A TASTE OF HASKELL

Simon Peyton Jones
Microsoft Research
A tutorial presented at the O'Reilly Open Source Convention, July 2007

Video of this tutorial (3 hrs)
http://research.microsoft.com/~simonpj/papers/haskell-tutorial

What is Haskell?

= Haskell is a programming language that is
= purely functional
= |azy
= higher order
= strongly typed
= general purpose

Why should I care?

= Functional programming will make you think
differently about programming
= Mainstream languages are all about state
= Functional programming is all about values

= Whether or not you drink the Haskell Kool-
Aid, you'll be a better programmer in
whatever language you regularly use

Practitioners

Geeks

Most research languages

1,000,000

10,000

100
The quick death

lyr byr 10)%, 15yr

Practitioners

Geeks

Successful research languages

1,000,000

10,000

100 The slow death

lyr Syr 10)%% 15yr

Practitioners

Geeks

1,000,000

10,000

100

Threshold of immortalit

The complete
absence of death

Syr

10)%%

15yr

Practitioners

Geeks

1,000,000

10,000

100

I l as ke I I “Learning Haskell is a great way of

training yourself to think functionally
“I'm already looking at so you are ready to take full advantage
coding problems and my of C# 3.0 when it comes out”

mental perspective is now (blog Apr 2007)
shifting back and forth
between purely OO and more
FP styled solutions”
(blog Mar 2007)

The second life?

1990 1995 2000 2005 2010

xmonad

= xmonad is an X11 tiling window manager
written entirely in Haskell

Events
(mouse, kbd,
client)

m—) RV
_ manager

Window
placement

Why I'm using xmonad

= Because it's
= A real program
= of manageable size

= that illustrates many Haskell programming
techniques

m s open-source software
® s being actively developed
= by an active community

"Manageable size”

Code Comments Language

metacity >50k
ion3 20k
larswm 6k
wmii 6k
dwm 4.2

xmonad 0.2

7k
1.3k
1k
0.2k

0.7k

C

Haskell

Demo xmonad

Inside xmonad

Configuration Layout
data algorithm

Events
(mouse, kbd,
client

_ State machine

Window

placement /

Session state /

The window stack

Define
new types

A ring of windows
One has the focus
module Stack(Stack, insert, swap, ...) where

Import things

import Graphics.X1l1l(Window) defined elsewhere

type Stack =

Specify type
insert :: Window -> Stack of insert
-- Newly inserted window has focus

insert =

swap :: Stack -> Stack
-—- Swap focus with next
swap =

Comments

The window stack

Stack should not exploit the fact that it's a stack of windows

No import
any more

module Stack(Stack, insert, swap, ...) where

A stack of values of

type Stack w =
YP type w

insert :: w -> Stack w
-- Newly inserted windowyhas focus
insert =

swap :: Stack w -> Stack w Inserta'w'
-- Swap focus with next into a stack

swap = ... of w's

The window stack

A list takes one of two forms: A ring of windows
* [1. the empty list One has the focus
* (w:ws), a list whose head is w, and tail is ws

The type "[w]"
means "list of w"

type Stack w = [w]
—— Focus is first element of list,
-— rest follow clockwise

The ring above is
represented
[cde,..ab]

swap :: Stack w -> Stack w
-- Swap topmost pair
swap [] []

swap (w : []) w o []
swap (wl : w2 : ws) w2 : wl : ws

Functions are wliw2:ws means wl: (w2 : ws)
defined by pattern

matching

swap [] []

swap (w:[]) w:[]

SY"TGCTiC Sugar swap (wl:w2:ws) w2:wl:ws

swap (wl:w2:ws) : Equations are
swap ws matched top-to-
bottom

swap WS = case Wws
[] -> [1
[w] -> [w]
(Wl:w2:ws) -> w2:wl:ws

case
expressions

Running Haskell

= Download:
® ghc: http://haskell.org/ghc
® Hugs: http://haskell.org/hugs

= Interactive:
® ghci Stack.hs
= hugs Stack.hs

= Compiled:
® ghc -c Stack.hs

Demo ghci

http://haskell.org/ghc
http://haskell.org/hugs

g

Rotating the windows

\p

A ring of windows
focusNext :: Stack One has the focus
focusNext (w:ws)
focusnext []

Pattern matching

forces us to think
of all cases

Type says “this function takes two arguments, of type
[a], and returns a result of type [a]"

(++) :: [a] -> [a] -> [a]
-- List append; e.g. [1,2] ++ [4,5] = [1,2,4,5]

Definition in Prelude
(implicitly imported)

ReCUl"SiOﬂ Recursive call

(++) :: [a] -> [a] -> [a]
-- List append; e.g. [1,2] ++ ¥ ;5] = [1,2,4,5]

[] ++ ys ys
(x:xs) ++ ys x : (xs ++ ys)

Execution model is simple rewriting:

[1,2] ++ [4,5]
= (1:2:[]) ++ (4:5:[1)
=1 : ((2:[]) ++ (4:5:[1))

=1 :2 : ([]1 ++ (4:5:[1))

=1 :2 :4 :5 : []

g
Y’

A ring of windows
One has the focus

Rotating backwards

focusPrev :: Stack -> Stack
focusPrev ws = reverse (focusNext (reverse ws))

Function

reverse :: [a] -> [a]

-- e.g. reverse [1,2,3] = [3,2,1] C(ppliCC('l'iOﬂ

reverse [] [] bY mere
reverse (x:xs) reverse xs ++ [x] . .« .
Juxtaposition

Function application
binds more tightly than anything else:
(reverse xs) ++ [x]

Function composition

focusPrev :: Stack -> Stack

focusPrev ws = reverse (focusNext (reverse ws))

cah also be written

focusPrev :: Stack -> Stack
focusPrev = reverse . focusNext . reverse

4 A
reverse focusNext reverse

P ev Definition of ()
\ focusPr from Prelude

(f . g9) x=1£f (g x)

Function composition s

(b->c) -> (a->b) -> (a->c)
(f . g) x = £ (g x)

Just testing

Just testing

= Tt's good to write tests as you write code

= E.g. focusPrev undoes focusNext; swap
undoes itself; etc

module Stack where
...definitions...

