written in Haskell using GTK binding

Yellow: not executed
Red: boolean gave False
Green: boolean gave True

 A downloaded package, p, comes with
 p.cabal: a package description

 Setup.hs: a Haskell script to build/install

bash$./Setup.hs configure

bash$./Setup.hs build

bash$./Setup.hs install

Arbitrary effects

No effects

Useful

Useless

Dangerous Safe

Arbitrary effects

No effects

Useful

Useless

Dangerous Safe

Nirvana

Plan A
(everyone else)

Plan B
(Haskell)

Examples

 Regions

 Ownership types

 Vault, Spec#, Cyclone,
etc etc

Arbitrary effects

Default = Any effect
Plan = Add restrictions

Two main approaches:

 Domain specific languages
(SQL, XQuery, MDX,
Google map/reduce)

 Wide-spectrum functional
languages + controlled
effects (e.g. Haskell)

Value oriented
programming

Types play a major role

Default = No effects
Plan = Selectively permit effects

Arbitrary effects

No effects

Useful

Useless

Dangerous Safe

Nirvana

Plan A
(everyone else)

Plan B
(Haskell)

Envy

Arbitrary effects

No effects

Useful

Useless

Dangerous Safe

Nirvana

Plan A
(everyone else)

Plan B
(Haskell)

Ideas; e.g. Software
Transactional Memory
(retry, orElse)

 One of Haskell‟s most significant
contributions is to take purity seriously, and
relentlessly pursue Plan B

 Imperative languages will embody growing
(and checkable) pure subsets

 Knowing functional programming makes you a
better Java/C#/Perl/Python/Ruby
programmer

 The Haskell wikibook
 http://en.wikibooks.org/wiki/Haskell

 All the Haskell bloggers, sorted by topic
 http://haskell.org/haskellwiki/Blog_articles

 Collected research papers about Haskell
 http://haskell.org/haskellwiki/Research_papers

 Wiki articles, by category
 http://haskell.org/haskellwiki/Category:Haskell

 Books and tutorials
 http://haskell.org/haskellwiki/Books_and_tutorials

http://en.wikibooks.org/wiki/Haskell
http://haskell.org/haskellwiki/Blog_articles
http://haskell.org/haskellwiki/Research_papers
http://haskell.org/haskellwiki/Category:Haskell
http://haskell.org/haskellwiki/Books_and_tutorials

