
A monad for deterministic parallelism

Simon Marlow
Microsoft Research, Cambridge, U.K.

simonmar@microsoft.com

Ryan Newton
Intel, Hudson, MA, U.S.A
ryan.r.newton@intel.com

Simon Peyton Jones
Microsoft Research, Cambridge, U.K.

simonpj@microsoft.com

Abstract
We present a new programming model for deterministic parallel
computation in a pure functional language. The model is monadic
and has explicit granularity, but allows dynamic construction of
dataflow networks that are scheduled at runtime, while remaining
deterministic and pure. The implementation is based on monadic
concurrency, which has until now only been used to simulate con-
currency in functional languages, rather than to provide parallelism.
We present the API with its semantics, and argue that parallel exe-
cution is deterministic. Furthermore, we present a complete work-
stealing scheduler implemented as a Haskell library, and we show
that it performs at least as well as the existing parallel programming
models in Haskell.

1. Introduction
The prospect of being able to express parallel algorithms in a pure
functional language and thus obtain a guarantee of determinism is
tantalising. Haskell, being a language in which effects are explicitly
controlled by the type system, should be an ideal environment for
deterministic parallel programming.

For many years we have advocated the use of the par and
pseq1 operations as the basis for general-purpose deterministic par-
allelism in Haskell, and there is an elaborate parallel programming
framework, Evaluation Strategies, built in terms of them (Trinder
et al. 1998; Marlow et al. 2010). However, a combination of prac-
tical experience and investigation has lead us to conclude that this
approach is not without drawbacks. In a nutshell, the problem is
this: achieving parallelism with par requires that the programmer
understand operational properties of the language that are at best
implementation-defined (and at worst undefined). This makes par
difficult to use, and pitfalls abound — new users have a high failure
rate unless they restrict themselves to the pre-defined abstractions
provided by the Strategies library. Section 2 elaborates.

In this paper we propose a new programming model for deter-
ministic parallel programming in Haskell. It is based on a monad,
has explicit granularity, and uses I-structures (Arvind et al. 1989)
for communication. The monadic interface, with its explicit fork
and communication, resembles a non-deterministic concurrency
API; however by carefully restricting the operations available to the
programmer we are able to retain determinism and hence present a

1 formerly seq

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Haskell’11, September 22, 2011, Tokyo, Japan.
Copyright c© 2011 ACM 978-1-4503-0860-1/11/09. . . $5.00.

pure interface, while allowing a parallel implementation. We give a
formal operational semantics for the new interface.

Our programming model is closely related to a number of oth-
ers; a detailed comparison can be found in Section 8. Probably the
closest relative is pH (Nikhil 2001), a variant of Haskell that also
has I-structures; the principal difference with our model is that the
monad allows us to retain referential transparency, which was lost
in pH with the introduction of I-structures. The target domain of our
programming model is large-grained irregular parallelism, rather
than fine-grained regular data parallelism (for the latter Data Paral-
lel Haskell (Chakravarty et al. 2007) is more appropriate).

Our implementation is based on monadic concurrency (Scholz
1995), a technique that has previously been used to good effect to
simulate concurrency in a sequential functional language (Claessen
1999), and to unify threads with event-driven programming for
scalable I/O (Li and Zdancewic 2007). In this paper, we put it to
a new use: implementing deterministic parallelism.

We make the following contributions:

• We propose a new programming model for deterministic paral-
lel programming, based on a monad, and using I-structures to
exchange information between parallel tasks (Section 3).
• We give a semantics (Section 5) for the language and a (sketch)

proof of determinism (Section 5.2).
• Our programming model is implemented entirely in a Haskell

library, using techniques developed for implementing concur-
rency as a monad. This paper contains the complete implemen-
tation of the core library (Section 6), including a work-stealing
scheduler. Being a Haskell library, the implementation can be
readily modified, for example to implement alternative schedul-
ing policies. This is not a possibility with existing parallel pro-
gramming models for Haskell.
• We present results demonstrating good performance on a range

of parallel benchmarks, comparing Par with Strategies (Sec-
tion 7).

2. The challenge
To recap, the basic operations provided for parallel Haskell pro-
gramming are par and pseq:

par :: a -> b -> b
pseq :: a -> b -> b

Informally, par annotates an expression (its first argument) as be-
ing potentially profitable to evaluate in parallel, and evaluates to the
value of its second argument. The pseq operator expresses sequen-
tial evaluation ordering: its first argument is evaluated, followed by
its second.

