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Abstract
Supercompilation is a technique due to Turchin [1] which allows
for the construction of program optimisers that are both simple
and extremely powerful. Supercompilation is capable of achieving
transformations such as deforestation [2], function specialisation
and constructor specialisation [3]. Inspired by Mitchell’s promising
results [4], we show how the call-by-need supercompilation algo-
rithm can be recast to be based explicitly on an evaluator, and in the
process extend it to deal with recursive let expressions.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory – Semantics; D.3.2 [Pro-
gramming Languages]: Language Classifications – Applicative
(functional) languages; D.3.4 [Programming Languages]: Pro-
cessors – Optimization

General Terms Supercompilation, Performance

1. Overview
The key contributions of this paper are as follows:

• We cast supercompilation in a new light, showing how to de-
sign a modular supercompiler that is based directly on the op-
erational semantics of the language (Section 3). Viewing super-
compilation in this way is valuable, because it makes it easier to
derive a supercompiler in a systematic way from the language,
and to adapt it to new language features. Previous work inter-
mingles evaluation and specialisation in a much more complex
and ad-hoc way.

• As an example of this flexibility, we show how to supercompile
a call-by-need language with unrestricted recursive let bind-
ings, by making use of a standard evaluator for call-by-need
(Section 4). This has two advantages:

Our supercompiler can deforest the following term:

let ones = 1 : ones;map = . . .
in map (λx . x + 1) ones

into the direct-style definition:

let xs = 2 : xs in xs

No other existing supercompiler achieves this, to our knowl-
edge; previous supercompilers for lazy languages have dealt
only with non-recursive let bindings.

[Copyright notice will appear here once ’preprint’ option is removed.]

Because recursion is not special, we do not need to give the
program top-level special status, or λ-lift the input program.

• We perform an empirical evaluation of our supercompiler (Sec-
tion 5), in particular comparing it to Mitchell’s supercompiler
[4]. Our supercompiler reduces benchmark runtime by up to
95%, with a harmonic mean reduction of 70%.

2. Supercompilation by example
The best way to understand how supercompilation works is by
example. Let’s begin with a simple example of how standard su-
percompilation can specialise functions to their higher-order argu-
ments:

let inc = λx . x + 1
map = λf xs. case xs of [ ]→ [ ]

(y : ys)→ f y : map f ys
in map inc zs

A supercompiler evaluates open terms, so that reductions that
would otherwise be done at runtime are performed at compile time.
Consequently, the first step of the algorithm is to reduce the term
as much as possible, following standard evaluation rules:

let inc = . . . ;map = . . .
in case zs of [ ]→ [ ]

(y : ys)→ inc y : map inc ys

At this point, we become stuck on the free variable zs . The most
important decision when designing a supercompiler is how to pro-
ceed in such a situation, and we will spend considerable time later
explaining how this choice is made when we cover the splitter in
Section 3.5. In this particular example, we continue by recursively
supercompiling two subexpressions. We intend to later recombine
the two subexpressions into an output term where the case zs re-
mains in the output program, but where both branches of the case
have been further optimised by supercompilation.

The first subexpression is just [ ]. Because this is already a value,
supercompilation makes no progress: the result of supercompiling
that term is therefore [ ].

The second subexpression is:

let inc = . . . ;map = . . .
in inc y : map inc ys

Again, evaluation of this term is unable to make progress: the rules
of call-by-need reduction do not make allowance for evaluating
within non-strict contexts such as the arguments of data construc-
tors. It is once again time to use the splitter to produce some subex-
pressions suitable for further supercompilation.

This time, the first subexpression is:

let inc = . . . in inc y
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Again, we perform reduction, yielding the supercompiled term
y + 1. The other subexpression, originating from splitting the
(y : ys) case branch, is:

let inc = . . . ;map = . . .
in map inc ys

This term identical to the one we started with, except that it has
the free variable ys rather than zs . If we continued inlining and
β-reducing the map call, the supercompiler would not terminate.
This is not what we do.

Instead, the supercompiler uses a memo function. It records all
of the terms it has been asked to supercompile as it proceeds, so that
it never supercompiles the same term twice. In concrete terms, it
builds up a set of promises, each of which is an association between
a term previously submitted for supercompilation, its free variables,
and a unique, fresh name (typically written h0 , h1 , etc.). At this
point in the supercompilation of our example, the promises will
look something like this:

h0 zs 7→ let inc = . . . ;map = . . . in map inc zs
h1 7→ [ ]
h2 y ys 7→ let inc = . . . ;map = . . . in inc y : map inc ys
h3 y 7→ let inc = . . . in inc y

We have presented the promises in a rather suggestive manner, as
if the promises were a sequence of bindings. Indeed, the intention
is that the final output of the supercompilation process will be not
only an optimised expression, but one optimised binding for each
h0 , h1 , ... ever added to the promises.

Because the term we are now being asked to supercompile is is
simply a renaming of the original term (with which we associated
the name h0 ) we can immediately return h0 ys as the supercom-
piled version of the current term. Producing a tieback like this we
can rely on the (not yet known) optimised form of the original term
(rather than supercompiling afresh), while simultaneously sidestep-
ping a possible source of non-termination.

Now, both of the recursive supercompilations requested in the
process of supercompiling h1 have been completed. We can now
rebuild the optimised version of the h2 term from the optimised
subterms, which yields:

h3 y : h0 ys

Continuing this process of rebuilding an optimised version of the
supercompiler input from the optimised subexpressions, we even-
tually obtain this final program:

let h0 zs = case zs of [ ]→ h1 ; (y : ys)→ h2 y ys
h1 = [ ]
h2 y ys = h3 y : h0 ys
h3 y = y + 1

in h0 zs

A trivial post-pass can eliminate some of the unnecessary indirec-
tions to obtain a version of the original input expression, where
map has been specialised on its functional argument:

let h0 zs = case zs of [ ]→ [ ]; (y : ys)→ (y + 1) : h0 ys
in h0 zs

3. The basic supercompiler
We now describe the design of an unusually-modular supercom-
piler for a simple functional language that closely approximates
GHC’s intermediate language, Core. The syntax of the language it-
self in presented in Figure 1; it is a standard untyped call-by-need
calculus with recursive let, algebraic data types, primitive literals
and strict primitive operations. Although Figure 1 describes terms

Variables x, y, z Primitives ⊗ ::= +,−, . . .

Data Constructors C ::= True, Just , (:), . . .

Literals ` ::= 1, 2, . . . , ’a’, ’b’, . . .

Values
v ::= λx. e Lambda abstraction

| ` Literal
| C x Saturated constructed data

Terms
e ::= x Variable reference

| v Values
| e x Application
| e⊗ e Binary primops
| let x = e in e Recursive let-binding
| case e of α → e Case decomposition

Case Alternative
α ::= ` Literal alternative

| C x Constructor alternative

Heaps H ::= x 7→ e Stacks K ::= κ

Stack Frames
κ ::= update x Update frame

| • x Apply to function value
| case • ofα → e Scrutinise value
| • ⊗ e Apply first value to primop
| v ⊗ • Apply second value to primop

Figure 1: Syntax of the Core language and evaluator

in A-normal form [5], for clarity of presentation we will often write
non-normalised expressions. A program is simply a term, in which
the top-level function definitions appear as possibly-recursive let
bindings.

