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Abstract
Though Haskell is predominantly type-safe, implementations con-
tain a few loopholes through which code can bypass typing and
module encapsulation. This paper presents Safe Haskell, a language
extension that closes these loopholes. Safe Haskell makes it pos-
sible to confine and safely execute untrusted, possibly malicious
code. By strictly enforcing types, Safe Haskell allows a variety of
different policies from API sandboxing to information-flow con-
trol to be implemented easily as monads. Safe Haskell is aimed to
be as unobtrusive as possible. It enforces properties that program-
mers tend to meet already by convention. We describe the design
of Safe Haskell and an implementation (currently shipping with
GHC) that infers safety for code that lies in a safe subset of the
language. We use Safe Haskell to implement an online Haskell in-
terpreter that can securely execute arbitrary untrusted code with no
overhead. The use of Safe Haskell greatly simplifies this task and
allows the use of a large body of existing code and tools.

Categories and Subject Descriptors D.3.3 Programming Lan-
guages [Language Constructs and Features]: Constraints; Mod-
ules, packages

General Terms Design, Languages, Security

Keywords Type safety, Security, Haskell

1. Introduction
One of Haskell’s great strengths is how the language can be used to
restrict the kinds of damage caused by coding errors. Like many
languages, Haskell has a type system to enforce invariants and
catch some forms of undefined behaviour, as well as a module sys-
tem that allows for encapsulation and abstraction. More distinc-
tively, Haskell segregates pure and impure code via the IO monad
and facilitates the implementation of alternate monads (such as ST)
that bound the possible side-effects of computations.

An interesting question is whether these features can be used to
control the effects of not just buggy but outright malicious code.
For instance, consider implementing a server that accepts and ex-
ecutes Haskell source code from untrusted network clients. Such a
server should not allow one client’s code to subvert another client’s
code or, worse yet, make arbitrary calls to the underlying operat-
ing system. Such a server is analogous to web browsers, which use
language features of Java and JavaScript to confine executable con-
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tent. However, because of Haskell’s support for arbitrary monads, it
can enable a broader range of confinement policies than most other
systems.

In fact, Haskell comes tantalizingly close to providing a means
for confining malicious code. Though the language allows arbi-
trary access to memory (with peek and poke) and to system calls
(through a variety of standard libraries), these dangerous actions
are in the IO monad. Hence, if untrusted code consists of pure code,
or of computations in a monad more restrictive than IO, then IO ac-
tions will be off limits, on two conditions. First, the type system
must have no exploitable loopholes. Second, abstractions, such as
module encapsulation, must be strictly enforced; in particular, it
must be possible to implement new monads in terms of IO actions
while still being able to restrict the injection of arbitrary IO into
such monads.

Unfortunately, neither of these conditions is met. Haskell
2010 [13] allows the import of foreign functions without IO types
and provides unsafeLocalState :: IO a → a, both of which al-
low dangerous IO actions to masquerade as pure code (effectively
lying about their types). Moreover, beyond the language specifi-
cation, actual implementations of Haskell contain language exten-
sions and special library functions, such as unsafePerformIO and
unsafeCoerce, that provide many more ways to bypass abstraction
and types. Hence, the first step in confining untrusted Haskell code
is to identify a safe subset of the language and to have the compiler
check automatically that untrusted code resides in the safe subset.

However, unsafe features exist for good reason. They can be
used to implement safe abstractions using global variables, muta-
tion, or foreign libraries, sometimes with much better performance
than the pure alternative. A good example is the safe and widely-
used Data.ByteString module, which, though referentially trans-
parent, internally represents pure strings as packed byte arrays ac-
cessed with peek. Untrusted code should be able to use safe ab-
stractions such as ByteString despite their unsafe internals. Hence,
another important step in confining Haskell is deciding when an in-
ternally unsafe module can be trusted to provide an externally safe
interface.

This paper describes Safe Haskell, an unobtrusive language
extension designed to support the confining of untrusted code. Safe
Haskell combines a safe subset of the Haskell language with a
means for specifying when a module exceeding the safe subset can
nonetheless be trusted to export a safe interface. Safe Haskell is
also useful by itself because when there is no need to use unsafe
features it is better to write code in Safe Haskell so that guarantees
of type safety and referential transparency hold. Safe Haskell is
by no means a limited version of the language—large swathes of
existing code are already in the safe subset and our system allows
us to automatically identify and label safe code.



Although the intuition is simple, the design of Safe Haskell is
surprisingly subtle. Specifically, our contributions are these:

• We identify a clear distinction between safety and security in
Haskell and define the guarantees Safe Haskell offers (Sec-
tion 3.1). Safe Haskell provides enough guarantees such that
a range of security policies can be implemented on top of it.

• We design a system of trust, which is necessary since some
abstractions in Haskell are defined in terms of unsafe features
and the compiler cannot guarantee their safety. Hence users
must trust certain abstractions and we design a system whereby
the chain of trust is tracked (Section 3.3).

• We identify the language features and extensions that must
be disabled or restricted in order to provide the Safe Haskell
guarantees (Section 3.4).

• We give two examples to show how Safe Haskell can be used
in practice. Firstly we demonstrate a security policy that allows
untrusted code access to a limited set of IO operations (Sec-
tion 5.1) and secondly we show how to safely expose interactive
evaluation of Haskell expressions on the web (Section 5.1.1).

• We show that large amounts of existing code are already in the
safe subset (Section 6) and for the code that is not already safe
we identify the main reasons why not.

• We provide an implementation of Safe Haskell in the Glasgow
Haskell Compiler (GHC) that is shipping since version 7.2.

2. The problem
The presence of unsafe features in Haskell makes it unsuitable for
use as a secure programming language. Secure programming as
we mean it, is the ability to encode security policies and their en-
forcement within a programming language. Rather than rely on OS
level protections which are generally coarse-grained and difficult
to modify, we are interested in building secure systems solely in
the Haskell language. This has the advantages of rapid prototyping,
strong formal foundations and the ability to enforce very granular
policies.

For example, there is extensive literature on expressing information-
flow control in Haskell [9, 12, 18, 19, 25, 26]. A language-level
approach to IFC makes it possible, for example, to express policies
on users’ data in a setting of web sites. Unfortunately, deploying
these techniques in a real system has not been possible due to their
reliance on properties of Haskell that do not hold (for the reasons
described below).

More than just preventing Haskell for use in secure program-
ming, the lack of strict guarantees also takes a toll on regular pro-
gramming. Types provide a powerful form of documentation; a
pure interface should be thread-safe, for example. That this gen-
erally holds in Haskell despite any formal guarantees is due to
cultural norms in the community. Safe Haskell looks to codify
these, so that any module potentially deviating from them is clearly
marked.

We begin by articulating the challenges we address. We use the
client/server example introduced in Section 1 as a way to make
these challenges concrete. More precisely, suppose that a client is
not trusted by a server and yet the server wishes to compile and run
Haskell source code supplied by the client.

2.1 Unsafe language features
Haskell was originally designed to be a safe language, but the
Haskell language that is in common use today is not safe. In partic-
ular, three of the properties that we regularly take for granted, type
safety, referential transparency and module encapsulation, can be
readily broken. For example:

f :: Int → Float → Int
f x y = x + unsafeCoerce y

will at least give unexpected answers because we unsafely coerce
a Float to an Int and then add them together. Similarly, consider
this side-effectful function that returns the system time:

usec :: IO Integer
usec = getPOSIXTime>>=return . truncate . (1000000 ∗)

Then this function:

f x = x + unsafePerformIO usec

is non-deterministic, perhaps giving different results on different
calls. This non-determinism leads to all sorts of ills. For example,
these two terms

(let { x = f 3 } in x + x) (f 3 + f 3)

have different semantics – both are non-deterministic, but the for-
mer always returns an even number.