-— Write properties in Haskell
type TS = Stack Int -- Test at this type

prop focusNP :: TS -> Bool
prop focusNP s = focusNext (focusPrev s) == s

prop swap :: TS -> Bool
prop swap s = swap (swap s) == s

TeS"' in'l'er'acfively Test.QuickCheck is

simply a Haskell
library (not a "tool")

bash$ ghci Stack.hs
Prelude> :m +Test.QuickCheck

Prelude Test.QuickCheck> quickCheck prop swap
+++ OK, passed 100 tests

Prelude Test.QuickCheck> quickCheck prop focusNP
+++ OK, passed 100 tests

...with a strange-
looking type

Prelude Test.QuickCheck> :t quickCheck
quickCheck :: Testable prop => prop -> IO ()

Demo QuickCheck

A 25-line Haskell script

Test batch-mode

runHaskell Foo.hs <args>
runs Foo.hs, passing it <args>

Look for "prop_" tests
in here

bash$ runhaskell QC.hs Stack.hs
prop swap: +++ OK, passed 100 tests
prop focusNP: +++ OK, passed 100 tests

Things to notice

Things to notice...

No side effects. At all.

swap :: Stack w -> Stack w

= A call to swap returns a new stack; the old
one is unaffected.

prop swap s = swap (swap s) == s

® A variable 's' stands for an immutable value,
not for a location whose value can change
with time. Think spreadsheets!

Things to notice...

Purity makes the interface explicit

swap :: Stack w -> Stack w -- Haskell

m Takes a stack, and returns a stack; that's all

void swap(stack s) /* C *x/

= Takes a stack; may modify it; may modify
other persistent state; may do I/0

Things to notice...

Pure functions are easy to test

prop swap s = swap (swap s) == s

= Tn an imperative or OO language, you have to

= set up the state of the object, and the external
state it reads or writes

® make the call

m inspect the state of the object, and the external
state

= perhaps copy part of the object or global state,
so that you can use it in the postcondition

Things to notice...

Types are everywhere

swap :: Stack w -> Stack w

= Usual static-typing rant omitted...

m Tn Haskell, types express high-level design,
in the same way that UML diagrams do; with
the advantage that the type signatures are
machine-checked

= Types are (almost always) optional: type
inference fills them in if you leave them out

Improving the design

g
Y’

A ring of windows
One has the focus

Improving the design

type Stack w = [w]
—-—- Focus 1s head of 1list

enumerate:: Stack w -> [w]
-- Enumerate the windows in layout order

enumerate s =

= Changing focus moves the windows around:
confusing!

Improving the design oricmtos

One has the focus

= Want: a fixed layout, still with one window

having focus
ajbleldlelf g
__T__J\ Y)

left right

Data type declaration

Constructor of the type

Represented as
MkStk [b,a] [c,d.ef.g]

data Stack w = MkStk [w] [w] -- left and right resp
-—- Focus 1s head of ‘right’ 1list

-—- Left list is *reversed¥*
—— INVARIANT: if ‘right’ is empty, so is ‘left’

A sequence of windows
One has the focus

Improving the design

= Want: a fixed layout, still with one window
having focus
albleldlelf g
__T__J\ Y)

left right

Represented as

MkStk [b,a] [c,d.ef.g]

data Stack w = MkStk [w] [w] -- left and right resp
-—- Focus i1s head of ‘right’ 1list

-—- Left list is *reversed*

—— INVARIANT: if ‘right’ is empty, so is ‘left’

enumerate :: Stack w -> [w]
enumerate (MkStack ls rs) = reverse ls ++ rs

\)
L"T"J \ {

left right

Moving focus

data Stack w = MkStk [w] [w] -- left and right resp

focusPrev :: Stack w -> Stack w

focusPrev (MkStk (l:1s) rs) MkStk 1ls (l:rs)
focusPrev (MkStk [] rs)

Nested pattern matching

A
Choices for left=[]: left ' right

* no-op

* move focus to end

: HERERENN
Moving focus ——\ , /

left right

data Stack w = MkStk [w] [w] -- left and right resp
-- Focus 1s head of ‘right’

focusPrev :: Stack w -> Stack w

focusPrev (MkStk (l:1ls) rs) MkStk 1ls (l:rs)
focusPrev (MkStk [] rs) case (reverse rs) of
(l:1s) -> MkStk 1ls [1]

aoanonn crces
\

 move focus to end
left right

E— \ﬂﬂﬂe
)

Note: I fixed a bug on this slide lef .
subsequent to presenting the tutorial eft r'ghT

Warning: Pattern match (es) are non-exhaustive

(:’()F)S; In the case expression: ...
e e []

Patterns not matched:

data Stack w = MkStk [w] [w] -- left and right resp
-- Focus 1s head of ‘right’

focusPrev :: Stack w -> Stack w

focusPrev (MkStk (l:1s) rs) MkStk 1ls (l:rs)

focusPrev (MkStk [] rs) case (reverse rs) of
(1:1s) -> MkStk 1s [1]
[] -> MkStk [] []

= Pattern matching forces us to confront all the
cases

= Efficiency note: reverse costs O(n), but that
only happens once every n calls to TocusPrev, so
amortised cost is O(1).