The par operator is an attractive language design because it
capitalises on the overlap between lazy evaluation and futures.
To implement lazy evaluation we must have a representation for

expressions which are not yet evaluated but whose value may
later be demanded; and similarly a future is a computation whose
value is being evaluated in parallel and which we may wait for.
Hence, par was conceived as a mechanism for annotating a lazy
computation as being potentially profitable to evaluate in parallel,
in effect turning a lazy computation into a future.

Evaluation Strategies (Trinder et al. 1998; Marlow et al. 2010)
further capitalise on lazy-evaluation-for-parallelism by building
composable abstractions that express parallel evaluation over lazy
data structures.

However, difficulties arise when we want to be able to program
parallel algorithms with these mechanisms. To use par effectively,
the programmer must

(a) pass an unevaluated computation to par,

(b) ensure that its value will not be required by the enclosing
computation for a while, and

(c) ensure that the result is shared by the rest of the program.

If either (a) or (b) are violated, then little or no parallelism is
achieved. If (c) is violated then the garbage collector may (or may
not) garbage-collect the parallelism before it can be used. We often
observe both expert and non-expert users alike falling foul of one
or more of these requirements.

These preconditions on par are operational properties, and so
to use par the programmer must have an operational understanding
of the execution — and that is where the problem lies. Even experts
find it difficult to reason about the evaluation behaviour, and in
general the operational semantics of Haskell is undefined.

For example, one easy mistake is to omit pseq, leading to a
program with undefined parallelism. For example, in

y ‘par‘ (x + y)

it is unspecified whether the arguments of (+) are evaluated left-
to-right or right-to-left. The first choice will allow y to be evaluated
in parallel, while the second will not. Compiling the program with
different options may yield different amounts of parallelism.

A closely-related pitfall is to reason incorrectly about strictness.
Parallelism can be lost either by the program being unexpectedly
strict, or by being unexpectedly lazy. As an example of the former,
consider

x ‘par‘ f x y

Here the programmer presumably intended to evaluate x in parallel
with the call to f. However, if f is strict, the compiler may decide
to use call-by-value for f, which will lose all parallelism. As an
example of the latter, consider this attempt to evaluate all the
elements of a list in parallel:

parList :: [a] -> [a]
parList [] = []
parList (x:xs) = x ‘par‘ (x : parList xs)

The problem is that this is probably too lazy: the head is evaluated
in parallel, but the tail of the list is lazy, and so further parallelism
is not created until the tail of the list is demanded.

There is an operational semantics for par in Baker-Finch et al.
(2000), and indeed it can be used to reason about some aspects of
parallel execution. However, the host language for that semantics
is Core, not Haskell, and there is no direct operational relationship
between the two. A typical compiler will perform a great deal of
optimisation and transformation between Haskell and Core (for
example, strictness analysis). Hence this semantics has limited
usefulness for reasoning about programs written in Haskell with
par.

In Marlow et al. (2010) we attempted to improve matters with
the introduction of the Eval monad; a monad for “evaluation or-

der”. The purpose of the Eval monad is to allow the programmer
to express an ordering between instances of par and pseq, some-
thing which is difficult when using them in their raw infix form.
In this it is somewhat successful: Eval would guide the program-
mer away from the parList mistake above, although it would not
help with the other two examples. In general, Eval does not go far
enough — it partially helps with requirements (a) and (b), and does
not help with (c) at all.

In practice programmers can often avoid the pitfalls by using the
higher-level abstractions provided by Evaluation Strategies. How-
ever, similar problems emerge at this higher level too: Strategies
consume lazy data structures, so the programmer must still under-
stand where the laziness is (and not accidentally introduce strict-
ness). Common patterns such as parMap work, but achieving par-
allelism with larger or more complex examples can be something
of an art.

In the next section we describe our new programming model
that avoids, or mitigates, the problems described above. We will
return to evaluate the extent to which our new model is successful
in Section 8.1.

3. The Par Monad
Our goal with this work is to find a parallel programming model
that is expressive enough to subsume Strategies, robust enough to
reliably express parallelism, and accessible enough that non-expert
programmers can achieve parallelism with little effort.

Our parallel programming interface2 is structured around a
monad, Par:

newtype Par a
instance Functor Par
instance Applicative Par
instance Monad Par

Computations in the Par monad can be extracted using runPar:

runPar :: Par a -> a

Note that the type of runPar indicates that the result has no side
effects and does no I/O; hence, we are guaranteed that runPar
produces a deterministic result for any given computation in the
Par monad.

