
Under consideration for publication in J. Functional Programming 1

OutsideIn(X)
Modular type inference with local assumptions

24 March 2011

Dimitrios Vytiniotis
Microsoft Research

Simon Peyton Jones
Microsoft Research

Tom Schrijvers
Universiteit Gent

Martin Sulzmann
Informatik Consulting Systems AG

Abstract

Advanced type system features, such as GADTs, type classes, and type families have
proven to be invaluable language extensions for ensuring data invariants and program
correctness among others. Unfortunately, they pose a tough problem for type inference,
because they introduce local type assumptions.

In this article we present a novel constraint-based type inference approach for local
type assumptions. Our system, called OutsideIn(X), is parameterised over the particular
underlying constraint domain X, in the same way as HM(X). This stratification allows us
to use a common metatheory and inference algorithm.

Going beyond the general framework, we also give a particular constraint solver for X
= type classes + GADTs + type families, a non-trivial challenge in its own right.

2 Vytiniotis, Peyton Jones, Schrijvers, Sulzmann

Contents

1 Introduction 4
2 The challenge we address 6

2.1 Modular type inference and principal types 8
2.2 The challenge of local constraints 8
2.3 The challenge of axiom schemes 9
2.4 Recovering principal types by enriching the type syntax 10
2.5 Summary 11

3 Constraint-based type systems 11
3.1 Syntax 11
3.2 Typing rules 13
3.3 Type soundness 15
3.4 Type inference, informally 16
3.5 Type inference, precisely 17
3.6 Soundness and principality of type inference 20

4 Constraint-based type systems with local assumptions 24
4.1 Data constructors with local constraints 24
4.2 let should not be generalized 27
4.3 The lack of principal types 34

5 Type inference with OutsideIn(X) 35
5.1 Type inference, informally 35
5.2 Overview of the OutsideIn(X) solving algorithm 36
5.3 Top-level algorithmic rules 38
5.4 Generating constraints 39
5.5 Solving constraints 40
5.6 Variations on the design 42
5.7 Soundness and principality of type inference 43

6 Incompleteness and ambiguity 46
6.1 Incompleteness due to ambiguity 46
6.2 Incompleteness due to inconsistency 47
6.3 Incompleteness of the OutsideIn(X) strategy 48
6.4 Guess-free completeness 49
6.5 Our position on incompleteness and ambiguity 50

7 Instantiating X for GADTs, type classes, and type families 51
7.1 The entailment relation 52
7.2 Solving equality constraints is tricky 53
7.3 The simplifier 54
7.4 Rewriting constraints 56
7.5 The rule SIMPLES 65
7.6 Soundness and principality 66
7.7 Termination 67

8 Implementation 69
8.1 Evidence 70
8.2 Brief sketch of the implementation 70

OutsideIn(X) 3

9 Related work 72
9.1 Constraint-based type inference 72
9.2 The special case of GADTs 73
9.3 The special case of multi-parameter type classes 75
9.4 Solving equalities involving type families 75
9.5 Let generalization for units of measure and type families 76
9.6 Ambiguity 77
9.7 Is the emphasis on principal types well-justified? 78

10 Future Work 79
References 79

4 Vytiniotis, Peyton Jones, Schrijvers, Sulzmann

1 Introduction

The Hindley-Milner type system (Damas & Milner, 1982; Milner, 1978) is a master-
piece of design. It offered a big step forward in expressiveness (parametric polymor-
phism) at very low cost. The cost is low in several dimensions: the type system is
technically easy to describe, and a straightforward inference algorithm is both sound
and complete with respect to the specification. And it does all this for programs
with no type annotations at all!

Over the following thirty years, type systems have advanced rapidly, both in
expressiveness and (less happily) in complexity. One particular direction in which
they have advanced lies in the type constraints that they admit, such as type classes,
implicit parameters, record constraints, subtype constraints, and non-structural
equality constraints. Type inference obviously involves constraint solving, but it is
natural to ask whether one can design a system that is somehow independent of
the particular constraint system. The HM(X) system embodies precisely such an
approach, by abstracting over the constraint domain “X” (Odersky et al., 1999).

However HM(X) is not expressive enough to describe the systems we need. The
principal difficulty is caused by so-called local constraints. By local constraints we
mean type constraints that hold in some parts of the program but not others.
Consider, for example, the following program, which uses a Generalised Algebraic
Data Type (GADT), a recently-introduced and wildly popular feature of Haskell
(Peyton Jones et al., 2006):

data T :: * -> * where

T1 :: Int -> T Bool

T2 :: T a

test (T1 n) _ = n > 0

test T2 r = r

The pattern match on T1 introduces a local constraint that the type of (T1 n) be
equal to T1 Bool inside the body n > 0. But that constraint need not hold outside
that first pattern match. In fact, the second line for test allows any type T a for
its first argument.

What type should be inferred for function test? Alas, there are two possible
most-general System F types, neither of which is an instance of the other1:

test :: ∀a . T a → Bool→ Bool

test :: ∀a . T a → a → a

The second type for test arises from the fact that if its first argument has type
T a, then the first branch allows the return type Bool to be replaced with a, since
the local constraint that T a is equal to T Bool holds in that branch (although not
elsewhere). The loss of principal types is both well-known and unavoidable (Cheney
& Hinze, 2003).

1 We write “System F” since the answer to this question varies when more or less expressive types
are considered.

OutsideIn(X) 5

A variety of papers have tackled the problem of local constraints in the spe-
cific context of GADTs, by a combination of user-supplied type annotations and/or
constraint-based inference (Peyton Jones et al., 2006; Pottier & Régis-Gianas, 2006;
Simonet & Pottier, 2007; Sulzmann et al., 2008). Unfortunately, none of these ap-
proaches is satisfying, even to their originators, for a variety of reasons (Section 9).
Simonet and Pottier give an excellent summary in the closing sentences of their
paper (Simonet & Pottier, 2007):

We believe that one should, instead, strive to produce simpler constraints, whose satisfi-
ability can be efficiently determined by a (correct and complete) solver. Inspired by Peyton
Jones et al.’s wobbly types (Peyton Jones et al., 2006), recent work by Pottier and Régis-
Gianas (2006) proposes one way of doing so, by relying on explicit, user-provided type
annotations and on an ad hoc local shape inference phase. It would be interesting to know
whether it is possible to do better, that is, not to rely on an ad hoc preprocessing phase.

Our system produces simpler constraints than the constraints Simonet and Pot-
tier use, and does not rely on an ad hoc local shape inference phase. Furthermore,
it does this not only for the specific case of GADTs, but for the general case of
an arbitrary constraint system in the style of HM(X). Specifically, we make the
following contributions:

• We describe a constraint-based type system that, like HM(X), is parame-
terised over the underlying constraint system X (Section 4), and includes:

— Data constructors with existential type variables.
— Data constructors that introduce local constraints, of which GADTs are

a special case.
— Type signatures on local let-bound definitions.
— Top-level axiom schemes (such as Haskell’s instance declarations).

These extensions offer substantially improved expressiveness, but at signif-
icant cost to the specification and implementation. Local constraints from
data constructors or signatures are certainly not part of HM(X); existential
variables can sometimes be accommodated by the techniques found in some
presentations (Pottier & Rémy, 2005), and top-level axiom schemes is only
part of Mark Jones’ qualified types (Jones, 1992).

• While developing our type system we show a surprising result: while sound and
complete implicit generalisation for local let bindings is straightforward in
Hindley-Milner, it becomes prohibitively complicated when combined with a
rich constraint system that includes local assumptions (Section 4.2). Happily,
we demonstrate that local generalisation is almost never used, and when it
absolutely has to be used, a local type signature makes these complications
go away. Thus motivated, albeit controversially, we propose to simplify the
language by removing implicit generalisation of local let bindings.

• We give an inference algorithm, OutsideIn(X), that is stratified into (a)
an inference engine that is independent of the constraint system X, and (b)
a constraint solver for X itself (Section 5). We show that our approach is
not ad-hoc: any program accepted by our algorithm can be typed with a
principal type in the simple natural constraint-based type system. Previous

6 Vytiniotis, Peyton Jones, Schrijvers, Sulzmann

work (Peyton Jones et al., 2006; Pottier & Régis-Gianas, 2006) only infers
principal types with respect to specialized type systems, but not with respect
to the natural constraint-based type system.

• A particularly useful, but particularly delicate, class of constraints are type-
equality constraints, including those introduced by GADTs, and by type-level
functions (type families in the Haskell jargon). Section 7 gives a concrete in-
stantiation of X with the constraints arising from these features, as well as
with the more traditional Haskell type class constraints. Our concrete solver
subsumes and simplifies our previous work on solving constraints involving
type families (Schrijvers et al., 2008a), and is now part of the GHC imple-
mentation.

This paper draws together, in a single uniform framework, the results of a multi-
year research project, documented in several earlier papers (Peyton Jones et al.,
2006; Schrijvers et al., 2007; Peyton Jones et al., 2004; Schrijvers et al., 2008a;
Schrijvers et al., 2009; Vytiniotis et al., 2010). By taking the broader perspective of
abstracting over the constraint domain “X” we hope to bring out the core challenges
in higher relief, and contribute towards building a single generic solution rather than
a multitude of ad-hoc compromises.

The principal shortcoming of our system is shared by every other paper on the
subject: an unsatisfactory account of ambiguity, a notion first characterized by
Jones (1993). We discuss the issue, along with a detailed account of incomplete-
ness, in Section 6. There is also a good deal of related work, which we describe in
Section 9.

2 The challenge we address

We begin by briefly reviewing part of the type-system landscape, to identify the
problems that we tackle.

The vanilla Hindley-Milner system has just one form of type constraint, namely
the equality of two types, which we write τ1 ∼ τ2. For example, the application
of a function of type τ1 → τ2 to an argument of type τ3 gives rise to an equality
constraint τ1∼τ3. These equality constraints are structural and hence can be solved
easily by unification, with unique most general solutions. However, subsequent de-
velopments have added many new forms of type constraints:

• Haskell’s type classes add type-class constraints (Jones, 1992; Wadler & Blott,
1989; Hall et al., 1996). For example, the constraint Eq τ requires that the
type τ be an instance of the class Eq. Haskell also allows types that quantify
over constraints (often called qualified types in the HM(X) literature). For
example the member function has type

member :: Eq a => a -> [a] -> Bool

which says that member may be called at any type τ , but that the constraint
Eq τ must be satisfied at the call site.

OutsideIn(X) 7

• An early extension to the original definition of Haskell 98 was to allow multi-
parameter type classes, which Mark Jones subsequently extended with func-
tional dependencies (Jones, 2000). This pair of features turned out to be
tremendously useful in practice, and gave rise to a whole cottage industry of
programming techniques that amount to performing arbitrary computation
at the type level. We omit the details here but the underlying idea was that
the conjunction of two class constraints C τ υ1 and C τ υ2 gives rise to an
additional equality constraint υ1 ∼ υ2.

• Generalised Algebraic Data Types (GADTs) added a substantial new twist
to equality constraints by supporting local equalities introduced by pattern
matching (Xi et al., 2003; Peyton Jones et al., 2006). User type signatures with
constrained types have a similar effect, also introducing local assumptions. We
will discuss GADTs further in Section 2.

• Kennedy’s thesis (Kennedy, 1996) describes how to accommodate units of
measure in the type system so that one may write

calcDistance :: num (m/s) -> num s -> num m

calcDistance speed time = speed * time

thereby ensuring that the first argument is a speed in metres/second, and sim-
ilarly for the other argument and result. The system supports polymorphism,
for example

(*) :: num u1 -> num u2 -> num (u1*u2)

There is, necessarily, a non-structural notion of type equality. For example, to
type check the definition of calcDistance the type engine must reason that
(m/s)*s ∼ m. This is an ordinary equality constraint, but there is now a non-
standard equality theory so the constraint solver becomes more complicated.

• More recently, inspired by object-oriented languages, we have proposed and
implemented a notion of associated types in Haskell (Chakravarty et al., 2005b;
Chakravarty et al., 2005a). The core feature is that of a type family (Kiselyov
et al., 2010). For instance the user may declare type family axioms:

type family F :: * -> *

type instance F [a] = F a

type instance F Bool = Int

In this example F is a type family with two defining axioms, F [a] ∼ F a
and F Bool ∼ Int. This means that any expression of type F [Bool] can be
considered as an expression of type F Bool (using the first axiom), which in
turn can be considered as having type Int (using the second axiom). Hence,
like in the case of units of measure, equalities involving type families are also
non-structural.

Type inference for HM(X) is tractable: it boils down to constraint solving for
existentially-quantified conjunctions of primitive constraints. However, the type
system features discussed above go beyond HM(X), in two particular ways. First,

8 Vytiniotis, Peyton Jones, Schrijvers, Sulzmann

GADTs bring into scope local type constraints, and existentially-quantified vari-
ables (Section 2.2). Second, we must allow top-level axiom schemes, such as Haskell’s
instance declarations (Section 2.3). In this paper we address modular type infer-
ence with principal types for the aforementioned type system features and beyond.
In the following sections we explain the problem in more detail, but we begin with
a brief discussion of principal types to set the scene.

2.1 Modular type inference and principal types

Consider this expression, which defines f without a type signature, expecting the
type inference engine to figure out a suitable type for f:

let f x = <rhs>

in <body>

It is very desirable that type inference should be modular ; that is, it can infer a
type for f by looking only at f’s definition, and not at its uses in <body>. After
all, <body> might be very large or, in a system supporting separate compilation,
f’s definition might be in a library, while its call sites might be in other modules.

In a language supporting polymorphism it is common for f to have many types;
for example, reverse has types [Int] → [Int] and [Bool] → [Bool]. For modular
type inference to work, it vital for f to have a unique principal type, that is more
general than all its other types. For example reverse :: ∀a.[a] → [a].

When the programmer supplies an explicit type signature, the issue does not
arise: we should simply check that the function indeed has the specified type, and
use that type at each call site. However, for modular type inference, we seek a type
system for which an un-annotated definition has a unique principal type – or else
is rejected altogether. The latter is acceptable, because the programmer can always
resolve the ambiguity by adding a type signature.

2.2 The challenge of local constraints

Generalized Algebraic Data Types (GADTs) have proved extremely popular with
programmers, but they present the type inference engine with tricky choices. No-
tably, as mentioned in the introduction, functions involving GADTs may lack a
principal type. Recall the example:

data T :: * -> * where

T1 :: Int -> T Bool

T2 :: T a

test (T1 n) _ = n > 0

test T2 r = r

One can see that test has two possible most-general System F types, neither of
which is an instance of the other:

test :: ∀a . T a → Bool→ Bool

test :: ∀a . T a → a → a

OutsideIn(X) 9

Since test has no principal type we argue that rather than making an arbitrary
choice, the type inference engine should reject the program. The programmer can
fix the problem by specifying the desired type with an explicit type signature, such
as:

test :: T a -> Bool -> Bool

But exactly which GADT programs should be rejected? For example, consider
test2:

test2 (T1 n) _ = n > 0

test2 T2 r = not r

Since T2 is an ordinary (non-GADT) data constructor, the only possible type of r
is Bool, so the programmer might be confused at being required to say so.

2.3 The challenge of axiom schemes

A further challenge for type inference are top-level universally quantified con-
straints, which we refer to as axiom schemes. Early work by Faxén (Faxén, 2003)
already shows how the interaction between type signatures and axiom schemes can
lead to the loss of principal types. Here is another example of the same phenomenon,
taken from (Sulzmann et al., 2006a):

class Foo a b where foo :: a -> b -> Int

instance Foo Int b

instance Foo a b => Foo [a] b

g y = let h :: forall c. c -> Int

h x = foo y x

in h True

In this example the two instance declarations give rise to two axiom schemes. The
instance Foo Int b provides the constraint Foo Int b for any possible b. Similarly,
the second instance provides the constraint Foo [a] b for any possible a and b, as
long as we can show Foo a b.

Suppose now that y has type [Int]. Then, the inner expression foo y x gives
rise to the constraint Foo [Int] c This constraint can be reduced via the above
instance declarations. and thus the program type checks. We can generalize this
example and conclude that function g can be given the infinite set of types

g :: Int→ Int

g :: [Int]→ Int

g :: [[Int]]→ Int

g :: . . .

but there is no most general Haskell type for g.
Here is a similar example, this time showing the interaction of type families with

existential data types (Läufer & Odersky, 1994), yet another extension of vanilla
HM(X).

10 Vytiniotis, Peyton Jones, Schrijvers, Sulzmann

type family FB :: * -> * -> *

type instance FB Int b = Bool

type instance FB [a] b = FB a b

data Bar a where

K :: a -> b -> Bar a

h (K x y) = not (fb x y) -- Assume fb :: a -> b -> FB a b

-- not :: Bool -> Bool

To type check the body of h we must be able to determine some type variable αx

(for the type of x) such that, for any b (the type of y), the result type of the call to
fb is compatible with not; that is: FB αx b ∼ Bool. In combination with the above
type instances, function h can be given the infinite set of types

h :: Bar Int→ Bool

h :: Bar [Int]→ Bool

h :: Bar [[Int]]→ Bool

h :: . . .

Unsurprisingly, axiom schemes combined with local assumptions are no better,
even in the absence of GADTs. Consider the following example, using only type
classes.

class C a

class B a b where op :: a -> b

instance C a => B a [a]

data R a where

MkR :: C a => a -> T a

k (MkR x) = op x

The function k has both these (incomparable) types:

k :: ∀ab . B a b ⇒ R a → b
k :: ∀a . R a → [a]

The first is straightforward; it makes no use of the local (C a) constraint in MkR’s
type. The second fixes the return type to be [a], but in return it can make use of
the local (C a) constraint to discharge the constraint arising from the call of op.

2.4 Recovering principal types by enriching the type syntax

There is a well-known recipe for recovering principal types ((Simonet & Pottier,
2007)): enrich the language of types to allow quantification over constraint schemes
and implications. To be concrete, here are the principal types of the problematic

OutsideIn(X) 11

functions in Sections 2.2 and 2.3:

test :: ∀ab . (a ∼ Bool ⊃ b ∼ Bool) ⇒ T a → b → b
g :: ∀b . (∀c . Foo b c) ⇒ b → Int

h :: ∀a . (∀b . (FB a b ∼ Bool)) ⇒ Bar a → Bool

k :: ∀ab . (C a ⊃ B a b) ⇒ R a → b

We have ourselves flirted with quantifying over (implication) constraint schemes,
but we will argue in 4.2 that this is not practical.

2.5 Summary

The message of this section is simple: by moving beyond HM(X) in terms of expres-
siveness without enriching the type syntax, many programs no longer have principal
types. Ideally, if a function does not have a principal type, we would like to reject
its definition. The challenge is to identify which definitions should be accepted and
which should be rejected. Moreover, we want to do this generically, for any X. In
the rest of this paper we explore a type system and type inference algorithm that
addresses these challenges.

3 Constraint-based type systems

To formally describe the problem and our solution in the rest of the paper, we in-
troduce notation and review constraint-based type inference (Pottier & Rémy, 2005;
Odersky et al., 1999; Jones, 1992). In constraint-based type inference, constraints
appear as part of the type system specification, and the implementation works by
generating and solving those constraints.

Although the material in this section is quite standard, our base system addi-
tionally supports case expressions, and top-level type signatures. Moreover, our
definitions and metatheory are carefully engineered so that they will later carry
over to the extensions outlined in the introduction.

Since our type system supports type signatures, there is one more difference. Ear-
lier work (Pottier & Rémy, 2005; Odersky et al., 1999; Jones, 1992) only considers
solving sets of primitive constraints, which we refer to as “wanted” constraints. The
presence of type signatures forces us to consider a more general setting, where we
solve wanted constraints with respect to a set of “given” constraint assumptions.
For example, given

palin :: Eq a => [a] -> Bool

palin xs = xs == reverse xs

Here the wanted constraint arising from the use of (==) is (Eq [a]); it must be
solved from the given assumption (Eq a).

3.1 Syntax

Figure 1 gives a Haskell-like syntax for a language that includes constraints. Pro-
grams simply consist of a sequence of top-level bindings that may or may not be

12 Vytiniotis, Peyton Jones, Schrijvers, Sulzmann

Term variables ∈ x , y , z , f , g , h
Type variables ∈ a, b, c
Data constructors ∈ K

ν ::= K | x
Programs prog ::= ε | f = e, prog | f ::σ = e, prog

Expressions e ::= ν | λx.e | e1 e2 | case e of{Kx → e}
Type schemes σ ::= ∀a.Q ⇒ τ
Constraints Q ::= ε | Q1∧Q2 | τ1 ∼ τ2 | . . .
Monotypes τ, υ ::= tv | Int | Bool | [τ] | T τ | . . .

tv ::= a
Type environments Γ ::= ε | (ν:σ), Γ
Free type variables ftv(·)

Γ0 : Types of vanilla data constructors
K : ∀a.υ → T a

Top-level axiom schemes
Q ::= ε | Q ∧ Q | ∀a.Q ⇒ Q

Fig. 1: Syntax

accompanied with type signatures. The expressions that may be bound consist of
the λ-calculus, together with case expressions to perform pattern matching. It
turns out that local let declarations are a tricky point, so we omit them altogether
for now, returning to them in Section 4.2. As a convention, we use term variables
f , g , h as identifiers for those top-level bindings, and x , y , z for identifiers bound by
λ-abstractions and case patterns.

Data constructors in Haskell or ML are introduced by algebraic data type dec-
larations. Instead of giving the syntax of such declarations, we simply assume an
initial type environment Γ0, populated by data type declarations, that gives the
type of each data constructor. Each such data constructor K has a type of form

K::∀a.υ → T a

where a are the universally quantified variables of the constructor – the ones ap-
pearing in the return type T a. Notice that, for now, data constructors have uncon-
strained types, unlike the GADT constructors of Section 2.2.

The syntax of types and constraints also appears in Figure 1. The syntax of
types is standard, and we use meta variables τ and υ to denote types. We use tv to
denote type variables a, b, . . . (we will later on extend tv to include unification vari-
ables introduced by an algorithm). Polymorphic (quantified) types σ may include
constraints, and are of the form ∀a.Q ⇒ τ .

Constraints Q include type equalities τ1 ∼ τ2 and conjunctions Q1 ∧ Q2. We
treat conjunction Q1 ∧ Q2 as an associative and commutative operator, as is con-
ventional. By design, we leave the syntax of constraints open; hence the “. . . ”. This
is the “X” part of HM(X) and OutsideIn(X), to be presented later. Types are
similarly open (hence “. . . ” in τ), because a constraint system may involve new
type forms. For example, dimensional units involve types such as Float (m/s).

OutsideIn(X) 13

Q ; Γ ` e : τ

(ν:∀a.Q1 ⇒ υ) ∈ Γ Q [a 7→ τ]Q1

VarCon
Q ; Γ ` ν : [a 7→ τ]υ

Q ; Γ ` e : τ1 Q τ1 ∼ τ2

Eq
Q ; Γ ` e : τ2

Q ; Γ, (x :τ1) ` τ2

Abs
Q ; Γ ` λx.e : τ1 → τ2

Q ; Γ ` e1 : τ1 → τ2 Q ; Γ ` e2 : τ1

App
Q ; Γ ` e1 e2 : τ2

Q ; Γ ` e : T τ
for each branch (Ki x i → ui) do

Ki :∀a.υi → T a ∈ Γ Q ; Γ, (xi :[a 7→ τ]υi) ` ui : τr
Case

Q ; Γ ` case e of {Ki x i → ui} : τr

Q Q

(constraint entailment judgement)

Fig. 2: Vanilla constraint-based type system

A term is typed relative to a set of top-level axiom schemes Q, whose syntax is in
Figure 1. In Haskell type classes, for example, an instance declaration corresponds
to an axiom scheme:

instance Eq a => Eq [a] where { ... }

As we mentioned in Section 2.4, Notice that types ∀a.Q ⇒ τ are quantified only
over flat constraints Q and not over constraint schemes Q. We noted in Section 2.4
that the latter choice would be more expressive but, as we explain in Section 4.2.1,
we do not believe it is feasible in practice. On the other hand, top level axiom
schemes are essential to handle Haskell, so we are forced into stratifying the system.