Data types

= A new data type has one or more constructors

= Each constructor has zero or more arguments

Stack w = MkStk [w] [w]
Bool = False | True
Colour = Red | Green | Blue

Maybe a = Nothing | Just a

Built-in syntactic sugar
for lists, but otherwise
lists are just another
data type

data Stack w = MkStk [w] [w]

Data types data Bool - False | True

data Colour = Red | Green | Blue

data Maybe a = Nothing | Just a

m Constructors are used:
= as a function to construct values (“right hand side")
= in patterns to deconstruct values (“left hand side")

isRed :: Colour -> Bool
isRed Red = True
isRed Green False
isRed Blue False

Patterns

data Maybe a Nothing | Just a

Data types date Stack w = MkStE [w] (v

-- Invariant for (MkStk 1ls rs)
Sl rs is empty => l1ls is empty

= Data types are used
= o describe data (obviously)
m to describe "outcomes” or “control”

module Stack(focus, ...) where A bit like an

focus :: Stack w -> Maybe w exception...
-- Returns the focused window of the stack
-— or Nothing if the stack is empty ;
focus (MkStk []) Nothing ..but you can‘r.for-ge’r
focus (MkStk (w:)) = Just w to catch it
I No “null-pointer
dereference”

module Foo where exceptions

import Stack

foo s = ...case (focus s) of
Nothing -> ...do this in empty case...
Just w -> ...do this when there is a focus...

Data type abstraction

module Operations(...) where

import Stack(Stack, focusNext)

OK: stack is imported

f :: Stack w -> Stack w
f (MkStk as bs) = ...

NOT OK: MkStk is not
imported

module Stack(Stack, focusNext, focusPrev, ...
data Stack w = MkStk [w] [w]

focusNext :: Stack w -> Stack w
focusNext (MkStk 1ls rs) =
(; Stack is exported,

but not its constructors;
so its representation is hidden

Haskell's module system

module X where

= Module SYSTem 1S import P
merely a name-space import O
control mechanism h = (P.£f, Q.£, g)

module P(f,g) where

= Compiler import Z(f)
typically does ‘E——-

lots of cross-module P
; 1A moqau.le wnere

® Modules can be

grouped into
module Z where

Type classes

The need for type classes

delete :: Stack w -> w -> Stack w

-—- Remove a window from the stack

= Can this work for ANY type w?

delete :: Vw. Stack w -> w —-> Stack w

= No - only for w's that support equality

sort :: [a] -> [a]

—— Sort the 1list

= Can this work for ANY type a?

= No - only for a's that support ordering

The need for type classes

serialise :: a -> String

-—- Serialise a value into a string

= Only for w's that support serialisation

square :: n -> n

square X = X*x

= Only for numbers that support multiplication

= But square should work for any number that
does; e.g. Int, Integer, Float, Double, Rational

“for all types w

that support the Type classes

Eq operations”

delete

Vw. Eg w => Stack w -> w -> Stack w

= TIf afunction works for every type that has particular
properties, the type of the function says just that

sort :: Ord a => [a] -> [al]

serialise :: Show a => a -> String
square :: Numn => n ->n

= Otherwise, it must work for any type whatsoever

reverse :: [a] -> [a]

filter :: (a -> Bool) -> [a] -> [a]

Works for any type 'n’ FORGET all
that supports the

Num operations Type C l asses ngu‘frngg

classes!

square :: Num n => n -> n
square X = x*x

The class
declaration says

class Num a where what the Num

(+) ::a ->a -> a operations are

(*) i a -> a -> a

negate :: a -> a

.etc. . An instance
declaration for a

type T says how the
Num operations are
implemented on T's

instance Num Int where
a+b = plusInt a b
a *b mulInt a b
negate a neglInt a

.etec. . plusInt :: Int -> Int -> Int
mulInt :: Int -> Int -> Int
etc, defined as primitives

How type classes work

When you write this... ...the compiler generates this

square :: Num n => n -> n square :: Num n -> n -> n

square x = x*x square d x = (*) d x x

The "Num n =>" turns into an

extra value argument to the
function.
It is a value of data type Num n

A value of type (Num T) is a

vector of the Num operations for
type T

How type classes work

When you write this... ...the compiler generates this

square :: Num n => n -> n square :: Num n -> n -> n
square x = x*x square d x = (*) d x x

class Num a where data Num a
(+) ;. a ->a -> a = MkNum (a->a->a)
(*) . a -> a -> a (a->a->a)
negate :: a -> a (a->a)
.etc.. ...etc...

(*) :: Num a -> a -> a -> a
(*) (MkNum m

The class decl translates to:
« Adata type decl for Num
« A selector function for A value of type (Num T) isa
each class operation vector of the Num operations for
type T

How type classes work

When you write this... ...the compiler generates this

square :: Num n => n -> n
square x = x*x

square :: Num n -> n -> n
square d x = (*) d x x

dNumInt :: Num Int
dNumInt = MkNum plusInt
mulInt

negInt

instance Num Int where
a+b plusInt a b
a*b = mulInt a b
negate a neglInt a
.etc..