The purpose of Par is to introduce parallelism, so we need a
way to create parallel tasks:

fork :: Par () -> Par ()

The semantics of fork are entirely conventional: the computation
passed as the argument to fork (the “child”) is executed concur-
rently with the current computation (the “parent”). In general, fork
allows a tree of computations to be expressed; for the purposes of
the rest of this paper we will call the nodes of this tree “threads”.

Of course, fork on its own isn’t very useful; we need a way to
communicate results from the child of fork to the parent. For our
communication abtraction we use IVars (also called I-structures):

data IVar a -- instance Eq

new :: Par (IVar a)
get :: IVar a -> Par a
put :: NFData a => IVar a -> a -> Par ()

An IVar is a write-once mutable reference cell, supporting two
operations: put and get. The put operation assigns a value to

2 For reviewers: the current version is available at https://github.com/
simonmar/monad-par and we expect to make a release on Hackage
shortly.

https://github.com/simonmar/monad-par
https://github.com/simonmar/monad-par

the IVar, and may only be executed once per IVar (subsequent
puts are an error). The get operation waits until the IVar has been
assigned a value, and then returns the value.

One unusual aspect of our interface is the NFData (“normal-
form data”) context on put: our put operation is fully-strict in the
value it places in the IVar, and the NFData context is a prereq-
uisite for full-strictness. This aspect of the design is not forced;
indeed our library also includes another version of put, put_, that
is only head-strict. However, making the fully-strict version the de-
fault avoids a common mistake, namely putting a lazy computation
into an IVar, and thereby deferring the work until the expression is
extracted with get and its value subsequently demanded. By forc-
ing values communicated via IVars to be fully evaluated, the pro-
grammer gains a clear picture of which work happens on which
thread.

3.1 Derived combinators
A common pattern is for a thread to fork several children and
then collect their results; indeed, in many parallel programs this
is the only parallel pattern required. We can implement this pat-
tern straightforwardly using the primitives. First, we construct an
abstraction for a single child computation that returns a result:

spawn :: NFData a => Par a -> Par (IVar a)
spawn p = do

i <- new
fork (do x <- p; put i x)
return i

The IVar in this context is commonly called a future, because it
represents the value of a computation that will be completed at
some later point in time.

Generalising spawn to a list is trivial: the monadic combinator
mapM does the trick. However, a more useful pattern is to combine
a spawn with a map: for each element of a list, create a child
process to compute the application of a given function to that
element. Furthermore, we usually want to wait for all the children
to complete and return a list of the results. This pattern is embodied
in the combinator parMapM, defined as follows:

parMapM :: NFData b => (a -> Par b) -> [a] -> Par [b]
parMapM f as = do

ibs <- mapM (spawn . f) as
mapM get ibs

The parMapM given above works on lists, but it can be trivially
extended to work on any Traversable structure.

One may reasonably ask whether spawn should be a primitive,
replacing new and put, or whether the extra generality offered by
new and put is really necessary. After all, if a thread has multiple
outputs, a single IVar containing a tuple suffices. In principle, it
would be possible to replace new and put by spawn, but in practice
it is convenient to have both. Being able to declare IVars separately
from the threads that put them sometimes allows a computation to
be expressed more straightforwardly; we shall see an example of
this in Section 4.

3.2 Dataflow
The programming interface we described above yields a dataflow
model, in which each fork creates a new computation node in
the dataflow graph, and each IVar gives rise to edges from the
producer to each of the consumers. Figure 1 shows pictorially a
particular example of a network.

3.3 Safety
The interface given above does not prevent the programmer from
returning an IVar from runPar and then passing it to other in-

f

h
j

Sync points upon get
Caller's thread of control,
invoking parInfer

Fork child:Parallel thread: IVar put/get
dependence

g

Parallelism
opportunity!

Figure 1. A dataflow graph, dynamically constructed by an invo-
cation of the parInfer function. Threads synchronize upon re-
quests for an IVar’s value. IVars are not shown explicitly above,
but a red arrow indicates that a thread gets an IVar which was put
by another thread.

stances of runPar; the behaviour of the programming model is un-
defined under these circumstances. The semantics we give later will
rule out such cases, but the API given above and our implementa-
tion of it do not. There is a well-known solution to this problem
using parametricity (Launchbury and Peyton Jones 1994):

runPar :: (forall s . Par s a) -> a

but there is a tradeoff: the extra type parameter pervades client code
and can be somewhat inconvenient. We are currently investigating
the tradeoff and expect at the least to provide a safe version of the
Par interface.