So the most basic requirement for Safe Haskell is that we should
have a way to prevent the client from using dangerous language
facilities. Moreover, one challenge is to be precise about what
“safety” even means. For example, are IO-performing functions
safe? We discuss all this in Section 3.1.

2.2 Unsafe language extensions
The safety issues of Haskell aren’t limited to unsafe operations like
unsafePerformIO. Some of the language extensions provided by
GHC also have problems. For example, a very useful feature called
“Generalised Newtype Deriving” can be used craftily to break the
type system. This is a long-standing bug in GHC [8], but the fix is
not straightforward.

Moreover, Generalised Newtype Deriving can be used to break
the module boundary abstraction (i.e., encapsulation) of Haskell.
The program below, for example, uses a newtype and module
export control to create a list variation that should, after initial
construction, only allow elements greater than a fixed minimum
to be inserted:

module MinList (
MinList, newMinList, insertMinList

) where

data MinList a = MinList a [a] deriving Show

newMinList n = MinList n []

insertMinList s@(MinList m xs) n
| n > m = MinList m (n:xs)
| otherwise = s

However the invariants established by the module boundary can be
broken. This is done by creating a newtype and a typeclass that
contains a cast operation to convert from one type to the base type
of our newtype. We define the implementation of this class for the
base type and using GND, derive it for the newtype:

{-# LANGUAGE GeneralizedNewtypeDeriving #-}
module Main where

import MinList

class IntIso t where
intIso :: c t → c Int

instance IntIso Int where
intIso = id

newtype I = I Int deriving (Eq, IntIso)
...



What we have done is create a function we cannot create by hand.
We now have an instance of the intIso function that will cast from
c (I Int) to c Int for any type c. This function will remove the
newtype from Int when the value is wrapped by another type. It
manages this without needing to know anything about that type,
including access to its constructor. We can now use this to violate
the invariant of a MinList by defining the Ord typeclass for I in
reverse of Int. Then we construct a MinList (I Int) and use our
intIso function to convert it to a MinList Int.

...
-- we reverse the usual comparison order
instance Ord I where

compare (I a) (I b) = compare b a

nums = [1,4,0,1,-5,2,3]

goodList :: MinList Int
goodList = foldl insertMinList

(newMinList $ head nums)
(tail nums)

badList :: MinList Int
badList = intIso $ foldl (λx y → insertMinList x $ I y)

(newMinList $ I $ head nums)
(tail nums)

main = do
print goodList
print badList

When running this code the output is:

MinList 1 [3,2,4]
MinList 1 [-5,0]

The use of GND has allowed us to create code that we otherwise
cannot create by hand and we can abuse to create illegal values of
a type.

In fairness, the issues with GND are due to bugs in the imple-
mentation of the extension itself, which we can reasonably expect
to be fixed in the future. (A more careful design that fixes this bug
is not yet implemented [28].) Nevertheless, the end result is as bad
as unsafePerformIO: access to the feature currently allows the pro-
grammer to subvert the type system and language abstractions, so
the feature cannot be a part of Safe Haskell.

2.3 Trust
At first one might think that, to guarantee safety, the client’s code
must use only safe constructs, and must only import modules that
have the same property. But that is far too restrictive.

GHC offers such unsafe facilities precisely because they are
sometimes required as the building blocks for safe, pure, deter-
ministic abstractions; for example a memo function may be im-
plemented using unsafePerformIO. The Data.ByteString module,
first discussed in Section 1, is another good example: it presents
a pure, list-like interface for bytestrings but internally relies on
unsafePerformIO to implement this interface using mutable byte
arrays. While the internals may be unsafe, the API it exposes is
completely safe. Moreover, lazy evaluation itself depends on the
benign side effect of updating a thunk and it is no less dangerous
because it is implemented in the compiler and runtime system.

So in the end it is all about trust. We will take for granted that
the server trusts the compiler and its runtime system – compiler
verification is a different issue. But the server most likely also trusts
some libraries, including ones such as the low-level base package
that come with the compiler, even though these libraries may use
unsafe features.

In short: it is OK for the client’s code to import modules that
the server trusts. Notice that trust relates to the person doing the
compiling (the server in this case) not the author of the code. A
different server might have a different opinion about which libraries
should be trusted.

3. Design
Safe Haskell tackles the problem of unsafety by defining a subset
of the language that does provide properties like referential trans-
parency, type safety and module encapsulation, while encompass-
ing as much existing code as possible.

The Safe Haskell design involves four related components:

• A set of guarantees that Safe Haskell code provides when com-
piling code in the safe language (Section 3.1),

• A categorization of Haskell modules according to what safety
guarantees can be provided (Section 3.2),

• A system of trust, that allows safe abstractions to be imple-
mented using unsafe features (Section 3.3),

• A set of restrictions on language features and extensions that
constitutes the safe subset of the language (Section 3.4)

3.1 Safe language guarantees
The purpose of the safe language is to allow the programmer to
trust the types. In the safe language, subject to trust, a function
that claims to be a pure function is guaranteed to indeed be pure.
Module export lists can also be thought of as type signatures—as
they are in the ML community—and so the above simple definition
applies to them too. These guarantees are dependent on the trusted
base that a user chooses to enable (Section 3.3). Subject to this,
Safe Haskell provides the following guarantees for code compiled
in the safe language:

• Type safety. In Milner’s famous phrase, well-typed programs do
not go wrong.

• Referential transparency. Functions in the safe language must
be deterministic. Evaluating them should not cause any side
effects, but may result in non-termination or an exception.

• Module encapsulation. Haskell provides an effective module
system that is used to control access to functions and data
types. In the safe language these module boundaries are strictly
enforced; a user of a module that contains an abstract data type
is only able to access or create values through the functions
exported.

• Modular reasoning. Adding a new import to a module should
not change the meaning of existing code that doesn’t directly
depend on the imported module.

• Semantic consistency. Any valid Haskell expression that com-
piles both in the safe language and in the full language must
have the same meaning.

The reader may find it surprising that Safe Haskell does not restrict
the use of IO. For example, it is perfectly possible to write a
program in Safe Haskell that deletes all the user’s files. This is a
deliberate design decision: a property like “does not delete all the
users files” is a security property and in general the security policy
that a given application requires will depend on that application.
Instead, Safe Haskell provides sufficient guarantees that a range of
security policies can be implemented on top of it. We will discuss
such security mechanisms in Section 5.1.



3.2 Identifying Safe Haskell code
The universe of Haskell code consists of code that is in the safe
language and code that is not. How should this distinction be
indicated by the programmer? The key design choice we made
here is to identify safety at the granularity of a Haskell module;
this makes it easy both for the programmer and the compiler to see
the boundary between safe and unsafe code.

Every module belongs to one of the following three classes:

• Safe, indicating that the module is written in the safe language.
• Trustworthy, indicating that the module is not written in the

safe language but nevertheless its author claims that clients can
use it safely (we discuss this in more detail in Section 3.3).

• Unsafe, for all other modules.

The programmer may explicitly specify which class their mod-
ule belongs to by specifying Safe, Trustworthy, or Unsafe in
the LANGUAGE pragma at the top of the module. For example:

{-# LANGUAGE Safe #-}

Equivalently, the server compiling an untrusted module can pass
the -XSafe flag to GHC.