An instance decl for type T
translates to a value A value of type (Num T) is a

declaration for the Num vector of the Num operations for
dictionary for T type T

All this scales up nicely

= You can build big overloaded functions by
calling smaller overloaded functions

sumSq :: Num n => n -> n -> n
sumSq X y = square X + square y

sumSq :: Num n -> n -> n -> n
sumSq d x y = (+) d (square d x)
(square d y)

Extract addition
operation from d

Pass on d to square

All this scales up nicely

= You can build big instances by building on
smaller instances

class Eg a where
(==) :: a -> a -> Bool

instance Eq a => Eq [a] where
(==) [1 [] True
(==) (x:xs) (y:ys) X==y && XS == ys
(==) _ _ False
data Eq = MkEq (a->a->Bool)
(==) (MkEq eq) = eq

dEqlList :: Eq a -> Eq [a]
dEqList d = MkKkEq eql
where

eql [] [] True
eql (x:xs) (y:ys) (==) d xy && eql xs ys
eql False

Example: complex numbers

class Num a where :
-> a Even literals are

a -> a
a -> a -> a
fromInteger :: Integer -> a

overloaded

1" means
“fromInteger 1"

data Cpx a = Cpx a a

instance Num a => Num (Cpx a) where
(Cpx rl il) + (Cpx r2 i2) = Cpx (rl+r2) (i1l1+i2)
fromInteger n = Cpx (fromInteger n) 0

A completely different example:
Quickcheck

quickCheck :: Test a => a -> IO ()

class Testable a where
test :: a -> RandSupply -> Bool

class Arbitrary a where
arby :: RandSupply -> a

instance Testable Bool where
test b r = b

instance (Arbitrary a, Testable b)
=> Testable (a->b) where

test £ r = test (f (arby rl)) r2

where (rl,r2) = split r

split :: RandSupply -> (RandSupply, RandSupply)

A completely different example:
Quickcheck

prop swap :: TS -> Bool

Using instance for (->)

test prop swap r

= test (prop swap (arby rl)) r2
where (rl,r2) = split r Using instance for Bool

= prop swap (arby rl)

A completely different example:
Quickcheck

class Arbitrary a where
arby :: RandSupply -> a

instance Arbitrary Int where
arby r = randInt r

instance Arbitrary a
=> Arbitrary [a] where Gener‘a're N'I VCllue
arby r | even rl = []
| otherwise = arby r2 : arby r3
where
(rl,r’) = split r
(r2,r3) = split r’ Generate cons value

split :: RandSupply -> (RandSupply, RandSupply)
randInt :: RandSupply -> Int

A completely different example:
Quickcheck

B QuickCheck uses type classes to auto-generate
YP g
®m random values
= testing functions

based on the type of the function under test

= Nothing is built into Haskell; QuickCheck is
just a library

= Plenty of wrinkles, esp
= test data should satisfy preconditions
m generating test data in sparse domains

Type classes = OOP?

m Tn OOP, a value carries a method suite

= With type classes, the method suite travels
separately from the value

= Old types can be made instances of new type
classes (e.g. introduce new Serialise class, make
existing types an instance of it)

= Method suite can depend on result type
e.g. fromInteger :: Num a => Integer -> a

= Polymorphism, not subtyping

Type classes have proved extraordinarily
convenient in pracftice

= Equality, ordering, serialisation

= Numerical operations. Even numeric
constants are overloaded; e.g. f x = x*2

= And on and on....time-varying
values, pretty-printing, collections,
reflection, generic programming,
marshalling, monads, monad transformers....

Type classes over time

= Type classes are the most unusual feature of
Haskell's type system

I

Hey, what's
Wild enthusiasm the big deal?

Despair

Incomprehension

1987 1989 1993 1997

Implementation begins

Type-class fertility

Higher kinded
type variables
(1995)

Implicit
parameters (2000)

Wadler/ Extensible

Blott Multi- records (1996) Computation
type parameter at the type

level
classes type classes

(1989) (1991) Functional

dependencies .
(2000) Generic
CAEACRR programming
instances

“newtype

deriving” Testing

Associated
Derivable Types (2005)

type classes Applications

Variations

Type classes summary

= A much more far-reaching idea than we
first realised: the automatic, type-driven
generation of executable "evidence”

= Many interesting generalisations, still
being explored

= Variants adopted in Isabel, Clean,
Mercury, Hal, Escher

= Long term impact yet to become clear

Doing 1/0O

Where is the I/0 in xmonad?

= All this pure stuff is very well, but sooner or
later we have to
= talk to X11, whose interface is not at all pure
= do input/output (other programs)

The whole point of
running a program is

A functional program
defines a pure

to have some side
effect

function, with no side
effects

Tension

Where is the I/0 in xmonad?

= All this pure stuff is very well, but sooner or
later we have to
= talk to X11, whose interface is not at all pure
= do input/output (other programs)

Configuration Layout

data algorithm

Events
(mouse, kbd,
client)

State machine
Window
placement ’ : \
\ Session state /

Doing I/0

putStr :: String -> ()

[l IdQG: -- Print a string on the console

m BUT: g[ol"/A swap :: Stack w -> Stack w

might do arbitrary stateful things
= And what does this do?

[putStr “yes”, putStr “no”]

= What order are the things printed?

= Are they printed at all?
Order of

evaluation!

The main idea

A value of type (IO t)is an "action” that,
when performed, may do some input/output
before delivering a result of type t.

putStr :: String -> IO ()
-- Print a string on the console

= "Actions” sometimes called "computations”
= Anaction is a first class value

= Evaluating an action has no effect;
performing the action has an effect

A helpful picture

A value of type (IO t)is an "action” that,
when performed, may do some input/output
before delivering a result of type t.

type IO a = World -> (a, World)
-—- An approximation

result :: a

World in > World out

Simple 1/0

String String

. o

getLine :: IO String

putStr :: String -> IO () Main program is an

action of type IO ()

main :: IO ()
main = putStr “Hello world”

Connecting actions up

0

>

Goal:
read a line and then write it back out

70

Connecting actions up

echo :: IO ()

echo = do { 1 <- getLine; putStr 1 }

|String|

echo

getLine putStr

>

We have connected two actions to
make a new, bigger action.