4. Examples
In the following sections we illustrate some realistic uses for the
Par monad.

4.1 A parallel type inferencer
An example that naturally fits the dataflow model is program anal-
ysis, in which information is typically propagated from definition
sites to usage sites in a program. For the sake of concreteness, we
pick a particular example: inferring types for a set of non-recursive
bindings. Type inference gives rise to a dataflow graph; each bind-
ing is a node in the graph with inputs corresponding to the free
variables of the binding, and a single output represents the derived
type for the binding. For example, the following set of bindings

f = ...
g = ... f ...
h = ... f ...
j = ... g ... h ...

can be represented by the dataflow graph in Figure 1.
We assume the following definitions:

type Env = Map Var (IVar Type)
infer :: Env -> (Var,Expr) -> Par ()

where Expr is the type of expressions, Type is the type of types,
and Map is a type constructor for finite maps (such as that provided
by the Data.Map module in Haskell). The function infer infers
the type for a binding, and calls put to augment the environment
mapping for the bound variable with its inferred type.

We can then define a parallel type inferencer as follows:

parInfer :: [(Var,Expr)] -> [(Var,Type)]

parInfer bindings = runPar $ do
let binders = map fst bindings
ivars <- replicateM (length binders) new
let env = Map.fromList (zip binders ivars)
mapM_ (fork . infer env) bindings
types <- mapM_ get ivars
return (zip binders types)

The first three lines of the do expression build up the environment
of type Env for passing to infer, in which each variable is mapped
to a newly created IVar. The fourth line forks a call to infer to
run the type inferencer for each binding. The next line waits for all
the results using mapM_ get, and the last line returns the results.

This implementation extracts the maximum parallelism inher-
ent in the dependency structure of the given set of bindings, with
very little effort on the part of the programmer. There is no explicit
dependency analysis; the Par monad is doing all the work to re-
solve the dependencies. The same trick can be pulled using lazy
evaluation of course, and indeed we could achieve the same paral-
lel structure using lazy evaluation together with Strategies, but the
advantage of the Par monad version is that the structure is pro-
grammed explicitly and the runtime behaviour is not tied to one
particular evaluation strategy (or compiler).

This example illustrates the motivation for several aspects of the
design:

• The dataflow graph generated is entirely dynamic; there is no
way that we could statically predict the structure of the graph,
because it depends only on the input program. (We highlight
this point because some dataflow programming models only
allow static dataflow graphs to be constructed.)
• We considered earlier whether it would make sense to replace
new and put by spawn (Section 3.1). This example demon-
strates two reasons why that would be inconvenient:

Consider extending the type inferencer to support Haskell’s
pattern bindings in which each equation binds multiple vari-
ables; then it is extremely convenient for infer to simply
call put once for each variable bound by a particular equa-
tion.

If we had spawn only and no new, then then consider how
to write parInfer. The output of spawn would be required
in order to construct the Env which is passed back into the
call to spawn itself. Hence we would need recursion, either
in the form of a fixPar operator or recursive do notation.

4.2 A divide and conquer skeleton
Algorithmic skeletons are a technique for achieving modularity in
parallel programming (Cole 1989). The idea is that the parallel al-
gorithm is expressed as the composition of a parallel skeleton with
the sequential algorithm (suitably factorised into pieces that can be
executed in parallel). In the Par monad, as with other functional
parallel programming models, skeletons are readily expressed as
higher-order functions. We saw an example of a simple skeleton
above: parMap, otherwise known as the master-worker skeleton.
A skeleton corresponding to divide-and-conquer algorithms can be
defined as follows:

divConq :: NFData sol
=> (prob -> Bool) -- indivisible?
-> (prob -> [prob]) -- split into subproblems
-> ([sol] -> sol) -- join solutions
-> (prob -> sol) -- solve a subproblem
-> (prob -> sol)

divConq indiv split join f prob
= runPar $ go prob

where
go prob
| indiv prob = return (f prob)
| otherwise = do

sols <- parMapM go (split prob)
return (join sols)

this is a general divide-and-conquer of arbitrary (even variable)
degree. The caller supplies functions that respectively determine
whether the current problem is indivisible, split the problem into
a list of sub-problems, join the results from sub-problems into a
single result, and solve a particular problem instance.