A small-step operational semantics of Core appears in Figure 3,
and is completely conventional in the style of Sestoft [6] — so
conventional that our description here is very brief indeed. The
state of the machine is a triple 〈H e K〉, of a heap, a term and a
stack. The term is the focus of evaluation, while the stack embodies
the evaluation context, or continuation, that will consume the value
produced by the term. Figure 1 gives the syntax of heaps and stacks,
as well as terms.

Our supercompiler is built from the following four, mostly in-
dependent, subsystems:

1. A termination criteria that prevents the supercompiler from
running forever: Section 3.2

2. An evaluator for the language under consideration: Section 3.3

3. A memoiser, which ensures that we supercompile any term at
most once: Section 3.4

4. A splitter that tells us how to proceed when evaluation becomes
blocked: Section 3.5

We will show how to implement each of these components in a
way that will yield a standard supercompiler, which is nonetheless
more powerful than previous work in that it will naturally support
recursive let.
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type Heap = Map Var Term

type Stack = [StackFrame ]
data StackFrame = . . . -- See κ in Figure 1

data Term = . . . -- See e in Figure 1

type State = (Heap,Term,Stack)
freeVars :: State → [Var ]
rebuild :: State → Term

sc :: History → State → ScpM Term

-- The evaluator (Section 3.3)
reduce :: State → State

-- The splitter (Section 3.5)
split :: Monad m ⇒ (State → m Term)

→ State → m Term

-- Termination checking (Section 3.2)
type History = [State ]
emptyHistory = [ ] :: History
terminate :: History → State → TermRes
data TermRes = Stop | Continue History

-- Memoisation and the ScpM monad (Section 3.4)
memo :: (State → ScpM Term)

→ State → ScpM Term

match :: State → State → Maybe (Var → Var)

runScpM :: ScpM Term → Term
freshName :: ScpM Var
promises :: ScpM [Promise ]
promise :: Promise → ScpM ()
bind :: Var → Term → ScpM ()
data Promise = P {name :: Var ,

fvs :: [Var ],
meaning :: State }

Figure 2: Types used in the standard supercompiler

3.1 The top-level
A distinctive feature of our supercompiler is that it operates on
States rather than Terms; we reflect on why in Section 3.7. A
State is a triple of type (Heap,Term,Stack), and it represents
precisely the state 〈H e K〉 of the abstract machine (Figure 3).

Notice that Term and State are isomorphic: any Term can
be converted to its initial State , and any State can be converted
back to a Term simply by wrapping the heap and the stack around
the term, a function we call rebuild . The signatures of the major
functions and data types used by the supercompiler – including
State and rebuild – are given for easy reference in Figure 2.

The core of the supercompilation algorithm is sc, whose key
property is this: for any history h and state s , (sc h s) returns a
term with exactly the same meaning as s , but which is implemented
more efficiently.

sc, sc′ :: History → State → ScpM Term
sc hist = memo (sc′ hist)
sc′ hist state = case terminate hist state of

Continue hist ′ → split (sc hist ′) (reduce state)
Stop → split (sc hist) state

As foreshadowed in Section 2, sc is a memoised function: if it
is ever asked to supercompile a State that is identical to one we
have previously supercompiled (modulo renaming), we want to
reuse that previous work. This is achieved by calling memo, which

memoises uses of sc by recording information in the ScpM monad.
We will describe memoisation in more detail in Section 3.4.

Memoisation deals with the case where sc is called on an iden-
tical argument. But what if it is called on a growing argument? You
might imagine that we would keep supercompiling forever. This
well-known problem arises, for example, when supercompiling a
recursive function with an accumulating parameter.

There is likewise well-known way to ensure that supercompi-
lation terminates, which involves maintaining a “history” of previ-
ous arguments. In concrete terms, the parameter hist is the history,
and sc′ starts by calling terminate (Figure 2) to decide whether
to Stop or (the common case) Continue . The implementation of
histories and terminate is elaborated in Section 3.6. The normal
case is that terminate returns Continue hist ′, in which case sc′

proceeds thus:

1. It invokes a call-by-need evaluator, reduce , to optimise the
state s by evaluating it to head normal form. This amounts to
performing compile-time evaluation, so reduce must itself be
careful not to diverge – see Section 3.3.

2. It uses split to recursively supercompile some subcomponents
of the reduced state, optimising parts of the term that reduction
didn’t reach.

Here is an example. Imagine that this term was input to sc1:

let x = True; y = 1 + 2
in case x of True → Just y ;False → Nothing

Assuming that this State has never been previously supercompiled,
sc′ will be invoked by memo. Further assuming that the termina-
tion check in sc′ returns Continue , we would reduce the input
state to head normal form, giving a new state ′:

let y = 1 + 2 in Just y

The case computation and x binding have been reduced away. It
would be possible to return this state ′ as the final, supercompiled
form of our input — indeed, in general the supercompiler is free
to stop at any time, using rebuild to construct a semantically-
equivalent result term. However, doing so misses the opportunity to
supercompile some subcomponents of state ′ that are not reduced
in the head normal form. Instead, we feed state ′ to split , which:

1. Invokes sc hist ′ on the subterm 1 + 2, achieving further su-
percompilation (and hence optimisation). Let’s say for the pur-
poses of the example that this then returns the final optimised
term h1 , with a corresponding optimised binding h1 = 3
recorded in the monad.

2. Reconstructs the term using the optimised subexpressions. So
in this case the Term returned by split would be let y =
h1 in Just y .

The entry point to the supercompiler, start , is as follows:

start :: Term → Term
start e = runScpM (sc emptyHistory (emptyHeap, e, [ ]))

The input term, e , is first converted into an initial State , namely
(emptyHeap, e, [ ]). This initial state is passed to the main super-
compiler sc, along with the initial history. Finally sc is performed
in the ScpM monad, initialised by runScpM – we describe this
monad in detail in Section 3.4.

In the following sections, we will explore the meaning and im-
plementation of the reduce , memo, terminate and split functions
in much more detail.

1 Technically sc takes a State not a Term , but in our examples we will
often write a term e in place of the state (emptyHeap, e, [ ]), as we do
here.
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3.2 The termination criteria
The core of the supercompiler’s termination check is provided by a
single function, terminate:

terminate :: History → State → TermRes
data TermRes = Stop | Continue History

As the supercompiler proceeds, it builds up an ever-larger History
of previously-observed States. This history is both interrogated
and extended by calling terminate . Termination is guaranteed by
making sure that History cannot grow indefinitely.

More precisely, terminate guarantees that, for any history h0

and states s0, s1, s2, . . . there can be no infinite sequence of calls
to terminate of this form:

terminate h0 s0 = Continue h1

terminate h1 s1 = Continue h2

. . .
terminate hi si = Continue hi+1

Instead, there will always exist some j such that:

terminate hj sj = Stop

In Section 3.3 we will see how reduce uses terminate to ensure
that it only performs a bounded number of reduction steps, and we
will discuss how terminate ensures that the overall supercompiler
terminates in Section 3.6.

So much for the specification, but how can terminate be im-
plemented? Of course, (λxy .Stop) would be a sound implementa-
tion of terminate , in that it satisfies the property described above,
but it is wildly over-conservative because it forces the supercom-
piler to stop reduction immediately. We want an implementation of
terminate that is correct, but which nonetheless waits for as long
as possible before preventing further reduction by answering Stop.