3.2 Typing rules

In a constraint-based type system, the main typing relation takes the form

Q ; Γ ` e : τ

meaning “in a context where the (flat) constraint Q is available, and in a type
environment Γ, the term e has type τ”. For example, here is a valid judgement:

(a ∼ Bool) ; (x:a, not : Bool→ Bool) ` not x : Bool

The judgement only holds because of the availability of the constraint a ∼ Bool.
Since x : a and a ∼ Bool we have that x : Bool, and hence x is acceptable as an
argument to not.

Figure 2 shows a vanilla constraint-based type system for the language of Figure 1.
The Figure has two particularly interesting rules.

• Rule VarCon, is used to instantiate the potentially constrained type of a

14 Vytiniotis, Peyton Jones, Schrijvers, Sulzmann

Reflexivity Q ∧ Q Q (R1)
Transitivity Q ∧ Q1 Q2 and Q ∧ Q2 Q3 implies Q ∧ Q1 Q3 (R2)
Substitution Q Q2 implies θQ θQ2 where θ is a type substitution (R3)

Type eq. reflexivity Q τ ∼ τ (R4)
Type eq. symmetry Q τ1 ∼ τ2 implies Q τ2 ∼ τ1 (R5)
Type eq. transitivity Q τ1 ∼ τ2 and Q τ2 ∼ τ3 implies Q τ1 ∼ τ3 (R6)
Conjunctions Q Q1 and Q Q2 implies Q Q1 ∧ Q2 (R7)
Substitutivity Q τ1 ∼ τ2 implies Q [a 7→ τ1]τ ∼ [a 7→ τ2]τ (R8)

Fig. 3: Entailment requirements

term variable or constructor. The constraint arising from the instantiation
has to be entailed by the available constraint, written Q [a 7→ τ]Q1. For
example, if (==) : ∀a.Eq a ⇒ a → a → Bool, then rule VarCon can be used
to instantiate (==) to have type Int→ Int→ Bool if Q = Eq Int.

• The second interesting rule is Eq, where the entailment “meets” the types of
our language. If an expression has type τ1 and the entailment relation can be
used to deduce that τ1 ∼ τ2 then we may conclude that the expression has
type τ2.

The judgement Q Q is a constraint entailment relation, and should be read as:
from the axiom schemes in Q we can deduce Q . (In Figure 2 we only use flat
constraints on the left of the , but we will use the more general form shortly, in
Figure 4.) We leave the details of entailment deliberately unspecified, because it is
a parameter of the type system, but we will see in Section 7 a concrete instantiation
of such a relation. As a notation convenience, we write

Q Q1 ↔ Q2 iff Q ∧ Q1 Q2 and Q ∧ Q2 Q1

Although we do not give a precise definition of entailment here, in Figure 3
we postulate certain properties, sufficient to establish that we can come up with
a sound implementation of type inference which moreover infers principal types.
Conditions R1 and R2 state that the entailment relation is reflexive and transitive.
Condition R3 ensures that entailment is preserved under substitution. Conditions
R4, R5 and R6 ensure that the provable type equality is an equivalence relation,
and R7 asserts that conjunctions can be proved by proving each of the conjuncts.
Condition R8 asserts that provably equal types can be substituted in other types,
preserving equivalence. There is nothing surprising in the conditions mentioned in
Figure 3, for example Jones identifies similar conditions in his thesis (Jones, 1992),
except for the conditions related to type equalities.

Pattern matching is given with rule Case and is also straightforward since the
types of data constructors K do not include any constraints (as opposed to the
constrained type of the T1 constructor from the previous section), and hence pattern
matching does not introduce any local assumptions.

We now specify a judgement for well-typed programs,

Q ; Γ ` prog

OutsideIn(X) 15

Q ; Γ ` prog

ftv(Γ,Q) = ∅
Empty

Q ; Γ ` ε

Q1 ; Γ ` e : τ a = ftv(Q , τ) Q ∧ Q Q1

Q ; Γ, (f :∀a.Q ⇒ τ) ` prog
Bind

Q ; Γ ` f = e, prog

Q1 ; Γ ` e : τ a = ftv(Q , τ) Q ∧ Q Q1

Q ; Γ, (f :∀a.Q ⇒ τ) ` prog
BindA

Q ; Γ ` f :: (∀a.Q ⇒ τ) = e, prog

Fig. 4: Well-typed programs

in Figure 4. In a constraint-based type system users may declare top-level univer-
sally quantified constraints, or axiom schemes, denoted with Q (Figure 1). These
may include, for example, type class or type family instance declarations. The
syntax of axiom schemes Q, given in Figure 1, includes universally quantified con-
straints of the form ∀a.Q1 ⇒ Q2, where Q1 is allowed to be ε, and a are the
free variables of Q1 and Q2. Ordinary Q-constraints can be viewed as a degenerate
form of Q constraints. As an example, here is an axiom arising from an instance
declaration:

∀a.Eq a ⇒ Eq [a]

Another one that binds no quantified variables and where Q1 is empty is simply
Eq Bool.

The judgement Q ; Γ ` prog (Figure 4) can be read thus: “in the top-level axiom
scheme environment Q and environment Γ, prog is a well-typed program”.

Rule BindA deals with a top-level binding with a (closed) user-specified type
annotation. If the constraint required to type check e is Q1, then that constraint
must follow from (be entailed by) the top-level axiom set Q and the constraint Q
introduced by the type signature.

In the case of an unannotated top-level binding, rule Bind, we appeal to Q1 ; Γ `
e : τ to determine some constraint Q1 which is required to make e typeable with
type τ in Γ. Next, we may allow the possibility of quantifying over a simplified
version of Q1, namely Q . This is done with the condition Q ∧ Q Q1. Intuitively,
Q is the “extra information”, not deducible from Q, that is needed to show the
required constraint Q1. We may then quantify over the free variables of Q and τ ,
and type check the rest of the program prog , binding f to type ∀a.Q ⇒ τ .

3.3 Type soundness

Does this type system obey the mantra that “well typed programs do not go
wrong”? Yes, type safety typically follows under reasonable additional consistency
assumptions from the constraint theory.

Definition 3.1 (Top-level consistency) An axiom scheme Q is consistent iff it

16 Vytiniotis, Peyton Jones, Schrijvers, Sulzmann

satisfies the following: whenever we have Q T1 τ1 ∼ T2 τ2 it is the case that
T1 = T2 and Q τ1 ∼ τ2.

After all, if Q contained the assumption Int ∼ Bool, it would be unreasonable to
expect a “well-typed” program not to crash. We refrain from discussing type sound-
ness in this paper, but we urge the reader to consult the literature on HM(X) (Sulz-
mann, 2000; Skalka & Pottier, 2002; Pottier & Rémy, 2005) for details.

3.4 Type inference, informally

Type inference for type systems involving constraints is conventionally carried out
in two stages: first generate constraints from the program text, and then solve the
constraints ignoring the program text (Pottier & Rémy, 2005). The generated con-
straints involve unification variables, which stand for as-yet-unknown types, and for
which we use letters α, β, γ, Solving the constraints produces a substitution, θ,
that assigns a type to each unification variable. For example, consider the definition

data Pair :: * -> * -> * where

MkP :: a -> b -> Pair a b

f x = MkP x True

The data type declaration specifies the type of the constructor MkP, thus:

MkP : ∀ab.a → b → Pair a b

Now consider the right-hand-side of f. The constraint generator makes up unifica-
tion variables as follows:

α type of the entire right-hand side
β type of x

γ1, γ2 instantiate a, b respectively, when in-
stantiating the call of MkP

From the text we can generate the following equalities:

β ∼ γ1 First argument of MkP
Bool∼ γ2 Second argument of MkP
α∼ Pair γ1 γ2 Result of MkP

These constraints can be solved by unification, yielding the substitution θ = [α 7→
Pair β Bool, γ2 7→ Bool, γ1 7→ β]. This substitution constitutes a “solution”, be-
cause under that substitution the constraints are all of form τ ∼ τ .

This two-step approach is very attractive:

• The syntax of a real programming language is large, so the constraint gen-
eration code has many cases. But each case is straightforward, and adding a
new case (if the language is extended) is easy.

• The syntax of constraints is small — certainly much smaller than that of the
programming language. Solving the constraints may be difficult, but at least
the language is small and stable.

OutsideIn(X) 17

Unification variables α, β, γ, . . .
Unifiers θ, ϕ ::= [α 7→ τ]
Unification or rigid (skolem) variables tv ::= α | a
Algorithm-generated constraints C ::= Q
Free unification variables fuv(·)

Convert to Q-constraint simple[Q] = Q

Fig. 5: Syntax extensions for the algorithm

3.5 Type inference, precisely

We now make precise our informal account of type inference. We first extend the
syntax of Figure 1 in Figure 5. Type variables tv now include rigid (skolem) variables
a, b, . . . as before, but also unification variables α, β, We use the letters θ, ϕ to
denote idempotent substitutions whose domain includes only unification variables;
these substitutions are called unifiers in the type inference jargon.

The constraints that arise during the operation of the algorithm will be denoted
with C . Later on, our inference algorithm will (unlike more traditional presentations
of HM(X)) gather and simplify constraints C that are somewhat richer than the
constraints Q that are allowed to appear in the type system and types. For now,
however, the constraints C generated by the algorithm have the same syntax as
type constraints Q . The function simple[·] accepts a C -constraint and gives us
back a Q-constraint. As Figure 5 shows, simple[·] is defined – for now – to just be
the identity.

As mentioned in Section 3.4, type inference proceeds in two steps:

• Generate constraints with the judgement:

Γ Ì e : τ C

which can be read: “in the environment Γ we may infer type τ for the expres-
sion e and generate constraint C” (Section 3.5.1).

• Solve constraints for each top-level binding separately, using a simplifier for
the constraint entailment relation Ì

simp

(Section 3.5.2).

The two are combined by the top-level judgement

Q ; Γ Ì prog

which invokes constraint generation and solving, to check that in a closed, top-level
set of axiom schemes and a closed environment Γ the program prog is well typed
(Section 3.5.3). We remark that type annotations are closed and hence contain no
unification variables.

3.5.1 Generating constraints

Constraint generation for the language of Figure 1 is given in Figure 6, where τ

and C should be viewed as outputs. Rule VarCon instantiates the polymorphic

18 Vytiniotis, Peyton Jones, Schrijvers, Sulzmann

Γ Ì e : τ C

α fresh (ν:∀a.Q1 ⇒ τ1) ∈ Γ
VarCon

Γ Ì ν : [a 7→ α]τ1 [a 7→ α]Q1

Γ Ì e1 : τ1 C1 Γ Ì e2 : τ2 C2 α fresh
App

Γ Ì e1 e2 : α C1 ∧ C2 ∧ (τ1 ∼ (τ2 → α))

α fresh Γ, (x :α) Ì e : τ C
Abs

Γ Ì λx.e : α → τ C

Γ Ì e : τ C β, γ fresh C ′ = (T γ ∼ τ) ∧ C
for each Ki x i → ei do

Ki :∀a.υi → T a ∈ Γ Γ, (xi :[a 7→ γ]υi) Ì ei : τi Ci

C ′
i = Ci ∧ τi ∼ β

Case
Γ Ì case e of {Ki x i → ei} : β C ′ ∧ (

V
C ′

i)

Fig. 6: Constraint generation

type of a variable or constructor with fresh unification variables and introduces the
instantiated constraint of that type. Rule App generates a fresh unification variable
for the return type of the application. Rule Abs is straightforward. Rule Case deals
with pattern matching. After inferring a constraint C and a type τ for the scrutinee
of the case expression, e, we check each branch of the case expression independently.
In every branch, we instantiate the universal variables of the constructor Ki to
freshly picked unification variables γ (those are picked once for all possible branches
since they have to be the same).

3.5.2 Solving constraints

The inference algorithm relies on a constraint solver (or, rather, simplifier). The
constraint simplifier is specific to the particular constraint system X, so all we can
give here is the form of the constraint-simplifier judgement; its implementation is
specific to X. The judgement takes the following form:

Q ; Qgiven Ì
simp

Qwanted Qresidual ; θ

It takes as input an axiom scheme set Q and some constraints Qgiven that may be
available, and tries to simplify the wanted constraints Qwanted producing residual
constraints that could not be simplified further (such as unsolved class constraints
that may need to be quantified over) and a substitution θ that maps unification
variables to types.

For example, ifQ includes the scheme (∀a . Eq a ⇒ Eq [a]), a constraint simplifier
for Haskell type classes may give

Q ; ε Ì
simp

Eq α ∧ [β]∼ α Eq β ; [α 7→ [β]]

OutsideIn(X) 19

Q ; Γ Ì prog

empty
Q ; Γ Ì ε

Γ Ì e : τ Qwanted Q ; ε Ì
simp

Qwanted Q ; θ
a fresh α = fuv(θτ,Q)

Q ; Γ, (f :∀a.[α 7→ a](Q ⇒ θτ)) Ì prog
Bind

Q ; Γ Ì f = e, prog

Γ Ì e : υ Qwanted

Q ; Q Ì
simp

Qwanted ∧ υ ∼ τ ε ; θ
Q ; Γ, (f :∀a.Q ⇒ τ) Ì prog

BindA
Q ; Γ Ì f :: (∀a.Q ⇒ τ) = e, prog

Q ; Qgiven Ì
simp

Qwanted Qresidual ; θ

(simplifier for)

Fig. 7: Top-level algorithmic rules

Naturally, the constraint simplifier must satisfy certain properties (Figure 8), which
we explore in Section 3.6.

3.5.3 The top-level inference algorithm

Now we are ready to give the top-level inference algorithm, in Figure 7, which per-
forms type inference on whole programs. It treats each binding independently, using
rules Bind and BindA for un-annotated and type-annotated bindings respectively.

In the case of rule Bind, we first produce a constraint for the expression e,
Qwanted , using the constraint-generation judgement. Next, we attempt to simplify
the constraint Qwanted , producing some residual constraint and a substitution for
unification variables. We may then generalize a type for f (which we have written
as ∀a.[α 7→ a](Q ⇒ θτ)), with the substitution [α 7→ a] distributing under ⇒) and
check the rest of the program. It is precisely this generalization over Q-constraints
that allows the simplifier to return a residual unsolved constraint to be quantified
over. There is no need to check that α#fuv(Γ) since this is a top-level judgement,
for which the environment contains no free unification variables. Notice additionally
that the call to the simplifier is with Qgiven = ε, as there are no given constraints
at top-level.

The case of annotated bindings is similar, but we call the simplifier considering
as given the constraint Q from the type signature, and requiring that no residual
constraint is returned with Q;Q Ì

simp

Qwanted ∧ υ ∼ τ ε;θ. Hence, the wanted con-
straint C along with the equality between υ (the inferred type) and τ (the expected
type) must be fully solved by θ using the available axioms Q and given constraints
Q . We assume that type signatures do not contain any unification variables and
hence the annotation type cannot be affected by θ.

20 Vytiniotis, Peyton Jones, Schrijvers, Sulzmann

3.6 Soundness and principality of type inference

In this section we show when the type inference algorithm enjoys soundness and
infers principal types. A third question, that of completeness, is particularly tricky
for constraint systems that, like ours, supports bindings with type signatures. We
discuss the issue in detail later, in Section 6. To address soundness and principality
we first introduce an auxiliary definition:

Definition 3.2 (Sound and guess-free solutions) A pair (Qr , θ) of a constraint
Qr and an (idempotent) unifier θ, is a sound solution for Qw under given constraint
Qg and top-level axiom schemes Q when:

(S1) Q ∧ Qg ∧ Qr θQw , and
(S2) dom(θ)#fuv(Qg) and dom(θ)#fuv(Qr)

The pair (Qr , θ) is a guess-free solution if, in addition:

(P1) Q ∧ Qg ∧ Qw Qr ∧ Eθ

where Eθ = {(α ∼ τ) | [α 7→ τ] ∈ θ} is the equational constraint induced by the
substitution θ.

In effect, a guess-free solution (Qr , θ) of Qw under Qg and Q is one where condition
S1 holds, and moreover:

Q ∧ Qg Qw ↔ Qr ∧ Eθ

We elaborate on the notion of sound and guess-free solutions in Sections 3.6.1
and 3.6.2 respectively, where we discuss soundness and principality of type inference.

3.6.1 Soundness

How should a simplifier behave, so that every accepted program in the algorithm
instantiated with the particular simplifier is also typeable in the specification? Fig-
ure 8 requires the simplifier to return a sound solution. Condition S1 is the crux of
soundness, and asserts that the original wanted constraint must be deducible, after
we have applied the substitution, from the given constraint Qg and Qr . Condition
S2 requires the domain of the returned substitution to be disjoint from Qg , which
is a trivial property (for now!) since given constraints Qg only arise from user type
annotations that contain no unification variables (rule BindA in Figure 7). In ad-
dition, it requires that the domain of θ be disjoint from Qr . This requirement is
there mainly for technical convenience; we assert that the substitution has already
been applied to the residual returned constraint, so that we do not have to re-apply
it (rule Bind in Figure 7).

Provided that the entailment relation satisfies Figure 3, and the constraint sim-
plifier satisfies the soundness condition in Figure 8 it is routine to show soundness
of the inference algorithm.

Theorem 3.1 (Algorithm soundness) If the entailment satisfies the conditions
of Figure 3 and the simplifier satisfies the soundness condition of Figure 8 then
Q ; Γ Ì prog implies Q ; Γ ` prog in a closed environment Γ.

OutsideIn(X) 21

Q ; Qgiven Ì
simp

Qwanted Qresidual ; θ

Simplifier soundness
(Qresidual , θ) is a sound solution for Qwanted under Qgiven and Q

Simplifier principality
(Qresidual , θ) is a guess-free solution for Qwanted under Qgiven and Q

Fig. 8: Simplifier conditions

3.6.2 Principality

We now turn our attention to the principal types property, mentioned in Section 2.
We will show here that when the algorithm succeeds, it infers a principal type for
a program. For this to be true, Figure 8 requires a simplifier principality condition,
which we motivate and explain below.

In Hindley-Milner type systems the constraints consist of equations between types
and the requirement for principality is that the constraint simplifier computes most-
general unifiers of these constraints. Consider the constraints for the definition:

foo x = x

If the variable x gets type α and the return type of foo is β then the constraint for
foo is α ∼ β. Of course the solution [α 7→ Int, β 7→ Int] is a sound one, but it is
not the most general one [α 7→ β]. The characteristic of the most general solution
is that it makes no guesses: the most general solution is entailed directly from the
wanted constraint α ∼ β (whereas (α ∼ β) 6 (α ∼ Int) ∧ (β ∼ Int)).

Our constraints are generalizations of Hindley-Milner constraints, so we need to
come up with an appropriate generalization to the notion of most general solution
that “makes no guesses”. This generalization is captured with condition P1 in
the definition of guess-free solution (Definition 3.2), and is reminiscent of similar
conditions in abduction-based type inference (Maher, 2005; Sulzmann et al., 2008).
We require that the resulting Qresidual and θ must follow from the original Qwanted

constraint. To better illustrate this definition, consider an example that also involves
type classes:

Q = Eq Int

Qg = Eq a

The entailment relation we will use here is a standard entailment relation on equal-
ities, conjunctions and class constraints (we will give a concrete definition in Sec-
tion 7). If Qw = Eq β then the solution (ε, [β 7→ Int]) is a sound but not necessarily
guess-free solution if the entailment cannot deduce that:

Q ∧ Qg ∧ Eq β β ∼ Int

On the other hand, if:

Qw = Eq β ∧ [β] ∼ [a]

22 Vytiniotis, Peyton Jones, Schrijvers, Sulzmann

then (ε, [β 7→ a]) is a guess-free solution, provided that

Q ∧ Qg ∧ Eq β ∧ [β] ∼ [a] β ∼ a

To formally state and prove principality, we first have to give a (standard) order
relation on constrained types, below. This relation captures when a type is more
general or more polymorphic than another.

Definition 3.3 (More general quantified type) We say that type ∀a.Q1 ⇒ τ1

is more general than ∀b.Q2 ⇒ τ2 under axiom scheme environment Q iff:

Q ∧ Q2 [a 7→ τ]Q1 Q ∧ Q2 [a 7→ τ]τ1 ∼ τ2 b#ftv(∀a.Q1 ⇒ τ1,Q)
subs

Q ` ∀a.Q1 ⇒ τ1 � ∀b.Q2 ⇒ τ2

In other words, an instantiation of Q1 must follow from the axiom scheme envi-
ronment and Q2, and moreover an instantiation of τ1 must be equal to τ2 given
the axiom scheme environment Q and Q2. It is easy to show that this relation is
reflexive and transitive using the conditions of Figure 3.

To make the notation more compact in the following technical development, we
first abbreviate generalization for a top-level binding with the following rule:

Q1 ; Γ ` e : τ Q ∧ Q Q1 a = ftv(Q , τ)
GenTop

Q ; Γ `gen e : ∀a.Q ⇒ τ

Correspondingly, we may define algorithmically a generalization step:

Γ Ì e : τ Qwanted Q ; ε Ì
simp

Qwanted Q ; θ

a fresh α = fuv(θτ,Q)
GenTopAlg

Q ; Γ Ì
gen

e : ∀a.[α 7→ a](Q ⇒ θτ)

Rules GenTop and GenTopAlg are the generalization steps inlined in rules Bind

for top-level bindings in Figure 4 and Figure 7. Since all the types in Γ are closed,
we do not have to assert that the unification variables α do not appear in Γ.

To show that the algorithm infers principal types we first show that even when no
simplification happens at all, the inferred type for an unannotated top-level binding
is the most general possible.

Lemma 3.1 (Principality of inferred constraint) If Q ;Γ ` e : τ then Γ Ì e :
υ C, and there exists a θ with dom(θ)#fuv(Γ) such that Q simple[θC] and
Q θυ ∼ τ .

Proof
Easy induction appealing to the properties of Figure 3.

Lemma 3.2 Let Q ; Γ Ì e : τ C, a be fresh and corresponding to fuv(C , τ),
and ϕ = [fuv(C , τ) 7→ a]. If Q ; Γ `gen e : σ then Q ` ∀a.ϕ(simple[C]) ⇒ ϕτ � σ.

Proof
Easy induction, appealing to Lemma 3.1.

OutsideIn(X) 23

Theorem 3.2 (Algorithm infers principal types) If fuv(Γ) = ∅ and Q;Γ Ì
gen

e :
σ0 then for all σ such that Q ; Γ `gen e : σ it is the case that Q ` σ0 � σ.

Proof
Assume that Q ; Γ Ì

gen

e : ∀a.[α 7→ a](Q ⇒ θτ), and by inversion on rule Gen-

TopAlg we get:

Γ Ì e : τ C (1)

Q ; ε Ì
simp

simple[C] Q ; θ (2)

α = fuv(θτ,Q) (3)

Now, appealing to Lemma 3.2 and transitivity of entailment (Condition R2) it
suffices to show that:

Q ` ∀a.[α 7→ a]Q ⇒ [α 7→ a]θτ � ∀b.[fuv(C , τ) 7→ b](simple[C] ⇒ τ)

where we assume without loss of generality that b are entirely fresh from any of
the type variables of the left-hand-side. To show this we need to find a substitution
[a 7→ υ] such that:

Q ∧ [fuv(C , τ) 7→ b](simple[C]) [a 7→ υ][α 7→ a]Q

Q ∧ [fuv(C , τ) 7→ b](simple[C]) ([fuv(C , τ) 7→ b]τ) ∼ [a 7→ υ][α 7→ a]θτ

Or, equivalently,

Q ∧ [fuv(C , τ) 7→ b](simple[C]) [α 7→ υ]Q (4)

Q ∧ [fuv(C , τ) 7→ b](simple[C]) [α 7→ υ]θτ ∼ ([fuv(C , τ) 7→ b]τ) (5)

But, from the simplifier principality condition and the properties of the entailment
we get that Q ∧ simple[C] Q and Q ∧ simple[C] Eθ. From the former, (4)
follows, by picking υ = [fuv(C , τ) 7→ b]α. For (5), by the reflexivity requirement
of entailment we know that Q ∧ simple[C] τ ∼ τ , and moreover by the sim-
plifier principality requirement we have Q ∧ simple[C] Eθ. By substitutivity
of entailment and the fact that type equality is an equivalence relation we know
that Q ∧ simple[C] θτ ∼ τ and with the appropriate freshening of unification
variables (which uses property R3) we get the result.