4.3 Stream Processing Pipelines
IVars can be used as communication channels between threads,
enabling producer-consumer parallelism. This is possible because
while an IVar carries only a single value during its lifetime, that
value may in turn contain other IVars. Thus, a linked list using
IVars as tail pointers can serve as a stream datatype:

data IList a = Null | Cons a (IVar (IList a))
type Stream a = IVar (IList a)

Actors, or kernels, that process streams are nothing more than
Par threads that perform gets and puts. Our current Par distribu-
tion includes a library of higher-order stream operators built in this
way. As an example, the following function applies a stateful kernel
to the elements of a stream, updating the state after each element
processed and writing results to an output stream:

kernel :: NFData b => (s -> a -> (s,b)) -> s
-> Stream a -> Stream b -> Par ()

kernel fn state inS outS =
do ilst <- get inS

case ilst of
Null -> put outS Null -- End of stream.
Cons h t -> do

newtl <- new
let (newstate, outp) = fn state h
put outS (Cons outp newtl)
kernel fn newstate t newtl

Notice that the above kernel will execute continuously as long
as data is available, keeping that kernel on a single processor, where
its working set is in-cache. Our experiments show this is effective:
kernels typically execute on a single core for long periods.

The authors tried to make a similar construction using Strate-
gies, and found it to be surprisingly difficult. Due to space con-
straints we are unable to describe the problem in detail, but in sum-
mary it is this: previously published techniques for pipeline Strate-
gies (Trinder et al. 1998) no longer work because they fall victim
to requirement (c) from Section 2, the constraint that was added to
avoid space leaks with the original formulation of Strategies (Mar-
low et al. 2010). It is possible to use element-wise parallelism in-
stead, but that does not take advantage of the locality within a ker-
nel. Ultimately we were not able to achieve as much speedup with
Strategies as we were with the Par monad on this example3.

5. Operational Semantics
In this section we add precision to our informal description of
the programming model with a formal operational semantics. The
operational semantics will allow non-determinism in the reduction
order, modeling a truly parallel implementation, but we will argue

3 The reader is invited to try; sample code can be found at:
https://github.com/simonmar/monad-par/blob/master/
examples/stream/disjoint_working_sets_pipeline.hs.

https://github.com/simonmar/monad-par/blob/master/examples/stream/disjoint_working_sets_pipeline.hs
https://github.com/simonmar/monad-par/blob/master/examples/stream/disjoint_working_sets_pipeline.hs

x, y ∈ Variable
i ∈ IVar

Values V ::= x | i | \x ->M
| returnM |M>>=N
| runParM
| forkM
| new
| put i M
| get i
| doneM

Terms M,N ::= V |M N | · · ·
States P,Q ::= M thread of computation

| 〈〉i empty IVar named i
| 〈M〉i full IVar named i, holding M
| νi.P restriction
| P |Q parallel composition

Figure 2. The syntax of values and terms

P |Q ≡ Q |P

P | (Q |R) ≡ (P |Q) |R

νx.νy.P ≡ νy.νx.P
νx.(P |Q) ≡ (νx.P) |Q, x /∈ fn (Q)

P → Q

P |R → Q |R

P → Q

νx.P → νx.Q

P ≡ P ′ P ′ → Q′ Q′ ≡ Q
P → Q

Figure 3. Structural congruence, and structural transitions.

(in Section 5.2) that the result of any given application of runPar
is deterministic.

5.1 The semantics
Figure 2 gives the syntax of values and terms in our language. The
only unusual form here is done M , which is an internal tool we
shall use in the semantics for runPar; it is not a term form available
to the programmer.

The main semantics for the language is a big-step operational
semantics written

M ⇓ V
meaning that term M reduces to value V in zero or more steps. It
is entirely conventional, so we omit all its rules except one, namely
(RunPar) in Figure 4. We will discuss (RunPar) shortly, but the
important point for now is that it in turn depends on a small-step
operational semantics for the Par monad, written

P → Q

Here P and Q are states, whose syntax is given in Figure 2. A
state is a bag of terms M (its active “threads”), and IVars i that
are either full, 〈M〉i, or empty, 〈〉i. In a state, the νi.P serves (as is
conventional) to restrict the scope of i inP . The notationP0 →∗ Pi

is shorthand for the sequence P0 → ...→ Pi where i >= 0.