The key to implementing such a termination criteria is defining a
well-quasi-order [7]. The relation C ∈ S×S is a well-quasi-order
iff for all infinite sequences of elements of S (s0, s1, . . .), there
∃ij.i < j∧siCsj . Given any well-quasi-orderC : State×State ,
we can implement a correct terminate function:

terminate prevs here
= if any (Chere) prevs then Stop

else Continue (here : prevs)

Concretely, we choose the tag-bag ordering of Mitchell [4] as
the basis of our well-quasi-order. The tag-bag order relates bags
(multisets) of “tags” as follows:

t1 Ctb t2 ⇐⇒ set (t1) = set (t2) ∧ |t1| ≤ |t2|

For this to be a well-quasi-order there must be a finite number
of distinct tags that can appear in the bags. We take tags to be
Ints, and assume that every sub-term of the supercompiler’s input
program is labelled with a unique Int , which forms the tag for that
expression. Likewise, StackFrames are labelled with the tag of the
term the evaluator produced them from – e.g. a case • ofα → e
frame would be labelled with the tag of the corresponding case
expression. Occasionally, the evaluator needs to manufacture a new
term which did not necessarily occur in the input program – e.g. if
we evaluate 1 + 2 to get the new value 3. In such cases, one of the
operand tags is used as the tag for the new term.

The termination criteria then defines an internal function that
obtains a tag-bag from the components of a State triple:

tagBag :: State → Bag Tag
tagBag (h, e, k)

= (termTag e ∗ 2) ‘insertBag ‘
fmap (∗3) (heapTagBag h) ‘plusBag ‘
fmap (∗5) (stackTagBag k) ‘plusBag ‘

The tagBag function multiplies tags by distinct prime numbers
depending on where in the evaluation context the tag originated
from. This does not change the fact that there are only ever a finite
number of distinct tags in the bags (and hence Ctb is still a well-
quasi-order). However, the multiplication prevents the evaluator
from terminating just because e.g. a tagged binding that used to
appear in the Heap is forced and hence has its tag show up on a
StackFrame instead.

Finally, we can combine tagBag and Ctb to produce the well-
quasi-order C on States used by terminate:

(C) :: State → State → Bool
s1 C s1 = tagBag s1 Ctb tagBag s2

Mitchell uses tag-bags in a similar way, but only associates
tags with let-bound variables. In order to tag every subexpression,
he keeps terms in a normal form where all subexpressions are
let-bound. Supercompiling States and tagging subterms directly
means that we can avoid let-floating and – because we distinguish
between tags from subexpressions currently being evaluated (in the
stack), and those subexpressions that are not in the process of being
forced (in the heap) – our termination criteria is more lenient.

3.3 The evaluator
The reduce function tries to reduce a State to head normal form.
In case the term diverges, reduce includes a termination check
that allows it to stop after a finite number of steps. (This check is
conservative, of course, so reduce might fail to find a head normal
form when one does exist.) The two key properties of reduce are:

• Reduction preserves meaning: the State returned has the same
semantics as the input State

• Regardless of what meaning the input State may have, reduce
always terminates

The implementation is straightforward:

reduce :: State → State
reduce = go emptyHistory
where

go hist state = case step state of
Nothing → state
Just state ′

| intermediate state ′ → go hist state ′

| otherwise → case terminate hist state ′ of
Stop → state ′

Continue hist ′ → go hist ′ state ′

intermediate ( ,Var , ) = False
intermediate = True

step :: State → Maybe State
-- Implements Figure 3

The reduce function uses a loop, the function go, with an accu-
mulating history. In turn go uses an internal function, step, which
implements precisely the one-step reduction relation of Figure 3.
Note that step returns a Maybe State – this accounts for reduction
being unable to proceed due to either reaching a value, or because
a variable is in the focus which is not bound by the heap (remem-
ber that reduce may be used on open terms). In that case reduce
terminates with the state it has reached.

The totality of reduce is achieved using the terminate func-
tion. If terminate reports that evaluation appears to be diverging,
reduce immediately returns. As a result, the State triple (h, e, k)
returned by reduce might not be fully reduced – in particular, it
might be the case that e ≡ Var x where x is bound by h .

As an optimisation, the termination criteria is not tested if the
State is considered to be “intermediate”. The intermediate pred-
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〈H e K〉 〈H e K〉

VAR 〈H,x 7→ e x K〉  〈H e update x,K〉
UPDATE 〈H v update x,K〉  〈H,x 7→ v v K〉
APP 〈H e x K〉  〈H e • x,K〉
LAMBDA 〈H λx. e • x,K〉  〈H e K〉
PRIM 〈H e1⊗ e2 K〉  〈H e1 • ⊗ e2,K〉
PRIM-LEFT 〈H v1 • ⊗ e2,K〉  〈H e2 v1 ⊗ •,K〉
PRIM-RIGHT 〈H v2 v1 ⊗ •,K〉  〈H ⊗ (v1, v2) K〉
CASE 〈H case escrut of α → e K〉  〈H escrut case • ofα → e,K〉
DATA 〈H C x case • of {. . . ,C x → e, . . .} ,K〉  〈H e K〉
LIT 〈H ` case • of {. . . , ` → e, . . .} ,K〉  〈H e K〉
LETREC 〈H let x = e in ebody K〉  〈H,x 7→ e ebody K〉

Figure 3: Operational semantics of the Core language

icate shown ensures that we only test for non-termination upon
reaching a variable – this is safe because every infinite series of
reduction steps must certainly have a variable occur in the focus
an infinite number of times. After some experience with our super-
compiler we discovered that making termination tests infrequent is
actually more than a mere optimisation. If we test for termination
very frequently (say, after every tiny step), the successive states
will be very similar; and the more similar they are, the greater the
danger that the necessarily-conservative termination criterion (Sec-
tion 3.2) will unnecessarily say Stop. (For example, in the limit, it
must say Stop for two identical states.)

3.4 The memoiser
The purpose of the memoisation function, memo, is to ensure that
we never supercompile a term more than once. We achieve this
by using the ScpM monad to record information about previously
supercompiled States . Precisely, the ScpM monad is a simple state
monad with three pieces of state:

1. The promises, which comprise all the States that have been
previously submitted for supercompilation, along with:
• The names that the supercompiled versions of those States

will be bound to in the final program (e.g. h0 , h1 )
• The list of free variables that those bindings will be ab-

stracted over2. By instantiating these free variables several
different ways, we can reuse the supercompiled version of a
State several times.

The data structure used to store all this information is called a
Promise (Figure 2).

2. The optimised bindings, each of the form x = e. The runScpM
function, which is used to actually execute ScpM Term com-
putations, wraps the optimised bindings collected during the su-
percompilation process around the final supercompiled Term
in order to produce the final output.

3. A supply of fresh names (h0 , h1 , ...) to use for the optimised
bindings.

When sc begins to supercompile a State , it records a promise
for that state; when it finishes supercompiling that state it records

2 Strictly speaking, bindings with no free variables at all should nonetheless
be λ-abstracted over a dummy argument (such as ()). This will prevent
us from accidentally introducing space leaks by increasing the garbage-
collection lifetime of constant expressions.

a corresponding optimised binding for it. At any moment there
may be unfulfilled promises that lack a corresponding binding,
but every binding has a corresponding promise. Moreover, every
promise will eventually be fulfilled by an entry appearing in the
optimised bindings. Figure 2 summarises the signatures of the
functions provided by ScpM .