The fact that the algorithm infers principal types is important, but weaker than
the actual principal types property, which can be formally stated as follows.

Definition 3.4 (Principal types) If Q ; Γ `gen e : σ then there exists a σ0 such
that Q;Γ `gen e : σ0, and for all σ1 with Q;Γ `gen e : σ1 it is the case that Q ` σ0 � σ1.

In particular, Theorem 3.2 says nothing about the situation where the algorithm
fails to produce a type, or the simplifier does not terminate — that is, it says noth-
ing about completeness. Indeed, as we discuss in Section 6, any guess-free solver
will necessarily be incomplete with respect to a natural type system specification.
In the light of this observation, Theorem 3.2 is remarkable: Even when the algo-
rithm is incomplete (and, as we will see later, even when the type system lacks

24 Vytiniotis, Peyton Jones, Schrijvers, Sulzmann

Expressions e ::= . . .

| let x::σ = e1 in e2

| let x = e1 in e2

. . .

Γ0 : Types of data constructors

K : ∀a b . Q ⇒ υ → T a

Fig. 9: Syntax extensions that introduce local assumptions

principal types), the aforementioned lightweight conditions on the simplifier and
the entailment will guarantee that unannotated bindings that are accepted by the
algorithm do have principal types, as modularity mandates.

4 Constraint-based type systems with local assumptions

Now that we have established our baseline, we are ready to introduce local type
assumptions, the main focus of this paper. The changes appear modest, but have a
far-reaching impact. Figure 9 gives the extended syntax, highlighting the changes
compared to Figure 1, while Figure 10 does the same for the typing rules, again
highlighting changes compared with Figure 2.

There are three main changes. First, we add local let-bound definitions that
are accompanied with user-supplied, potentially polymorphic type signatures. The
corresponding typing rule LetA is quite straightforward: It makes the constraint
Q1 from the type signature of an annotated local let-bound definition available for
type checking the right-hand side of the definition, e1.

The second modification is an innocent-looking extension of the types of data
constructors, and the corresponding typing rule. This is where GADTs manifest
themselves, as we discuss in Section 4.1.

The third change is the addition of un-annotated let-bound definitions; that is,
ones unaccompanied by a type signature. Rule Let is unusually simple because, in
contrast to a traditional Hindley-Milner type system, it performs no generalisation.
We devote the whole of Section 4.2 to an explanation of this unconventional design
choice.

4.1 Data constructors with local constraints

The key feature of GADTs is that a GADT pattern match brings local type-equality
constraints into scope. For example, given the GADT

data T :: * -> * where

T1 :: Int -> T Bool

T2 :: T a

when pattern-matching on constructor T1 we know, in that case branch only, that
the scrutinee has type T Bool. While the declaration for the GADT T above is very

OutsideIn(X) 25

Q ; Γ ` e : τ

(ν:∀a.Q1 ⇒ υ) ∈ Γ Q [a 7→ τ]Q1

VarCon
Q ; Γ ` ν : [a 7→ τ]υ

Q ; Γ ` e : τ1 Q τ1 ∼ τ2

Eq
Q ; Γ ` e : τ2

Q ; Γ, (x :τ1) ` τ2

Abs
Q ; Γ ` λx.e : τ1 → τ2

Q ; Γ ` e1 : τ1 → τ2 Q ; Γ ` e2 : τ1

App
Q ; Γ ` e1 e2 : τ2

Q ; Γ ` e1 : τ1

Q ; Γ, (x :τ1) ` e2 : τ2

Let
Q ; Γ ` let x = e1 in e2 : τ2

Q ∧ Q1 ; Γ ` e1 : τ1 a#ftv(Q , Γ)
Q ; Γ, (x :∀a.Q1⇒τ1) ` e2 : τ2

LetA
Q ; Γ ` let x::∀a.Q1⇒τ1 = e1 in e2 : τ2

Q ; Γ ` e : T τ
for each branch (Ki x i → ui) do

Ki :∀a b . Qi ⇒ υi → T a ∈ Γ

ftv(Q , Γ, τ , τr)#b Q ∧ ([a 7→ τ]Qi) ; Γ, (xi :[a 7→ τ]υi) ` ui : τr

Case
Q ; Γ ` case e of {Ki x i → ui} : τr

Q ; Γ ` prog

ftv(Γ,Q) = ∅
Empty

Q ; Γ ` ε

Q1 ; Γ ` e : τ a = ftv(Q , τ) Q ∧ Q Q1

Q ; Γ, (f :∀a.Q ⇒ τ) ` prog
Bind

Q ; Γ ` f = e, prog

Q1 ; Γ ` e : τ a = ftv(Q , τ) Q ∧ Q Q1

Q ; Γ, (f :∀a.Q ⇒ τ) ` prog
BindA

Q ; Γ ` f ::∀a.Q ⇒ τ = e, prog

Q Q

(constraint entailment judgement)

Fig. 10: Natural but over-permissive typing rules

convenient for the programmer, it is helpful for our understanding to re-express it
with an explicit equality constraint, like this:

data T :: * -> * where

T1 :: (a ~ Bool) => Int -> T a

T2 :: T a

(GHC allows both forms, and treats them as equivalent.) You may imagine a value
of type T τ , built with T1, as a heap-allocated object with two fields: a value of
type Int, and some evidence that τ ∼ Bool. When the value is constructed the
evidence must be supplied; when the value is de-constructed (i.e. matched in a
pattern) the evidence becomes available in the body of the pattern match. While

26 Vytiniotis, Peyton Jones, Schrijvers, Sulzmann

in many systems, including GHC, this “evidence” has no run-time existence, the
vocabulary can still be helpful and GHC does use explicit evidence-passing in its
intermediate language (Section 8).

In general (see Figure 9) the type of a data constructor K in a data type T must
take the form

K:∀a b . Q ⇒ υ → T a

Compared with Figure 1, constructor types have two new features, each of which
is reflected in rule Case:

1. The type variables b are the existential variables of the constructor, that,
unlike the a, do not appear in the return type of the constructor.2 For instance,
the b variable in the following definition is one such variable:

data X where

Pack :: forall b. b -> (b -> Int) -> X

The side condition ftv(Q ,Γ, τ , τr)#b in rule Case checks that the existential
variables do not escape in the environment Q ,Γ, or the scrutinee type T τ ,
or the result type τr . In the following example, fx1 is well-typed, but fx2 is
not because the existential variable b escapes:

fx1 (Pack x f) = f x

fx2 (Pack x f) = x

2. The constraint Q in K ’s type must be satisfied at calls of K , but becomes
available when pattern matching against K . So, in rule Case, the constraint
Qi from Ki ’s type, suitably instantiated, is added to the ambient constraints
used for typing the case alternative ui . Note that there is no need for a con-
sistency requirement in the constraint Q ∧ ([a 7→ τ]Qi), since an inconsistent
constraint simply means unreachable code operationally. Unreachable code is
always safe, no matter how it is typed.

So far we have focused on GADTs, but it is completely natural to generalise
the idea of GADTs, in which constructors can have a type involving an equality
constraint, to allow arbitrary constraints in the type of data constructors. to go to
extra trouble to prevent such a possibility. For example, we might write

data Showable where

MkShowable :: (Show a) => a -> Showable

display :: Showable -> String

display (MkShowable x) = show x ++ "\n"

-- Recall that show :: Show a => a -> String

2 They are called existential, despite their apparent quantification with ∀, because the construc-
tor’s type is isomorphic to ∀a . (∃b . Qi × υi) → T a.

OutsideIn(X) 27

Here, Showable is an existential package, pairing a value of type a with a dictionary
for (Show a). Pattern matching on a Showable gives access to the dictionary:
display does not have a Show constraint, despite the use of show in its body,
because the constraint is discharged by the pattern match.

In Showable the class constraint affected the existential variable. But in this
generalized setting we may also constrain the type parameter of the data type:

data Set :: * -> * where

MkSet :: (Ord a) => [a] -> Set a

union :: Set a -> Set a -> Set a

union (MkSet xs1) (MkSet xs2) = MkSet (merge xs1 xs2)

-- Assume merge :: Ord a => [a] -> [a] -> [a]

empty :: Ord a => Set a

empty = MkSet []

A MkSet constructor packages an Ord a dictionary with the list. This dictionary is
used to discharge the Ord constraint required by merge. This very natural general-
isation is new to GHC.

4.2 let should not be generalized

A central feature of the Hindley-Milner system is that let-bound definitions are
generalised. For example, consider the slightly artificial definition

f x = let g y = (x,y) in (g 3, g False)

The definition for g is typed in an environment in which x : a, and the inferred type
for g is ∀b . b → (a, b). This type is polymorphic in b, but not in a, because the
latter is free in the type environment at the definition of g. This side condition, that
g should be generalised only over variables that are not free in the type environment,
is the only tricky point in the entire Hindley-Milner type system.

Recall now the GADT of Section 2:

data T :: * -> * where

T1 :: Int -> T Bool

T2 :: T a

and consider the following function definition:

fr :: a -> T a -> Bool

fr x y = let gr z = not x -- not :: Bool -> Bool

in case y of

T1 _ -> gr ()

T2 -> True

The reader is urged to pause for a moment to consider whether fr’s definition is
type-safe. After all, x clearly has type a, and it is passed as an argument to the

28 Vytiniotis, Peyton Jones, Schrijvers, Sulzmann

boolean function not. Any normal Hindley-Milner type checker would unify a with
Bool and produce a type error and reject the program.

Yet the program is type safe – there is a type for gr that makes the program
type check, namely

gr :: forall b. (a ~ Bool) => b -> Bool

Rather than rejecting the constraint a∼Bool, we abstract over it, thereby deferring
the (potential) type error to gr’s call site. At any such call site, we must provide
evidence that a∼Bool, and indeed we can do so in this case, since we are in the T1

branch of the match on y. In short, to find the most general type for gr, we must
abstract over the equality constraints that arise in gr’s right hand side.

However, we do not seek this outcome: in our opinion, most programmers would
expect fr’s definition to be rejected. But the fact is that in a system admitting
equality constraints, and which allows quantification over constraints, the principal
type for gr is the one written above.

The very same issue arises with type-class constraints. Consider this definition
of fs, which uses the data type Set from Section 4.1:

fs :: a -> Set a -> Bool

fs x y = let gs z = x > z

in case y of

MkSet vs -> gs (head vs)

Again, the most general type of gs is

gs :: (Ord a) => a -> String -- Not polymorphic in a

where we abstract over the (Ord a) constraint even though gs is not polymorphic
in a. Given this type, the call to gs is well typed, as is the whole definition of fs. It
should be obvious that the two examples differ only in the kind of constraint that
is involved.

So what is the problem? Typically, for a let binding, we infer the type τ1 of the
right-hand side, gathering its type constraints Q1 at the same time. Then we may
generalise the type, by universally quantifying over the type variables a that are
free in τ1 but are not mentioned in the type environment. But what about Q1? We
discuss next the various ways in which it can be treated.

For the sake of simplicity, in the discussion below we will ignore the top-level
axiom set Q: it only makes things more problematic still.

4.2.1 GenAll: abstract over all the constraints

One robust and consistent choice (made, for example, by Pottier (Pottier & Rémy,
2005; Simonet & Pottier, 2007)) is to abstract over the whole constraint Q1, regard-
less of whether the constraint mentions the quantified type variables a, to form the

OutsideIn(X) 29

type ∀a.Q1 ⇒ τ1. Here is the typing rule for let under the GenAll approach:

Qualified types: Yes,Generalization: Yes

Q1 ; Γ ` e1 : τ1 a = ftv(Q1, τ1)− ftv(Q ,Γ)
Q ; Γ, (x :∀a . Q1 ⇒ τ1) ` e2 : τ2

let
Q ; Γ ` let x = e1 in e2 : τ2

However GenAll has serious disadvantages, of two kinds. First, and most impor-
tant, there are costs to the programmer:

• It leads to unexpectedly complicated types, such as those for function gr.
The larger the right-hand side, the more type constraints will be gathered
and abstracted over. For type-class constraints this might be acceptable, but
equality constraints are generated in large numbers by ordinary unification.
Although they do not appear in the program text, these types may be shown
to the programmer by an IDE; and must be understood by the programmer
if she is to know which programs will typecheck and which will not.

• There are strong software-engineering reasons not to generalise constraints
unnecessarily, because doing so postpones type errors from the definition of
gr to (each of) its occurrences. If, for example, gr had been called in the
T2 branch of fr, as well as the T1 branch, a mystifying error would ensue:
“Cannot unify a with Bool”. Why? Because the call to gr would require
a∼ Bool to be satisfied, and in the T2 branch no local knowledge is available
about a, yielding the constraint unsatisfiable. To understand such errors the
programmer will have to construct in her head the principal type for gr, which
is no easy matter. Moreover, one such incomprehensible error will be reported
for each call to gr.

• In an inference algorithm, it turns out that we need a new form of con-
straint, an implication constraint, that embodies deferred typing problems
(Section 5). Under GenAll it is necessary to abstract over implication con-
straints too, which further complicates the programmer’s life (because she
sees these weird types). This raises the question of whether implication con-
straints should additionally be allowed in valid type signatures, which in turn
leads to open research problems in tractable solver procedures for constraints
with implications in their assumptions (Simonet & Pottier, 2007).

Second, there are costs to the type inference engine:

• At each call site of a generalized expression, the previously abstracted large
constraints have to be solved separately. This makes efficient type inference
harder to implement.

• Almost all existing Haskell type inference engines (with the exception of
Helium (Heeren et al., 2003)) use the standard Hindley-Milner algorithm,
whereby unification (equality) constraints are solved “on the fly” using in-
place update of mutable type variables (Peyton Jones et al., 2007). This is
simple and efficient, which is important since equality constraints are numer-

30 Vytiniotis, Peyton Jones, Schrijvers, Sulzmann

ous. (In contrast the less-common type-class constraints are gathered sepa-
rately, and solved later.)
Under GenAll, we can no longer eagerly solve any unification constraint
whatsoever on the fly. An equality a ∼ τ must be suspended (i.e. not solved)
if a is free in the environment at some enclosing let declaration.
Moreover, in compilers with a typed intermediate language, such as GHC,
each abstracted constraint leads to an extra type or value parameter to the
function, and an extra type or value argument at its occurrences.

These costs might be worth bearing if there was a payoff. But in fact the payoff is
close to zero:

• Programmers do not expect fr and fs to typecheck, and will hardly be deliri-
ous if they do so in the future. Indeed, GHC currently rejects both fr and
fs, with no user complaints.

• The generality of gr and gs made a difference only because their occurrences
were under a pattern-match that bound a new, local constraint. Such pattern
matches are rare, so in almost all cases the additional generalisation is fruit-
less. But it cannot be omitted (at least not without a rather ad-hoc pre-pass)
because when processing the perfectly vanilla definition of gr the type checker
does not know whether or not gr’s occurrences are under pattern-matches that
bind constraints.

In short, we claim that generalising over all constraints carries significant costs,
and negligible benefits. Probably the only true benefit is that GenAll validates
let-expansion; that is, let x = e in u typechecks if and only if [x 7→ e]u type-
checks. The reader is invited to return to fr and fs, to observe that both do indeed
typecheck with no complications if gr (resp gs) is simply inlined. Let-expansion
is a property cherished by type theorists and sometimes useful for automatic code
refactoring tools, but we believe that its price has become too high.

4.2.2 NoQual: Generalization without qualified types

The undesirability of GenAll concerned the abstraction of constraints, rather than
generalisation per se. What if the specification simply insisted that the type inferred
for a let binding was always of the form ∀a . τ , with no “Q ⇒” part? This is easy
to specify:

Qualified types: No,Generalization: Yes

Q ; Γ ` e1 : τ1 a = ftv(τ1)− ftv(Q ,Γ)
Q ; Γ, (x :∀a.τ1) ` e2 : τ2

let
Q ; Γ ` let x = e1 in e2 : τ2

When Q is empty, this is the usual rule for the Hindley-Milner system. In terms
of an inference algorithm, what happens in Hindley-Milner is this. Equality con-
straints are gathered from the right-hand side, but are completely solved before
generalisation. A unique solution is guaranteed to exist, namely the most general

OutsideIn(X) 31

unifier. (In Hindley-Milner the constraints are typically solved on-the-fly but that
is incidental.)

As previous work shows (Schrijvers et al., 2009), this approach continues to work
for a system that has GADTs only. Again, a given set of constraints can always be
uniquely solved (if a solution exists) by first-order unification.

Alas, adding type classes makes the system fail, in the sense of lacking princi-
pal types, because type-class constraints do not have unique solutions in the way
that equality constraints do. For example, suppose that in the definition let x =
e1 in e2, that

• The type of e1 is b → b.
• b is not free in the type environment.
• The constraints arising from e1 are Eq b.

We cannot solve the constraint without knowing more about b – but in this case
we propose to quantify over b. If we quantify over b the only reasonable type to
attribute to x is

x :: ∀b . Eq b ⇒ b → b

That is illegal under NoQual. As a result, x has many incomparable types, such
as Int→ Int and Bool→ Bool, but no principal type.

4.2.3 PartQual: Restricted qualified types and generalization

We have learned that, if we are to generalise let-bound variables we must quantify
over their type-class constraints (NoQual did not work); but we have argued that
it is undesirable to quantify over all constraints (i.e. GenAll). The obvious alter-
native is to quantify over type-class constraints, but not over equality constraints.
More generally, can we identify a particular kinds of constraints over which the spec-
ification is allowed to abstract? We call this choice PartQual, and use a predicate
good(Q) to identify abstractable constraints:

Qualified types: Restricted,Generalization: Yes

Q ,Q1 ; Γ ` e1 : τ1 a = ftv(Q1, τ1)− ftv(Q ,Γ)
good(Q1) Q ; Γ, (x :∀a.Q1 ⇒ τ1) ` e2 : τ2

let
Q ; Γ ` let x = e1 in e2 : τ2

The problem with this approach is that it is not clear what such class of constraints
would be. It is not enough to pick out equality constraints, because some class
constraints may behave like equality constraints, such as type classes with equality
superclasses as:

class (a ~ b) => REq a b

Worse, some class constraints with functional dependencies may give rise to extra
equality constraints, only when found in certain contexts:

class C a b | a -> b

32 Vytiniotis, Peyton Jones, Schrijvers, Sulzmann

If two constraints C Int b and C Int Char appear in the same context, a new
equality must hold, namely that b ~ Char.

4.2.4 NoGen: no generalization!

It seems clear that NoQual and PartQual are non-starters, and we have argued
that GenAll, while technically straightforward is practically undesirable. The last,
and much the simplest choice, is to perform no generalisation whatsoever for inferred
let bindings. The typing rule for our option, NoGen, is very simple:

Qualified types: No,Generalization: No

Q ; Γ ` e1 : τ1 Q ; Γ, (x :τ1) ` e2 : τ2
let

Q ; Γ ` let x = e1 in e2 : τ2

Hence NoGen omits the entire generalization step; the definition becomes com-
pletely monomorphic. Notice though that NoGen applies only for local and un-
annotated let-bindings. For annotated local let-bindings, let x::σ = e1 in e2,
where the programmer supplies a (possibly polymorphic) type signature σ, the type
system may use that type signature (rule LetA in Figure 10). For top-level bind-
ings generalization poses no difficulties since there are no free type variables in a
top-level environment (rule Bind, Figure 10).

Under NoGen, both fr and fs are rejected, which is fine; we did not seek to
accept them in the first place. But hang on! NoGen means that some vanilla ML or
Haskell 98 functions that use polymorphic local definitions, such as the f function
in the very beginning of Section 4.2, will be rejected. That is, NoGen is not a
conservative extension of Haskell. Surely programmers will hate that? Actually not.
In the next Section (4.2.5) we will present evidence that programmers almost never
use locally-defined values in a polymorphic way (without having provided a type
signature). In the rare cases where a local value has to be used polymorphically, the
programmer can readily evade NoGen by simply supplying a type signature.

In summary, generalisation of local let bindings (without annotations) is a de-
vice that is almost never used, and its abolition yields a dramatic simplification
in both the specification and implementation of a typechecker. The situation is
strongly reminiscent of the debate over ML’s value restriction. In conjunction with
assignment, unconditional generalisation is unsound. Tofte proposed a sophisticated
work-around (Tofte, 1990). But Wright subsequently proposed the value restriction,
whereby only syntactic values are generalised (Wright, 1995). The reduction in
complexity was substantial, and the loss of expressiveness was minor, and Wright’s
proposal was adopted.

4.2.5 Impact on existing Haskell programs

Our NoGen proposal will reject some programs that would be accepted by any
Haskell or ML compiler. This is bad in two ways:

OutsideIn(X) 33

Backward compatibility. Existing programs will break. But how many pro-
grams break? And how easy is it to fix them?

Convenience. Even for newly-written programs, automatic generalisation is con-
venient. But how inconvenient is programming without it?

To get some quantitative handle on these questions we added a flag to GHC that
implements NoGen, and performed the following two experiments.

The libraries. We compiled all of the Haskell libraries that are built as part of the
standard GHC build process, and fixed all failures due to NoGen. These libraries
comprise some 30 packages, containing 533 modules, and 94,954 lines of Haskell
code (including comments). In total we found that 20 modules (3.7%) needed mod-
ification. The changes affected a total of 127 lines of code (0.13%), and were of
three main kinds:

• There are a few occurrences of a polymorphic function that could be defined at
top level, but was actually defined locally. For example Control.Arrow.second
has a local definition for

swap ~(x,y) = (y,x)

• One programmer made repeated use of the following pattern

mappend a b = ConfigFlags {

profLib = combine profLib,

constraints = combine constraints,

...

}

where combine :: Monoid t => (ConfigFlags->t) -> t

combine field = field a ‘mappend‘ field b

(The type signature was added by ourselves.) Notice that a and b are free in
combine, but that combine is used for fields of many different types; for ex-
ample, profLib::Flag Bool, but constraints::[Dependency]. This pattern
was repeated in many functions. We fixed the code by adding a type signa-
ture, but it would arguably be nicer to make combine a top-level function,
and pass a and b to it.

• The third pattern was this:

let { k = ...blah... } in gmapT k z xs

where gmapT is a function with a rank-2 type:

gmapT :: ∀a . Data a ⇒ (∀b . Data b ⇒ b → b) → a → a

Here, k really must be polymorphic, because it is passed to gmapT. GHC’s
libraries include the Scrap Your Boilerplate library of generic-programming
(Lämmel & Peyton Jones, 2003; Lämmel & Peyton Jones, 2005) functions
that make heavy use of higher rank functions (Peyton Jones et al., 2007), but
in vanilla Haskell code one would expect them to be much less common. Still,
such errors can be fixed by providing a type signature for k.

34 Vytiniotis, Peyton Jones, Schrijvers, Sulzmann

Packages on Hackage As a second, and much larger-scale, experiment we com-
piled all of the third-party Haskell packages on the Hackage library, both with and
without NoGen, and recorded whether or not the package compiled successfully
with the NoGen flag on. We found 793 packages that compiled faultlessly with
the baseline compiler that we used. When we disabled generalisation for local let
bindings, 95 of the 793 (12%) failed to compile. We made no attempt to investigate
what individual changes would be needed to make the failed ones compile. Since
the chances of an entire package compiling without modification decreases exponen-
tially with the size of the package, so one would expect a much larger proportion
of packages to fail than of modules (c.f. the 3.7% of base-package modules that
required modification).