Getting two lines

getTwolLines :: IO (String,String)
getTwolines = do { sl <- getlLine

; s2 <- getLline

We want to just return (s1,52)

72

The return combinator

getTwoLines :: IO (String,String)
getTwolines = do { sl <- getLine

; 82 <- getline
; return (sl, s2) }

return :: a -> IO a

73

Desugaring do notation

» "do" notation adds only syntactic sugar

* Deliberately imperative look and feel

e>»=(\x->do{s})

e

(>>=) :: I0a -> (a -> I0Db) -> I0Db

74

Desugaring “do” notation

echo :: IO ()
echo = do { 1 <- getLine; putStr 1 }

getLine >>= (\1 -> putStr 1)

A "lambda abstraction”
(\x -> e) means
“a function taking one parameter, x, and returning e"

(>>=) :: I0a -> (a -=> IO b) -> I0 b

Using layout instead of braces

getTwoLines :: IO (String,String)
getTwolines = do sl <- getLine

s2 <- getLine
return (sl, s2)

= You can use
= explicit braces/semicolons
= or |ayout
® or any mixture of the two

Scripting in Haskell

An example: scripting in Haskell

Write this script
in Haskell

Run

QuickCheck on
Stack.hs ‘ all functions
called
“prop_xxx"

bash$ runhaskell QC.hs Stack.hs

prop swap: +++ OK, passed 100 tests
prop focusNP: +++ OK, passed 100 tests

Scripting in Haskell

module Main where

import System; import List

main :: IO ()
main = do { as <- getArgs
; mapM process as }

process :: String -> IO ()
process file = do { cts <- readFile file
; let tests = getTests cts

if null tests then
putStrln (file ++ ": no properties to check")
else do

writeFile "script" $

unlines ([":1 " ++ file] ++ concatMap makeTest tests)
system ("ghci -v0 < script")
return () }}

getTests :: String -> [String]
getTests cts = nub $ filter ("prop " “isPrefixOf’) $
map (fst . head . lex) $ lines cts

makeTest :: String -> [String]
makeTest test = ["putStr \"" ++ p ++ ": \"", “quickCheck " ++ p]

Executables have

module Main at top Script”’]g in HaSkEII

Import libraries

module Main where . .
Module Main must define

import System main :: IO ()
import List

main :: IO ()
main = do { as <- getArgs
; mapM_ process

getArgs :: IO [String]

-—- Gets command line args

mapM :: (a -> IO b) -> [a] -> IO ()
-- mapM f [x1, ..., xn]
-- =do { £ x1;

f xn;
return () }

Scripting in Haskell

readFile:: String -> IO String

process :: String -> IO () -- Gets contents of file
—-- Test one file

process file
= do { cts <- readFile file
; let tests = getTests cts

getTests:: String -> [String]
-- Extracts test functions
—-— from file contents

"n w

e.g. tests = ["prop_rev"”, "prop_focus"]

Scripting in Haskell

process file = cts <- readFile file
; let tests = getTests cts

; 1f null tests then
putStrLn (file ++ ": no properties to check")
else do

writeFile "script" (
unlines ([":1 " ++ file] ++
concatMap makeTest tests))

; system ("ghci -v0 < script")
; return () }}

putStrLn :: String -> IO ()
writeFile :: String -> String -> IO ()
system :: String -> IO ExitCode .| Stack.hs

putStr "prop_rev"
null :: [a] -> Bool quickCheck prop_rev
makeTest :: String -> [String] putStr “prop_focus”
concatMap :: (a->[b]) -> [a] -> [Db] quickCheck prop_focus
unlines :: [String] -> String

Scripting in Haskell

getTests :: String -> [String]
getTests cts = nub (

filter ("prop " "isPrefixOf’) (
map (fst . head . lex) (
lines cts)))

“module Main where\ nimport System...”

/A

[“module Main where”, “import System”, ...]

map (fst.head.lex)

77 4

[“module”, “import”, ..., “prop_rev”, ...]

filter ("prop_" " isPrefixOf")

[“prop_rev”, ...]

[“prop_rev”, ...]

Scripting in Haskell

getTests :: String -> [String]
getTests cts = nub (

filter ("prop " "isPrefixOf’) (
map (fst . head . lex) (
lines cts)))

lines :: String -> [String]

lex :: String -> [(String,String)]

map (fst.head.lex)

filter :: (a->Bool) -> [a] -> [a]

filter ("prop_" " isPrefixOf") isPrefixOf :: String -> String -> Bool

nub :: [String] -> [String]
-- Remove duplicates

Scripting in Haskell

makeTest :: String -> [String]
makeTest test = ["putStr \"" ++ p ++ ": \"V,
"quickCheck " ++ p]

makeTest “prop rev”

= [“putStr \”prop rev: \””,
“quickCheck prop rev”]

What have we learned

m Scripting in Haskell is quick and easy (e.g. no
need to compile, although you can)

= Tt is strongly typed; catches many errors

= But there are still many un-handled error
conditions (no such file, not lexically-
analysable, ...)

What have we learned

= Libraries are important; Haskell has a respectable
selection
= Regular expressions
= Http
= File-path manipulation
= | ots of data structures (sets, bags, finite maps etc)

= GUT toolkits (both bindings to regular toolkits such as Wx
and GTK, and more radical approaches)

= Database bindings

...but not (yet) as many as Perl, Python, C# etc

The types tell the story

I deliver a list of
type Company = String Company

sort :: [Company] -> [Company]
Sort lexicographically I may do some I/0
Two calls given the same and then deliver a list

arguments will give the of Company
same results

sortBySharePrice :: [Company] -> IO [Company]
-— Consult current prices, and sort by them
-- Two calls given the same arguments may not
-—- deliver the same results

Haskell: the world's finest
imperative programming language
= Program divides into a mixture of

= Purely functional code (most)
= Necessarily imperative code (some)