We can now implement memo as follows:

memo :: (State → ScpM Term)
→ State → ScpM Term

memo opt state = do
ps ← promises
let ress = [ (name p ‘apps‘ map rn (fvs p))

| p ← ps
, Just rn ← [match (meaning p) state ]
]

case ress of
res : → return res
[ ] → do

x ← freshName
let vs = freeVars state
promise P {name = x , fvs = vs,

meaning = state }
e ← opt state
bind x (lambdas vs e)
return (x ‘apps‘ vs)

The memo function proceeds as follows:

1. Firstly, it examines all existing promises . If the match function
reports that some existing promise matches the State we want
to supercompile (up to renaming), memo returns a call to the
optimised binding corresponding to that existing promise.

2. Assuming no promise matches, memo continues:

(a) A new promise for this novel State is made, in the form of
a new Promise entry. A fresh name of the form hn (for
some n) is associated with the Promise .

(b) The state is optimised by calling opt , obtaining an opti-
mised term e .

(c) A final optimised binding hn = λfvs (s) . e is recorded
using bind . This binding will be placed in the output pro-
gram by runScpM .

(d) Finally, a call to that binding, hn fvs (s), is returned.
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The match function is used to compare States:

match :: State → State → Maybe (Var → Var)

The key properties of the match function are that:

• If match s1 s2 ≡ Just rn then the meaning of s2 is the same
as that of rn(s1).

• If s1 is syntactically identical to s2 , modulo renaming, then
isJust (match s1 s2 ). This property is necessary for termina-
tion of the supercompiler, as we will discuss later.

Naturally, it is desirable for the match function to match as many
truly equivalent terms as possible. This is made slightly more con-
venient by the fact that we consider matching States, as they may
have already been weakly normalised by the evaluator. Our imple-
mentation exploits this by providing a match function that is in-
sensitive to the exact order of bindings in the Heap.

One subtle point is that the matching should be careful not to
duplicate work. This can happen if an old term such as:

let x = fact 100; y = fact 100 in (x , y)

is matched against a proposed new one such as:

let x = fact 100 in (x , x )

However, if the let-bindings in those terms had bound, say, True
instead of fact 100 then matching them would be both permissible
and desirable.

3.5 The splitter
The job of the splitter is to somehow continue the process of
supercompiling a State which we may not reduce further, either
because of a lack of information (e.g. if the State is blocked on a
free variable), or because the termination criteria is preventing us
from making any further one-step reductions. The splitter has the
following type signature:

split :: Monad m ⇒ (State → m Term)
→ State → m Term

In general, (split opt s) identifies some sub-components of the
state s , uses opt to optimise them, and combines the results into a
term whose whose meaning is the same as s (assuming, of course,
that opt preserves meaning).

A sound, but feeble, implementation of split opt s would be
one which never recursively invokes opt :

split s = return (rebuild s)

Such an implementation is wildly conservative, because not even
trivially reducible subexpressions will benefit from supercompila-
tion. A good split function will residualise as little of the input as
possible, using opt to optimise as much as possible. It turns out
that, starting from this sound-but-feeble baseline, there is a rich va-
riety of choices one can make for split , as we explore in the rest of
this section.

In preparation for describing split in more detail, we first intro-
duce a notational device similar to that of Mitchell [4] for describ-
ing the operation of split on particular examples. Suppose that the
following State is given to split :

〈x 7→ 1, xs 7→ map (const 1) ys x : xs ε〉
In our notation the output of split would be this “term”, which has
sub-components that are States:

let x = 〈ε 1 ε〉 ; xs = 〈ε map (const 1) ys ε〉
in x : xs

You should read this in the following way:

• The part of the term outside the 〈state brackets〉 is the residual
code that will form part of the output program.

• In contrast, those things that live within the brackets are the
not-yet-residual States which are fed to opt for further super-
compilation.

Before split returns, the supercompiled form of the bracketed ex-
pressions is pasted into the correct position in the residual code.
So the actual end result of such a supercompilation run might be
something like:

let x = h2 ; xs = h3 ys in x : xs

where h2 and h3 will have optimised bindings in the output pro-
gram, as usual.

So far, we have only seen examples where split opt invokes
opt on subterms of the original input. While this is a good approx-
imation to what split does, in general, we will also want to include
some of the context in which that subterm lives. Consider the fol-
lowing input:

〈x 7→ 1, y 7→ x + x Just y ε〉
A good way to split is as follows:

let y = 〈x 7→ 1 x + x ε〉 in Just y

Note that split opt decided to recursively optimise the term x + x ,
along with a heap binding for x taken from the context which the
subterm lived in. This extra context will allow the supercompiler to
reduce x + x to 2 at compile time.

Another way that a subterm can get some context added to it
by split when evaluation of a case expression gets stuck. As an
example, consider the following (stuck) input to split :

〈ε x case • of (True → 1;False → 2) , • + 3〉
One possibility is that split could break the expression up for
further supercompilation as follows:

(case x of True → 〈ε 1 ε〉
False → 〈ε 2 ε〉) + 〈ε 3 ε〉

However, split can achieve rather more potential for reduction if
it duplicates the stack frame performing addition into both case
branches: in particular, that will mean that we are able to evaluate
the addition at compile time:

(case x of True → 〈ε 1 (• + 3)〉
False → 〈ε 2 (• + 3)〉)

In fact, in general we will always want to push all of the stack
frames following a case • ofα → e frame to meet with the
expressions e in the case branches.

This is one of the places where the decision to have the super-
compiler work with States rather than Terms pays off: the fact
that we have an explicit evaluation context makes the process of
splitting at a residual case very systematic and easy to implement.

The key property of split is that for any opt that is meaning
preserving (such that opt s returns an expression e with the same
meaning as s), split opt must be meaning preserving in the same
sense.

There are a number of subtle points to bear in mind when
implementing split . We describe some issues below, and will have
more to say in Section 4.

Issue 1: learning from residual case branches We gain informa-
tion about a free variable when it is scrutinised by a residual case.
Thus, when we have:

〈ε x case • of (3→ x + x ; 4→ x ∗ x )〉
We split as follows:
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case x of 3→ 〈x 7→ 3 x + x ε〉
4→ 〈x 7→ 4 x ∗ x ε〉

Because we have learnt the value of x from the case alternative, we
are able to statically reduce the + and ∗ operations in each branch.

Issue 2: work duplication Consider splitting the following State ,
where fact is an unknown function and hence must be assumed to
to be expensive to execute:

〈x 7→ fact n (x + 1, x + 2) ε〉
One possibility is to split as follows:

(〈x 7→ fact n x + 1 ε〉 , 〈x 7→ fact n x + 2 ε〉)
Unfortunately, this choice leads to duplication of the expensive
fact n subterm. If we freely duplicate unbounded amounts of work
in this manner we can easily end up “optimising” the program into
a much less efficient version.

Work can be duplicated even if no syntactic duplication occurs,
as occurs if we take this example:

〈x 7→ fact n λy . x + y ε〉
And split it as follows:

λy → 〈x 7→ fact n x + y ε〉
Furthermore, syntactic duplication does not necessarily lead to
work duplication. Consider:

〈x 7→ fact n y case • of (True → x + 1;False → x + 2)〉
Notice that splitting it as follows does not duplicate the computa-
tion of fact n:

case y of True → 〈x 7→ fact n x + 1 ε〉
False → 〈x 7→ fact n x + 2 ε〉

Consequently, we push the heap bindings supplied to split down
into those split-out subterms of which they are free variables, as
long as either one of these conditions is met:

• The binding manifestly binds a value, such as λx . x : values
require no further reduction, so no work can be lost that way

• Pushing the binding down into the subterm would not result
in the allocation of its thunk occurring more than once in any
possible context consuming the output

Our split uses let-floating to make more heap bindings suitable for
pushing down under these criteria. For example, this state:

〈x 7→ Just (fact n) λm. case x of Just y → y + m ε〉
Will be split as follows:

let a = 〈ε fact n ε〉
inλm. 〈x 7→ Just a case x of Just y → y + m ε〉

Sketching split Due to space limitations, we are unable to give
a complete description of split . However, we can give a sketch
of a suboptimal implementation that may nonetheless clarify our
description.