Summary Although there is more work to do, to see how many type signatures
are required to fix the failing third-party packages, we regard these numbers as
very promising: even in the higher-rank-rich base library, only a vanishingly small
number of lines needed changing. We conclude that local let generalisation is rarely
used. Moreover, as a matter of taste, in almost all cases we believe that the extra
type signatures in the modified base-library code have improved readability. Finally,
although our experiments involve Haskell programs, we conjecture that the situation
is similar for ML variants.

4.3 The lack of principal types

We have seen how local assumptions may be treated in the typing rules and how
they affect local let generalization in Figure 10. However, as discussed in Section 2,
the addition of local assumptions means that the system now lacks principal types.
Recall the test function from the Introduction:

data T :: * -> * where test (T1 n) r = n > 0

T1 :: Int -> T Bool test _ r = r

T2 :: T a

Rule Bind of Figure 10 allows test to enter the environment with either type
∀a.T a → Bool → Bool or ∀a.T a → a → a, depending on whether the local
assumptions from the pattern matching are used or not. In this case, there is no
type (quantified or not) that can be assigned to test and that is more general than
the other two. Our natural type system for local assumptions accepts programs
that have no principal types (despite the lack of local let generalization, which is
irrelevant here).

The type system of Figure 10 accepts programs that have no principal types.3

Sadly, we do not know how to devise a simple declarative type system without
these problems (Section 6), and hence we embark in the rest of the paper to the
detailed description of an algorithmic strategy that type checks fewer programs –

3 Equally badly, it admits programs that exhibit the ambiguity problem, that we explain in
Section 6.

OutsideIn(X) 35

but only ones that can be assigned principal types. Principal types seem important
for software engineering, but Section 9.7 also presents some subtle points related
to this design choice. Still, we regard Figure 10 as the natural type system for local
assumptions against which any such algorithm or restricted type system should be
compared.

5 Type inference with OutsideIn(X)

We seek a tractable and efficient type inference algorithm that accepts only pro-
grams with principal types in the natural type system of Figure 10. We describe
such an algorithm in this section.

5.1 Type inference, informally

Let us consider what happens in terms of constraint generation and solving when
local assumptions from GADTs enter the picture. Here is an example term:

\x -> case x of { T1 n -> n > 0 }

recalling the type of T1:

T1 : ∀a . (Bool∼ a) ⇒ Int→ T a

Again we make up fresh unification variables for any unknown types:

α type of the entire body of the function
βx type of x

Matching x against a constructor from type T imposes the constraint βx ∼ T γ,
for some new unification variable γ. From the term n > 0 we get the constraint
α ∼ Bool, but that arises inside the branch of a case that brings into scope the
constraint γ ∼ Bool. We combine these two into a new sort of constraint, called an
implication constraint :

γ ∼ Bool ⊃ α∼ Bool

Now our difficulty becomes clear: there is no most-general unifier for implication
constraints. The substitutions

[α 7→ Bool] and [α 7→ γ]

are both solutions, but neither is more general than the other. Each solution leads
to a distinct incomparable type for the expression.

On the other hand, sometimes there obviously is a unique solution. Consider
test2 from Section 2:

\x -> case x of { T1 n -> n > 0; T2 -> True }

From the two alternatives of the case we get two constraints, respectively:

(γ ∼ Bool ⊃ α∼ Bool) ∧ (α ∼ Bool)

36 Vytiniotis, Peyton Jones, Schrijvers, Sulzmann

Since the second constraint can be solved only by [α 7→ Bool], there is a unique
most-general unifier to this system of constraints.

In general, multiple pattern clauses give rise to a conjunction of implication
constraints and the task of type inference is to find a substitution that solves each
of the conjunctions. In the next section we sketch our idea of how to get a decidable
algorithm that infers most general solutions (and, ultimately, principal types), by
considering a restricted implication solver.

5.2 Overview of the OutsideIn(X) solving algorithm

Our idea is a simple one: we must refrain from unifying a global unification variable
under a local equality constraint. By “global” we mean “free in the type environ-
ment4”. In the example

(γ ∼ Bool ⊃ α∼ Bool)

both α and γ are global unification variables and we must refrain from unifying
them when solving the constraint. Hence, the constraint by itself is insoluble. It
can be solved only if there is some other constraint that fixes α.

On the other hand, some of the unification variables in an implication may be
entirely local to this implication. Consider the following variation:

\x -> case x of { T3 n -> null n }

where T3 is yet another data constructor of type:

T3 : ∀a . (Bool∼ a) ⇒ [Int]→ T a

Via the same reasoning as before we’d get that from the given assumption γ ∼ Bool,
it must follow that α ∼ Bool where α is the return type of the branch. However
from the instantiation of the null function of type ∀d . [d] → Bool with a fresh
unification variable δ and the application null n we get an additional constraint
δ ∼ Int. In total, we have5:

γ ∼ Bool ⊃ (α∼ Bool ∧ δ ∼ Int)

Now δ is an entirely local variable to this implication constraint, and hence (unlike
α and γ) it does not matter what type we unify it with. We record this information
in the syntax of implications, using an existential quantifier that binds these local
unification variables:

∃δ.(γ ∼ Bool ⊃ α∼ Bool ∧ δ ∼ Int)

When solving this constraint, we are free to unify [δ 7→ Int] but not α nor γ.
The formal syntax of the constraints generated by the algorithm, C , is now given

in Figure 11, which is identical to Figure 5, except for the new highlighted form of
implication constraint. An implication constraint is of the form ∃α.(Q ⊃ C) where

4 We must treat the result type or the type of the expression we are pattern matching against as
part of the type environment.

5 We will treat ⊃ as a very low precedence operator, so the parentheses are redundant

OutsideIn(X) 37

Unification variables α, β, γ, . . .
Unification or skolem variables tv ::= α | a
Algorithm-generated constraints C ::= Q | C1∧C2 | ∃α.(Q⊃C)

Free unification variables fuv(·)

simple[Q] = Q
simple[C1∧C2] = simple[C1]∧simple[C2]
simple[∃α.(Q⊃C)] = ε

implic[Q] = ε
implic[C1∧C2] = implic[C1]∧implic[C2]
implic[∃α.(Q⊃C)] = ∃α.(Q⊃C)

Fig. 11: Syntax extensions for OutsideIn(X)

we call the α variables the touchables of the constraint. These are the variables that
we are allowed to unify when solving the implication constraint. Notice that the
assumption of the implication constraint is always a Q constraint, as an implication
enters life by a pattern match against a constructor or a type signature – which
both introduce Q-constraints (not C -constraints). As a convenience, we will often
omit the ∃α part of an implication if it α is empty. The function simple[C] returns
the simple (that is, non-implication) constraints of C , whereas implic[C] returns
the implications, so that C = simple[C] ∧ implic[C].

To solve a constraint C , we may proceed as follows:

1. Split C into the implications of C , implic[C], and the rest, simple[C].
2. We solve the simple constraints by using some solver for X, which takes care

of the Q constraints.
3. We use the information generated by solving the simple constraints (such as a

substitution for unification variables) to solve each implication, one at a time,
taking care to allow only unification of its touchable variables.

This algorithm is conservative: there may exist constraints that admit a unique
solution, which it may fail to solve.

Example 5.1 (OutsideIn(X) conservativity) The algorithm fails to solve the
constraint

(γ ∼ Bool ⊃ α∼ Int)

because α is not a touchable variable, but the constraint actually has a unique so-
lution, namely [α 7→ Int].

However, we argue that failing to solve Example 5.1 is really not so bad. For, in the
presence of a top-level axiom F Bool ∼ Int, the constraint would be ambiguous
after all: there would exist an incomparable solution, [α 7→ F γ]. Hence, our design
decision to not unify global variables under a local constraint in fact makes the
algorithm robust with respect to an open world where new axioms can be added

38 Vytiniotis, Peyton Jones, Schrijvers, Sulzmann

Q ; Γ Ì prog

empty
Q ; Γ Ì ε

Γ Ì e : τ C Q ; ε ; fuv(τ,C) Ì
solv

C Q ; θ

a fresh α = fuv(θτ,Q)
Q ; Γ, (f :∀a.[α 7→ a](Q ⇒ θτ)) Ì prog

Bind
Q ; Γ Ì f = e, prog

Γ Ì e : υ C

Q ; Q ; fuv(υ,C) Ì
solv

C ∧ υ ∼ τ ε ; θ

Q ; Γ, (f :∀a.Q ⇒ τ) Ì prog
BindA

Q ; Γ Ì f :: (∀a.Q ⇒ τ) = e, prog

Q ; Qgiven ; αtch Ì
solv

Cwanted Qresidual ; θ

(see Figure 14)

Fig. 12: Top-level algorithmic rules

at any time. Any unique principal solution obtained by our algorithm remains a
unique principal solution with respect to any consistent extension of the axiom set.
Does the design decision make sense for a constraint like

(Eq γ ⊃ α∼ Int)

where the local constraint is not an equality constraint? Surely Eq γ cannot con-
tribute to solving α ∼ Int, and the only sensible solution is [α 7→ Int]? Indeed,
this is the case for all choices of the constraint language X that have been ex-
tensively studied in the literature. However, OutsideIn(X) is parameteric in the
particular choice of X and thus prepared for all possible shapes of axioms, even
less obvious ones. In the current example, for instance, the unusually-shaped ax-
iom ∀x . Eq x ⇒ F x ∼ Int would give rise to an alternate solution [α 7→ F γ].
Besides, Schrijvers et al. (2008b) have already shown the merits of this shape of
axiom and argued for their adoption. OutsideIn(X) already comes perpared for
this and other, as of yet unanticipated, extensions of the constraint language.

5.3 Top-level algorithmic rules

As in the vanilla language of Section 3, our approach relies on constraint generation
and solving, for expressions and top-level bindings, with the judgements

Γ Ì e : τ C Q ; Γ Ì prog

The top-level algorithmic rules are given in Figure 12. The judgementQ;Γ Ì prog
looks very much like the vanilla judgement in Figure 7, but notice the highlighted
differences – since OutsideIn(X) has to deal with implication constraints and
untouchable variables, it is natural to rely on a different, more elaborate, solver,
which we present in Section 5.5.

OutsideIn(X) 39

Γ Ì e : τ C

. . .

Γ Ì e1 : τ1 C1 Γ, (x :τ1) Ì e2 : τ2 C2

Let
Γ Ì let x = e1 in e2 : τ2 C1 ∧ C2

Γ Ì e1 : τ C1 Γ, (x :τ1) Ì e2 : τ2 C2

LetA
Γ Ì let x :: τ1 = e1 in e2 : τ2 C1 ∧ C2 ∧ τ ∼ τ1

σ1 = ∀a.Q1 ⇒ τ1 Q1 6= ε or a 6= ε Γ Ì e1 : τ C β = fuv(τ,C)−fuv(Γ)

C1 = ∃β.(Q1 ⊃ C ∧ τ ∼ τ1) Γ, (x :σ1) Ì e2 : τ2 C2
GLetA

Γ Ì let x ::σ1 = e1 in e2 : τ2 C1 ∧ C2

Γ Ì e : τ C β, γ fresh

Ki :∀abi.Qi ⇒ υi → T a bi fresh

Γ, (xi :[a 7→ γ]υi) Ì ei : τi Ci δi = fuv(τi ,Ci)−fuv(Γ, γ)

C ′
i =

Ci ∧ τi ∼ β if bi = ε and Qi = ε

∃δi.([a 7→ γ]Qi ⊃ Ci ∧ τi ∼ β) otherwise
Case

Γ Ì case e of {Ki x i → ei} : β C ∧ (T γ ∼ τ) ∧ (
V

C ′
i)

Fig. 13: Constraint generation

5.4 Generating constraints

Constraint generation is the same as Figure 6, with extensions for the new syntax
forms and modifications shown in Figure 13.

Note that Let does not generalize the binding, according to the discussion in
Section 4.2. For annotated let-bound definitions we consider two cases:

• The first case (rule LetA) triggers when the annotation is monomorphic. In
that case we have to gather the constraints but also record the fact that the
inferred type for the let-bound definition, τ , is equal to the required type τ1,
with the constraint τ ∼ τ1.

• In the case where the annotation is polymorphic (rule GLetA) and hence
introduces some quantified variables a and potentially some constraint Q1 we
must first infer a type τ and constraint C for e1. At this point the constraint
C must be provable by the local assumption Q1 introduced by the type anno-
tation and hence we emit an implication constraint ∃β.(Q1 ⊃ C ∧ τ ∼ τ1),
where β are the variables that we are allowed to unify. We then proceed to
check e2 using the annotation signature for the let-bound definition.

The reader may be surprised to see that the quantified variables a do not explicitly
appear in the emitted constraints in rule GLetA. After all, for type safety we
should be preventing any variable from the environment to be unified with those
quantified variables. But note that we are only allowed to unify the local variables
of the implication, β. Hence hence it is plainly impossible to unify some variable

40 Vytiniotis, Peyton Jones, Schrijvers, Sulzmann

Q ; Qgiven ; αtch Ì
solv

Cwanted Qresidual ; θ

Q ; Qg ; α Ì
simp

simple[C] Qr ; θ
∀(∃αi.(Qi ⊃ Ci) ∈ implic[θC]),

Q ; Qg ∧ Qr ∧ Qi ; αi Ì
solv

Ci ε ; θi
solve

Q ; Qg ; α Ì
solv

C Qr ; θ

Q ; Qgiven ; αtch Ì
simp

Qwanted Qresidual ; θ

(solver for)

Fig. 14: Solver infrastructure

from the environment to any type at all, including a! This behavior is more strict
than the current Haskell implementations of polymorphic signatures, an issue that
we return to in Section 5.6.1.

Rule Case deals with pattern matching. First, we generate a type τ and con-
straint C for the scrutinee of the case expression e. Now we generate a constraint
(T γ ∼ τ), for fresh unification variables γ, to reflect the fact that the scrutinee’s
must match the return type constructor T of the patterns. Now, contrary to the
vanilla rule of Figure 6, the modified rule considers two cases:

• If constructor Ki brings no existential variables or constraints into scope (b =
ε and Qi = ε) then all is straightforward, as in rule Case of Figure 6.

• However, if the data constructor K does bring some constraints or existential
variables in scope (Qi 6= ε or b 6= ε) then we may treat this branch as a GADT
branch, by introducing an implication constraint that records the touchable
variables of the branch, δi , and the local assumptions [a 7→ γ]Qi .

Once again, the careful reader may be surprised to see that the existential variables
b are not mentioned explicitly somewhere in the resulting constraint. For type safety
we must make sure that they do not escape in the return type of the branch or
the environment. But, as in the case of rule GLetA, any environment variable is
entirely untouchable, which prevents their unification from inside the implication
constraint with any type at all, including b. Once again, this behavior is more strict
than the current Haskell implementations of pattern matching against constructors
with existential variables, an issue that we return to in Section 5.6.1.

5.5 Solving constraints

We now turn to the internals of the main solver judgement, which has signature

Q ; Qgiven ; αtch Ì
solv

Cwanted Qresidual ; θ

In this signature, the inputs are:

• The top-level axiom set Q,

OutsideIn(X) 41

• the given (simple) constraints Qgiven that arise from type annotations (or
pattern matching),

• the touchable unification variables αtch that the solver is allowed to unify, and
• the constraint Cwanted that the solver is requested to solve.

The outputs are:

• A set of (simple) constraints Qresidual that the solver did not solve, and
• a substitution θ, with dom(θ) ⊆ αtch .

As before, notice that the solver is not required to always fully discharge Cwanted

via a substitution for the touchable unification variables; but it may instead return
a residual Qresidual . Notice though that Qresidual is a Q-constraint, which means
that, at the very least we must have discharged all the implication constraints in
Cwanted . On the other hand, in the case of annotated bindings (rule BindA) we have
to fully solve the wanted constraint, producing no residual constraints whatsoever.

As before, we assume a constraint simplifier for the underlying constraint domain
X . However our constraints C are richer than X : they include implications. Our
algorithm provides a single simplifier for C -constraints; this simplifier deals with
the implications, and in turn relies on a provided solver for flat X -constraints.
This algorithm is given by rule solve in Figure 14. The judgement first appeals
to the domain-specific simplifier for the simple part of the constraint simple[C],
producing a residual constraint Qr and a substitution θ. Subsequently, it applies θ

to each of the implication constraints in C . This operation may be simply defined
as:

θ(∃α.(Q ⊃ C) ≡ ∃α.(θQ ⊃ θC) where α#fuv(θ)

The side-condition is not significant algorithmically. The reason is that algorithmi-
cally, there is no need for renaming of α, since α cannot possibly appear inside θ

(they were generated after all the variables of θ have been generated). Finally we
may recursively solve each of the implications having updated the given constraints.

Each constraint Ci in a recursive call to solve must be completely solved (which
is ensured with the condition Q ; Qg ∧ Qr ∧ Qi ; αi Ì

solv

Ci ε ; θi in rule solve).
The reason is that the residual constraint returned from solve may only be a simple
(non-implication) constraint since we are not allowed to quantify over implication
constraints. Moreover, the domain of each θi only involves internal touchable vari-
ables of the implication constraint we are solving, and hence there is no point in
returning those θi substitutions along with θ in the conclusion of rule solve. Fi-
nally, notice the invariant that in all the calls to the solver it is αtch#fuv(Qgiven).

The main solver appeals to a domain-specific simplifier for the X theory, with
the following signature:

Q ; Qgiven ; αtch Ì
simp

Qwanted Qresidual ; θ

Its signature is the same as the signature of the simplifier from Figure 7, except for
the extra input αtch which records the touchable variables – those that may appear
in the domain of θ.

42 Vytiniotis, Peyton Jones, Schrijvers, Sulzmann

Q ; Qgiven ; αtch Ì
simp

Qwanted Qresidual ; θ

Simplifier soundness
(Qresidual , θ) is a sound solution for Qwanted under Qgiven and Q,

and dom(θ) ⊆ αtch

Simplifier principality
(Qresidual , θ) is a guess-free solution for Qwanted under Qgiven and Q

Fig. 15: Touchable-aware simplifier conditions

To describe the desired interface, we may extend the conditions of Figure 8, to the
touchable-aware simplifier, highlighting the differences in Figure 15. The conditions
are almost unchanged, except for a new highlighted soundness condition which only
allows touchables αtch in the domain of θ.

5.6 Variations on the design

5.6.1 Design choice: skolem escape checks

Consider the program:

data Ex where

Ex :: forall b. b -> Ex

f = case (Ex 3) of Ex _ -> False

Since there is an existential variable introduced by the constructor Ex, we would
create a (degenerate) implication constraint (ε ⊃ α ∼ Bool) where α is the return
type of the branch. Using OutsideIn(X), since α is an untouchable variable, the
constraint is not solvable, and hence the only way to make this program type check is
by adding a type signature to f :: Bool. This is somewhat unsatisfactory, since the
constructor does not bring any constraints in scope, and hence there is “obviously”
only one solution for the right-hand side, namely that α 7→ Bool. Furthermore, one
can then easily check this solution to make sure that the existential variable b did
not escape in the type of the scrutinee nor in the return type of the branch.

A possible extension is this: when the “given” constraints of an implication do not
entail any equalities, any “wanted” equalities that do not mention the existential
variables can be floated outside the implication. In the example above, we could float
out the wanted equality α ∼ Bool, thereby moving it into the outer scope, where α

is touchable. (This strategy is a slight generalisation of the original OutsideIn(X)
presentation (Schrijvers et al., 2009), which defined simple implications whose given
constraints are ε.)

Although this extension seems important in practice, and it forms part of our
released implementation, it also seems somewhat ad hoc, so we have refrained from
formalizing it here, instead leaving it as future work.

OutsideIn(X) 43

5.6.2 Design choice: which constraints are really implications

If an implication has originally been generated as (α ∼ Bool ⊃ β ∼ Int), it will still
be treated as an implication even in the presence of another constraint α ∼ Bool.
However, if we had used that information to simplify the givens of the implication
constraint, we’d see that we could treat it as a simple constraint β ∼ Int, which
would allow the unification of β 7→ Int. Here is a concrete example:

bar :: forall a. T a -> [a] -> ()

f t xs z = let z1 = bar t xs -- forces t :: T a, xs :: [a]

z2 = True:xs -- generates (a ~ Bool)

z3 = case t of -- generates (a ~ Bool => b ~ Int)

T1 _ -> z + 1

in ()

The code in the definition of z1 forces t to get type T α and xs to get type [α], where
T is the GADT from the introduction. The definition of z2 generates α ∼ Bool. The
case expression generates a constraint α ∼ Bool ⊃ β ∼ Int where β is the type of
z. However, β is not touchable for this implication and hence we can’t unify it to
anything. If instead we had used the fact that the outer constraint is solvable with
θ = [α 7→ Bool] we could transform the implication to a simple constraint β ∼ Int,
which we could solve.

Such a modification is conceivable. We did not follow this path because our cur-
rent story gives the programmer a purely syntactic understanding of which parts
of their programs are treated as implications and which not. Allowing simplifica-
tions on the givens to determine which constraints are “really” implications and
which not, would make this reasoning potentially more complicated (still, entirely
possible).

5.7 Soundness and principality of type inference

We now return to the properties shown in Section 3.6 for the simpler version of our
system that did not include local assumptions, and show that the same results are
true for the OutsideIn(X) algorithm with respect to the natural type system for
local assumptions.

We will assume in this section that the entailment satisfies the conditions of
Figure 3 and the simplifier satisfies the conditions of Figure 15. We start with
soundness of the OutsideIn(X) algorithm (in analogy with Theorem 3.1).

Theorem 5.1 (Algorithm soundness) If Q ; Γ Ì prog then Q ; Γ ` prog in a
closed top-level Γ.

Proof
Straightforward induction relying on Lemma 5.1.

This theorem relies on the following auxiliary lemma.

44 Vytiniotis, Peyton Jones, Schrijvers, Sulzmann

Lemma 5.1 Assume that Γ Ì e : τ C. Then, for all Cext , if Q ; Qg ; β Ì
solv

C ∧
Cext Qr ; θ then there exists Q such that Q ; θΓ ` e : θτ and Q ∧ Qg ∧ Qr Q.

Proof
By induction on the size of the term e. We consider cases corresponding to which
rule was used to derive Γ Ì e : τ C .

• Case VarCon. We have in this case that Γ Ì ν : [a 7→ α]τ1 [a 7→ α]Q1

given that ν:∀a.Q1 ⇒ τ1 ∈ Γ. Moreover, Q ; Qg ; β Ì
solv

[a 7→ α]Q1 ∧ Cext
Qr ; θ. Hence, ν:∀a.θQ1 ⇒ θτ1 ∈ θΓ (without loss of generality assume
that a do not appear in the domain or range of θ). Consider the substitu-
tion [a 7→ θα]. Then, using rule VarCon and reflexivity of entailment we get
[a 7→ θα]θQ1 ; θΓ ` ν : [a 7→ θα]θτ1, or, equivalently: [a 7→ θα]θQ1 ; θΓ ` ν :
θ([a 7→ α]Q1). By soundness of the simplifier we additionally get Q ∧ Qg ∧
Qr θ([a 7→ α]Q1) as required.

• Case App. We have that Γ Ì e1 e2 : α C1 ∧ C2 ∧ (τ1 ∼ τ2 → α)
given that Γ Ì e1 : τ1 C1 and Γ Ì e2 : τ2 C2. Moreover we know
that Q ; Qg ; β Ì

solv

C1 ∧ C2 ∧ (τ1 ∼ τ2 → α) ∧ Cext Qr ; θ. Hence, by
induction hypothesis there exist Q1 and Q2 such that Q1 ; θΓ ` e1 : θτ1 and
Q2 ; θΓ ` e2 : θτ2, and Q ∧ Qg ∧ Qr Q1 ∧ Q2. By the soundness of
the simplifier we additionally have Q ∧ Qg ∧ Qr θτ1 ∼ θτ2 → θα. Let
Q = Q1 ∧ Q2 ∧ θτ1 ∼ θτ2 → θα. It follows that Q ∧ Qg ∧ Qr Q .
Furthermore, it must be that Q ; θΓ ` e1 : θτ1 and Q ; θΓ ` e2 : θτ2, which
by rule Eq gives Q ; θΓ ` e2 : θτ1 → θα. Applying rule App gives that
Q ; θΓ ` e1 e2 : θα as required.