= The type system keeps them rigorously
separate

m Actions are first class, and that enables new
forms of program composition (e.g. mapM_)

First-class control structures
Values of type (IO t) are first class

So we cah define our own "control structures”

forever :: IO () -> IO ()
forever a = a >> forever a

repeatN :: Int -> IO () -> IO ()
repeatN = return ()
repeatN = a >> repeatN (n-1) a

forever (do { e <- getNextEvent
; handleEvent e })

90

Foreign function interface

In the end we have to call ¢! BMEEEEIEMEIES

Calling convention Header file and name
of C procedure

Haskell

foreign import ccall unsafe "HsXlib.h XMapWindow"
mapWindow :: Display -> Window -> IO ()

mapWindow

calls XMapWindow Haskell name and type
of imported function

void XMapWindow(Display *d, Window *w) {

}

Marshalling
All the fun is getting data across the border

data Display = MkDisplay Addr#
data Window MkWindow Addr#

Addr#: a built-in type
representing a C pointer

foreign import ccall unsafe "HsXlib.h XMapWindow"
mapWindow :: Display -> Window -> IO ()

'foreign import' knows how to
unwrap a single-constructor type,
and pass it to C

Marshalling
All the fun is getting data across the border

data Display MkDisplay Addr#
data XEventPtr MkXEvent Addr#

foreign import ccall safe "HsXlib.h XNextEvent"
xNextEvent:: Display -> XEventPtr -> IO ()

But what we want is

data XEvent = KeyEvent ... | ButtonEvent ...
| DestroyWindowEvent ... |

nextEvent:: Display -> IO XEvent

data Display
data XEventPtr

MkDisplay Addr#
MkXEvent Addr#

Marshalling

foreign import ccall safe
"HsXlib.h XNextEvent"
xNextEvent:: Display -> XEventPtr -> IO ()

Getting what we want is tedious...

data XEvent = KeyEvent ... | ButtonEvent ...
| DestroyWindowEvent ... |

nextEvent:: Display -> IO XEvent
nextEvent d
= do { xep <- allocateXEventPtr
; xNextEvent d xep
; type <- peek xep 3
; 1f type == 92 then
do { a <- peek xep 5
; b <- peek xep 6
; return (KeyEvent a b) }
else i1if ... }

...but there are tools that automate much of
the grotesque pain (hsc2hs, c2hs etc).

The rest of Haskell

Laziness
= Haskell is a lazy language

m Functions and data constructors don't
evaluate their arguments until they need

?hem cond :: Bool -> a -> a -> a
cond True ¢t e t
cond False t e e

= Same with local definitions

abs :: Int -> Int
abs x | x>0 p 4
| otherwise neg x

where
neg x = negate x

Why laziness is important

® | aziness supports modular programming

= Programmer-written functions instead of
built-in language constructs

(]1) :: Bool -> Bool -> Bool
True || x = True
False || x = x

Short-

circuiting
“Or'”

Laziness and modularity

isSubString :: String -> String -> Bool

X isSubStringOf s = or [x "isPrefixOf t
| t <- tails s]

tails :: String -> [String]

type String = [Char]

—— All suffixes of s

tails [] = [[]1]
tails (x:xs) = (x:xs) : tails xs

[Bool] -> Bool
(or bs) returns True if any of the bs is True

[] = False
(b:bs) = b || or bs

Why laziness is important

= Typical paradigm:
m generate all solutions (an enormous tree)
= walk the tree to find the solution you want

nextMove :: Board -> Move
nextMove b = selectMove allMoves

where
allMoves = allMovesFrom b

A gigantic (perhaps

infinite) free of possible
moves

Why laziness is important

= Generally, laziness unifies data with control

= | aziness also keeps Haskell pure, which is a
Good Thing

Other language features

Advanced types
+ Unboxed types Concurrent Haskell
« Multi-parameter type classes (threads,
* Functional dependencies communication,
« GADTs synchronisation)

« Implicit parameters Software

« Existential types Transactional
* etc etc Memory (STM)

Template Haskell
i Nested Data Parallel
(meta programming) Haskell e
Rewrite rules language
(domain-specific
compiler extensions) Generic programming
One program that works

Monads, monad over lots of different
transformers, and arrows data structures

Haskell’s tool Programming
ecosystem emace,vim.

Visual Studio)
Interpreters .Space apfi
(e.g. GHCi, Hugs) time profiling

Compilers Generators

(e.g. GHC, Jhc, Yhc) « parser (cf yacc)
* lexer (cf lex)

+ FFI

Haskell

language
Cover.age Documentation
Testing generation

(Haddock)

Testing
(e.g. QuickCheck, Hunit)
Packaging and

LIBRARIES (Cabel Hackane)

Time profiling

GHC timing profile viewer
File ‘View Help

Report Mon Mar 19 15:52 2007 Time and Allocation Profiing Report (Final)
catch_opt_prof +RTS -p -ATS Bernoulli_Safe -

regress -nolog -time

Total time 1.25sec

Total alloc 72,214,048 bytes

Cost Centre Module Entries Individual %time = Individual %alloc | Inherited %time Inherited %alloc
=l MAIM MAIM 0.0 0.0 100.0 100.0
= main Main 0.0 0.0 96.0 Q9.6
= execMormal Main 0.0 0.0 82.0 93.6
concatMapM General. General 2.0 0.0 8.0 0.0
= execFile Main 0.0 0.0 84.0 99.0

Command

comipile Frepare, Compile 12.0 0.0 12.0 0.0
= execMiddle Main 0.0 0.0 56.0
|oadStage Main 0.0 0.0 8.0
+ getTask Main 0.0 0.0 43.0
= analyse Analyse, all 0.0 0.0
= precond Analyse.Precond 0.0 0.0
+ backs Analyse,Badk 0.1

Viewer written in Haskell using GTK binding

Space profiling

Main -m - Main.hs 7054275 bytes x seconds Wed May 11 14:25:17 1994

. ParseLib
|Extract

. Import

. Lexical
<RUNTIME>

. LexPre

. ParselLex
HS

7 :Tr99234

. PreludeListHigh

. PreludeListExtra

: IName

. ParseCore

- NameLow
NameLib

. PreludeFold

. Extract
LexLow

W PreludeListSplit

. OTHER

Fig. 18. Heap production of nhe by madule, when compiling a amall program.