We first introduce the concept of a Bracket . This is a Haskell
representation of the “term with holes” notational device we intro-
duced earlier. Each hole contains a State:

data Bracket = B {holes :: [State ],
assemble :: [Term ]→ Term }

termBracket :: Term → Bracket
termBracket e = B [(emptyHeap, e, emptyStack)] (λ[e ′ ]→ e ′)

Our code examples will often make use of a [[bracketed]] syntax to
concisely define a value of type Bracket :

[[f 〈ε 1 ε〉]] :: Bracket

This particular example corresponds to:

B {holes = [(ε, 1, ε)], assemble = λ[e ′ ]→ var "f" ‘apps‘ e ′}
Split can now be defined as follows:

split opt (h, e, k) = liftM (assemble br) $ mapM opt (holes br)
where

xs = case e of Var x → [x ]; → [ ]
br = splitHeap h $ splitStack xs k $ splitTerm e

Each part of the State is split independently to produce a Bracket ,
which than has all of it’s holes optimised before we rebuild the
final term. Before we cover splitTerm , splitStack and splitHeap,
we will need a way to build a larger bracket from smaller ones:

plusBrackets :: [Bracket ]→ ([Term ]→ Term)→ Bracket
plusBrackets brs rb = B {holes = concatMap holes brs,

assemble = f }
where

f es = rb (zipWith (λbr es → assemble br es) brs ess)
where ess = splitManyBy (map holes brs) es

splitManyBy :: [ [b ] ]→ [a ]→ [ [a ] ]
-- splitManyBy bss as ≡ ass ∧ length (concat bss) ≡ length as
-- =⇒ map length bss ≡ map length ass ∧ as ≡ concat ass

Now, splitTerm just identifies some subexpressions for supercom-
pilation:

splitTerm :: Term → Bracket
splitTerm e = plusBrackets (map termBracket es) rb

where (es, rb) = uniplate e

We make use of the uniplate combinator (following Mitchell and
Runciman [8]), which takes a Term apart into a list of its immedi-
ate subterms, and a function to recombine those subterms to obtain
the original input:

uniplate :: Term → ([Term ], [Term ]→ Term)

There is more work to do when splitting the stack:

splitStack :: [Var ]→ Stack
→ Bracket
→ ([(Var ,Bracket)],Bracket)

The call splitStack xs k b splits stack k with bracket b in the
focus, where all of the variables xs are guaranteed to have the same
value as the focus. We will use the xs in splitStack to learn from
residual case branches.

There are three principal possibilities that splitStack has to deal
with. Firstly, applications and primitives can be handled uniformly:

splitStack xs (• x : k) br = splitStack [ ] k [[〈br〉 x ]]
splitStack xs (• ⊗ e : k) br

= splitStack [ ] k [[〈br〉 ⊗ 〈ε e ε〉]]
splitStack xs (v ⊗ • : k) br

= splitStack [ ] k [[〈ε v ε〉 ⊗ 〈br〉]]
The next possibility is that the stack frame arises from a case:

splitStack xs (case • ofα→ e : k) br

= ([ ],
[[

case 〈br〉 of α→ 〈altbr〉
]]
)

where

altbr = 〈altHeap α e k〉
altHeap α = fromList [(x , altConValue α) | x ← xs ]

altConValue :: AltCon → Value
altConValue (C x ) = (C x )
altConValue ` = `
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Notice that we do not recursively call splitStack in this situation:
as we discussed, the entire stack is pushed into each case branch.
We also use altHeap to construct a heap that binds the variables be-
ing scrutinised (if any) to the value corresponding to the particular
case alternative.

Finally, the immediate stack frame may be an update frame:

splitStack xs (update x : k) br
= ((x , br) : xbrs ′, br ′)
where (xbrs ′, br ′) = splitStack (x : xs) k [[x ]]

In this case, we recursively split the remainder of the stack, but
change the focus to be the variable being updated. The presence
of update frames is why splitStack returns a [(Var ,Bracket)] as
well as a Bracket – the list of (Var ,Bracket) contains a Bracket
for every update frame that splitStack encountered. As we will see
shortly, the brackets from this list will be placed in an enclosing let
expression along with those arising from the Heap.

Finally, we can implement splitHeap:

splitHeap :: Heap
→ ([(Var ,Bracket)],Bracket)
→ Bracket

splitHeap h (xbrs, br)
= plusBrackets (map inline (br : brs))

(λ(e : es)→ letRec (xs ‘zip‘ es) e)
where (xs, brs) = unzip (xbrs ++ [ (x , termBracket e)

| (x , e)← toList h ])

This completes the implementation of split . A real implementation
will need to add several complications:

• The splitHeap function should attempt to push some elements
of the Heap into the holes of the brackets from splitStack . A
linearity analysis will be required in order to avoid duplicating
work when non-value heap bindings get pushed down.

• The Heap should be let-floated to expose values under lets,
and hence allow more bindings to be propagated downwards.

• In the presence of recursive let it is not always valid for
splitStack to push down the entire stack into the branches
of a residual case. This issue is discussed in more detail in
Section 4.

3.6 Termination of the supercompiler
Although we have been careful to ensure that our evaluation func-
tion, reduce , is total, it is not so obvious that sc itself is terminating.
Since split may recursively invoke sc via its higher order argument,
we might get an infinitely deep stack of calls to sc!

To rule out this possibility, sc carries a history, which – as we
saw in Section 3 – is checked before any reduction is performed.
If terminate allows the history to be extended, the input State is
reduced before recursing. Otherwise, the input State is fed to split
unchanged.

In order to be able to prove that the supercompiler terminates,
we need some condition on exactly what sort of subcomponents
split opt invokes opt on. It turns out that the presence of recursive
let requires us to choose a rather complicated condition here, as we
will explain further in Section 4.4.

Let us pretend for a moment that we have no recursive let. In
this scenario, it is always the case for our split that split opt s
invokes opt s ′ only if s ′ ≺ s . The ≺ relation is a well-founded
relation defined by s′ ≺ s ⇐⇒ size (s′) < size (s), where
size : State → N returns the number of abstract syntax tree
nodes in the State . This is sufficient to ensure termination, as the
following argument shows:

Theorem: sc always recurses a finite number of times Proceed
by contradiction. If sc recursed an infinite number of times, then
by definition the call stack would contain infinitely many activa-
tions of sc hist s for (possibly repeating) sequences of hist and
s values. Denote the infinite chains formed by those values as
〈hist0, hist1, . . .〉 and 〈s0, s1, . . .〉 respectively.