In the absence of a Safe, Trustworthy, or Unsafe indication,
the compiler will automatically infer either Safe or Unsafe at
compile-time according to whether the code of the module lies
within the safe language or not.

3.3 Trust
Suppose the compiler is compiling this module:

{-# LANGUAGE Safe #-}
module M ( f ) where

import A ( g )
import B ( y )

f x = g x + y

Because M uses Safe Haskell, the compiler checks two things:

• It checks that M’s code, here the definition of f, does not contain
any unsafe language features.

• It checks that any modules M imports, here A and B, are trusted
modules. We will say what we mean by “trusted” shortly, but
the intent is that trusted code respects the Safe Haskell guaran-
tees enumerated in Section 3.1.

What does it mean for a module to be “trusted”? One obvious
reason for the compiler to trust A is that A is declared Safe and
was successfully compiled. However, as discussed in Section 2.3,
we need a way for the code to depend on unsafe code that is trusted
by the person who is going to run the compiled code.

In Haskell, modules are typically grouped together into pack-
ages, which are the unit of distribution and also usually the unit
of authorship. Hence it makes sense to track trust at the level of a
package. So the decision about whether “the user U trusts module
M in package P” is divided into two parts, one for the module and
one for the package.

These considerations lead us to the following definitions. A
module M in a package P is trusted by a user U if either of these
two conditions hold:

1. The compiler can check that M is indeed worthy of trust. Specif-
ically, both of these hold:
• The module was declared to be Safe.
• All of M’s direct imports are trusted by U .

2. The user U trusts M. Specifically, all of these hold:

• Package P is trusted by U ; we describe in Section 4.1 how
U expresses this choice.

• The module was declared by its author to be Trustworthy.
• All of M’s direct safe imports are trusted by U ; we describe

safe imports in Section 3.3.1.

Even a trusted author may design a package that exposes both Safe
and Unsafe modules, so the second test is that the (trusted) author
declared that this particular module M is indeed a Trustworthy
one, using a pragma:

{-# LANGUAGE Trustworthy #-}

A module that is declared to be Trustworthy is claimed by the
author to expose a safe interface, even though its implementation
might make use of unsafe features. There are no restrictions placed
on the language features used by, or the modules imported by, a
Trustworthy module (although the author can explicitly request
that certain imports must be trusted, see Section 3.3.1).

3.3.1 Safe imports
Suppose there is a Trustworthy module M in a package P that
is trusted by the server and accessible to untrusted client code.
Moreover, M depends on module N from another package Q. Now
we can see two possible situations:

• P’s author trusts Q and is willing to take full responsibility. In
that case, M can just import N as usual.

• P’s author is not willing to take responsibility for Q. What
P’s author wants to say is “if the server trusts Q, then my
modules are fine”. For that case we provide a small extension
to Haskell’s import syntax:

import safe N

The sole effect of the safe keyword can be seen in the definition of
a trusted module (Section 3.3): the server only trusts M if it trusts
M’s author, M’s author claims M is Trustworthy and the server
trusts all M’s safe imports.

When compiling with the Safe pragma, it is not necessary
to annotate imports with safe, since all imports are required to
refer to trusted modules. While the same could have been done
for Trustworthy modules and require some imports be marked as
unsafe, in reverse of the current design, this would have introduced
a larger, non-backward-compatible change to the language.

3.3.2 Example

Package Wuggle:
{-# LANGUAGE Safe #-}
module Buggle where

import Prelude
f x = ...

Package P:
{-# LANGUAGE Trustworthy #-}
module M where

import System.IO.Unsafe
import safe Buggle
...

Suppose a user U decides to trust package P. Then does U trust
module M? To decide, GHC must check M’s imports.
• M imports System.IO.Unsafe, but M was declared to be
Trustworthy, so P’s author takes responsibility for that im-
port.

• U trusts P’s author, so U trusts M to only expose an interface
that is safe and consistent with respect to the Safe Haskell
guarantees.



• M also has a safe import of Buggle, so for this import P’s
author takes no responsibility for the safety, so GHC must
check whether Buggle is trusted by U . Buggle itself has a
Safe pragma so the module is machine-checked to be OK,
but again under the assumption that all of Buggle’s imports are
trusted by U . We can probably assume that Prelude is a trusted
module and the package it resides in is trusted, thus Buggle is
considered trusted.

Notice that U didn’t need to trust package Wuggle; the machine
checking is enough. U only needs to trust packages that contain
Trustworthy modules.

3.4 Restricted language features
In the following sections we discuss the language features that are
either restricted or completely disallowed by the safe language.

3.4.1 Unsafe functions
A module in Safe Haskell cannot have access to unsafePerformIO,
because that would allow it to violate referential transparency and
break type safety. The same applies to a number of GHC’s primitive
operations and a handful of other operations in the libraries that
come with GHC. The modules that expose these unsafe functions
are regarded by GHC as Unsafe, preventing them from being
imported by Safe code.

3.4.2 Disallowed extensions
While Haskell 2010 with the exception of non-IO FFI imports
and Foreign.Marshal.unsafeLocalState is a safe language, most
Haskell compilers implement a variety of widely used extensions to
the language, a few of which are unsafe. These extensions violate
the guarantees of Safe Haskell and so are disabled when compiling
with the safe language. These extensions are:

• Template Haskell – Allows access to symbols in modules re-
gardless of the export list they define. This breaks module en-
capsulation.

• Generalised Newtype Deriving – Allows the deriving of code
that otherwise cannot be written by hand. This can be used to
create functions that operate on values contained within abstract
types as we demonstrated in Section 2.2, breaking type safety
and module encapsulation.

• RULES – Allows redefining the meaning of existing code in
the system. That is, importing a module that uses RULES may
change the behaviour of existing code in the importing module.
This breaks the modular reasoning guarantee.

3.4.3 Restricted extensions
While some Haskell language extensions are unsafe and need to be
disabled entirely, a few extensions can instead be restricted in their
functionality to ensure they are compatible with the guarantees of-
fered by Safe Haskell. These restrictions do not change the be-
haviour of these extensions, they simply limit it. Should Safe code
exceed these limits, a compile-time error occurs. The restricted ex-
tensions are:

• Foreign function interface – the FFI allows importing functions
with non-IO type signatures, which is useful for importing pure
foreign functions such as sin. This essentially amounts to use of
unsafePerformIO, the programmer is asserting that the function
is pure and the compiler cannot check the assertion. Hence in
Safe Haskell, all FFI imports must have IO types.

• Deriving Data.Typeable – Data.Typeable is part of the widely
used Scrap Your Boilerplate [11] (SYB) generic programming
techniques. The Typeable typeclass gives to each type that is

a member of the class a unique, comparable representation,
that is used to implement type-safe casts on top of an unsafe
cast primitive. The original SYB paper envisioned that safety
could be guaranteed by having the compiler derive the Typeable
instance for a type. While GHC support this, it also allows the
programmer to define their own instances of Typeable. Hand-
crafted Typeable instances can be used to cast between arbitrary
types, undermining type safety and module encapsulation. Safe
Haskell prevents this by only allowing automatically derived
instances of Typeable.

• Overlapping Instances – Allows redefining the meaning of ex-
isting code in the system, thereby breaking the modular reason-
ing guarantee. The safe language restricts this by only allowing
instances defined in a module M to overlap with instances also
defined in module M. Should any of the instances in M overlap
with instances defined outside of M, a compile-time error will
occur.