• Case Abs. We have that Γ Ì λx.e : α → τ C , given that Γ, (x :α) Ì e :
τ C . Moreover Q ; Qg ; β Ì

solv

C ∧ Cext Qr ; θ. By induction hypothesis
there exists a Q1 such that Q ∧ Qg ∧ Qr Q1 and Q1 ; θΓ, (x :θα) ` e : θτ .
Applying rule Abs gives Q1 ; θΓ ` λx.e : θ(α → τ) which finishes this case.

• Case Let. Similar to the cases App and Abs.
• Case LetA. Similar to the cases App and Abs.
• Case Case. We have in this case that Γ Ì case e of {Ki x i → ei} : β

C ′ ∧ (
∧

C ′
i) given that

Γ Ì e : τ C (6)

(7)

Moreover, for each branch Ki x i → ei we have that:

Ki :∀ab.Qi ⇒ υi → T a (8)

Γ, (xi :[a 7→ γ]υi) Ì ei : τi Ci (9)

if Qi 6= ε or b 6= ε then C ′
i = ∃δi.([a 7→ γ]Qi ⊃ Ci ∧ τi ∼ β) (10)

else C ′
i = Ci ∧ τi ∼ β

Finally, from the assumptions we have that:

Q ; Qg ; β Ì
solv

C ∧ (T γ ∼ τ) ∧ (
∧

C ′
i) ∧ Cext Qr ; θ (11)

OutsideIn(X) 45

Using (6), (11), and the induction hypothesis we get that there exists a Qe

such that

Qe ; θΓ ` e : θτ (12)

Q ∧ Qg ∧ Qr Qe (13)

By the soundness of the simplifier it follows that

Q ∧ Qg ∧ Qr T θγ ∼ θτ (14)

Let Q?
e be Qg ∧ Qr ∧ Qinst where Qinst is the finite set of instances from Q

used in the derivations of (12) and (14). It must be that Q?
e ; θΓ ` e : θτ and

Q?
e T θγ ∼ θτ , and hence by rule Eq also

Q?
e ; θΓ ` e : T θγ (15)

We now need to consider each branch. Branches with both b = ε and Qi = ε

are easy and we omit showing the case for those (they are treated essentially
as in Abs). Assume now that either b 6= ε or Qi 6= ε. By an easy substitutivity
lemma for the algorithm and (9) we get that

θΓ, (xi :[a 7→ θγ]υi) Ì ei : θτi θCi (16)

In this case, C ′
i is an implication constraint, and by the definition of the solver

it must be that

Q ; Qg∧[a 7→θγ]Qi∧Qr ; δi Ì
solv

θCi ∧ θτi ∼ θβ ε ; θi (17)

By (16) and (17) and the induction hypothesis there exists a Q ′
i such that

Q ′
i ; θi(θΓ, (x :[a 7→ θγ]υ)) ` ei : θiθτi . By using (17) and the fact that the

simplifier only unifies from δi , we rewrite this as: Q ′
i ; θΓ, (xi :[a 7→ θγ]υi) `

ei : θiθτi . Moreover, from the induction hypothesis we learn that Q ∧ Qg ∧
Qr ∧ [a 7→ θΓ]Qi Q ′

i , which in turn means that Q?
e ∧ [a 7→ θγ]Qi Q ′

i .
Hence

Q?
e ∧ [a 7→ θγ]Qi ; θΓ, (xi :[a 7→ θγ]υi) ` ei : θiθτi (18)

By (17) we have that Q ∧ Qg ∧ Qr ∧ [a 7→ θγ]Qi θiθτi ∼ θiθβ, and
using the fact that the simplifier only unifies from δi we have that Q?

e ∧
[a 7→ θγ]Qi θiθτ ∼ θβ. From this, (18), and rule Eq we have that Q?

e ∧
[a 7→ θγ]Qi ; θΓ, (xi :[a 7→ θγ]υi) ` ei : θβ. Likewise we can show that each
branch (implication or not) is well typed. Hence, with (15) Case becomes
applicable and the case is finished.

• Case GLetA. This case is similar (only simpler) than the case for rule Case.

We have seen that the natural type system for local assumptions in Figure 10
lacks principal types – nevertheless the next theorem asserts that our algorithm
accepts only programs with principal types.

46 Vytiniotis, Peyton Jones, Schrijvers, Sulzmann

Lemma 5.2 (Principality of inferred constraint) If Q ;Γ ` e : τ then Γ Ì e :
υ C, and there exists a θ with dom(θ)#fuv(Γ) such that Q simple[θC] and
Q θυ ∼ τ .

Proof
Easy induction.

Using this property, the corresponding versions of Lemma 3.2 and Theorem 3.2
are proved similarly to the vanilla constraint-based system in Section 3. We repeat
the statement of the final theorem.

Theorem 5.2 (Algorithm infers principal types) If fuv(Γ) = ∅ and Q;Γ Ì
gen

e :
σ0 then for all σ such that Q ; Γ `gen e : σ it is the case that Q ` σ0 � σ 6.

Proof
Similar to the proof of Theorem 3.2 appealing to Lemma 5.2.

6 Incompleteness and ambiguity

We now return to the issue of completeness and we introduce yet another problem
inherent in most constraint-based type systems, that of ambiguity. In the type-
system community it is traditional to supply

• A (relatively simple) declarative specification of the type system that nails
down exactly which programs are well-typed and which are not.

• A (more complicated) type inference algorithm that decides whether a given
program is well-typed or not.

• A proof that the algorithm is sound (if it succeeds, then the program is well-
typed according to the specification) and complete (if a program is well-typed
according to the specification then the inference algorithm succeeds).

The soundness and principality conditions that we have presented so far do not
guarantee completeness. Some of the problems have to do with the algorithm accept-
ing too few programs, and some with the type system accepting too many programs.
In this section we explain how the problems with completeness arise, why we do not
believe that the traditional approach can succeed, and our approach to resolving
the difficulty.

6.1 Incompleteness due to ambiguity

The simplifier soundness and principality conditions are unfortunately not sufficient
to guarantee completeness for annotated top-level bindings (even in the absence of
local constraints), as the type class example below demonstrates.

Example 6.1 (Type class incompleteness, due to ambiguity)

6 Where Ì
gen

refers to the generalization step of rule Bind in Figure 12.

OutsideIn(X) 47

show :: forall a. Show a => a -> String

read :: forall a. Show a => String -> a

flop :: String -> String

flop s = show (read s)

When type checking the top-level binding flop, the constraint solver would be left
with a type class constraint Show α that it cannot discharge, where α is otherwise
unconstrained. However flop is typeable in the specification, which simply guesses
α to be Int or Bool – either will do if there exist instance declarations Show Int

and Show Bool. Example 6.1 demonstrates incompleteness associated with the cel-
ebrated ambiguity problem (Jones, 1992).

Such programs must be rejected, because ambiguity possibly implies that the
meaning of a program may be affected by the arbitrary choices the type checker
makes, and indeed every type inference algorithm for Haskell does reject such pro-
grams. However, the program is accepted by the “natural” type system of Section 3.
This is a bug in the type system, but it is not an easy one to fix: we know of no
elegant type system that excludes such typings (but see Section 9.6).

Furthermore, even if we were to allow ambiguity, a complete algorithm would
have to search in the top-level axiom scheme environment for instance declarations
matching unsolved constraints. Search is undesirable as it may be (i) prohibitively
expensive (there may be many interacting choices to be made, so backtracking seems
unavoidable), and (ii) contradictory to Haskell’s open world assumption where the
set of declared instances is considered open to extension (from different modules,
introduced at link time).

It is worth noting that ambiguity-like problems also arise with equalities involving
type families. Suppose there is a wanted constraint F β ∼ Int with the top-level
axioms F Int ∼ Int and F Bool ∼ Int; then the constraint could be solved with
[β 7→ Int] or [β 7→ Bool], but doing so involves a search. Even if there is only one
declared axiom for F , for example F Int ∼ Int, we should not expect the algorithm
to deduce that [β 7→ Int]. Under an open world assumption new axioms could later
(at link time) be introduced that no longer justify our choice to make β equal
to Int. Even more worryingly for completeness, such ambiguous constraints may
additionally appear nested inside implication constraints, for example ∃β.(Q ⊃
. . . ∧ F β ∼ Int ∧ . . .).

6.2 Incompleteness due to inconsistency

Consider the following GADT example.

data R a where

R1 :: (a ~ Int) => a -> R a

R2 :: (a ~ Bool) => a -> R a

foo :: R Int -> Int

foo x = case x of

48 Vytiniotis, Peyton Jones, Schrijvers, Sulzmann

R1 y -> y

R2 y -> False

Notice that local assumption introduced in the second branch, matching construc-
tor R2 amounts to the equality Int ∼ Bool, which is inconsistent. However, nothing
prevents the typing rules of Figure 10 to accept this program, if the entailment rela-
tion is allowed to use inconsistent assumptions. Inconsistent assumptions like this,
operationally, imply that the branch R2 is unreachable, since it will be impossible
to construct evidence of the equality Int ∼ Bool. Hence, the right-hand side of
the R2 branch is dead code. It is therefore type-safe to accept the program, even
without requiring that the right-hand side of the R2 branch is well-typed.

From a software engineering point of view, however, rejecting the program is
more desirable than accepting it, for early detection of dead code, and hence an
algorithm that exhibits this behavior would necessarily be incomplete.

We could attempt to remedy this situation by requiring in the specification that
every local assumption introduced is consistent when combined with the top-level
axiom schemes. To express this, we extend our definition of top-level consistency
from Section 3.3 to deal with local assumptions.

Definition 6.1 (Consistency with local assumptions) A constraint Q is con-
sistent with respect to Q iff there exists a ground substitution θ for all the free
variables of Q such that whenever Q ∧ θQ T1 τ1 ∼ T2 τ2 it is T1 = T2 and
Q ∧ θQ τ1 ∼ τ2.

However, in the presence of type family axioms, a simplifier would generally
have to perform theorem proving to detect inconsistencies. Consider a function foo

with signature Add a (S Z) ~ a => a -> a, where Add is a type family encoding
addition. It is clear that the local assumption Add a (S Z) ∼ a is inconsistent
(for example consider the ground substitution [a 7→ Z]), but an algorithm can only
detect this by employing theorem proving techniques. What this means is that,
were we to require that the local assumptions be consistent in our specification, the
algorithm, unable to always detect inconsistency, would be unsound with respect
to the specification (i.e. it would accept programs which the specification would
reject, such as the definition of foo) typing rules.

Our conclusion is this: the specification remain as it stands, accepting some pro-
grams with unreachable branches, because we’d rather have an algorithm that is
incomplete, rather than an algorithm that is neither complete nor sound with re-
spect to the specification.

6.3 Incompleteness of the OutsideIn(X) strategy

Even if we disregard the incompleteness due to ambiguity and inconsistency, there is
still a completeness gap between the OutsideIn(X) algorithm and the specification
of Figure 10. Although the OutsideIn(X) algorithm accepts only programs with
principal types in the specification of Figure 10 (Theorem 5.2), it does not accept
all of them:

OutsideIn(X) 49

all programs

well-typed in Fig. 10

having principal type
in Fig. 10

well-typed in
OUTSIDEIN(X)

Fig. 16: The space of programs

Example 6.2 (OutsideIn(X) incompleteness) Consider the following GADT
program:

data R a where

RBool :: (a ~ Bool) => R a

foo rx = case rx of

RBool -> 42

The return type of foo can only be Int and the program has a principal type,
nevertheless the OutsideIn(X) strategy will reject it, because the return type of
the branch is not fixed from outside (although it can only be Int). In terms of
constraints, the constraint arising from the definitionf of foo is precisely the one
described in Example 5.1, so one might argue that, despite the incompleteness,
rejecting the program is more robust in an open world than accepting it.

Overall, the space of typeable programs looks like Figure 16, with a big com-
pleteness gap between the programs typed by the algorithm and those accepted by
the specification (which accepts too many programs).

6.4 Guess-free completeness

Finally, there is yet another potential threat to completeness: perhaps the con-
straint simplifier does not try hard enough. In particular, the no-op simplifier,
which merely returns Qresidual = Qwanted and θ = ε, satisfies the conditions of
Figure 15. Instantiating our algorithm with the no-op simplifier would be terrible:
almost every top-level annotated binding would be rejected! For example:

f :: Eq a => a -> Bool

f x = (x == x)

We get a Qwanted = Eq a and our given constraint is Qgiven = Eq a, but the no-op
simplifier does not discharge Qwanted !

50 Vytiniotis, Peyton Jones, Schrijvers, Sulzmann

Happily, in this case we can express an intuitive completeness property: given a
consistent set of assumptions, if a constraint can be solved without guessing then
the algorithm should solve it. It is easy to formalise what we mean by “guessing”:

Definition 6.2 (Guess-free completeness requirement) A simplifier is guess-
free complete iff the following holds for any Qwanted , Qgiven and Q: If (ε, θ) is a
guess-free solution of Qwanted under Qgiven , Qgiven is consistent with respect to Q,
and Q and dom(θ) ⊆ αtch , then the simplifier will return a guess-free solution of
the form (ε, ϕ), where dom(ϕ) ⊆ αtch .

To see what restrictions this condition imposes on the simplifier, consider first the
wanted constraint Eq α. This constraint does not imply that [α 7→ Int], and hence
a guess-free complete solver is allowed to fail on it (in fact, it must fail on it,
to satisfy the simplifier principality condition). On the other hand, the constraint
Eq α ∧ [α] ∼ [Int] is solvable by [α 7→ Int] and a guess-free complete simplifier must
be able to solve it. The consistency assumption in Definition 6.2 is only making our
requirements more realistic, since inconsistent assumptions often can lead solvers to
non-termination (we will see how this may happen in Section 7.7), and are extremely
difficult or impossible to detect without arbitrarily complex theorem proving (we
have seen this already with the Add example in Section 6.2).

Unfortunately, Definition 6.2 characterizes algorithms, not type systems. But at
the very least, a guess-free complete algorithm clearly rejects all ambiguous pro-
grams. Moreover, guess-free completeness can, under some circumstances, give us
some completeness guarantees with respect to the natural type system of Figure 10.
Assume that a program prog is well typed in the type system of Figure 10, and
we had a way to add enough annotations on the program that fix all unification
variables (for instance, we would need ways to bind the existential variables of con-
structors, and open type annotations). Let us call the annotated program prog ′.
Moreover, assume that in the typing derivation of prog ′, all the constraints appear-
ing in the left of ` are consistent with respect to Q. If all these conditions are met,
and the algorithm satisfies the guess-free completeness requirement then it follows
that the annotated program prog ′ will be accepted by the algorithm.

6.5 Our position on incompleteness and ambiguity

To sum up, our specification accepts some “bad” programs (ones that are ambigu-
ous, or lack a principal type), and the OutsideIn(X) algorithm rejects some “good”
ones.

The latter is no great surprise. For example, the Hindley-Milner algorithm ac-
cepts only λ-abstractions whose binder has a monotype. We accept that a tractable
algorithm cannot work magic, so instead we tighten the specification so that it
matches what the algorithm can achieve.

The obvious way to restore completeness is is to tighten up the specification, so
that it rejects both (a) bad programs and (b) programs that the inference algorithm
cannot type. The trouble is that the cure is worse than the disease: the specification

OutsideIn(X) 51

becomes as complicated and hard to understand as the algorithm. For one such
attempt the reader is encouraged to read our earlier version of the OutsideIn(X)
algorithm, which had a fairly complicated specification, and one that worked only
for the special case of GADTs in (Schrijvers et al., 2009), and neglected ambiguity
entirely. For the general case of arbitrary constraint domains and local constraints,
we are not optimistic about this approach.

In this paper we have taken a different tack:

• We give a specification that is simple, general, and comprehensible, but which
types too many programs (Section 4). For example, it regards the read/show
example as well typed.

• We give an inference algorithm that is sound, but not complete, with respect
to this specification (Section 5). That is, if the algorithm accepts the program,
then the program is indeed well-typed according to the specification, but
not vice versa. The absence of completeness is by design: for example, we
positively want to reject the read/show example, and the examples from
Section 2 that lack principal types.

• Although the algorithm is incomplete, we can still offer the following guaran-
tee: if the algorithm accepts a definition, then that definition has a principal
type, and that type is what the algorithm finds (Theorem 5.2 in Section 5.7).

A consequence is this: the precise details of which programs are accepted by the
specification but rejected by the algorithm is given only by the algorithm itself.
While this is unsatisfying in principle, we are willing to live with it for two reasons.
First, we know of no better alternative. Second, by explaining that the inference
algorithm does not “guess” types, or “search” among possible substitutions, we
have found that programmers can, after some experience, accurately predict what
should and should not type-check. We offer the whole question as a challenge to
others for further work.

7 Instantiating X for GADTs, type classes, and type families

Our general claim is that, the algorithm of Section 5 will infer principal types for
an arbitrary underlying constraint domain X, provided:

• the entailment relation of X satisfies the properties of Figure 3,
• a sound and guess-free simplifier is used to solve constraint problems in X.

Kennedy’s units of measure is a well-understood and tractable example of just such
a domain(Kennedy, 1996). Haskell needs a rather more complicated domain. Indeed,
our main purpose was to provide a type inference framework that can accommodate

• multi-parameter type classes
• Generalised Algebraic Data Types (GADTs)
• type families

In this section we describe the entailment relation (Section 7.1) and the simplifier
procedure (Section 7.3) for these features. We do not discuss overlapping instances,

52 Vytiniotis, Peyton Jones, Schrijvers, Sulzmann

Syntactic extensions

τ ::= . . . | F τ Type family applications

Q ::= . . . | D τ Type class constraints

Q ::= Q | Q ∧ Q | ∀a.Q ⇒ D τ | ∀a.F ξ ∼ τ

Auxiliary syntactic definitions
ζ, ξ ∈ {τ | τ contains no type families }
T ::= T T | F | T → T | tv | •
F ::= F T
D ::= D T

Fig. 17: Syntactic extensions for type classes and type families

implicit parameters, superclasses, or functional dependencies, although our imple-
mentation deals with all of these (Section 8). Even so, describing the solver is a
fairly challenging task, and this section is a long one – but it is a task that is clearly
separable from the rest of the paper.

7.1 The entailment relation

We already have enough syntax to describe GADT equalities, so the required ex-
tensions for type classes and type families are given in Figure 17.

The syntax of types is extended with type families of the form F τ . The syntax
of constraints is extended with type class constraints of the form D τ . The top-level
axioms contain constraints Q as before, and two forms of axiom schemes:

• Class instance axioms, of the form ∀a.Q ⇒ D τ . Those are brought into Q
by a user instance declaration such as

instance Eq a => Eq [a] where ...

which gives rise to ∀a.Eq a ⇒ Eq [a].
• Type family instance declarations, of the form ∀a.F ξ ∼ τ . Such axiom

schemes enter Q with a type instance declaration. For example,

type instance F Int = Bool

type instance F [a] = a

gives rise to F Int ∼ Bool ∧ ∀a.F [a] ∼ a. GHC enforces that type family
instance declarations involve only type families applied to types that contain
no type families (type-family-free), and we follow here this restriction (hence
ξ and not simply τ in type family axiom schemes of Figure 17).

Finally, in the rest of this section we will use T, F, and D for type, type family,
and type class contexts with holes. For example writing F[τ] gives a type family
application with τ in the hole of F.

Given this syntax of constraints, Figure 18 gives their entailment relation, which

OutsideIn(X) 53

Q Q

Q Q1 Q Q2

conj
Q Q1 ∧ Q2

refl
Q τ ∼ τ

Q τ1 ∼ τ2

sym
Q τ2 ∼ τ1

Q τ1 ∼ τ2 Q τ2 ∼ τ3

trans
Q τ1 ∼ τ3

Q T τ1 ∼ T τ2

decomp
Q

^
τ1 ∼ τ2

Q
^

τ1 ∼ τ2

comp
Q T τ1 ∼ T τ2

Q
^

τ1 ∼ τ2

fcomp
Q F τ1 ∼ F τ2

(∀a.Q1 ⇒ Q2) ∈ Q Q [a 7→ τ]Q1

axiom
Q [a 7→ τ]Q2

Q D τ1 Q
^

τ1 ∼ τ2

dicteq
Q D τ2

Fig. 18: Concrete entailment

is entirely standard. We have merged the cases for type class instance axioms type
family instance axioms in the common rule axiom. Notice rule dicteq, which
allows the rewriting of a type class constraint using a deducible equality.

It is routine induction to confirm that the entailment relation of Figure 18 is
well-behaved for type inference purposes.

Lemma 7.1 The relation in Figure 18 satisfies the conditions of Figure 3.

Proof
Easy induction.

7.2 Solving equality constraints is tricky

At first it may seem that a constraint solver for type classes, GADTs, and type fam-
ilies is relatively simple. After all, type classes have been with us for twenty years,
and we can deal with type families by using the top-level type instance declara-
tions as left-to-right rewrite rules. The tricky case comes with local assumptions
that involve type families.

Example 7.1 Consider this contrived example:

type instance F [Int] = Int

type instance G [a] = Bool

-- Assume g :: forall b. b -> G b

f :: forall a. (a ~ [F a]) => a -> Bool

f x = g x

54 Vytiniotis, Peyton Jones, Schrijvers, Sulzmann

When type checking f we see that, since (g x) must return Bool, we get the
wanted constraint G a ∼ Bool. Using the assumption a ∼ [F a] we can rewrite the
wanted constraint to G [F a]∼Bool. Aha! Now we can apply the top-level instance
for G and we are done.

The trick here is that we had to replace a by [F a], a process that would go
on forever if iterated, so the solver clearly has to be rather careful. Moreover,
the assumptions might look like (F a ∼G a) or even (F (G a)∼G a), which look
nothing like left-to-right rewrite rules, and cannot be used in this way. We discussed
these and other issues in an earlier work (Schrijvers et al., 2008a), where we gave
a solver for type equalities alone. In the rest of this section we give a solver that is
simpler than our earlier one, and incorporates type classes as well.

7.3 The simplifier

We now proceed to the details of a concrete simplifier for the entailment judgement
of Figure 18. Our goal is to implement a procedure with the signature:

Q ; Qgiven ; αtch Ì
simp

Qwanted Qresidual ; θ

This procedure will be used to instantiate the solver of Figure 14. Recall that
the properties we have postulated for soundness and principality of type inference
(Figure 15) give:

Q ∧ Qgiven ∧ Qresidual θQwanted

Q ∧ Qgiven ∧ Qwanted Qresidual ∧ Eθ

In addition we must have dom(θ) ⊆ αtch , dom(θ)#fuv(Qg ,Qr). The way we are
going to attack this problem is by discovering a constraint Qresidual ∧ Eθ that is
equivalent to Qwanted , that is, it satisfies:

Q ∧ Qgiven Qwanted ↔ (Qresidual ∧ Eθ)

Soundness and principality will then follow from this and the observation that
fuv(Qgiven)#αtch at the call sites of the simplifier. Of course, a trivial solution to
our problem is to return θ = ε and Qresidual = Qwanted , but that would be terrible
from a completeness point of view: our golden standard that we aim for is guess-free
completeness, described in Section 6.4.

Following previous work (Schrijvers et al., 2008a), we may implement such a
simplifier, as the fixpoint of a set of rewrite rules that at each step transform our
wanted constraint into a simpler, equivalent constraint. Once no more rewriting is
possible, we may extract a substitution θ for the touchable unification variables from
that simplified constraint, and keep the remaining residual constraint, Qresidual . If
the remaining constraint is simply empty then we have managed to fully solve our
wanted Qwanted by producing a substitution θ. The structure of a simplifier based
on this idea appears in Figure 19, and rule simples implements this strategy.