Now, observe that there must be infinitely many i such that
isStep (terminate hist i si). This follows because the only other
possibility is that there must exist some j such that ∀l.l ≥ j =⇒
isStep (terminate hist l sl). On such a suffix, sc is recursing
through split without any intervening uses of reduce . However,
by the property we required split to have, such a sequence of states
must have a strictly decreasing size:

∀l.l > j =⇒ size (sl) < size (sj)

However, < is a well founded relation, so such a chain cannot be
infinite. This contradicts our assumption that this suffix of sc calls
is infinite, so it must be the case that there are infinitely many i such
that isContinue (terminate hist i si).

Now, form the infinite chain 〈t1, t2, . . .〉 consisting of si
such that isContinue (terminate hist i si). By the properties of
terminate , it follows that ∀ij.j < i =⇒ ¬ (tagBag tj C tagBag ti).
However, this contradicts the fact that C is a well-quasi-order.

�
Combined with the requirement that split opt only calls opt

finitely many times, the whole supercompilation process must ter-
minate.

Two non-termination checks It is important to note that the his-
tory carried by sc is extended entirely independently from the his-
tory produced by the reduce function. The two histories deal with
different sources of non-termination.

The history carried by reduce prevents non-termination due to
divergent expressions, such as this one:

let f x = 1 + (f x ) in f 10

In contrast, the history carried by sc prevents non-termination that
can arise from repeatedly invoking the split function – even if
every subexpression would, considered in isolation, terminate. This
is illustrated in the following program:

let count n = n : count (n + 1) in count 0

Left unchecked, we would repeatedly reduce the calls to count ,
yielding a value (a cons-cell) each time. The split function would
then pick out both the head and tail of the cons cell to be recursively
supercompiled, leading to yet another unfolding of count , and so
on. The resulting (infinite) residual program would look something
like:

let h0 = h1 : h2 ; h1 = 0
h2 = h3 : h4 ; h3 = 1
h4 = h5 : h6 ; h5 = 2
. . .

The check with terminate before reduction ensures that instead,
one of the applications of count is left unreduced. This use of
terminate ensures that our program remains finite:

let h0 = h1 : h2 ; h1 = 0
h2 = let count = λn. h3 n

in count 1
h3 n = n : h3 (n + 1)

in h0

Negative recursion in data constructors As a nice aside, the rig-
orous termination criteria gives us a stronger termination guaran-
tee than the Glasgow Haskell Compiler (GHC) [9], the leading
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Haskell implementation. Because GHC does not check for recur-
sion through negative positions in data constructors, the following
notorious program will force GHC into an infinite loop:

data U = MkU (U → Bool)
russel u@(MkU p) = not (p u)
x = russel (MkU russel) :: Bool

3.7 Observations on the basic supercompiler
It is a unique feature of our supercompiler that all our ingredients
operate on States, rather than Terms. This is a consequence of
explicitly basing the supercompiler on an evaluator, but it pays off
in two other ways as well:

1. The memoiser (Section 3.4) matches States rather than Terms.
This is beneficial because States can be thought of as Terms
that have been weakly normalised by evaluation – two States
with equal semantics are more likely to match than two Terms
with equal semantics.

2. The splitter (Section 3.5) operates distinctively differently on
each of the three components of the State . To split a Term
well would be much harder.

4. Extending to recursive let

In the previous section, we described all the pieces necessary to
implement a complete supercompiler. The handling of recursive
let is mostly straightforward in this framework, with the exception
of two things:

• Update frames originating from recursive let complicate the
splitter: Section 4.3

• The termination proof for the supercompiler becomes more
complicated: Section 4.4

We cover each of these points in order.

4.1 Update frames
The evaluator (Figure 3 and Section 3.3) deals with a call-by-need
language, using update frames in the conventional way to model
laziness [6]. When a heap binding x 7→ e is demanded by a variable
x coming into the focus of the evaluator, e may not yet be a value.
To ensure that we only reduce any given heap-bound e to a value
at most once, the evaluator pushes an update frame update x on
the stack, before beginning the evaluation of e . After e has been
reduced to a value, v, the update frame will be popped from the
stack, which is the cue for the evaluator to update the heap with a
binding x 7→ v, replacing the old one. Now, subsequent uses of x
in the course of evaluation will be able to reuse that value directly,
without reducing e again.

As an example of how update frames work, consider this reduc-
tion sequence:

〈x 7→ 1 + 2 x + x ε〉 〈x 7→ 1 + 2 x • + x 〉
 〈ε 1 + 2 update x , • + x 〉 . . .
 〈ε 3 update x , • + x 〉 〈x 7→ 3 3 • + x 〉
 〈x 7→ 3 x 3 + •〉 〈ε 3 update x , 3 + •〉
 〈x 7→ 3 3 3 + •〉 〈x 7→ 3 6 ε〉

Because the corresponding heap binding is removed from the heap
whenever an update frame is pushed, the update frame mechanism
is what causes reduction to become blocked if you evaluate a term
which forms a black hole:

〈x 7→ x + 1 x ε〉 . . . 〈ε x • +1, update x 〉 6 
Update frames complicate the supercompiler slightly, but in a lo-
calised way – we must think carefully as to how the split function
should deal with update frames.

4.2 Splitting in the presence of update frames
Just like all other kinds of stack frame, we want to push update
frames into residual case branches. Consider this input to split :

〈ε x case • ofT → F , update y , case • ofF → (2, y)〉
We will split as follows, pushing the whole stack, including the
update frame for y , into the case branch:

case x of T → 〈ε F update y , case • of F → (2, y)〉
After supercompilation is complete, we will then obtain an output
term something like the following:

case x of T → let y = F in (2, y)

This is what the splitStack function we saw in Section 3.5 does.

4.3 Splitting update frames from recursive lets
The key problem that the splitter must face is that update frames
derived from recursive let can interact badly with our intention
to push the entire enclosing stack into the branches of a case.
Consider this input to split :

〈ε unk •+y , case • of 1→ 2, update y , •+ 2〉
Following our earlier discussion of case, we might be tempted to
split as follows:

case unk + y of 1→ 〈ε 2 update y , •+ 2〉
However, this is a disastrous choice – due to the occurrence of y
in the scrutinee, y is now a free variable of the output expression!
The lesson here is that update frames should not be pushed inside
case branches if they bind a variable that we may need to refer to
outside the case. Following this rule, our example is instead split
as follows:

let y = case unk + y of 1→ 〈ε 2 ε〉
in y + 〈ε 2 ε〉

Irritatingly, the choice about which update frames should not be
pushed inside case branches is not as straightforward as a simple
free-variable check. The reason is that choosing to not push an
update frame down may make more of the variables bound by
other pushable update frames free, and hence require us to prevent
pushing in yet more update frames! Here is a contrived example
illustrating the point – note that for clarity we will not write the
update frames directly, and represent the States as if they were
terms:

let w = fact z ; y = unk + x
x = case y of 10→ w + 3
z = case x of 20→ a + 3

in z + w + a

Our initial guess at the output of split may be as follows:

let y = unk + 〈x 〉
in case y of

10→ 〈 let w = fact z ; x = w + 3
z = case x of 20→ a + 3

in z + w + a 〉
Unfortunately, x is now a free variable of the whole expression, and
consequently we should not have pushed the update frame for x
within the case branch. Based on this information, our next guess
may be:

let w = 〈fact z 〉; y = unk + 〈x 〉
x = case y of 10→ 〈w + 3〉

in case x of 20→ 〈 let z = a + 3
in z + w + a 〉
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Note that we have now been forced not to push the w binding
down into either the case branch, because doing so would risk
work duplication. Unfortunately, that has caused z to be free in the
output expression! The correct solution is in fact to not push down
the update frames for both x and z :

let w = 〈fact z 〉; y = unk + 〈x 〉
x = case y of 10→ 〈w + 3〉
z = case x of 20→ 〈a + 3〉

in z + 〈w〉+ 〈a〉
Our real split implementation uses a fixed point that follows

essentially this reasoning process to determine the set of update
frames which may not be pushed down.