4. Implementation details
In addition to the core design of Safe Haskell, there were several
decisions made that fall on the implementation side but form an
important part of the functionality of Safe Haskell. Several of these
decisions were made with the benefit of hindsight as Safe Haskell
was first implemented and released in GHC 7.2, but based on feed-
back from users and our own experience we modified the imple-
mentation, arriving at the one detailed in this paper and released in
GHC 7.4.

4.1 Package trust and -fpackage-trust

In the first implementation of Safe Haskell we discovered a signif-
icant drawback: a library author would add a Safe pragma to their
modules and upload the library to Hackage for others to use. When
users came to compile the package the compilation would fail be-
cause one or more packages were not trusted on the user’s machine.
We believe it is important that library authors are able to add Safe
pragmas to their code without the risk that this will cause compila-
tion failures for their users for reasons that are outside the library
authors control.

This lead to an important realisation: the checking of package
trust can be deferred until required by a user who actually cares
about the chain of trust. For a user compiling a package they
downloaded from the Internet and who is otherwise not using Safe
Haskell, it is important that the compilation not fail for a spurious
reason. Hence in the implementation of Safe Haskell we made the
checking of package trust conditional on the -fpackage-trust
flag, which is off by default. When the flag is off, every package is
effectively considered to be trusted.

It is important to understand that this policy does not weaken
the guarantees provided by Safe Haskell, it only defers the check
that Trustworthy modules reside in trusted packages. Consider
a chain of modules where A imports B which imports C and both
A and B are Safe and C is Trustworthy. When compiling B it is
irrelevant whether the package containing C is currently trusted,
because when we eventually compile A, we will make that check
again, because the definition of a trusted module is recursive. So
the observation is that we can safely assume all packages to be
trusted when compiling intermediate modules like B, but a user who
cares about the chain of trust can enable -fpackage-trust when
compiling the top-level module A and have no loss of safety.

Finally, this feature does not mean that compilation of a pack-
age will never fail due to Safe Haskell if the user of the package
has chosen not to enable Safe Haskell. When the author of a pack-
age P uses a Safe pragma in their code they are still placing a
requirement that the modules their code depends on are consid-



ered Safe or Trustworthy. If a new version of a package that P
depends on is released with a change to which modules are con-
sidered Safe or Trustworthy, this may now cause P to fail to
compile. Safe Haskell is part of the versioning of a package. The
-fpackage-trust flag simply removes package trust from the
equation for package authors as this is local to a users machine
and not within their control.

4.1.1 Package trust options
Packages in Haskell have a variety of metadata attached to them
that is stored in a global database known as the package database.
This metadata consists of static information but also properties that
affect the behaviour of GHC, such as which package to choose
when there is a choice during compilation. These properties can
be set permanently against the package database or for a single run
of GHC.

As explained in Section 3.3, Safe Haskell gives packages a new
Boolean property, that of trust. Several new options are available at
the GHC command-line to specify the trust of packages:

• -trust P – Exposes package P if it was hidden and considers
it a trusted package regardless of the package database.

• -distrust P – Exposes package P if it was hidden and consid-
ers it an untrusted package regardless of the package database.

• -distrust-all-packages – Considers all packages dis-
trusted unless they are explicitly set to be trusted by subsequent
command-line options.

4.2 Safety inference
As mentioned in Section 3.2, the safety of a module can be inferred
during regular compilation. That is, for every compilation that GHC
performs, it tracks what features of Haskell are being used and
what modules are being imported to determine if the module can
be regarded as Safe. The precise condition for a module to be
inferred as Safe, is that compiling that same module with the Safe
pragma and without the -fpackage-trust flag would succeed.
In other words, modules are inferred as Safe or Unsafe under
the assumption that all Trustworthy modules reside in trusted
packages.

4.2.1 Unsafe modules
Safe inference introduces the possibility of conflicting uses of Safe
Haskell, which, on one hand tracks and guarantees simple type
safety and on the other can be the basis of a particular security
policy. The problem arises when a module M is perfectly type-safe
but exports private symbols that must not be imported by untrusted
code. For instance, a useful idiom is to have a privilegedLiftIO

function that allows execution of arbitrary IO actions from a more
restrictive monad. Such a function might be type-safe, but must
not be imported by untrusted code—it is only for use by privileged
code implementing the restrictive monad’s API.

Since GHC will automatically infer a module as Safe if it re-
sides in the safe subset, it may be necessary to explicitly label
a module as Unsafe if the module’s interface would allow un-
trusted code to break security properties. Another way to achieve
this effect would be to import a known-unsafe module such as
System.IO.Unsafe, but explicitly labelling the module as Unsafe

is clearer. The Unsafe pragma also enables the use of the safe
keyword in imports and hence is useful for Main modules import-
ing untrusted code.

4.3 Haskell tools
In addition to the core design of Safe Haskell we have spent some
effort on the surrounding infrastructure of the GHC compiler,
namely GHCi and Haddock.

For GHCi we added full support for Safe Haskell; invoking
GHCi with the -XSafe flag functions as one would expect. Imports
during the session are checked appropriately for trust. We also
added an :issafe command to GHCi that can be used to check
the Safe Haskell status of a module. For example:

Prelude> :issafe Data.ByteString
Trust type is ( Module: Trustworthy

, Package: untrusted )
Package Trust: Off
Data.ByteString is trusted!

We also added support for Safe Haskell to the Haddock doc-
umentation tool. Haddock now automatically includes the Safe
Haskell categorization of a module in its generated documentation.
If a module is inferred to be Safe by GHC, then the module’s doc-
umentation will indicate so.

5. Use cases
Safe Haskell has been designed with a number of uses cases in
mind:

• Enabling (given a set of trusted components) secure systems
that host untrusted Haskell code to be built and relied upon
(Section 5.1).

• Encouraging language designers to carefully consider the safety
implications of new language extensions. Those features that al-
low the Safe Haskell properties to be broken have serious impli-
cations; again, Safe Haskell shines a light on this (Section 5.2).

• Providing an additional tool to encourage writing in the safe
subset of Haskell, something we believe should be considered
best practice. Leaving the safe language should be a conscious
decision and Safe Haskell provides a framework for implement-
ing this policy (Section 5.3).

5.1 Secure programming
The primary motivation for the work on Safe Haskell has been to
harden the language to a point at which it can be used for the design
and implementation of secure systems; that is, systems designed
to sandbox third party untrusted code. Haskell’s powerful type
system, in particular its separation of pure and impure code and
the ability of typeclasses to encode monads, makes it well-suited
for such a task. These allow certain security systems to be built
in Haskell that would otherwise require compiler or OS support in
other languages.

An example used to drive Safe Haskell was that of implement-
ing a restricted IO monad. A restricted IO monad, or RIO, is the
next simplest example of a viable sandbox mechanism in Haskell
after a pure function. The idea of RIO is that third party untrusted
Haskell code can be run safely by requiring it to provide a top level
interface (the plugin interface) that resides in a new monad that is
isomorphic to IO but, by creating a distinct type, controls precisely
what IO actions are available to the untrusted code.