Rule simples appeals to the auxiliary judgment ↪→, whose signature is:

Q Ì 〈α, ϕ,Qg ,Qw 〉 ↪→ 〈α′, ϕ′,Q ′
g ,Q ′

w 〉⊥

OutsideIn(X) 55

Q ; Qgiven ; αtch Ì
simp

Qwanted Qresidual ; θ

Q Ì 〈α, ε,Qg ,Qw 〉 ↪→? 〈α′, ϕ,Q ′
g ,Q

′
w 〉 6↪→

ϕQ ′
w = E ∧ Qr

E = {β ∼ τ | ((β ∼ τ) ∈ ϕQ ′
w or (τ ∼ β) ∈ ϕQ ′

w), β ∈ α′, β /∈ fuv(τ)}
θ = [β 7→ θτ | (β ∼ τ) ∈ E] β distinct

simples
Q ; Qg ; α Ì

simp

Qw θQr ; θ|α

Q Ì 〈α, ϕ,Qg ,Qw 〉 ↪→ 〈α′, ϕ′,Q ′
g ,Q

′
w 〉⊥

canon[g] (Q1) = {β, ϕ2,Q2}⊥
cang

Q Ì 〈α, ϕ1,Qg∧Q1,Qw 〉 ↪→ 〈αβ, ϕ1] ϕ2,Qg∧Q2,Qw 〉⊥

canon[w] (Q1) = {β, ϕ2,Q2}⊥
canw

Q Ì 〈α, ϕ1,Qg ,Qw∧Q1〉 ↪→ 〈αβ, ϕ1] ϕ2,Qg ,Qw∧Q2〉⊥

interact [g](Q1, Q2) = Q3

intg
Q Ì 〈α, ϕ,Qg ∧ Q1∧Q2,Qw 〉 ↪→ 〈α, ϕ,Qg∧Q3,Qw 〉⊥

interact [w](Q1, Q2) = Q3

intw
Q Ì 〈α, ϕ,Qg ,Qw∧Q1∧Q2〉 ↪→ 〈α, ϕ,Qg ,Qw∧Q3〉⊥

(Q) simplifies (Q1) = Q2

simpl
Q Ì 〈α, ϕ,Qg∧Q ,Qw∧Q1〉 ↪→ 〈α, ϕ,Qg∧Q ,Qw∧Q2〉⊥

topreact [g](Q, Q1) = {ε,Q2}⊥
topg

Q Ì 〈α, ϕ,Qg∧Q1,Qw 〉 ↪→ 〈α, ϕ,Qg∧Q2,Qw 〉⊥

topreact [w](Q, Q1) = {β,Q2}⊥
topw

Q Ì 〈α, ϕ,Qg ,Qw∧Q1〉 ↪→ 〈αβ, ϕ,Qg ,Qw∧Q2〉⊥

Fig. 19: Main simplifier structure

The purpose of this judgement is to rewrite an input quadruple into an output
quadruple. The inputs to this judgement are:

• The top-level axioms Q.
• An input quadruple, 〈α, ϕ,Qg ,Qw 〉, which consists of a set of touchable vari-

ables, α, a substitution for some unification variables, ϕ, a set of given con-
straints Qg , and a set of wanted constraints Qw . We will refer to the substitu-
tion ϕ as the flattening substitution because it undoes the so-called flattening
operation that we apply to canonicalise constraints; Section 7.4.1 will give the
details.

The output of this judgement is then a new quadruple, consisting of a new set of

56 Vytiniotis, Peyton Jones, Schrijvers, Sulzmann

touchable variables, α′, a new flattening substitution ϕ′, a new set of givens Q ′
g as

a result of massaging the original givens, and a new set of wanteds Q ′
w that record

any remaining goals to be shown, that we were not able to deduce. The returned
set of touchable variables is always a superset of the input, and will include any
new unification variables that have been allocated during simplification (we will see
how this may happen in Section 7.4.1, and Section 7.4.4).

Returning to rule simples, the idea is to repeatedly apply ↪→ (hence ↪→∗) until it
no longer applies (hence 6↪→). Then we massage the results to extract a substitution
θ and residual constraint Qr . The details are best understood after we introduce
the constraint rewrite relation, in the next section. We then return to demystify
the rest of simples in Section 7.5.

The ⊥ symbol in the signature of ↪→ should be understood as syntactic sugar for
the possibility that rewriting might fail. That is, every rule with a conclusion of the
form Q Ì 〈α, ϕ,Qg ,Qw 〉 ↪→ 〈α′, ϕ′,Q ′

g ,Q ′
w 〉⊥ abbreviates two rules, one of which

simply returns ⊥ if one of the premises rewrites to ⊥. For instance, if we encounter
the constraint Int ∼ Bool our solver immediately returns ⊥, instead of keeping
the constraint in the quadruple. The possibility of returning ⊥ amounts to a check
for inconsistent constraints. Although such a check is necessarily incomplete (see
Section 6.2) we still desire it for three reasons:

• We do not want to quantify over obviously-inconsistent constraints. For ex-
ample, it would be stupid (although sound) to infer the type (Int ∼ Bool) ⇒
Int→ Bool for

f x = (not x) + 3

because f could never be called.
• Where possible, we would like to detect unreachable case alternatives, as we

discussed in Section 6.2.
• In general, we would like definite errors to be reported as early as possible.

7.4 Rewriting constraints

We turn our attention now to the internals of the judgement

Q Ì 〈α, ϕ,Qg ,Qw 〉 ↪→ 〈α′, ϕ′,Q ′
g ,Q ′

w 〉⊥
given in Figure 19. As we have seen, it transforms quadruples consisting of some
touchable variables, a substitution, some given constraints, and some wanted con-
straints. It does this by appealing to simpler rewrite rules, of four categories:

Canonicalization (Section 7.4.1) is used in rules cang and canw. They both
call function canon, whose signature signature:

canon[`] (Q1) = {β, ϕ2,Q2}⊥

where ` is either wanted (w) or given (g). The canonicalisation function trans-
forms a single atomic7 constraint Q1 to a simpler form. Constraints that canon

7 An atomic constraint is one that does not involve conjunctions

OutsideIn(X) 57

does not transform are canonical. An example of canonicalization would be to
transform [α] ∼ [Int] to the simpler form α ∼ Int. The canonicalization rules
may need to create new touchable variables β, or new flattening substitutions ϕ.
Finally notice that those rules can fail returning ⊥ in which case rule cang and
canw should also fail returning ⊥.

Binary interaction (Section 7.4.2) is used in intg and intw, which both ap-
peal to the function interact :

interact [`](Q1, Q2) = Q3

where ` can be either given (g) or wanted (w). Interaction combines two atomic
constraints (both given or both wanted), producing new wanted or new given
constraints, respectively. For example, if we are given two constraints α ∼ β and
β ∼ Int, we would get a new given that α ∼ Int.

Simplification (Section 7.4.3) is used in rule simpl, which invokes

(Q) simplifies (Q1) = Q2

This function uses an atomic given constraint Q to simplify an atomic wanted
constraint Q1, producing a transformed wanted Q2. It will often be the case that
this rule completely discharges the wanted constraint Q1 producing ε. A typical
reaction with given α ∼ Int and wanted α ∼ Int would produce Int ∼ Int

(which could then be discharged by a canonicalization rule).
Top-level reactions (Section 7.4.4) appear in rules topg and topw, using func-

tion

topreact [`](Q, Q1) = {β,Q2}⊥
This function uses the top-level axioms Q to transform an atomic given or wanted
constraint Q1. For example they may be used to deduce a wanted type class
constraint Eq Int from an axiom for Eq Int introduced by some class instance
declaration. We will see that these rules may create new touchable variables.

Our intention is that the rewrite relation induced by these rules is confluent and
terminating (under certain conditions on the axiom schemes). Though we do not
present a detailed confluence proof, we discuss several design decisions motivated
by keeping the algorithm independent of the order that the rules will be applied
in the next sections; Section 7.7 discusses termination. For the rest of this section,
we will cover a concrete instantiation of those four kinds of rules that give rise to a
simplifier for the entailment of Figure 18.

7.4.1 Canonicalization rules

The purpose of canonicalization is to transform a single constraint, given or wanted,
to a simpler form. These simple forms that we will be using throughout will be called
canonical constraints, and are specified in Figure 20 with the judgement

c̀an Q

There exist two rules for equality in this figure:

58 Vytiniotis, Peyton Jones, Schrijvers, Sulzmann

c̀an Q

tv ≺ ξ tv /∈ ftv(ξ)
ceq

c̀an tv∼ξ
cfeq

c̀an F ξ∼ξ
cdict

c̀an D ξ

τ1 ≺ τ2

F τ ≺ τ when τ 6= G υ
α ≺ b

tv1 ≺ tv2 when tv1 ≤ tv2 lexicographically
tv ≺ ξ

Fig. 20: Auxiliary definitions for canonicalization

canon[`] (Q1) = {β, ϕ,Q2}⊥

refl canon[`] (τ ∼ τ) = {ε, ε, ε}
tdec canon[`] (T τ1 ∼ T τ2) = {ε, ε,

V
τ1 ∼ τ2}

faildec canon[`] (T τ1 ∼ S τ2) = ⊥
occcheck canon[`] (tv ∼ ξ)

where tv ∈ ξ, ξ 6= tv = ⊥
orient canon[`] (τ1 ∼ τ2)

where τ2 ≺ τ1 = {ε, ε, τ2 ∼ τ1}
dflatw canon[w] (D[G ξ]) = {β, ε, D[β] ∧ (G ξ ∼ β)}
dflatg canon[g] (D[G ξ]) = {ε, [β 7→ G ξ], D[β] ∧ (G ξ ∼ β)}
fflatwl canon[w] (F[G ξ] ∼ τ) = {β, ε, (F[β] ∼ τ) ∧ (G ξ ∼ β)}
fflatwr canon[w] (τ ∼ T[G ξ])

where (τ = F ξ
′
or τ = tv), β fresh = {β, ε, (τ ∼ T[β]) ∧ (G ξ ∼ β)}

fflatgl canon[g] (F[G ξ] ∼ τ) = {ε, [β 7→ G ξ], (F[β] ∼ τ) ∧ (G ξ ∼ β)}
fflatgr canon[g] (τ ∼ T[G ξ])

where (τ = F ξ
′
or τ = tv), β fresh = {ε, [β 7→ G ξ], (τ ∼ T[β]) ∧ (G ξ ∼ β)}

Fig. 21: Canonicalization rules

• Rule ceq asserts that a constraint of the form tv ∼ ξ is canonical when when
tv /∈ ξ – otherwise this must be an occurs check error. We also remind the
reader at this point that ξ-types are function free.

• Rule cfeq asserts that the only constraint that may contain a function symbol
should be of the form F ξ ∼ ξ. There is no occurs check condition in canon-
ical equalities that involve function symbols. It is perfectly valid to have a
constraint of the form F α ∼ α, contrary to, say α ∼ [α].

Finally, a canonical type class constraint may also never mention any function
symbols and rule cdict asserts that it is of the form D ξ.

We now turn to the actual canonicalization rules, in Figure 21. Their purpose is
to convert any constraint (given or wanted) to a set of canonical constraints. Rule
refl simply removes a given or wanted reflexive equality. The rest of the rules can
be grouped, according to their functionality.

Occurs check Rule occcheck fails in the case where a type variable tv is equal

OutsideIn(X) 59

to a type that may contain the very same variable. Since in rule occcheck the
constraint is of the form tv ∼ ξ, ξ contains no function symbols and hence we are
not in danger of raising an erroneous occur check violation for a perfectly valid
constraint of the form a ∼ F [a].

Decomposition rules Rule tdec decomposes an equality between two types with
the same head constructor, and rule faildec fails in the case where the head
constructors are different.
It is worth noticing that rules faildec (and occcheck) may fail even for given
constraints. Whereas failure for wanted constraints amount to an unsatisfiable
constraint, failure in the given constraint amounts to inconsistency detection (see
related discussion in Section 6.2). For example, assume the following code:

f :: (Bool ~ Char) => Bool -> Char

f x = x && ’c’

Since rule faildec applies to both given and wanted constraints, it will result in
rejecting f.

Orientation We’ve seen in Figure 20 that canonical equality constraints must
have a very particular shape. This means that sometimes equality constraints
may need to be oriented to prefer unifiable variables or function applications on
the left. This is achieved with rule orient which orients an equality constraint
according to the ≺ function defined in Figure 20. For example, rule orient

will fire for a constraint of the form a ∼ F [a], to transform it to F [a] ∼ a.
Orientation prefers unification variables on the left of equality constraints over
skolem variables, but that is just so that the shape of constraints looks more like
a substitution, and does not have any deep implications. Finally, for two variables
that are both unification variables or skolems, we simply impose an orientation
based on the lexicographic ordering of the names of those variables – this has to
do with termination and will be explained in Section 7.4.2.

Flattening (and the role of the flattening substitution) We’ve also seen in
Figure 20 that canonical constraints mention function applications only as left-
hand sides of equalities. Transforming a constraint to do this is achieved with the
flattening rules in Figure 21, dflatw, dflatg, fflatwl, fflatwr, fflatgl,
and fflatgr. Their behavior is similar: in all cases a fresh variable β is generated
and the nested function application is lifted out as an extra equality. For instance,
for a constraint:

F (G Int) ∼ Int

we would get two new constraints:

F β ∼ Int ∧ G Int ∼ β

Notice though the difference between the wanted and given cases. If the original
constraint is given then we are emitting a new given constraint G ξ ∼ β. But
what is the evidence that justifies this? This is where the flattening substitutions
come into play: we record in the flattening substitution that β is equal to G ξ,
hence establishing evidence (the identity) that justifies the new given constraint

60 Vytiniotis, Peyton Jones, Schrijvers, Sulzmann

G ξ ∼ β. The fresh variable β is carefully not recorded as touchable, since we
already have a substitution for it.
The role of flattening, often used in completion-based term rewriting (Kapur,
1997), is essential in many dimensions.

• As we will see in Section 7.4.2 and Section 7.4.3 having type family sym-
bols appearing only to the left of equations restricts the number of possible
interactions between those equations and other constraints.

• Flat equations involving type functions of the form F ξ ∼ ξ are helpful in
ensuring termination of simplification. Recall Example 7.1, and the possibility
for non-termination if we simply view the constraint a ∼ [F a] as a left-to-
right substitution. Flattening comes into play here. Instead of viewing a ∼
[F a] as a left-to-right substitution, we will first flatten the equation using
introducing a new flatten skolem β to get new givens a ∼ [β] ∧ F a ∼ β along
with the flattening substitution [β 7→ F a]. In this way we have broken the
vicious substitution cycle for variable a. We may now use a ∼ [β] to rewrite
our goal G a ∼ Int to G [β] ∼ Int, which can be readily solved from the
top-level axiom for G !

Finally, notice that flattening for wanted constraints (rule dflatw) generates a
new wanted goal that G ξ ∼ β, without binding β in the flattening substitution.
Instead, it must record the fresh β variable as touchable – we will bee seeking
evidence that G ξ ∼ β and that evidence may (but not need to) be found by
unifying β 7→ G ξ later on.
It is very important that we treat the given and wanted case differently. We
explain the reasons below:

• Why don’t we simply create wanted G ξ ∼ β in the given case? Because
we can create evidence for G ξ ∼ β on the spot, namely by simply setting
[β 7→ G ξ].

• Why don’t we create given G ξ ∼ β and update the flattening substitution
[β 7→ G ξ] in the wanted case? A superficial reason is that our rules allow
canonicalisation of wanteds to wanteds, and of givens to givens, but not canon-
icalization of wanteds to givens. But the real reason is that G ξ arises in the
context of a wanted constraint, and hence may contain touchable variables.
By creating a given G ξ ∼ β we are “polluting” our given constraints with
touchable variables.
To see why this is dangerous, consider the original wanted constraints with
touchable α:

F (G [α]) ∼ Int (19)

G [α] ∼ α (20)

along with a given G [α] ∼ γ for an untouchable γ. Suppose that constraint
(19) canonicalizes to F β ∼ Int (wanted), and G [α] ∼ β (given), with the
flattening substitution being [β 7→ G [α]]. From these and the given G [α] ∼ γ

we can deduce the given constraint γ ∼ β. To solve (20), and using the given
G [α] ∼ β it suffices to solve α ∼ β. One may think that α ∼ β can be readily

OutsideIn(X) 61

interact [`](Q1, Q2) = Q3

eqsame interact [`](tv ∼ ξ1, tv ∼ ξ2)
where c̀an tv ∼ ξ1, c̀an tv ∼ ξ2 = (tv ∼ ξ1) ∧ (ξ1 ∼ ξ2)

eqdiff interact [`](tv1 ∼ ξ1, tv2 ∼ ξ2)
where c̀an tvi ∼ ξi , tv1 ∈ ftv(ξ2) = (tv1 ∼ ξ1) ∧ (tv2 ∼ [tv1 7→ ξ1]τ2)

eqfeq interact [`](tv ∼ ξ1, F ξ ∼ ξ)

where c̀an tv ∼ ξ1, tv ∈ ftv(ξ, ξ) = (tv ∼ ξ1) ∧ (F [tv 7→ ξ1]ξ ∼ [tv 7→ ξ1]ξ)

eqdict interact [`](tv ∼ ξ, D ξ)

where c̀an tv ∼ ξ, tv ∈ ftv(ξ) = (tv ∼ ξ1) ∧ (D [tv 7→ ξ]ξ)

feqfeq interact [`](F ξ ∼ ξ1, F ξ ∼ ξ2) = (F ξ ∼ ξ1) ∧ (ξ1 ∼ ξ2)

ddict interact [`](D ξ, D ξ) = D ξ

Fig. 22: Binary interaction rules

solved by setting [α 7→ β], but that does not work because β is already unified
to G [α] and hence we will get a non-idempotent unifier [α 7→ G [α]]! Alas,
we could instead have tried to solve α ∼ γ, which surprisingly is solvable by
setting [α 7→ γ] since we have a given constraint γ ∼ β.
To summarize, the presence of touchable variables in the givens makes the
algorithm sensitive in the order that the rewrite rules fire.

7.4.2 Binary interaction rules

Binary interaction rules transform two canonical constraints that are either both
given or both wanted to a new given or wanted constraint, respectively. Figure 22
gives the details.

Rule eqsame reacts two equalities with the same variable on the left-hand side,
producing a new equality equating the right-hand sides.

Rule eqdiff reacts canonical equalities but where one of the left-hand side vari-
ables appears in the right-hand-side type of the other equality. This rule is the
reason for requiring a lexicographic ordering between variables in the syntax of the
canonical constraints. Consider the example:

α ∼ β ∧ β ∼ γ ∧ γ ∼ β

where all variables are touchables. After one step of rewriting using eqdiff we may
substitute β in the first constraint and end up with:

α ∼ γ ∧ β ∼ γ ∧ γ ∼ β

Now, we may substitute again in the first constraint variable γ to get

α ∼ β ∧ β ∼ γ ∧ γ ∼ β

which is the original constraint we started with. We see that there is a danger for
non-termination. Imposing a lexicographic ordering of variables and reacting only
canonical ones would mean that it would be impossible to have both β ∼ γ and
γ ∼ β able to react with another constraint using eqdiff.

The returned constraint from an eqdiff interaction could possibly violate an

62 Vytiniotis, Peyton Jones, Schrijvers, Sulzmann

occurs check condition. Such a violation will be detected by a canonicalization
reaction occcheck later on. For instance:

α ∼ [β] ∧ β ∼ [α]

may react to α ∼ [[α]] ∧ β ∼ [α]. Rule eqdiff does not apply to this new constraint,
since the equality α ∼ [[α]] is not canonical. Canonicalization will detect and report
the occurs check violation.

Rule eqfeq reacts a canonical equality with a function equality, and rule eqdict

reacts a canonical equality with a type class constraint. In both cases the equality
is used to rewrite the other constraint. For instance, Eq α ∧ α ∼ Int rewrites to
Eq Int. Rule eqfeq rewrites a type family equality using an equality. Finally, rule
feqfeq reacts two canonical function equalities, which have the same left-hand
sides.

Rule ddict deals with interacting two identical type class constraints. A situation
with two identical class constraints may well happen, both in the given and in the
wanted case. Consider the code below:

data T a where

K :: Eq a => a -> T a

f :: Eq a => T a -> a -> Bool

f (K y) x = (x == y)

In the body of f, we see that Eq a is available from the type signature, but also
from the pattern matching against K. Moreover, the code (x == y) gives rise to a
wanted constraint Eq a. We could resolve the wanted constraint from one of the
two givens, but which one? We can think about this problem in terms of evidence:
Since each class constraint is associated with a runtime dictionary equipped with
operations, such a situation amounts to the presence of two dictionaries for the
same type. The semantics of Haskell requires dictionaries of the same type to be
contextually equivalent and hence it does not matter which of the two we will choose
to solve the wanted constraint Eq a. Hence, rule ddict drops one of two identical
given constraints. On the other hand, if we have two identical wanted type class
constraints in our goal we may simply try to solve one of them – if we have evidence
for one, this will immediately be evidence for the other as well.

Finally, observe that the ability to rewrite both given and wanted constraints is
essential:

Reacting givens Assume that we have two given constraints F a ∼ Int ∧ F a ∼
a and a wanted constraint F Int ∼ a. How can we possibly solve the wanted
constraints? By first reacting the givens, to get a ∼ Int. Then we may rewrite
the givens again to get F Int ∼ Int as given, which can then be used to solve
the wanted goal, in a way that will be described in the next section.

Reacting wanteds Assume that we have two wanted equations F γ ∼ γ ∧ F γ ∼
Int. If we react them we may get that γ ∼ Int ∧ F γ ∼ Int, which can react
again to get F Int ∼ Int, which in turn may be solvable by a top-level axiom
for F .

OutsideIn(X) 63

(Q1) simplifies (Q2) = Q3

seqsame (tv ∼ ξ1) simplifies (tv ∼ ξ2)
where c̀an tv ∼ ξi = ξ1 ∼ ξ2

seqdiff (tv1 ∼ ξ1) simplifies (tv2 ∼ ξ2)
where c̀an tv ∼ ξi , tv1 ∈ ξ2 = tv2 ∼ [tv1 7→ ξ1]τ2

seqfeq (tv ∼ ξ1) simplifies (F ξ ∼ ξ)

where c̀an tv ∼ ξ1, tv ∈ ftv(ξ) = F [tv 7→ ξ1]ξ ∼ ξ

seqdict (tv ∼ ξ) simplifies (D ξ)

where c̀an tv ∼ ξ, tv ∈ ξ = D [tv 7→ ξ]ξ

sfeqfeq (F ξ ∼ ξ1) simplifies (F ξ ∼ ξ2) = ξ1 ∼ ξ2

sddictg (D ξ) simplifies (D ξ) = ε

Fig. 23: Simplification rules

7.4.3 Simplification rules

The simplification rules resemble the binary interaction rules; they are however
directional: one of the constraints is always a wanted and the other a given. The
simplification rules are given in Figure 23.

The reader can confirm that these rules are simple variants of the binary inter-
action rules we have already seen previously in Figure 22. However some rules are
missing. For example, there is no rule with a type family equality on the left (as a
given) and an ordinary equality on the right (as a wanted):

(F ξ ∼ ξ) simplifies (tv ∼ ξ1) = . . .

If there were such a rule, what could be in place of . . .? It is tempting to produce
a new wanted constraint (tv ∼ ξ1) ∧ (F [tv 7→ ξ1]ξ ∼ [tv 7→ ξ1]ξ). This is certainly
sound but produces an entirely new goal, which – after all – is already deducible if
we can solve our original goal tv ∼ ξ1. Polluting our constraints with such useless
goals seems dangerous for termination, and leads to larger constraints to quantify
over when we are inferring types for expressions. On the other hand, we certainly
cannot produce a new given constraint (F [tv 7→ ξ1]ξ ∼ [tv 7→ ξ1]ξ) since the
evidence of that constraint will rely on the wanted evidence for tv ∼ ξ1.

More generally, allowing given constraints to contain evidence from wanted con-
straints can easily make the algorithm sensitive to the order in which the rewrite
rules fire. Consider the given constraint F a ∼ Int and wanted constraint F a ∼
Int. If, instead of deciding to simplify the wanted using the given, we chose to sim-
plify the given using the wanted, we’d get a new given Int ∼ Int and a remaining
wanted goal of F a ∼ Int which would now be unsolvable.