Coverage checking (hpc)

f:'_' Haskell program coverage - HaskellWiki - Windows Internet Explorer

j || K IGDDgIe

f}var.-_'Jv

1 @ - I?U http: f fhaskel. orgfhaskelbwikiiHaskel_program_coveragefExample_of _HTML_Surmmary_From_bpc-rarkup

n ! ¥
W ke }U Haskell program coverage - Haskellwiki | |*z7Page * {7 Tools -

This is an example of the table that provides the summary of coverage, with links the the individually marked-up files.

| Top Level Definitions | Alternatives | Expressions
| % | covered/total | % | covered/total | % | covered/total
| 100 % [0/0 | 1 100% 00 | | 100 % [0/0

module

|module nd={e

|module Construct

48 % |17/35 |

52 % |25/48 |

60 % |381/635

|module

Data

24 % |6/25 |

13 % |11/81

39 % |254/646

|module

Eval

70 % [22/31 |

60 % 65/108 |

57 % [361/628

|module

Geometry

75 % [42/56 |

69 % [45/65 |

70 % [300/427

|module

Illumination

61%|11/18 |

49 % |46/93

46 % |279/600

|module

Intersections

63 % |14/22 |

38 % |83/21

38 % |382/1001

|module

Interval

47 % (817 |

41 % [69/165

|module

Main

100 % (111 |

| 100 % [1/1

| 100 % [6/6

0% |(0/1 | 0% 0/1
80 % |16/20 | | 68 % 26/38
16%[1/6 [o—— 16 % 1/6
36 % [4/11 |

| 0%|0110
| 72 % |192/264
I 20 % |5/24
B 18 % [43/231

|module Misc

|module Parse

|module Primitives

|

3

41% 16/39 |
|

| —

|

|

|

B 24 % 13/53

|module Surface

Coverage checking (hpc)

reciprocal :: Int -> (String, Int)
reciprocal n n>1=('0": '." : digits, recur)
otherwise = error
"attempting to compute reciprocal of number <= 1"
where
(digits, recur) = divide n 1 []
divide :: Int -> Int -> [Int] -> (String, Int)
divide n c cs c elem cs = ([], position c cs)
= (show q, 0)
r /=0 (show q ++ digits, recur)
where
(g, r) = (c*10) "quotRem™ n
(digits, recur) = divide n r (c:cs)

position :: Int -> [Int] -> Int
position n (x:xs) n== =1
otherwise = 1 + position n xs

showRecip :: Int -> String
showRecip n =
"1/" ++ show n ++ " = " ++
else take p d ++ "(" ++ drop p d ++ ")"

P = length d - r
(d, r) = reciprocal n

main = do .
number <- readLn Yellow: not executed

putStrLn (showRecip number) Red: boolean gave False
main
Green: boolean gave True

HackageDB (Haskell’s CPAN)

f HackageDB: packages by category - Windows Internet Explorer

o

Q y - |,e.-; http:jfhackage haskel.orgfpackages)archive/pka-list, html j ho ARE 4 Ihackage
| ’.’;\ - D - i - |7k P

W dhe ool - «| War...‘ﬁDon...|EProF... A #15... | € ...|_§gGuy...|;éH..x |»|

hackageDB :: [Package]

Infroduction Packages What's new Upload User accounts

Packages by category

Categories: Code generation (1), Codec (9), Compilers/Interpreters (3), Composition (2), Control (6), Data (16), Data Mining (1), Data
Structures (5), Database (25), Development (6), Distribution (5), Editor (3), Foreign (1), Generics (1), Graphics (16), Interfaces (3).
Language (4), Monads (1), Network (18}, Parsing (5), Scripting (1}, Sound (3), System (21), Testing (4), Text (25), Tool (1), User
Interfaces (7), Web (4), Xml (1), Unclassified (15).

Code generation
harpy library: Runtime code generation for x86 machine code

Codec

basefd-string library. Basef64 implementation for String's.

bzlib library: Compression and decompression in the bzip2 format
Codec-Compression-L ZF library: L/F compression bindings.
compression library: Commaon compression algarithms.

Crypto library and programs: DES, Blowfish, AES, SHA1, MD5, RSA, ..
mime-string library: MIME implementation for String's.

tar library: TAR (tape archive format) library.

utfS-string library: Support for reading and writing UTFS Strings

zZlib library: Compression and decompression in the gzip and zlib formats

Compilers/interpreters

hiccup program: Simple tcl inferpeter

hic nroviram- lavacerint Parcaor

Cabal (Haskell's installer)

= A downloaded package, p, comes with
" p.cabal: a package description
® Setup.hs: a Haskell script to build/install

bash$./Setup.hs configure
bash$./Setup.hs build

bash$./Setup.hs install

Standing back...