An example encoding of this idea can be seen below:

{-# LANGUAGE Trustworthy #-}
module PluginAPI (

RIO(), runRIO, rioReadFile, rioWriteFile
) where

-- Notice that symbol UnsafeRIO is not exported
-- from this module!
newtype RIO a = UnsafeRIO { runRIO :: IO a }

instance Monad RIO where
return = UnsafeRIO . return
(UnsafeRIO m)>>=k = UnsafeRIO $ m>>=runRIO . k



-- Returns True iff access is allowed to file name
pathOK :: FilePath → IO Bool
pathOK file = {- Implement some security policy -}

rioReadFile :: FilePath → RIO String
rioReadFile file = UnsafeRIO $ do
ok ← pathOK file
if ok then readFile file else return ""

rioWriteFile :: FilePath → String → RIO ()
rioWriteFile file contents = UnsafeRIO $ do
ok ← pathOK file
if ok then writeFile file contents else return ()

An untrusted module can be compiled with the Safe pragma and
run with safety as long as only functions residing in the RIO monad
are called. In this situation a guarantee is provided that the only IO

actions that can be executed by the untrusted code are rioReadFile

and rioWriteFile both of which are protected by the pathOK

function. Essentially we are restricting the plugin to a sandboxed
filesystem, all within the Haskell language.

Now it is worthwhile walking through ways in which the above
code would fail without Safe Haskell. A malicious module has at
least the following attack options available:

• unsafePerformIO could be used to pretend any IO action is a
pure function and thus execute it in the RIO monad.

• The FFI could be used to import an impure foreign function
with a pure type signature, allowing it to be used in the RIO

monad.
• A hand-crafted instance of Data.Typeable could be defined

for RIO in the malicious module such that its type value is
equivalent to IO. The cast operation could then be used to coerce
any IO action to a RIO action.

• Template Haskell can be used in to gain access to the RIO

constructor, allowing any IO action to be constructed as a RIO

action.

Compiling with Safe Haskell is designed to effectively prevent all
such attacks and allows the RIO sandbox to work as expected.

A more powerful sandbox mechanism than the simple RIO tech-
nique that can be encoded in Haskell is that of information-flow
control, or IFC. The LIO [19] library for Haskell offers a powerful
IFC mechanism for using as a basis for building secure systems.
Indeed building on top of Safe Haskell and LIO several authors
of this paper are involved in designing and implementing a web
framework that supports building websites that include untrusted
third party plugins while still guaranteeing the site’s users privacy
policies are respected.

5.1.1 GHCi Online
As an example of the use of Safe Haskell we designed and im-
plemented a version of the interactive Haskell environment, GHCi,
that can be run as a web site for use by unknown, untrusted users.
That is, it offers an online service for executing untrusted Haskell
code. This is inspired by such existing services of this nature like
LambdaBot [21] and TryHaskell.org [3].

GHCi Online 1 builds on the RIO technique outlined Section 5.1.
This differs from LambdaBot and TryHaskell which use syntax
level filtering and take a fairly heavy-handed approach of disabling
all IO. As we had already modified GHCi to support Safe Haskell
as part of the project, a large portion of the implementation work
for GHCi Online was already done. We did however add support

1 GHCi Online can be found at http://ghc.io

to GHCi to execute within the bounds of a user specified monad
rather than the default IO monad.

To support a read-eval-print loop, GHCi’s design includes a
source level transformation that lifts any user typed expression into
the IO monad for execution. Aspects like binding variables and
printing out results are also handled as part of this transformation.
The rules for it are:

User expression
⇒
The IO [Any] that is run
---------------------------

1. let (x,y,...) = expr
⇒
let (x,y,...) = expr in return [coerce Any x,

coerce Any y,
...]

2. (x,y,...) ← expr
⇒
expr>>=λ(x,y,...) → return [coerce Any x,

coerce Any y,
...]

3. expr -- (of IO type)
⇒
expr>>=λit → return [coerce Any it]

4. expr -- (of non-IO type, result showable)
⇒
let it = expr
in print it � return [coerce Any it]

5. expr (of non-IO type, result not showable)
⇒
error

These rules deal with binding values and coercing them to GHC’s
Any type, which a type that can hold a dynamically typed value and
is used by GHC for a variety of purposes, including implementing
the Data.Typeable.Dynamic data type. We can see in rules 1 and
2 how interactively binding variables is done. Rule 3 demonstrates
the simple transformation done to IO expressions, simply capturing
the result in a variable named it, which is a convenience of GHCi.
Rule 4 shows how expressions of non-IO type that are printable are
executed, while rule 5 shows how expressions that aren’t an IO type
or of the Show typeclass produce an error.

We generalised this transformation so that GHCi was able to
lift and execute code not just in the IO monad, but into any monad
that was isomorphic to IO. We captured the requirements for this
in a typeclass and modified the source transformation to support
executing expressions within any monad that is an instance of the
typeclass. The definition of this typeclass appears below:

module GHC.GHCi (
GHCiSandboxIO(..), NoIO()

) where

import GHC.Base (IO(), Monad, (>>=), return, id, (.))

-- | A monad that can execute GHCi statements by
-- lifting them out of m into the IO monad.
class (Monad m) ⇒ GHCiSandboxIO m where

ghciStepIO :: m a → IO a

instance GHCiSandboxIO IO where
ghciStepIO = id

-- | A monad that doesn't allow any IO.
newtype NoIO a = NoIO { noio :: IO a }



instance GHCiSandboxIO NoIO where
ghciStepIO = noio

instance Monad NoIO where
return a = NoIO (return a)
(>>=) k f = NoIO (noio k>>=noio . f)

The generalisation of GHCi and the definition of the typeclass
interface gave us an easy and flexible way to sandbox GHCi itself.
To do so, we simply implement a RIO style monad and make it
an instance of the GHCiSandboxIO typeclass. Currently we have
not implemented a RIO style monad for GHCi Online but simply
restricted IO completely by using the NoIO type defined above.
For future work we would like to use a RIO style monad that
implemented IO functions like getChar as callbacks between the
browser and server-side of GHCi Online.

Compared to LambdaBot and TryHaskell, GHCi Online rep-
resents a principled and flexible approach to safely executing un-
trusted Haskell code over the Internet. The security policy consists
simply of the 6 lines of code that is needed to implement the NoIO

monad. Implementing a more powerful sandbox would be a simple
task. By comparison LambdaBot and TryHaskell both rely strongly
on a white list of modules that can be imported to assure type safety
and only support executing pure functions. Changing the policy and
code is far from trivial for these systems.

5.2 Quality mark
A more ambitious and less concrete use case for Safe Haskell is for
it to act as a quality bar for the Haskell language. Many Haskell pro-
grammers may be surprised at the number and subtle ways in which
certain language extensions can be used to circumvent the guaran-
tees Haskell is usually thought to provide. While unsafePerformIO

is not one of them, the ability of Generalised Newtype Deriving or
Template Haskell to break module boundaries likely is.

The Haskell language has always walked a line between acting
as a research vehicle for programming language design, while in-
creasingly being used by industry for commercial purposes. Safe
Haskell has the potential to help define part of that line, by mark-
ing which extensions at least conform to the guarantees Haskell
provides. It offers a focal point for discussing some of the more
controversial features of Haskell, helping to bring some of these
issues to light. New extensions to the language and new packages
will now face the question of their Safe Haskell status, hopefully
encouraging a stronger design.