7.4.4 Top-level reaction rules

Finally, we reach the top-level reaction rules. These rules apply top-level axioms
for type families or type classes and are given in Figure 24. In the case of a wanted
type class constraint (rule dinstw) we produce new wanted goals using the instance

64 Vytiniotis, Peyton Jones, Schrijvers, Sulzmann

topreact [`](Q, Q1) = {β,Q2}⊥

∀a.Q ⇒ D ξ0 ∈ Q
b = ftv(ξ0) c = a − b γ fresh θ = [b 7→ ξb , c 7→ γ] θξ0 = ξ

dinstw
topreact [w](Q, D ξ) = {γ, θQ}

∀a.Q ⇒ D ξ0 ∈ Q θ = [a 7→ ξa] θξ0 = ξ
dinstg

topreact [g](Q, D ξ) = ⊥

∀a.F ξ0 ∼ ξ0 ∈ Q
b = ftv(ξ0) c = a − b γ fresh θ = [b 7→ τa , c 7→ γ] θξ0 = ξ

if (` = w) then δ = γ else δ = ε
finst

topreact [`](Q, F ξ ∼ ξ) = {δ, θξ0 ∼ ξ}

Fig. 24: Top-level reaction rules

declaration. Suppose that we have an axiom scheme ∀a.Eq a ⇒ Eq [a] in Q. This
may react with a wanted Eq [Bool] as follows:

topreact [w](Q, Eq [Bool]) = {ε, Eq Bool}

We get a new wanted constraint Eq Bool. Notice that new unification variables (γ)
may be introduced. These variables should be considered touchables for simplifica-
tion purposes.

In the case of a given type class constraint (rule dinstg), we disallow application
of matching top-level axioms, so we simply return ⊥. The reason behind this reac-
tion, which is reminiscent of an overlapping instance check, is to keep the simplifier
strategy simple. Consider the following situation:

class D a where

d :: a -> Bool

instance C a => D [a] where ...

f :: forall a. D [a] => [a] -> Bool

f x = d x

The resulting wanted constraint D [a] in the body of f could be discharged either
by the local given constraint D [a] from the signature, or by using the top-level
axiom scheme ∀a.C a ⇒ D [a]. However, since there is no instance for C a available,
accidentally preferring the top-level axiom scheme would mean that f would be
rejected. Hence, the solving algorithm is non-deterministic.

We may attempt to improve the situation by preferring reaction with local given
constraints over reaction with top-level axioms. Yet, this does not resolve the issue
altogether. Consider this example:

instance P x => Q [x] where ...

instance x ~ y => R [x] y

OutsideIn(X) 65

-- Assume wob :: forall a b. (Q [b], R b a) => a -> Int

g :: forall a. Q [a] => [a] -> Int

g x = wob x

From g we get the implication constraint Q [a] ⊃ (Q [β] ∧ R β [a]). At this point, we
can only react with one of the two top-level axioms. If we choose to react (Q [β])
with the first one, we end up with (P β), which we have no way of discharging.
If, in contrast, we react with the second top-level axiom, we get Q [β] ∧ β ∼ a.
After substituting the equality in the type class constraint (with rule eqdict),
we obtain the wanted constraint Q [a] that is readily discharged with the local
given. Hence, even if we defer applying top-level axioms as long as possible, the
behavior of the solving algorithm remains non-deterministic. This might be fixable
by refraining from applying dinstw if a local given could match with the wanted
constraint (perhaps after instantiating unification variables), but it is all getting
rather complicated.

Our compromise, in favor of simplicity and determinism, is to reject all situations
where a given constraint overlaps with a top-level type class axiom scheme, and that
is what dinstg says.

For type family equations, independently of whether they are given or wanted, we
may rewrite them by looking for a top-level type family instance that matches (rule
finst). This is possible because evidence construction under type family instance
reductions works in both directions (Sulzmann et al., 2007a). For instance, if we
are given an axiom ∀a.F [a] ∼ a in Q and a wanted constraint F [Bool] ∼ β then
we may have the reaction:

topreact [w](Q, F [Bool] ∼ β) = {ε, Bool ∼ β}

As in the case for wanted class constraints, rule finst must return new touchable
variables in the wanted case (δ).

7.5 The rule SIMPLES

We now return to the heart of the simplifier, rule simples, which we repeat below:

(1) Q Ì 〈α, ε,Qg ,Qw 〉 ↪→? 〈α′, ϕ,Q ′
g ,Q

′
w 〉 6↪→

(2) ϕQ ′
w = E ∧ Qr

(3) E = {β ∼ τ | ((β ∼ τ) ∈ ϕQ ′
w or (τ ∼ β) ∈ ϕQ ′

w), β ∈ α′, β /∈ fuv(τ)}
(4) θ = [β 7→ θτ | (β ∼ τ) ∈ E] β distinct

simples
Q ; Qg ; α Ì

simp

Qw θQr ; θ|α

Rule simples first rewrites a constraint as much as possible with condition (1), using
the rewrite relation of the previous section. The output quadruple 〈α′, ϕ,Q ′

g ,Q ′
w 〉

contains an extended set of touchables α′, and a flattening substitution ϕ. Condition
(2) applies the flattening substitution to the residual constraint Q ′

w , to obtain ϕQ ′
w .

The flattening substitution cannot mention any touchable unification variables in
its domain or range, as the canonicalization rules reveal. The constraint ϕQ ′

w is then

66 Vytiniotis, Peyton Jones, Schrijvers, Sulzmann

syntactically split into an equational part E in conjunction with a constraint Qr , so
that E satisfies certain properties. The properties that E must satisfy are given with
conditions (3) and (4). The constraint E must contain constraints of the form (β ∼
τ), drawn from ϕQ ′

w , such that β is a touchable variable not in the free unification
variables of τ . We then require that there exists an idempotent substitution induced
by E , which we write with the “lazy” notation: θ = [β 7→ θτ | (β ∼ τ) ∈ E]. Once
the substitution θ is extracted, we return the appropriate restriction of θ to the
original touchables α along with θQr as the residual constraint, since soundness
requires that dom(θ) ⊆ α and that dom(θ)#fuv(θQr).

To see an example of the operations in rule simples, suppose that, after the
flattening substitution has been applied, our constraint ϕQ ′

w looks like:

F Int β ∧ F Int γ ∧ δ ∼ γ

where β, γ, δ are all touchable variables. Observe that this constraint is indeed
normal with respect to the rewrite rules. We may then take E = (β ∼ F Int) ∧
(γ ∼ F Int) ∧ (δ ∼ γ) from which we can extract the idempotent substitution
θ = [β 7→ F Int, γ 7→ F Int, δ 7→ F Int]. The residual constraint in this case is
just the empty constraint ε.

The equational constraint E need not contain all equations that involve touchable
unification variables. Consider the following constraint ϕQ ′

w :

F Int ∼ β ∧ F Char ∼ β

where β is touchable. Once again, this constraint is normal with respect to the
rewrite relation. We can pick E = (β ∼ F Char) (but not E = (β ∼ F Char) ∧
(β ∼ F Int), since β have to be distinct), and θ = [β 7→ F Char]. In this case the
residual constraint will be F Char ∼ F Int, which we may quantify over, provided
we are operating in inference mode.

7.6 Soundness and principality

We now show that rewriting preserves constraint equivalence, as expected.

Lemma 7.2 If Q Ì 〈α, ϕ,Qg ,Qw 〉 ↪→ 〈α′, ϕ′,Q ′
g ,Q ′

w 〉⊥ and α#fuv(Qg) and dom(ϕ) ⊆
α then:

1. Q ϕQg ↔ ϕ′Q ′
g , and

2. Q ∧ ϕ′Q ′
g ϕQw ↔ ϕ′Q ′

w

Moreover α′ ⊇ α, dom(ϕ′) ⊆ α′, and α′#fuv(Q ′
g ,Qg).

Proof
This can be done with a simple case analysis on the rewrite rules.

From this it is a small step to conclude that the simplifier satisfies the conditions
for soundness and principality.

Theorem 7.1 The simplifier of Figure 19 satisfies the conditions of Figure 15,
when called with touchables disjoint from the given constraint.

OutsideIn(X) 67

What about our “gold standard” of guess-free completeness under consistent
assumptions, described in Section 6.4? Because of rule dinstg our simplifier does
not meet that definition. For example, the entailment relation can be used to deduce
that

(∀a.C [a]) ∧ C [Int] C [Int]

but our simplifier will fail due to rule dinstg. Related to this is the issue of over-
lapping top-level instances, which our algorithm also does not detect. Consider for
example

(∀a.C [a]) ∧ (∀a.E a ⇒ C [a]) C [Int]

The simplifier would non-deterministically attempt to use one of the two top-level
axioms, but only one of two would work, as there is no way to discharge E Int.

Excluding such overlapping definitions in the specification is possible though
somewhat heavy. We could require that no given class constraint, or no instance
of top-level axiom, matches an instance of another top-level axiom, but the fol-
lowing example demonstrates that the correct condition is trickier than that näıve
approach. Consider the top-level axiom schemes

Q = (∀a.D [a]) ∧ (∀a.F [a] ∼ [a])

and a local given constraint Q = D (F [a]). Notice that no instance of top-level
axiom exactly matches Q but, rather, there exist an instance of a top-level axiom
scheme that can be rewritten to Q using the top-level axioms.

Hence we give the following revised definition of consistency (Definition 6.1).

Definition 7.1 (Revised non-overlapping consistency) A constraint Q ∧ Q
is non-overlapping consistent iff

• It satisfies Definition 6.1, and
• For all ground substitutions θg , such that Q ∧ θgQ satisfies Definition 6.1,

we have:
1. If D τ ∈ θgQ then for all axiom schemes ∀a.Q ⇒ D ξ ∈ Q there is no

substitution for a, ϕ, such that Q ∧ θgQ ϕ(ξ) ∼ τ , and
2. If (∀a.Q ⇒ D ξ) ∈ Q and D τ is a ground instantiation of this axiom then

for all other axiom schemes (∀a ′.Q ′ ⇒ D ξ
′
) ∈ Q there is no substitution

ϕ, such that Q ∧ θgQ ϕ(ξ
′
) ∼ τ .

We conjecture that our simplifier is complete for the notion of consistency of
Definition 7.1, but have not formally carried out the proof.

Conjecture 7.1 The simplifier of Figure 19 is guess-free complete (Definition 6.2)
for the notion of consistency given in Definition 7.1.

7.7 Termination

The ↪→ judgement always terminates in the absence of top-level axioms Q, but it is
obvious that top-level axioms threaten termination. After all, if we permitted the
programmer to write

68 Vytiniotis, Peyton Jones, Schrijvers, Sulzmann

type instance F a = F a

then we could hardly expect the type inference engine to terminate. So the question
becomes: what restrictions on the top-level axioms suffice to guaranteed termina-
tion?

For equality axiom schemes, here are sufficient (albeit quite restrictive) conditions
identified in previous work (Schrijvers et al., 2008a).8

Definition 7.2 (Termination Conditions for Equality Axiom Schemes) An
equality axiom scheme ∀ā . F ξ̄ ∼ τ satisfies the termination conditions iff τ is ei-
ther of the form ξ, or it is of the form G ξ̄′ such that

1. the sum of the number of datatype constructors and schema variables in the
right-hand side is smaller than the similar sum in the left-hand side, and

2. the right-hand side has no more occurrences of any schema variable than the
left-hand side.

These conditions are quite restrictive. For example, they rule out the following
declaration:

type instance F [x] = [F x]

The declaration appears perfectly reasonable but, if permitted, it can cause the
algorithm to diverge. Consider this type signature:

f :: (F [a] ~ a) => ...

This signature will give rise to a given constraint [F a] ∼ a. Canonicalization
reorients the constraint and flattens it to a ∼ [β] ∧ F a ∼ β. Binary interaction
of the first with the second constraint yields a ∼ [β] ∧ F [β] ∼ β. Note that the
latter constraint is a variant of the original one, and the process starts again from
scratch; it does not terminate.

Follow-up work (Schrijvers et al., 2008a) introduces more relaxed conditions,
which do not always guarantee termination, but have a completeness trade-off.9 As
the intricacies of termination are not the central topic of this paper, we refer the
reader to previous work for more details. We are not aware of any related work
that detects non-termination under more relaxed conditions without compromising
completeness.

We apply similar restrictions on type class schemes, also based on previous
work (Sulzmann et al., 2007b).

Definition 7.3 (Termination Conditions for Type Class Axiom Schemes)
An equality axiom scheme (∀a.Q ⇒ D ξ) satisfies the termination conditions iff Q
is a conjunction of type class constraints D’ ξ

′
such that

1. the sum of the number of datatype constructors and schema variables in ξ
′
is

smaller than the similar sum in ξ, and

8 where it is called the Strong Termination Condition.
9 Completeness, in the sense of how many constraints can be fully discharged by the solver.

OutsideIn(X) 69

2. ξ
′
has no more occurrences of any schema variable than ξ.

Note that equality constraints are not allowed to occur in type class scheme con-
texts; nor are open type families. So, while equality schemes may affect both equality
and type class constraints, type class schemes only affect type class constraints.

We conjecture that termination is preserved with somewhat more liberal condi-
tions that do allow type equality constraints in type class scheme contexts.

Definition 7.4 (Conjectured Termination Conditions) An equality axiom scheme
(∀a.Q ⇒ D ξ) satisfies the termination conditions iff Q is either a conjunction of
type class constraints D’ ξ

′
such that

1. the sum of the number of datatype constructors and schema variables in ξ
′
is

smaller than the similar sum in ξ, and
2. ξ

′
has no more occurrences of any schema variable than ξ.

or it is an equality constraint whose type variables also occur in ξ and it either
has the form F ξ

′ ∼ τ satisfying the Termination Conditions for Equality Axiom
Schemes or the form ξ1 ∼ ξ2.

The restriction on the equality constraints is essential to avoid a scenario similar
to the problematic one above:

instance (F [x] ~ [F x], F [x] ~ x, C x) => C [x]

f :: (C [b]) => ...

The first type equality constraint in the type class instance context clearly does not
satisfy the above condition. Consider the constraint C [b] in the type signature of
f. The instance scheme reduces it to F [b] ∼ [F b] ∧ F [b] ∼ b ∧ C b. Canonical-
ization reorients and flattens the first constraint to F [b] ∼ [β] ∧ F b ∼ β. Binary
interaction of the first of the flattened constraint with the other one yields, af-
ter canonicalisation, b ∼ [β]. Interaction with the remaining type class constraints
yields C [β], which is a variant of the original type class constraints, leading to
divergence.

Proving (or disproving) that Definition 7.4 rules out all cases of non-termination
is an important challenge for future work.

In conclusion, we can see to guarantee termination we are forced to impose quite
restrictive conditions on top-level axioms. In practice, it may be more attractive
to drop these conditions (perhaps selectively), and instead accept non-termination,
much as we do for executable programs themselves.

8 Implementation

We have fully implemented OutsideIn(X) in a released version of the Glasgow
Haskell Compiler (GHC, release 7.0). GHC supports many type system extensions
beyond those described here, including: scoped type variables, kind signatures, un-
boxed types, type-class defaults, higher rank types, impredicative polymorphism,

70 Vytiniotis, Peyton Jones, Schrijvers, Sulzmann

associated types, overlapping instances, functional dependencies, and implicit pa-
rameters. Happily, the interaction between these features and the OutsideIn(X)
constraint solver is minimal, with the notable exception of functional dependencies
and implicit parameters. Even they were accommodated without much trouble,
although the details are beyond the scope of this paper.

8.1 Evidence

When solving type-class constraints, GHC’s type checker transforms the program
by adding extra “evidence parameters” to overloaded functions, and extra “evidence
arguments” to applications of such functions. For example, consider

square :: Num a => a -> a

square x = x * x

then the type checker will add an implicit parameter to square, and an implicit
argument to the call of (*), so that the definition is transformed to this:

square :: Num a -> a -> a

square d x = (*) d x x

Here d is a tuple of the methods of the Num class.
GHC extends this evidence idea to all constraints. When solving a constraint,

it generates an evidence term that encodes the proof, and decorates the program
with this evidence term, a process known as elaboration. This decoration is not ad
hoc: GHC translates the original implicitly-typed Haskell program into an explicitly-
typed program in a well-defined core language FC2 (Sulzmann et al., 2007a; Weirich
et al., 2010), an extension of System F. Typechecking FC2 is easy and fast, involving
none of the complexities of this paper. In a perfect world there would be no point
in type-checking the intermediate program, but in practice many, many compiler
bugs are caught by such a check.

8.2 Brief sketch of the implementation

GHC’s implementation is heavily influenced by the need to generate evidence, but
the code still directly reflects the structure of the solver described in this paper:

• A single pass generates constraints, just as described in Section 5.4. The type
checker deals with a very large source language: the syntax tree has dozens of
data types and hundreds of constructors. As a result, the constraint generator
has many lines of code, but it is mostly very simple. Moreover it required
very little alteration when we switched to OutsideIn(X). For example, the
bidirectional propagation of type information needed to support higher-rank
inference remains untouched (Peyton Jones et al., 2007).

• The main practical refinement to the constraint generator is that it performs
on-the-fly unification using side effects, just like a conventional Damas-Milner
type inference algorithm (Peyton Jones et al., 2007). In the vastly common

OutsideIn(X) 71

Lines of: Code Comments

Constraint generation
TcAnnotations.lhs 31 19
TcArrows.lhs 199 149
TcBinds.lhs 550 651
TcClassDcl.lhs 342 281
TcDefaults.lhs 61 41
TcDeriv.lhs 704 817
TcExpr.lhs 667 742
TcForeign.lhs 212 143
TcGenDeriv.lhs 1,075 922
TcHsType.lhs 539 507
TcInstDcls.lhs 453 748
TcMatches.lhs 389 277
TcPat.lhs 474 589
TcRnDriver.lhs 952 695
TcRules.lhs 61 69
TcSplice.lhs 649 662
TcTyClsDecls.lhs 872 748
TcTyDecls.lhs 102 225

TOTAL 8,332 8,285

Constraint solver
TcSimplify.lhs 562 632
TcInteract.lhs 771 1,166
TcUnify.lhs 591 776
TcCanonical.lhs 433 505

TOTAL 2,357 3,079

Infrastructure (type definitions, monads, error reporting)
Inst.lhs 269 259
FamInst.lhs 105 108
TcEnv.lhs 392 346
TcErrors.lhs 615 307
TcHsSyn.lhs 737 370
TcType.lhs 784 697
TcMType.lhs 825 805
TcSMonad.lhs 640 414
TcRnTypes.lhs 432 536
TcRnMonad.lhs 721 452

TOTAL 5,520 4,294

GRAND TOTAL 16,209 15,658

Fig. 25: GHC’s type checker

case, this unifier can solve the equality constraint on the spot, but if it has
any difficulty – for example, if a type family is involved or if it is asked to
unify a variable not belonging in the current set of touchable variables – it

72 Vytiniotis, Peyton Jones, Schrijvers, Sulzmann

bales out by adding a new, unsolved, equality constraint to the accumulating
set of constraints.

• A single module, TcSimplify, solves implication constraints, using the generic
algorithm described in Section 5.5.

• It in turn needs to solve flat constraints, so here the solver has to know the
specifics of the constraints (Section 7). The first step is to canonicalise each
constraint, as described in Section 7.4.1, implemented in TcCanonical. The
structure of canonical constraints is so useful for the rest of the solver that
GHC defines a separate data type for them, used only internally in the solver.

• Then the canonical constraints are solved using the pairwise interaction rules
of Section 7.4.2. The interaction solver, implemented by TcInteract, works
by maintaining an inert set of (canonical) constraints that have no pairwise
interactions, and a work set of un-processed (canonical) constraints. We re-
peatedly take a constraint from the work set, interact it with each member
of the inert set, and add any “reaction products” back to the work set.

Figure 25 summarizes the line count for the type checker. The constraint-generation
code is voluminous but simple. The constraint solver is much smaller (albeit still
substantial), and is insensitive to new source-language constructs. The higher ratio
of comments to code in the constraint solver reflects its relative subtlety.

9 Related work

There has been a significant volume of related work on constraint-based type sys-
tems and type inference for advanced type system features, a fragment of which we
discuss in the rest of this Section.

9.1 Constraint-based type inference

There is a very long line of work in Hindley-Milner derivatives, parameterized over
various constraint domains (Jones, 1992; Sulzmann, 2000; Odersky et al., 1999;
Sulzmann et al., 1999). Rémy and Pottier (2005) give a comprehensive account
of type inference for HM(X) (Hindley-Milner, parameterized over the constraint
domain X). To our knowledge, our presentation is the first one that deals with local
assumptions introduced by type signatures and data constructors, and where those
local assumptions may include type equalities. At the same time, a drawback of our
system is that it does not handle local let-generalization, an essential ingredient of
HM(X).

Simonet and Pottier (2007) study type inference for GADTs, where local GADT
type equalities may be introduced as a result of pattern matching. They propose a
solution that does generalization over local let-bound definitions, by abstracting
over the full generated constraint. We have seen that this approach has practi-
cal disadvantages, though theoretically appealing and technically straightforward.
Interestingly, since ML is call by value the constraints arising from a let-bound
definition have to be satisfiable by some substitution, since the expression will be

OutsideIn(X) 73

evaluated independently of whether it will be called or not. By contrast, in Haskell
we may postpone the satisfiability check of the generated constraints all the way to
the call sites of a definition. In the case of our previous work on type inference for
GADTs (Schrijvers et al., 2009) such a satisfiability check happens implicitly since
at local let-bound definitions, the constraint generation procedure calls the solver
to discharge the generated constraints by means of substitutions.

The pioneering work of Mark Jones on qualified types (Jones, 1992) is closely
related to our approach, except for the fact that we additionally have to deal with
type equalities and local assumptions.

9.2 The special case of GADTs

In the special case of GADTs, there has been a flurry of papers on inference al-
gorithms to support them in a practical programming language. One approach is
to assume that the program is fully type-annotated, i.e. each sub-expression car-
ries explicit type information. Under this (strong) assumption, we speak of type
checking rather than inference. Type checking boils down to unification which is
decidable. Hence, we can conclude that type checking for GADTs is decidable. For
example, consider (Cheney & Hinze, 2003) and (Simonet & Pottier, 2007).

On the other hand, type inference for unannotated (or partially annotated)
GADT programs turns out to be extremely hard. The difficulty lies in the fact
that GADT pattern matches bring into scope local type assumptions. Following
the standard route of reducing type inference to constraint solving, GADTs require
implication constraints to capture the inference problem precisely (Sulzmann et al.,
2008). Unification is no longer sufficient to solve such constraints. We require more
complicated solving methods such as constraint abduction (Maher, 2005) and E-
unification (Gallier et al., 1992). It is fairly straightforward to construct examples
which show that no principal solutions (and therefore no principal types) exist.

How do previous inference approaches tackle these problems? Apart from the
aforementioned work of Simonet and Pottier (2007), Sulzmann et al. (2008) go
the other direction, by keeping constraints (in types) simple, and instead apply
a very powerful abductive solving mechanism, inspired by Maher’s work (Maher,
2005). Compared to our simplifier principality conditions, Figure 15, Sulzmann et
al. propose a more powerful form of constraint abduction and introduce the weaker
fully maximally general condition where Qgiven ∧ Qwanted and Qgiven ∧ Qresidual

are equivalent. Simplified principal solutions Qresidual ∧ Eθ are fully maximally
general but the other direction does not hold in general. For example, consider
Qgiven = (α ∼ Bool) and Qgiven = (b ∼ Bool). Then, Qresidual = (α ∼ b) is fully
maximally general but violates the simplifier principality conditions.