M 6≡ V M ⇓ V
E [M] → E [V] (Eval)

E [return N >>=M] → E [M N] (Bind)

E [forkM] → E [return ()] |M (Fork)

E [new] → νi.(〈〉i | E [return i]), (New)

i /∈ fn (E)
〈M〉i | E [get i] → 〈M〉i | E [returnM] (Get)

〈〉i | E [put iM] → 〈M〉i | E [return ()] (PutEmpty)

returnM → (GCReturn)

νi.〈〉i → (GCEmpty)

νi.〈M〉i → (GCFull)

νi.(〈〉i | E [get i]∗) → (GCDeadlock)

(M >>= \x.done x) →∗ done N, N ⇓ V
runParM ⇓ V (RunPar)

Figure 4. Transition Rules

States obey a structural equivalence relation ≡ given by Fig-
ure 3, which specifies that parallel composition is associative and
commutative, and scope restriction may be widened or narrowed
provided no names fall out of scope. The three rules at the bottom
of Figure 3 declare that transitions may take place on any sub-state,
and on states modulo equivalence. So the → relation is inherently
non-deterministic.

The transitions of→ are given in in Figure 4 using an evaluation
context E :

E ::= [·] | E >>=M
Hence the term that determines a transition will be found by look-
ing to the left of >>=. Rule (Eval) allows the big-step reduction
semantics M ⇓ V to reduce the term in an evaluation context if it
is not already a value.

Rule (Bind) is the standard monadic bind semantics.
Rule (Fork) creates a new thread.
Rules (New), (Get), and (PutEmpty) give the semantics for

operations on IVars, and are straightforward: new creates a new
empty IVar whose name does not clash with another IVar in
scope, get returns the value of a full IVar, and put creates a
full IVar from an empty IVar. Note that there is no transition
for put when the IVar is already full: in the implementation we
would signal an error to the programmer, but in the semantics we
model the error condition by having no transition. Also note that
the semantics here does not model the hyperstrict behaviour of
the programmer-level put; indeed there are various options for the
strictness of put, and the choice has no effect on the rest of the
semantics or its determinism property, so we ignore it here.

Several rules that allow parts of the state to be garbage collected
when they are no longer relevant to the execution. Rule (GCReturn)
allows a completed thread to be garbage collected. Rules (GCEmpty)
and (GCFull) allow an empty or full IVar respectively to be
garbage collected provided the IVar is not referenced anywhere
else in the state. The equivalences for ν in Figure 3 allow us to
push the ν down until it encloses only the dead IVar.

Rule (GCDeadlock) allows a set of deadlocked threads to be
garbage collected: the syntax E [get i]∗ means one or more threads
of the given form. Since there can be no other threads that refer to

i, none of the gets can ever make progress. Hence the entire set of
deadlocked threads together with the empty IVar can be removed
from the state.

The final rule, (RunPar), gives the semantics of runPar and
connects the Par reduction semantics→ with the functional reduc-
tion semantics ⇓. Informally it can be stated thus: if the argument
M to runPar runs in the Par semantics yielding a result N , and
N reduces to V , then runPar M is said to reduce to V . In order
to express this, we need a distinguished term form to indicate that
the “main thread” has completed: this is the reason for the form
doneM . The programmer is never expected to write doneM di-
rectly, it is only used as a tool in the semantics. We will use a similar
trick in the implementation of runPar itself (Section 6.2).

5.2 Determinism
An informal argument for determinism follows. We require that
if runPar M ⇓ N and runPar M ⇓ N ′, then N = N ′, and
furthermore that if runPar M ⇓ N then there is no sequence of
transitions starting from runPar M that reaches a state in which
no reduction is possible. Informally, runParM should either pro-
duce the same value consistently, or produce no value consistently
(which is semantically equivalent to ⊥).

First, observe that the system contains no transitions that take a
full IVar to an empty IVar, or that change the contents of a full
IVar. A non-deterministic result can only arise due to a race con-
dition: two different orderings of reductions that lead to a different
result. To observe non-determinism, there must be multiple reduc-
tion sequences leading to applications of the rule (PutEmpty) for
the same IVar with different values. There is nothing in the se-
mantics that prevents this from happening, but our determinism ar-
gument rests on the (RunPar) rule, which requires that the state
at the end of the reduction consists of only doneM for some M .
That is, the rest of the state has completed or deadlocked and been
garbage collected by rules (GCReturn), (GCEmpty), (GCFull),
and (GCDeadlock). In the case where there is a choice between
multiple puts, one of them will not be able to complete and will
remain in the state, and thus the runPar transition will never be
applicable.