5.3 Good style
As we discussed in Section 2, the use of unsafe functions and
language extensions can lead to programs that have undesirable
behaviours (e.g., crash). As such it is considered good practice in
the Haskell community to use unsafe features only if no appropriate
safe alternative exists. Safe Haskell and the Safe pragma can be
used to codify this practice. In this sense we can think of Safe
Haskell as another kind of “warning.” It is already common for
developers to turn on GHC’s -Wall flag that emits warnings for
stylistic aspects that are generally disapproved of, often because
they can hide bugs (e.g., unused identifiers). In the same way that
it is considered good to keep one’s code warning-clean, we expect
that using Safe will become another aspect of code cleanliness that
will find its place amongst the accepted best practices.

There may be some initial friction as developers adjust to using
Safe and Trustworthy; there will no doubt be many libraries that
need small changes to work with Safe. However we expect that
over time this should change as Safe Haskell sees broader adoption
and hopefully some of the restrictions can be dropped through
further work on their design or restrictions on their functionality

Modules % of base
Safe 23 25.56%
Trustworthy 59 65.56%
Split 5 5.56%
Unsafe 3 3.33%

Table 1. Results of using Safe Haskell in GHC base package.

under Safe Haskell. This would further encourage a trend towards
using Safe by default.

6. Evaluation
To evaluate the ease of using Safe Haskell, particularly when port-
ing existing code to the safe language, we looked at three different
metrics:

• First, we manually added Safe Haskell pragmas to the base
package and several other packages distributed with GHC (Sec-
tion 6.1).

• Second, we determined what fraction of the Haskell world (as
determined by Hackage) is inferred as Safe (Section 6.2.1).

• And third, we determined what fraction of the Haskell world
compiles with the restrictions to language extensions the Safe
pragma applies but without any restrictions on imports (Sec-
tion 6.2.2).

6.1 Making base safe
We modified the base package distributed with GHC, that includes
the Haskell standard prelude, to use Safe Haskell.

Each module was either inferred as Safe or Unsafe, marked
as Trustworthy, or split into two new modules such that the safe
symbols resided in one module and the unsafe symbols in another.
This split was done such that a module M produced a new module
M.Safe containing the safe symbols and a new module M.Unsafe

containing the unsafe symbols. M itself was left unchanged to pre-
serve backward compatibility and is inferred as Unsafe, however
future versions of the base package will move towards M only ex-
porting safe symbols.

The results of this process for the base package can be seen in
Table 1. As is expected for base, which deals with many of the low-
est levels of the Haskell language, a large proportion, 66%, of the
modules needed to be marked Trustworthy. For the remaining,
26% of the modules were inferred as Safe, 6% of the modules were
split, 3%, or 3 out of 89 modules, were inferred as Unsafe. The
split modules include, for example, Control.Monad.ST as it con-
tains the unsafe function unsafeIOToST. While the unsafe modules
were Data.Debug, System.IO.Unsafe and Unsafe.Coerce,
since they only contain unsafe symbols.

6.2 Compiling Hackage
To see the effect of Safe Haskell on the wider Haskell universe we
tried compiling every package (totalling over 14,000 modules) on
the Hackage code hosting site. For one run we simply recorded
which modules were inferred to be Safe and which were inferred
to be Unsafe. For a second run we compiled all packages using
a modified version of the safe language in which all the language
extension restrictions applied but import control was turned off. To
perform these tests we improved upon an existing tool called Hack-
ager [24] that automates the process of compiling all of Hackage.

6.2.1 Inferring Safe

The results for the first run of Hackager can be seen in Table 2.
Around 27% of modules on Hackage are inferred as Safe while



Modules % of Hackage
Safe Inferred 3,985 27.21%
Unsafe Inferred 10,660 72.79%

Table 2. Results of inferring Safe Haskell status for all modules on
Hackage.

Packages % of Hackage
Buildable 1,278 82.66%
Build failed 268 17.34%

Table 3. Results of compiling all packages on Hackage with a
modified Safe pragma (no import restrictions).

72% are inferred as Unsafe. While we think this is already an
encouraging number, we expect the number of modules inferred
as Safe to grow due to a number of factors.

Firstly, as mentioned in Section 6.1, some of the modules in
the base package of GHC needed to be split into a safe and
unsafe module. To preserve backward compatibility we left the
original module unchanged and hence inferred as Unsafe. Instead
of this, future versions of the base package will remove the unsafe
symbols from the primary module so that it can be regarded as Safe
or Trustworthy. Since few users of the base package rely on
unsafe symbols, switching the primary module to the safe interface
should allow more of Hackage to be inferred as Safe.

Secondly, Safe Haskell is a very recent addition to GHC and it
is reasonable to expect that right now represents the lowest point in
its adoption by the Haskell community. As time passes, we believe
that more package maintainers will either use the Trustworthy
pragma when appropriate or, as is our hope, refactor their code so
that most of the modules can be inferred as Safe.

6.2.2 Evaluating the Safe pragma
To evaluate the impact of using the safe language we performed a
second run of Hackager in which we compiled each package us-
ing a modified version of the Safe pragma. This modified version
kept the language extension restrictions but dropped the safe im-
port requirement. That is, using Template Haskell would cause a
compile-time failure but importing System.IO.Unsafe would not.

The results of this test can be seen in Table 3. We present these
results at the package granularity, showing the number of whole
packages that successfully compiled or failed to compile. Further-
more, we only compiled the package being tested with the modified
Safe pragma; the dependencies of each package were compiled
without any use of Safe Haskell. Thus this test is more an indica-
tion of the degree to which restricted language extensions are used,
than an indication of what packages truly compile in a -XSafe
restricted world. The results however, are very encouraging, with
83% of packages compiling successfully.

Furthermore, we broke down the reason for packages failing to
build with the results presented in Table 4 2. As can be seen from
the table, the use of Generalised Newtype Deriving accounts for
around half of the packages that failed to build. Since we believe
this restriction can be lifted in the future it offers further evidence
that Safe Haskell can see broad adoption by the community with
little friction.

2 Some packages failed to build for more than one reason, hence the larger
total than packages that failed to build

Modules % of failure
Generalised Newtype Deriving 146 54.48%
Template Haskell 84 31.34%
Hand written Typeable instances 33 12.31%
Non-IO FFI imports 33 12.31%

Table 4. Count of packages that failed to build with a modified
Safe pragma (no import restrictions) summed by the language
extension that caused the failure.

7. Discussion
During the work on Safe Haskell, a number of alternative designs
were considered before we arrived at the system presented in this
paper. We discuss them here.

One choice was the granularity at which to consider safety. In-
stead of marking safety at the module level, the safety of individual
symbols could be tracked. A proposed syntax for this was:

{-# LANGUAGE Trustworthy #-}
module M where (

{-# SAFE -#}
a,b,c,d

{-# UNSAFE -#}
e,f,g

)
...

This design would allow for safe and unsafe symbols to co-exist
within the same Trustworthy module instead of requiring they be
split into two different modules as the current design does. A safe
import of the module would only have access to the safe symbols
while, a regular import would have access to both the safe and
unsafe symbols.

This design has a number of advantages, the first being that it
appears easier for existing code to adopt, because no changes to the
module layout of a package are needed. Since the current design of
Safe Haskell may require splitting module M into three modules, an
implementation, a Trustworthy module and an Unsafe module
this is an important advantage. The advantage also benefits users of
M, who would not need to change any of their imports. Secondly,
under the alternative design we can generate better error messages.
A call to the unsafe function e when M is imported with a safe
import would produce a compile-time error message that the use
of an unsafe function is not allowed. In the current design of
Safe Haskell the error message instead reports that e is not in
scope. Despite these advantages, we did not take this approach
as it is a more invasive change to the Haskell language than the
current design. Using modules as the level of granularity doesn’t
introduce any new name-space concepts in the language and builds
on an existing idiom in the Haskell community to place unsafe
functionality in its own module. It also imposes a larger overhead
on using unsafe symbols and hence may help to dissuade users from
doing so.