The central challenge

Useful Arbitrary effects
Useless @

Dangerous Safe

The challenge of effects

Plan A

(everyone glse)
Arbitrary effects # @
Plan B
(Haskell)

Useful

Useless

Dangerous Safe

Two basic approaches: Plan A

Arbitrary effects -

Default = Any effect

Examples Plan = Add restrictions

m Regions
= Ownership types

= Vault, Spec#, Cyclone,
etc etfc

Two basic approaches: Plan B

Default = No effects
Plan = Selectively permit effects

Types play a major role

Two main approaches:

= Domain specific Iang(uages
<(;SQL, XQuery, MDX,
oogle map/reduce)

= Wide-spectrum functional Value oriented
languages + controlled programming
effects (e.g. Haskell)

Lots of cross-over

Plan A

(everyone glse)
Arbitrary effects #

Envy

Useful

Plan B
(Haskell)

Useless

Dangerous Safe

Lots of cross-over

Plan A
(everyone glse)

Usetul Arbitrary effects

Ideas; e.g. Software
Transactional Memory
(retry, orElse)

Plan B
(Haskell)

Useless

Dangerous Safe

SLPJ conclusions

= One of Haskell's most significant
contributions is to take purity seriously, and
relentlessly pursue Plan B

= Tmperative languages will embody growing
(and checkable) pure subsets

= Knowing functional programming makes you a
better Java/C#/Perl/Python/Ruby
programmer

More info: haskell.org

The Haskell wikibook
= http://en.wikibooks.org/wiki/Haskell

All the Haskell bloggers, sorted by topic
m http://haskell.org/haskellwiki/Blog_articles

Collected research papers about Haskell
m hitp://haskell.org/haskellwiki/Research_papers

Wiki articles, by category
= http://haskell.org/haskellwiki/Category:Haskell

Books and tutorials
m hitp://haskell.org/haskellwiki/Books and_tutorials

http://en.wikibooks.org/wiki/Haskell
http://haskell.org/haskellwiki/Blog_articles
http://haskell.org/haskellwiki/Research_papers
http://haskell.org/haskellwiki/Category:Haskell
http://haskell.org/haskellwiki/Books_and_tutorials

Wikibook

ﬂ; Haskell - Wikibooks, collection of open-content textbooks - Windows Internet Explorer - |El|i|

! : ~ |4 http://en, wikibooks, orgfwikifHas Tl T A |nir shavik i
) 2 http:fjen. wikibooks. argjwikiiHaskel > b 2

n - _ . _ N = -1}
W e 55| ~| Ehttp:fitwebyit... | k% #1494 (panicl... | € smerican Expr. .. ‘Epnrt 25: Rand... | @ http:jjresearc... |t—HaskE||-W... b 4 ‘ ‘ - Fl - m=n - :fPage - (O Took -

) N
= PYyCCKWA

Haskell Basics [edit] Elementary [edit] Intermediate [edit] Monads
Haskell Haskell

Getting set up Understanding monads
Variables and functions = Recursion = Modules Advanced monads
Lists and tuples = Pattern matching = |ndentation Additive monads (MonadPlus)
Mext steps More abaut lists Maore on datatypes Monad transformers
Type basics Control structures Class declarations Practical monads
Simple input and output List processing Classes and types edit this chapter g
Type declarations More on functions Keeping track of State

edit this chapter g Higher order functions m edit this chapter

edit this chapter g

Advanced Track [edit]

This section will introduce wider functional programming concepts such as different data structures and type theory. It will also cover more practical
topics like concurrency.

Advanced Haskell [edit] . Fun with Types [edit] Wider Theory [edit] Haskell [edit]

Arrows i Existentially quantified types i Denotational semantics @ Performance

Understanding arrows Palymorphism Equational reasoning = Graph reduction =
Continuation passing style . Advanced type classes . Program derivation p C Laziness @
(CPS) = : Phantom types & - Category theory B - Strictness
Mutable objects Generalised algebraic data-types The Curry-Howard Algorithm complexity
Zippers & ' (GADT) i isomorphism i Parallelism
Applicative Functors . Datatype algebra i edit this chapter g | Choosing data
Concurrency it this ter structures

edit this chapter g

More info: haskell.org

ﬂ‘ Haskell - HaskellWiki - Windows Internet Explorer

@._ y - IA, http: ! fhaskell. orgfhaskelwikiiHaskell j *4| A | |oscon 2007

oo - - >
U €A O Haskel - Haskelwiki 5~ B - o= v b Page v () Took -

Haskell

Categories: Events

Haskell is a general purpose, purely functional programming language featuring static typing, higher order functions, polymorphism, type classes, and
monadic effects. Haskell compilers are freely available for almost any computer.

1 About 4l 5 Events [edit]
Introduction ICFP Programming Contest 2007 Anywhere July 20-23, 2007
Language definition OSCON Haskell Tutorial Portland/Oregon July 23, 2007
History of Haskell High-level Parallel Programming Workshop Tokyo/Japan July 23-24 2007
Future of Haskell IFL Freiburg/Germany September 27-29, 2007
Implementations Haskell Workshop Freiburg/Germany September 30, 2007

_ ICFP Freiburg/Germany October 1-3 2007

ﬁITQCS Haskell Hackathon 2007 |l Freiburg/Germany Sept/October 2007

nhcas FPDag Utrecht/Netherlands January 11, 2008

Yhc

2 Learning Haskell &R

Haskell in 5 steps Haskell.org is a mentoring organisation in the 2007 Google Summer of Code. 9

Learning Haskell students have been funded by Google to work on infrastructure projects for Haskell.

Books and tutorials]]]] o
A The Haskell-prime committee has started work on defining the next minor revision of

Wiki articles i .

the language specification.

Blog articles
Wikibook The May 2007 Haskell Communities and Activities report is now out, documenting
Research papers projects in the Haskell community.

Example code]] o]
Haskell, for the third year running, was used by the winning team in the ICFP

. = Programming Contest.
3 Libraries 8 L

Standard libraries
Hackage library database
Applications and libraries 2007-05-07
Hoogle: library search

7 News