4.4 Termination in the presence of recursive let

In Section 3.6 we showed why the supercompiler without recursive
let terminated. However, to make that argument we had to rely on
a condition on split that is simply too restrictive for the supercom-
piler with recursive let.

Before, we used the property that split opt s invoked opt s ′

only if s′ ≺ s ⇐⇒ size (s′) < size (s). However, consider this
input to split :

〈f 7→ λy . Just (f (not y)) Just (f (not y)) ε〉
We would like to split as follows:

let f = λx . 〈f 7→ λy . Just (f (not y)) Just (f (not y)) ε〉
in Just (f (not y))

This is disallowed by the size-based criteria because the recursively-
optimised State would be no smaller than the input.

In the presence of recursive let, we can instead use the property
that for our split , split opt (h, e, k) only invokes opt on states
(h ′, e ′, k ′) that satisfy all of these conditions:

1. h ′ ⊆ h ∪ alt-heap (e, k)

2. k ′ ‘isInfixOf ‘ k

3. e ′ ∈ subterms (h, e, k)

The subterms (h, e, k) function returns all expressions that occur
syntactically within any of the Heap, Stack or Term inputs. The
alt-heap (e, k) function takes the variables bound by update frames
in k and, if e ≡ Var x , the variable x . It then forms the cross
product of that set with the values corresponding to the α in any
case • ofα → e ∈ k .

We are now in a position to repair the proof.

Theorem: sc always recurses a finite number of times Proceed
by contradiction. If sc recursed an infinite number of times, then
by definition the call stack would contain infinitely many activa-
tions of sc hist s for (possibly repeating) sequences of hist and
s values. Denote the infinite chains formed by those values as
〈hist0, hist1, . . .〉 and 〈s0, s1, . . .〉 respectively.

Now, observe that there must be infinitely many i such that
isStep (terminate hist i si). This follows because the only other
possibility is that there must exist some j such that ∀l.l ≥ j =⇒
isStep (terminate hist l sl). On such a suffix, sc is recursing
through split without any intervening uses of reduce . By the mod-
ified property of split and the properties of alt-heap and subterms
we have that

∀l.l ≥ j =⇒
hl ⊆ hj ∪ alt-heap (ej , kj)

∧ kl ‘isInfixOf ‘ kj
∧ el ∈ subterms (sj)

We can therefore conclude that the infinite suffix must repeat itself
at some point: ∃l.l > j ∧ sl ≡ sj . However, we required that

match always succeeds when matching two terms equivalent up to
renaming, which means that sc hist l sl would have been tied back
by memo rather than recursing. This contradicts our assumption
that this suffix of sc calls is infinite, so it must be the case that there
are infinitely many i such that isContinue (terminate hist i si).

Now, form the infinite chain 〈t1, t2, . . .〉 consisting of si
such that isContinue (terminate hist i si). By the properties of
terminate , it follows that ∀ij.j < i =⇒ ¬ (tagBag tj C tagBag ti).
However, this contradicts the fact that C is a well-quasi-order.

�
Although the termination argument becomes more complex, the

actual supercompilation algorithm remains as simple and beautiful
as ever.

5. Results
We have implemented the supercompiler for a subset of Haskell.
it is implemented as a preprocessor: programs are run through the
supercompiler before being compiled by GHC at the -O2 optimisa-
tion level. The preliminary results of running the supercompiler on
a standard array of benchmark programs are shown in Figure 4. For
comparison, we include benchmark results from a supercompiler of
Mitchell [4].

The “append”, “factorial”, “raytracer”, “sumtree” and “treeflip”
benchmarks are all standard examples that have been described in
previous work on supercompilation and deforestation [4, 10, 2, 11].
The “sumsquare” program is taken from work in stream fusion
[12]. The “bernouilli”, “digitsofe2”, “exp3 8”, “primes”, “rfib”,
“tak”, “wheel-sieve1”, “wheel-sieve2” and “x2n1” benchmarks are
from the imaginary portion of the nofib benchmark suite [13].

We tested two variants of our supercompiler: one where we
the supercompiler evaluated primitive operations (primops), and
one where it did not. Both variants treated primitives as strict
operations.

The benchmark results are promising. The supercompiler with-
out primops reduced runtime by an average3 of 70% compared to
GHC alone. Evaluating primops reduced average speedup to 57%.
Mitchell’s system achieved an average speedup of 51%.

The use of supercompilation in practice is limited because de-
spite the fact that it is a guaranteed to terminate, it might take very
long indeed to do so. Nofib imaginary suite benchmarks such as
“digitsofe1” and “gen regexps” are prohibitively expensive to su-
percompile in both our system and that of Mitchell. Interestingly,
the same problem afflicts “tak” – but only when evaluation of pri-
mops is enabled.

Primitive operations Indeed, the supercompiler performed worse
overall when evaluating primops than when it left them unevaluated
– particularly suffering on “sumtree” and “treeflip”. These bench-
marks have a common structure where a binary tree is generated
and then consumed by a function pipeline, terminate by a simple
sum of the tree nodes. The initial construction of the tree does not
deforest cleanly, but the consuming function pipeline makes several
intermediate copies of the tree which can be deforested to produce
a function that produces the required sum directly. Both our sys-
tem (without primops) and Mitchell’s system are able to fuse these
pipelines together.

The addition of primops to the system means that we create
specialisations of the fused pipeline that include in their evalua-
tion contexts frames such as 2 + •, where 2 is a partial sum of
the tree. Every specialisation of the fused pipeline includes such a
stack frame, and because the partial sum changes regularly those
specialisations can never be reused. We end up building a lot of
specialisations of the pipeline for a few values of the partial sum,

3 Averages are computed using a harmonic mean
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Program Mitchell [4] Evaluator-based, no primops Evaluator-based, primops
SC.a Cmp.b Runc Memd Sizee SC.a Cmp.b Runc Memd Sizee SC.a Cmp.b Runc Memd Sizee