A second major decision in the design of Safe Haskell is to have
a single notion of “trustworthy”, rather than generalising to arbi-
trary types of trustworthiness. The current design of Safe Haskell
places a Haskell module in one of three sets: Safe, Trustworthy
or Unsafe. The Trustworthy set has always been more question-
able than the Safe or Unsafe sets with the issues largely revolv-
ing around the idea that one person may have a different definition
of “trustworthy” than another. It may also be desirable to specify
different levels of trustworthiness, some with stronger or weaker
guarantees than others. Along these lines, we explored a design in
which we generalised the notion of categorizing modules by having
arbitrary, user defined sets. One proposed syntax for this was:



{-# SET Trust_T1 #-}
module A where ...

{-# SET Trust_T2 #-}
module B where ...

In this design, the Safe set would be a special set functioning as
it does in the current design but the Trustworthy and Unsafe
sets would simply become convention. Other types of trustworthi-
ness could also be defined by individual package maintainers. This
design had some appeal in the increased flexibility and power it
offered users. We ultimately decided against it though for two rea-
sons. Firstly, the design of Safe Haskell is subtle and at times com-
plicated; this alternative adds greatly to the complexity. Secondly,
having a universally shared definition of a Trustworthy module is
extremely beneficial. The increased flexibility doesn’t just increase
the complexity in using Safe Haskell but also in validating what
guarantees it provides and assuring that the system behaves as ex-
pected.

Another design decision of interest is that of import con-
trol in Safe Haskell. The current design offers a weak version
of a white-listing import control mechanism, in the form of the
-fpackage-trust flag. By marking packages as trusted or un-
trusted, the importing of Trustworthy modules can be controlled.
An alternative would be to extend this mechanism so that it is
possible to compile a module with a guarantee that it could only
import modules on a list defined by the server invoking GHC. If we
also allowed for all FFI imports to be disabled then some stronger
static guarantees can be provided than the current design of Safe
Haskell. An example of this could be the assurance that IO actions
in a safe module were only constructed from existing IO actions
in modules it can import. Rather than rely on a restricted IO-style
sandbox, the IO monad could be used directly in untrusted code.
We decided against this design, because we believe it would add
extra complexity to Safe Haskell with little benefit. In the end the
advantages of Safe Haskell for building secure systems is not a sim-
ple import control mechanism, but rather the advanced type system
of Haskell that can encode ideas such as reduced IO monads and
information-flow control.

The last design decision we will discuss is that of requiring ex-
plicit use of the safe language through -XSafe or the Safe pragma,
rather than making it the default. Instead of allowing the use of un-
safe language features at any point in modules not specifying a Safe
Haskell pragma, we could require modules explicitly enable access
to unsafe features through the Unsafe pragma. While appealing in
requiring users opt-out of safety as opposed to having to opt-in,
such a design would break a large amount of Haskell code, making
it impractical to deploy.

8. Limitations
While Safe Haskell provides a powerful and comprehensive mecha-
nism for implementing secure systems, the Haskell language, there
are a number of restrictions it implies and limitations on its ability
to achieve this without supporting tools.

The first limitation of Safe Haskell is the restrictions that using
the safe language imposes. In the case of the restricted extensions,
the FFI, Data.Typeable and Overlapping Instances, we believe
the modified behaviour is an appropriate solution. However it is
possible that rather than simply disabling Generalised Newtype
Deriving, RULES and Template Haskell a more flexible solution
could be found, restricting their behaviour instead of disabling the
extension entirely. Generalised Newtype Deriving will be fixed in
the future but perhaps there is a safe, restricted form that RULES
and Template Haskell could operate in instead of the current all or
nothing design.

The other limitation of Safe Haskell is that of resource exhaus-
tion. Many practical uses of Safe Haskell for securing untrusted
code will need to handle attacks designed to consume CPU and
memory. At this time the only solution we are aware of is resorting
to OS, process-level resource limits. This is a fairly heavyweight
solution and we are interested in pursuing a language-level ap-
proach that would allow code to have resource limits applied within
the same address space, either at the function or thread granularity.

8.1 Compilation safety
When a server compiles some untrusted code, the server must be
sure that the act of compilation itself does not compromise the
server in some way. This is effectively another security policy and
moreover one that is a property of the tools rather than the language.
As such we have deliberately separated it from the concept of the
safe language.

Our implementation of Safe Haskell does not currently address
the issue of safe compilation, although we recognise its importance.
One simple solution available today is to compile untrusted code in
a sandbox, such as a jail or virtual machine. Alternatively we could
identify language and tool features that are a security threat and
disable them. We believe that disabling the following features is
sufficient for safe compilation with GHC:

• Template Haskell, Quasiquotation and the ANN pragma, all of
which execute code at compile-time.

• The C preprocessor (CPP) and user-defined preprocessors, both
of which may read unauthorised files during compilation.

However, we note that GHC is often not the only tool involved
in compilation; packages of code may come with their own build
systems which also need to be trusted. Cabal packages [10] for
example can provide their own executable build systems in the
form of a Haskell Setup.hs module and typically these build
systems need to be able to do IO because they read and write files.
Achieving safe compilation without an OS-level sandbox in these
circumstances is likely to be difficult.

Finally, we also note that causing GHC to diverge or for the
compilation to take an exponential amount of time is fairly easy
to achieve. (Even Hindley-Milner type inference is known to have
worst-case complexity exponential in the program size.) This is not
a serious problem: while it may be used for a denial of service at-
tack against a system, there is no way to abuse this to compromise
the guarantees offered and a compilation time-out represent a sim-
ple and viable solution.

9. Related work
The basic idea of Safe Haskell, that of a safe subset of a language,
is not a new one. Several other attempts in this space exist. There
are some important differences and contributions we believe Safe
Haskell makes compared to these works.

The major difference between Safe Haskell and other works is
that Safe Haskell is deployed within the Haskell language itself,
this is, as a feature of GHC, the dominant Haskell compiler. Safe
Haskell works with the existing language and indeed builds on ex-
isting trends and coding styles in the community. A different set
of tools or a slightly different language is not required. Unlike all
other work, Safe Haskell also tracks module safety at every stage
and for every compilation, whether or not the user is explicitly us-
ing Safe Haskell. This allows for the design of trustworthy mod-
ules and safe inference, both of which increase the ability for Safe
Haskell to function within the existing Haskell language. Indeed
this is perhaps our biggest contribution to the space: we allow more
flexible use cases than all or nothing. For many users, our hope is
that they will never even have to use Safe Haskell but that the in-



ference ability will still provide benefits for them and users of their
code.

Another key difference is the flexibility and expressiveness of
the language we are securing. We chose Haskell because we believe
it is uniquely suited for implementing secure systems. The clear
distinction between impure, potentially dangerous functions and
pure ones through the IO monad allows for security policies to
be expressed and reasoned about easily. When combined with the
ability to implement alternatives to IO, like RIO or LIO, this gives
users a powerful way build their own security mechanisms.