9.2.1 Practical compromises for GADT type inference

Since tractable type inference for completely unannotated GADT programs is im-
possible, it becomes acceptable to demand a certain amount of user-provided type
information. We know of three well-documented approaches:

74 Vytiniotis, Peyton Jones, Schrijvers, Sulzmann

Régis-Gianas and Pottier (2006) stratify type inference into two passes. The
first figures out the “shape” of types involving GADTs, while the second performs
more-or-less conventional type inference. Régis-Gianas and Pottier present two dif-
ferent shape analysis procedures, the W and Z systems. The W system has similar
expressiveness and need for annotation as in (Peyton Jones et al., 2006). The Z
system on the other hand has similar expressiveness as our system, with a very
aggressive iterated shape analysis process. This is reminiscent of our unification of
simple constraints arising potentially from far-away in the program text, prior to
solving a particular implication constraint. In terms of expressiveness, the vast ma-
jority of programs typeable by our system are typeable in Z but we conjecture that
there exist programs typeable in our system not typeable in Z, because unification
of simple (global) constraints may be able to figure more out about the types of
expressions than the preprocessing shape analysis of Z. On the other hand, Z lacks
a declarative specification that does not force the programmer to understand the
intricacies of shape propagation.

Peyton Jones et al. (2006) require that the scrutinee of a GADT match has a
“rigid” type, known to the type checker ab initio. A number of ad hoc rules describe
how a type signature is propagated to control rigidity. Because rigidity analysis is
more aggressive in our system we type many more programs than in (Peyton Jones
et al., 2006), including the carefully-chosen Example 7.2 from (Pottier & Régis-
Gianas, 2006). On the other hand a program fails to type check in our approach if
the type of a case branch is not determined by some “outer” constraint:

data Eq a b where { Refl :: forall a. Eq a a }

test :: forall a b. Eq a b -> Int

test x = let funny_id = \z -> case x of Refl -> z

in funny_id 3

By contrast this program is typeable in (Peyton Jones et al., 2006). Arguably,
though, this program should be rejected, because there are several incomparable
types for funny_id (in the unrestricted system of Figure 10), including ∀c . c → c
and a → b.

The implementation of GHC is a slight variation that requires that the right-
hand-side of a pattern match clause be typed in a rigid environment10. Hence, it
would reject the previous example. Our system is strictly more expressive than this
variation:

test :: forall a b. Eq a b -> Int

test x = (\z -> case x of Eq -> z) 34

The above program would fail to type check in GHC, as the “wobbly” variable z

cannot be used in the right-hand-side of a pattern match clause, but in our system
it would be typeable because the “outer” constraint forces z to get type Int.

10 GHC’s algorithm is described in an Appendix to the online version of that paper, available
from:
http://research.microsoft.com/people/simonpj/papers/gadt

http://research.microsoft.com/people/simonpj/papers/gadt

OutsideIn(X) 75

In both approaches, inferred types are maximal, but not necessarily principal in
the unrestricted natural GADT type system. The choice for a particular maximal
type over others relies on the ad hoc rigidity analysis or shape pre-processing. By
contrast, in our system only programs that enjoy principal types in the unrestricted
type system are accepted.

Moreover, in both approaches the programmer is required to understand an en-
tirely new concept (shape or rigidity respectively), with somewhat complex and ad
hoc rules (e.g. Figure 6 of (Pottier & Régis-Gianas, 2006)). Nor is the implementa-
tion straightforward; e.g., GHC’s implementation of (Peyton Jones et al., 2006) is
known to be flawed in a non-trivial way.

Lin and Sheard (2010a) recently presented point-wise GADTs, a type system
for GADTs where unification in GADT pattern matching is replaced by a uni-
directional matching procedure between the scrutinee type and the data constructor
type. The authors claim that limiting the power of unification in GADT pattern
matching increases predictability, and gives rise to more intuitive behavior and error
messages.

9.3 The special case of multi-parameter type classes

Sulzmann et al. (2006a) describe an implication solver for multi-parameter type
classes. In the multi-parameter type class setting, local constraints may only include
type classes and not type equations. The implication solver described in (Sulzmann
et al., 2006a) is more powerful and uses a form of abduction to infer the missing
constraints to solve implication constraints. The consequence is that Sulzmann et
al. require stronger conditions imposed on type classes to guarantee that their solver
yields principal solutions if successful.

9.4 Solving equalities involving type families

Our solver is based on ideas from completion and congruence closure in term-
rewriting systems (Kapur, 1997; Bachmair & Tiwari, 2000; Beckert, 1994; Nieuwen-
huis & Oliveras, 2005), and is an improvement and simplification of previous work
by Schrijvers et al. (Schrijvers et al., 2008a). That work presented a completion-
based solver, where the top-level set of axioms was transformed to a strongly nor-
malizing and confluent rewrite system, along with the current given equations. Our
algorithm streamlines the completion, achieved by flattening, decomposing, and
orienting, in the actual solving procedure and hence it provides a more uniform ap-
proach to the problem. Moreover the details of flattening and canonical constraints
slightly differ between the two papers. Yet another difference is that the simplifier in
this paper is aware of the touchable variables, which significantly simplifies the pre-
vious treatment of unification variables. Finally, this paper gives the complete story
of how the simplifier for type families plugs-in in a general-purpose constraint-based
type system with local assumptions, required for the OutsideIn(X) approach.

Finally, closely related to this work is the Chameleon system described in (Sulz-
mann et al., 2006b). Chameleon makes use of the Constraint Handling Rules (CHR)

76 Vytiniotis, Peyton Jones, Schrijvers, Sulzmann

formalism (Frühwirth, 1998) for the specification of type class relations potentially
involving functional dependencies. CHR is a committed-choice language consisting
of constraint rewrite rules. Via CHR rewrite rules we can model open type func-
tions. As in the solver of this paper (but not in (Schrijvers et al., 2008a)), the CHR
type inference strategies (Stuckey & Sulzmann, 2005) mixes completion and solv-
ing. On the other hand, whereas our solver is designed with evidence generation in
mind, the issue of evidence generation has not been fully addressed for CHR yet.

9.5 Let generalization for units of measure and type families

Kennedy’s system of units of measure (Kennedy, 1996) was briefly sketched in Sec-
tion 1, and demonstrates related problems with generalizing let-bound definitions.
Lacking qualified types, Kennedy adopted NoQual (Section 4.2.4) but then, quite
unexpectedly, discovered a type inference completeness problem:

div :: forall u1 u2.

num (u1*u2) -> num u1 -> num u2

main x = let f = div x

in (f this, f that)

In the program above, div is a typed division function. Let us assume that x gets
type num u in the environment, for some unknown u. From type checking the body
of f we get the constraint u ∼ u1 ∗ u2 for some unknown instantiations of div. If
the unifier näıvely substitutes u away for u1 ∗ u2, those variables become bound in
the environment, and hence we are not allowed to apply f polymorphically in the
body of the definition.

Kennedy found a technical fix, by exploiting the fact that units of measure happen
to form an Abelian group, and adapting an algebraic normalization procedure to
types. For example, the normal form type for f above is:

forall u. num u -> num (u/u1)

His technique is ingenious, but leads to a significant complexity burden in the
inference algorithm. More seriously, it does not generalise because it relies on special
algebraic properties of units of measure. Naturally, his solution fails for arbitrary
type functions.

Kennedy’s problematic situations are encodable in our case through the use of
type families. Even worse, in the case of type families case NoQual is a no-option
for one extra reason: the order of solving the constraints may affect typeability.
Consider:

type instance F Int b = b

let f x = (let h y = e1 in 42, x + 42)

Assume that x is assigned a unification variable α and y is assigned β respectively,
and assume that e1 yields the constraint F α β ∼ Int. If we first attempt to solve
this constraint to generalize h, we will simply fail, as we can’t quantify over it. On

OutsideIn(X) 77

the other hand, if we first solve the constraint from x + 42, we may learn that
α 7→ Int, which can then be used to rewrite the constraint from e1 to F Int β ∼
Int. This in turn is solvable by using the top-level axiom, and h is perfectly well-
typed! Since NoQual is a no-option and quantifying freely means we have to defer
unifications, we see that type families even further necessitate our abandoning of
local let generalization.

An interesting possibility would be to allow programmers to extend the constraint
canonicalization rules with domain-specific algebraic normalization procedures, but
we have not carried out this experiment.

9.6 Ambiguity

There has been work on addressing the ambiguity problem, described earlier in Sec-
tion 6, by imposing conditions on the types or the typing derivations of a constraint-
based type system (Nipkow & Prehofer, 1995). Jones (1992) identified a type of the
form ∀a.Q ⇒ τ as unambiguous, iff all quantified variables a appear in τ . His
proposal has been to reject those programs whose more general type is ambigu-
ous, and seems to work for qualified types, in the absence of local constraints, type
signatures, and type families.

In the presence of more complex constraints and local type signatures, this defini-
tion is no longer sufficient. Stuckey and Sulzmann (2005) employ a more elaborate
ambiguity condition than Jones.

Definition 9.1 (Stuckey-Sulzmann unambiguous types) A type ∀a.Q ⇒ τ

is unambiguous in Q, iff for some fresh set of variables b in bijection with a we
have that

Q ∧ Q ∧ ([a 7→ b]Q) ∧ (τ ∼ [a 7→ b]τ) a ∼ b

In other words, the equality between two instantiated types implies equality of in-
stantiations.

For example, consider the type: ∀ab . F a ∼ b ⇒ Int → a and a renaming
[a 7→ a1, b 7→ b1]. Then we must show that

F a ∼ b ∧ F a1 ∼ b1 ∧ a ∼ a1 (a ∼ a1) ∧ (b ∼ b1)

One important reason for extending Jones’ definition is that there even exist en-
tirely constraint-free types that are ambiguous. Take for example ∀a . F a → Int.
Assuming a renaming [a 7→ a1], it does not follow that:

F a1 ∼ F a a1 ∼ a

as type functions need not be injective. In practical terms, this means that we can
never apply a function with that type to a value of type, say, F Int. To get complete-
ness by avoiding ambiguity, Stuckey and Sulzmann require that every subexpression
in their type system must have a principal type which is unambiguous. Such a con-
dition is rather heavyweight as it involves a quantification over all possible types of
every subexpression in the program; but it’s the only condition we know of in the

78 Vytiniotis, Peyton Jones, Schrijvers, Sulzmann

literature that effectively eliminates ambiguity. Adapting it to our setting is not
entirely straightforward as many subexpressions, due to local assumptions, do not
have principal quantified types and we would probably have to employ, on top of
those conditions, an Outside-In flavored type system (Schrijvers et al., 2009). It re-
mains therefore open whether it is possible to restrict the type system specification
of Figure 10 so that we obtain sound and complete type inference.

Finally, ambiguity seems also related to the discussion about type functions and
type classes being defined under an “open” or “closed” world assumption (Sulz-
mann, 2000). For example, if the set of axioms was considered fixed (closed world)
one could consider more elaborate search-based strategies that would more effec-
tively detect ambiguity.

9.7 Is the emphasis on principal types well-justified?

Although from a software engineering viewpoint principal types in the natural type
system are extremely useful, they may be less desirable from a program correctness
viewpoint – an issue that we have seen mentioned in (Lin & Sheard, 2010b)). For
instance, consider the program below.

data R a where

RInt :: Int -> R Int

RBool :: Bool -> R Bool

RChar :: Char -> R Char

flop1 (RInt x) = x

Function flop1 can be assigned two types: ∀a.R a → a or ∀a.R a → Int neither
of which is an instance of the other; however, there is a third type that is arguably
more desirable, and that type is R Int → Int. The reason that this type is more
desirable for flop is because it rules out applications of flop to values of type
R Bool or R Char, which would result in runtime errors.

Though this is valid for flop1, what happens in the following variation?

flop2 (RInt x) = x

flop2 (RBool x) = x

Via the same reasoning, the most desirable type for flop2 would be a type like
R a → a but where a must be constrained to be either Int or Bool. Unfortunately,
ordinary polymorphic types are too weak to express this restriction and we can only
get ∀a.R a → a for flop2, which does not rule the application of flop to values
of type R Char. In conclusion, giving up on some natural principal types in favor
of more specialized types that eliminate more pattern match errors at runtime is
appealing but does not quite work unless we consider a more expressive syntax of
types. Furthermore it is far from obvious how to specify these typings in a high-level
declarative specification.

OutsideIn(X) 79

10 Future Work

We have already implemented a variation of the algorithm and the solver described
in this paper and we plan to integrate our implementation in GHC.

Our ambitious plan is to eventually support extensibility of a type inference sys-
tem that supports local assumptions with new forms of constraints and interactions
with each other. The implication constraint infrastructure sets the ground for this
but there remain many open problems to address in future work such as how to
combine multiple constraint domains, how to specify language extensions and have
existing library code use them, and how to ensure type safety.

Acknowledgements We would like to thank the anonymous JFP reviewers for their
insightful comments and Brent Yorgey for carefully proofreading a draft of this
article. Many thanks to the Haskell Wiki users who provided us with useful feedback
to the online version of the paper at

http://www.haskell.org/haskellwiki/Simonpj/Talk:OutsideIn

References

Bachmair, Leo, & Tiwari, Ashish. (2000). Abstract congruence closure and specializations.
Pages 64–78 of: Proceedings of CADE’00. LNCS, vol. 1831. Springer-Verlag.

Beckert, Bernhard. (1994). A completion-based method for mixed universal and rigid
E-unification. Pages 678–692 of: Proceedings of CADE’94. Springer-Verlag.

Chakravarty, M., Keller, Gabriele, & Peyton Jones, S. (2005a). Associated type synonyms.
Pages 241–253 of: Proceedings of ICFP’05. New York, NY, USA: ACM Press.

Chakravarty, M., Keller, Gabriele, Peyton Jones, S., & Marlow, S. (2005b). Associated
types with class. Pages 1–13 of: Proceedings of POPL’05. ACM Press.

Cheney, J., & Hinze, R. (2003). First-class phantom types. TR 1901. Cornell Univer-
sity. http://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.
cis/TR2003-1901.

Damas, Luis, & Milner, Robin. (1982). Principal type-schemes for functional programs.
Pages 207–212 of: Proceedings of POPL’82. New York, NY, USA: ACM Press.

Faxén, Karl-Filip. (2003). Haskell and principal types. Pages 88–97 of: Haskell ’03:
Proceedings of the 2003 ACM SIGPLAN workshop on Haskell. New York, NY, USA:
ACM Press.

Frühwirth, Thom. (1998). Theory and practice of Constraint Handling Rules. Journal of
Logic Programming, 37(1–3), 95–138.

Gallier, J. H., Narendran, P., Raatz, S., & Snyder, W. (1992). Theorem proving using
equational matings and rigid E-unification. J. ACM, 39(2), 377–429.

Hall, C. V., Hammond, K., Peyton Jones, S. L., & Wadler, P. L. (1996). Type classes in
Haskell. Acm TOPLAS, 18(2), 109–138.

Heeren, Bastiaan, Leijen, Daan, & van IJzendoorn, Arjan. (2003). Helium, for learning
Haskell. Pages 62 – 71 of: ACM SIGPLAN 2003 Haskell Workshop. New York: ACM
Press.

Jones, M. P. 1992 (Sept.). Qualified types: Theory and practice. D.phil. thesis, Oxford
University.

http://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cis/TR2003-1901
http://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cis/TR2003-1901

80 Vytiniotis, Peyton Jones, Schrijvers, Sulzmann

Jones, Mark P. 1993 (September). Coherence for qualified types. Research Report
YALEU/DCS/RR-989. Yale University, New Haven, Connecticut, USA.

Jones, Mark P. (2000). Type classes with functional dependencies. Proceedings of ESOP
2000. Lecture Notes in Computer Science, no. 1782. Springer-Verlag.

Kapur, Deepak. (1997). Shostak’s congruence closure as completion. Pages 23–37 of:
Proceedings of RTA’97. London, UK: Springer-Verlag.

Kennedy, AJ. 1996 (Sept.). Type inference and equational theories. LIX RR/96/09. Ecole
Polytechnique.

Kiselyov, Oleg, Peyton Jones, Simon, & Shan, Chung-chieh. (2010). Fun with type func-
tions. Roscoe, Bill (ed), Tony Hoare 75th birthday Festschrift. Springer History of
Computing.

Lämmel, Ralf, & Peyton Jones, Simon. (2003). Scrap your boilerplate: A practical design
pattern for generic programming. Pages 26–37 of: Proceedings of TLDI 2003. ACM
Press.

Lämmel, Ralf, & Peyton Jones, Simon. (2005). Scrap your boilerplate with class: extensible
generic functions. Pages 204–215 of: Proceedings of ICFP’05. New York, NY, USA:
ACM Press.

Läufer, K., & Odersky, M. (1994). Polymorphic type inference and abstract data types.
Acm Transactions on Programming Languages and Systems, 16(5), 1411–1430.

Lin, Chuan-kai, & Sheard, Tim. (2010a). Pointwise generalized algebraic data types. Pages
51–62 of: Proceedings of TLDI ’10. New York, NY, USA: ACM.

Lin, Chuan-kai, & Sheard, Tim. 2010b (July). Three techniques for GADT type inference.
draft.

Maher, M. (2005). Herbrand constraint abduction. Pages 397–406 of: Proceedings of
LICS’05. IEEE Computer Society.

Milner, Robin. (1978). A theory of type polymorphism in programming. Journal of
Computer and System Sciences, 17(3), 348–375.

Nieuwenhuis, Robert, & Oliveras, Albert. (2005). Proof-producing congruence closure.
Pages 453–468 of: Proceedings of RTA’05. LNCS, vol. 3467. Springer-Verlag.

Nipkow, Tobias, & Prehofer, Christian. (1995). Type reconstruction for type classes.
Journal of Functional Programming, 5(2), 201–224.

Odersky, M., Sulzmann, M., & Wehr, M. (1999). Type inference with constrained types.
Theory and Practice of Object Systems, 5(1), 35–55.

Peyton Jones, S., Washburn, G., & Weirich, S. 2004 (July). Wobbly types: type inference
for generalised algebraic data types. Tech. rept. MS-CIS-05-26. University of Pennsylva-
nia, Computer and Information Science Department, Levine Hall, 3330 Walnut Street,
Philadelphia, Pennsylvania, 19104-6389.

Peyton Jones, S., Vytiniotis, D., Weirich, S., & Washburn, G. (2006). Simple unification-
based type inference for GADTs. Pages 50–61 of: Proceedings of ICFP’06. ACM Press.

Peyton Jones, S., Vytiniotis, D., Weirich, S., & Shields, M. (2007). Practical type inference
for arbitrary-rank types. Journal of Functional Programming, 17(Jan.), 1–82.

Pottier, F., & Régis-Gianas, Y. (2006). Stratified type inference for generalized algebraic
data types. Pages 232–244 of: Proceedings of POPL’06. ACM Press.

Pottier, F., & Rémy, D. (2005). The essence of ML type inference. Chap. 10, pages 389–
489 of: Pierce, Benjamin C. (ed), Advanced topics in types and programming languages.
MIT Press.

Schrijvers, T., Sulzmann, M., Peyton Jones, S., & Chakravarty, M. (2007). Towards open
type functions for Haskell. Pages 233–251 of: Chitil, O. (ed), Proceedings of IFL’09.

Schrijvers, Tom, Peyton Jones, Simon, Chakravarty, Manuel, & Sulzmann, Martin.

OutsideIn(X) 81

(2008a). Type checking with open type functions. Pages 51–62 of: Proceedings of
ICFP’08. New York, NY, USA: ACM Press.

Schrijvers, Tom, Guillemette, Louis-Julien, & Monnier, Stefan. (2008b). Type invariants
for haskell. Pages 39–48 of: Proceedings of PLPV’09. PLPV ’09. New York, NY, USA:
ACM.

Schrijvers, Tom, Peyton Jones, Simon, Sulzmann, Martin, & Vytiniotis, Dimitrios. (2009).
Complete and decidable type inference for GADTs. Proceedings of ICFP’09. ACM Press.

Simonet, V., & Pottier, F. (2007). A constraint-based approach to guarded algebraic data
types. ACM Transactions on Programming Languages and Systems, 29(1).

Skalka, Christian, & Pottier, François. (2002). Syntactic type soundness for HM(X). Elec-
tronic Notes in Theoretical Computer Science, 75.

Stuckey, P. J., & Sulzmann, M. (2005). A theory of overloading. ACM Transactions on
Programming Languages and Systems, 27(6), 1–54.

Sulzmann, M. 2000 (May). A general framework for Hindley/Milner type systems with
constraints. Ph.D. thesis, Yale University, Department of Computer Science.

Sulzmann, M., Müller, M., & Zenger, C. (1999). Hindley/Milner style type systems in
constraint form. Research Report ACRC-99-009. University of South Australia, School
of Computer and Information Science.

Sulzmann, M., Schrijvers, T., & Stuckey, P. J. (2006a). Principal type inference for GHC-
style multi-parameter type classes. Pages 26–43 of: Proceedings of APLAS’06. LNCS,
vol. 4279. Springer-Verlag.

Sulzmann, M., Chakravarty, M., Peyton Jones, S., & Donnelly, K. (2007a). System F with
type equality coercions. Proceedings of TLDI’07. ACM Press.

Sulzmann, M., Duck, Gregory J., Peyton Jones, S., & Stuckey, P. J. (2007b). Under-
standing functional dependencies via constraint handling rules. Journal of Functional
Programming, 17(1), 83–129.

Sulzmann, M., Schrijvers, T., & Stuckey, P. 2008 (Jan.). Type inference for GADTs via
Herbrand constraint abduction. Report CW 507. Department of Computer Science, K.U.
Leuven, Leuven, Belgium.

Sulzmann, Martin, Wazny, Jeremy, & Stuckey, Peter. (2006b). A framework for extended
algebraic data types. Pages 47–64 of: Proceedings of FLOPS’06. LNCS, vol. 3945.
Springer-Verlag.

Tofte, M. (1990). Type inference for polymorphic references. Information and computation,
89(1).

Vytiniotis, Dimitrios, Peyton Jones, Simon, & Schrijvers, Tom. (2010). Let should not be
generalized. Pages 39–50 of: Proceedings of TLDI’10. New York, NY, USA: ACM.

Wadler, Philip, & Blott, Stephen. (1989). How to make ad-hoc polymorphism less ad hoc.
Proceedings of POPL’89. ACM Press.

Weirich, Stephanie, Vytiniotis, Dimitrios, Peyton Jones, Simon, & Zdancewic, Steve.
(2010). Generative type abstraction and type-level computation. Proceedings of
POPL’10. ACM Press.

Wright, Andrew. (1995). Simple imperative polymorphism. Lisp and Symbolic Computa-
tion, 8, 343–355.

Xi, Hongwei, Chen, Chiyan, & Chen, Gang. (2003). Guarded recursive datatype construc-
tors. Pages 224–235 of: Proceedings POPL’03. ACM Press.

	Introduction
	The challenge we address
	Modular type inference and principal types
	The challenge of local constraints
	The challenge of axiom schemes
	Recovering principal types by enriching the type syntax
	Summary

	Constraint-based type systems
	Syntax
	Typing rules
	Type soundness
	Type inference, informally
	Type inference, precisely
	Soundness and principality of type inference

	Constraint-based type systems with local assumptions
	Data constructors with local constraints
	let should not be generalized
	The lack of principal types

	Type inference with OutsideIn(X)
	Type inference, informally
	Overview of the OutsideIn(X) solving algorithm
	Top-level algorithmic rules
	Generating constraints
	Solving constraints
	Variations on the design
	Soundness and principality of type inference

	Incompleteness and ambiguity
	Incompleteness due to ambiguity
	Incompleteness due to inconsistency
	Incompleteness of the OutsideIn(X) strategy
	Guess-free completeness
	Our position on incompleteness and ambiguity

	Instantiating X for GADTs, type classes, and type families
	The entailment relation
	Solving equality constraints is tricky
	The simplifier
	Rewriting constraints
	The rule SIMPLES
	Soundness and principality
	Termination

	Implementation
	Evidence
	Brief sketch of the implementation

	Related work
	Constraint-based type inference
	The special case of GADTs
	The special case of multi-parameter type classes
	Solving equalities involving type families
	Let generalization for units of measure and type families
	Ambiguity
	Is the emphasis on principal types well-justified?

	Future Work
	References