append 0.0s 0.88 0.86 0.85 1.29 0.0s 1.00 0.89 0.87 3.24 0.0s 1.03 0.92 0.87 3.24
bernouilli 5.8s 1.63 0.98 0.97 3.76 0.1s 1.07 0.98 0.95 2.26 0.1s 1.07 0.98 0.95 2.24
digitsofe2 4.2s 1.24 0.32 0.46 1.15 0.1s 1.07 1.17 1.08 2.81 0.1s 1.08 1.18 1.09 2.79
exp3 8 0.8s 1.34 0.96 1.00 6.59 8.7s 2.85 0.59 0.67 85.17 15.4s 3.35 0.55 0.67 114.31
factorial 0.0s 0.99 0.95 1.00 0.77 0.0s 0.96 0.99 1.00 1.00 0.0s 0.98 1.05 1.00 0.91
primes 0.1s 1.04 0.63 0.99 0.79 0.0s 0.98 0.72 1.07 0.87 0.0s 0.98 0.71 1.07 0.80
raytracer 0.0s 1.00 0.57 0.44 1.54 0.0s 1.00 0.52 0.45 1.37 0.0s 1.00 0.51 0.45 1.38
rfib 0.0s 0.94 0.93 1.00 0.87 0.0s 1.00 0.67 1.00 2.00 0.0s 1.00 0.67 1.01 2.00
sumsquare 19.5s 1.45 0.36 0.00 7.38 2.3s 1.97 0.05 0.00 20.78 3.0s 1.95 0.06 0.00 21.15
sumtree 0.1s 1.01 0.13 0.00 1.50 0.0s 1.02 0.14 0.00 2.46 0.2s 1.24 0.68 0.93 9.09
tak 0.1s 0.86 0.81 655.04 0.59 0.1s 1.34 0.74 18644.34 7.22 N/A N/A N/A N/A N/A
treeflip 0.1s 1.03 0.56 0.45 1.99 0.0s 1.02 0.13 0.05 2.53 0.2s 1.47 0.81 0.91 19.40
wheel-sieve1 N/A N/A N/A N/A N/A 22.2s 7.87 0.90 0.53 71.07 16.8s 10.61 1.00 0.54 71.47
wheel-sieve2 N/A N/A N/A N/A N/A 1.3s 3.16 1.55 1.21 18.35 1.4s 3.06 1.55 1.21 18.24
x2n1 0.1s 1.06 0.92 0.99 1.39 0.0s 1.10 0.99 0.95 1.21 0.0s 1.15 0.99 0.95 1.18
a Supercompilation time (seconds) b GHC runtime relative to no supercompilation c Program runtime relative to no supercompilation
d Allocation relative to no supercompilation e Size (in syntax tree nodes) of program relative to no supercompilation

Figure 4: Benchmark results

before the termination condition kicks in and stops us. Unfortu-
nately, the resulting termination splitting prevents us from fusing
the pipeline entirely. The net result is that the first few iterations
of the sum are computed with perfect deforestation, but later itera-
tions must fall back on a fully-forested function isomorphic to the
original unfused pipeline.

Recursive let We are able to report results for two benchmarks
(“wheel-sieve1” and “wheel-sieve2”) that Mitchell’s system is un-
able to supercompile because they make fundamental use of recur-
sive let. We achieve an improvement in “wheel-sieve1” by defor-
esting intermediate lists, but actually manage to increase alloca-
tions in “wheel-sieve2”.

Opportunities for improvement The “tak” benchmark reported a
staggering 18,000-fold increase in allocations, although this was
up from a very low base – the unmodified program allocates only
13kB. Mitchell’s supercompiler exhibits the same problem, albeit
to a lesser degree. Investigation shows that the allocation increase
is due to supercompilation introducing several large join points
which take boxed integers as arguments. When compiled without
supercompilation, there are no join points and all arithmetic is
unboxed by GHC’s strictness analyser [14].

The benchmark where we do noticeably worse than Mitchell is
“digitsofe2” – we actually increase both allocations and runtime,
while he reduces each figure by more than 50%. Although the ex-
act reasons remain unclear, it appears that once again the problem
is that the supercompilation process has prevented GHC from ag-
gressively unboxing the output.

Supercompilation time Benchmarking our supercompiler on one
program (“digits-of-e2”) showed that the vast majority of time
(42%) is spent on managing names and renaming. Matching against
previous states accounted for 14% of the runtime. Only 6% of time
was spent testing the termination condition.

6. Related Work
Supercompilation was introduced by Turchin [1], but has recently
seen a revival of interest from both the call-by-value [15, 10] and
call-by-need [4] perspectives.

Partial evaluation [16] is a technique closely related to super-
compilation. The fields overlap somewhat, but supercompilers tend
to make a distinctive set of choices which set them apart: they spe-
cialise expressions in the context in which they occur, operate on
unannotated programs and test for termination online. Theoreti-

cal work has suggested that certain kinds of partial evaluator suf-
fer from strictly less information propagation than supercompilers,
limiting their optimising power [17].

The idea of building a partial evaluation system around an actual
evaluator is hardly new – it is present from the very earliest work by
Sestoft et al. [18]. However, this approach seems to have received
surprisingly little attention in the supercompilation community.

Much of the supercompilation literature makes use of the home-
omorphic embedding test for ensuring termination [10, 19, 15].
Users of this test uniformly report that testing the termination
condition makes up the majority of their supercompilers runtime
[10, 19]. The tag-bag criteria appears to be much more efficient in
practice, as our supercompiler spends only 6% of its runtime testing
the criteria.

Jørgensen has previously produced a compiler for call-by-need
through partial evaluation of a Scheme partial evaluator with re-
spect to an interpreter for the lazy language [20]. His work made
use of a partial evaluator capable of dealing with the set ! primitive,
which was used to implement updateable thunks. Our supercom-
piler avoids the need for any imperative features in the language
being supercompiled, and deals with the call-by-need evaluation
order directly.

7. Further Work
The major barriers to the use of supercompilation in practice are
code bloat and compilation time. One method to achieve an im-
provement in both dimensions would be to reuse specialisations
more aggressively. For example, consider the following program:

let replicate = λn y . if n 6 0 then [ ]
else y : replicate (n − 1) y

in (replicate 4 ’c’, replicate 4 ’d’)

During the reduction of replicate n y , the evaluator never needs to
use the definition of y in order to achieve reduction. Nonetheless,
existing supercompilers – including the one described here – will
(modulo termination checking) duplicate the whole replicate call
for no real gain:

let h0 = (h1 , h2 )
h1 = ’c’ : ’c’ : ’c’ : ’c’ : [ ]
h2 = ’d’ : ’d’ : ’d’ : ’d’ : [ ]

in h0
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However, we do not sacrifice any optimisation opportunities if were
to instead produce the following output program:

let h0 = (h1 ’c’, h1 ’d’)
h1 = λy . y : y : y : y : [ ]

in h0

We have a partial implementation of a system that achieves this ad-
ditional code sharing and prevents over-allocation through a unified
mechanism, and intend to report on our experience with it shortly.

Because the supercompiler described here is nicely separated
from issues of evaluation order, it should be straightforward to
modify the system to supercompile a pure call-by-value language
such as Timber [21]. The only substantial work required would
be modifying in split to deal with the kinds of evaluation context
arising from call-by-value reduction. However, a splitter for call-
by-value (or call-by-name) is rather simple to define because such
evaluation strategies have no equivalent to update frames, and it
is always permissible to duplicate heap bindings – so no work-
duplication check is required at all. We speculate that an adaption
of our supercompiler to call-by-value would yield a supercompiler
with similar power to recently reported results of Jonsson and
Nordlander [22].

We plan to extend the supercompiler to work on the typed
language System FC [23] for implementation as a part of GHC.
Again, this should be fairly straightforward, and involve mostly
local changes to the evaluator. Supercompilation works best when
it has access to the whole program, but GHC already has the
necessary facilities to get hold of the definitions from imported
modules, in the shape of interface files.

8. Conclusions
Supercompilation is a simple, powerful and principled technique
for program optimisation. A single pass with a supercompiler
achieves many optimisations that have traditionally been labori-
ously specified and implemented independently.

We have shown how to produce a supercompiler by basing it
explicitly on an evaluator. This clean design allowed us to extend
the technique to lazy languages with recursive let, by building the
supercompiler around a call-by-need evaluator.

Initial benchmark results are promising, but also bring to light
weaknesses in the algorithm. In particular, a method is sorely
needed for reducing the worst-case runtime of supercompilation.
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