9.1 Modula3
Modula3 [1] is a research language developed in the 1980’s that has
a concept of a safe and unsafe module. Modula3 has some strong
similarities to Safe Haskell and indeed we derived inspiration from
its design. Modula3, unlike Haskell, separates a module’s interface
from its implementation, making interfaces first class. Both mod-
ules and interfaces can be marked as safe or unsafe, with safe be-
ing the default. Marking as unsafe enables access to certain un-
safe operations in the language such as unchecked type casts. Safe
modules cannot import or export unsafe interfaces, however, un-
safe modules can export safe interfaces. Modula3 doesn’t refer to
this latter case as a trustworthy module but the concept is the same.
An unsafe module that exports a safe interface is precisely the def-
inition of a trustworthy module in Safe Haskell.

Safe Haskell differs from Modula3 however in its inclusion of
the concept of trusted packages. The -fpackage-trust flag and
the design of Safe Haskell to include the package system, not just
the language, offers a level of control over trustworthy modules that
Modula3 does not have. The inclusion of safe inference in Safe
Haskell is another distinguishing feature compared to Modula3.
Finally, Modula3 was designed from the start with the concept of
a safe and unsafe boundary while Safe Haskell has undertaken to
retrofit this to a mature language, building off existing idioms in the
community.

9.2 Java
Since early on, Java has had a fairly comprehensive runtime secu-
rity mechanism known as stack inspection [27], designed mainly
for supporting Java applets. The system works by associating prin-
cipals and privileges with classes based on how their code was
loaded. For example, an applet code loaded over the web could be
labelled with the untrusted principal and any local code running
in the same JVM labelled with the system principal. A principal
has access to a certain set of privileges that act as keys for perform-
ing certain sensitive operations. Accessing the file system is one
such privilege; using the reflections API is another. Privileges can
be enabled or disabled dynamically by Java code, allowing, for ex-
ample, sandboxes to be built in which the only code enabling the
filesystem privilege is the implementation of a minimal API that
carefully checks all arguments. Java tracks privileges and princi-
pals dynamically and records the information in each stack frame.
Before a sensitive operation takes place, the code implementing the
operation must invoke the security manager, which walks the stack
checking each frame until either a frame enabling the correct priv-
ilege is found, in which case the sensitive operation takes place, or
an untrusted frame is found, in which case a security exception is
thrown.

Stack inspection and Safe Haskell are each implemented at the
core of a widely used language. Beyond that, the two have little in
common. Stack inspection is a way of enforcing a particular class of
security policies on the assumption that Java is type-safe. By con-
trast, Safe Haskell enforces type safety in Haskell, encouraging the
use of types to express security policies but deliberately avoiding
committing to any particular class of policies. While Safe Haskell

uses static enforcement, stack inspection is dynamic, incurring an
overheard of up to 9% [27]. Moreover, Stack inspection must be
explicitly designed into the base libraries by invoking the security
manager before every sensitive operation. This restricts enforce-
able policies to those with the same notion of sensitive operation,
ruling out such policies as information-flow control, but also fa-
cilitates construction of policies that precisely match the sensitive
operations.

9.3 JavaScript
The JavaScript language has also seen a fair amount of work with
similar goals and techniques as Safe Haskell. Historically there
has been the FBJS [6] and ADsafe [2] JavaScript frameworks
developed by Facebook and Yahoo respectively. Both provide a
mechanism for safely executing untrusted code, through language
level sandboxing and a restricted API. These projects perform a
source-to-source translation on JavaScript to ensure only a safe sub-
set is used, much like the Safe pragma enforces. More recently
the ECMA Standards Committee (TC39) developed a strict mode
(ES5S) [4] and are developing a more restrictive sub-language
of JavaScript called Secure EcmaScript (SES) [5, 23]. Both sub-
languages make JavaScript a language more amenable to sandbox-
ing with the SES environment being similar to our Safe pragma in
the guarantees it provides. FBJS, ADsafe and SES all differ from
Safe Haskell in that they focus exclusively on the security aspects
while Safe Haskell also attempts to be broader than that. We explic-
itly designed Safe Haskell to fit into the existing language and be
used in tandem with it as easily as possible. Also, while SES does
offer a form of import control in the new variable-restricted eval
function, that allows specifying an upper bound on what free vari-
ables some code can access, it has no notion of a module system
and tracking of safety. This is simply due to the constrained nature
of the browser that JavaScript is run in, which limits the scope of
the problem.

9.4 Object capability languages
Finally, there is also a significant amount of work on securing pro-
gramming languages with the object capability model [15, 16].
While this work is broader in focus, it overlaps with Safe Haskell
in that many of the languages used were existing, widely used
languages that needed to be modified in a manner similar to the
Safe Haskell safe language, so the object capability model could
be supported. Once the language is secure, implementing the capa-
bility model generally just involves careful API design, similar to
the RIO technique we outlined. Examples of this work include the
Emily [22] and E [20] programming languages, Google’s Caja [17]
(a variant of JavaScript) and Joe-E [14] (a variant of Java).

Joe-E is the most interesting example here as they designed a
subset of Java that disables language features incompatible with the
object capability model. Joe-E uses a static verifier to disable fea-
tures such as native methods, reflection and global variables. While
some of these could be dealt with using the Java security manager,
they chose a stronger static guarantee. The changes to the language
go much further than Safe Haskell due to the implementation of a
security mechanism, not just type safety and module boundaries.
Unlike Safe Haskell Joe-E assumes that all code is compiled in
the safe variant and doesn’t easily support a mixture of the safe
and original variants of the language. No notion exists of module
safety, safe imports or safe inference. This makes porting existing
Java code to Joe-E a difficult task. The main advantage they gain
from implementing Joe-E as a subset of Java is tool support and
existing formal semantics. Safe Haskell has all of these but also the
support (hopefully) of an existing community and a huge amount
of code.



One interesting design choice of the Joe-E project is its work on
the static verifier so that it can prove and enforce that methods are
functionally pure [7]. They argue that this aids in the verification of
security properties, a claim we agree with. This is largely achieved
by designing the subset of Java such that purity can be determined
directly from the type of a function. Obviously, this is a property
Haskell has (somewhat) always had.

10. Conclusion
Safe Haskell offers a language extension that “hardens” the Haskell
language by providing five properties: type safety, referential trans-
parency, strict module encapsulation, modular reasoning and se-
mantic consistency. It achieves this by providing both a safe subset
of Haskell in which these properties hold and a trust tracking sys-
tem for reasoning about the safety of modules and packages.

By closing the loopholes that exist in Haskell and making safety
and trust first class, Safe Haskell makes it possible to confine and
safely execute untrusted code. By leveraging Haskell’s type system,
we can build a variety of security mechanisms on top of the Safe
Haskell foundation. We demonstrated this by building an online
Haskell interpreter that executes possibly malicious code provided
by unknown users.

We implemented Safe Haskell in GHC and it has been shipping
since version 7.2. The implementation is capable of inferring the
safety label of a module, effectively transitioning a large body of
existing code to the safe subset. Upon evaluation we found that
around 27% of existing code is already compatible with the safe
subset and ready for use today by untrusted code.

Have we closed all the loopholes? We can offer no formal
guarantee, because GHC is, necessarily, a complex beast in which
security is in tension with functionality. Security mechanisms are,
in the end, always ways to increase confidence and make attacks
harder, rather than absolute guarantees. Seen in this light, Safe
Haskell takes a useful step in the right direction.

Safe Haskell also informs GHC’s development process: a bug
that violates the Safe Haskell guarantees is a security bug and
should be treated accordingly. Lastly, we believe that Safe Haskell
is a valuable contribution to the Haskell language, because it will
promote good practice amongst developers and clarify the bound-
aries between safe and unsafe code.
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