The reader interested in a full proof of determinism should refer
to Budimlic et al. (2010), which contains a proof of determinism
for Featherweight CnC, a language which is essentially equivalent
to Par.

6. Implementation
As in Claessen (1999), the implementation is in two parts: compu-
tations in the monad produce a lazy stream of operations, or trace,
and a scheduler consumes the traces of the set of runnable threads,
switching between them according to a scheduling policy.

In this section we first describe the implementation of the Par
monad, and then give two scheduler implementations: first a se-
quential scheduler (Section 6.2), and then a true parallel scheduler
using work-stealing (Section 6.3).

The separation between the Par monad and the scheduler is not
a fundamental requirement of the technique, indeed we could com-
bine the Par monad with the scheduler for a more efficient im-
plementation. However, this modular presentation is much easier
to understand, and separating the details of the scheduler from the
Par monad allows us to describe two independent scheduler imple-
mentations without repeating the implementation of Par. Indeed,
in our real implementation we retain this separation so as to facil-
itate the provision of multiple scheduling policies, or user-defined
schedulers. Specialising the Par monad with respect to a particular
scheduler is entirely possible and mechanical; we describe how to
do this in Section 6.4.1.

6.1 Implementation of the Par monad
Computations in the Par monad produce a Trace:

data Trace = Fork Trace Trace
| Done
| forall a . Get (IVar a) (a -> Trace)
| forall a . Put (IVar a) a Trace
| forall a . New (IVar a -> Trace)

Our fork and get operations require that we be able to suspend
a computation and resume it later. The standard technique for
implementing suspension and resumption is to use continuation-
passing, which is exactly what we do in the form of a continuation-
passing monad. The continuation result is fixed to be of type Trace,
but otherwise the monad is completely standard:

newtype Par a = Par {
unPar :: (a -> Trace) -> Trace

}

instance Monad Par where
return a = Par $ \c -> c a
m >>= k = Par $

\c -> unPar m (\a -> unPar (k a) c)

The basic operations in Par simply return the appropriate Trace
values. Firstly, fork:

fork :: Par () -> Par ()
fork p = Par $

\c -> Fork (unPar p (_ -> Done)) (c ())

recall that Fork has two arguments of type Trace, these represent
the traces for child and the parent respectively. The child is the
Trace constructed by applying the argument p to the continuation
(_ -> Done), while the parent Trace results from applying the
continuation c to () – the unit value because fork returns Par ().

The IVar operations all return Trace values in a straightfor-
ward way:

new :: Par (IVar a)
new = Par $ New

get :: IVar a -> Par a
get v = Par $ \c -> Get v c

put :: NFData a => IVar a -> a -> Par ()
put v a = deepseq a (Par $ \c -> Put v a (c ()))

Note that put fully evaluates the argument a using deepseq before
returning the Put trace.

6.2 A sequential scheduler
This sequential scheduler is implemented in the IO monad, but us-
ing only deterministic operations (runPar uses unsafePerformIO).
By using IO here we will be able to smoothly extend the implemen-
tation to support true parallelism in Section 6.3.

Here are some of the main types in the scheduler:

sched :: SchedState -> Trace -> IO ()
type SchedState = [Trace]
newtype IVar a = IVar (IORef (IVarContents a))
data IVarContents a = Full a | Blocked [a -> Trace]

The scheduler is an IO function that takes some state of type
SchedState, and the current thread of type Trace: The state of
the scheduler, SchedState, is its work pool, represented by a
list of threads ready to run. A IVar is represented by an IORef,

which contains either a value (Full a), or a list of blocked threads
waiting for the value (Blocked [a -> Trace]).

We need a small auxiliary function, reschedule, to choose the
next thread to run from the pool and invoke the scheduler proper:

reschedule :: SchedState -> IO ()
reschedule [] = return ()
reschedule (t:ts) = sched ts t

We also use the following auxiliary function to modify the contents
of an IORef:

modifyIORef :: IORef a -> (a -> (a,b)) -> IO b

Next, we describe each case of sched separately. First, the case
for Fork:

sched state (Fork child parent) =
sched (child:state) parent

We simply push the child thread on the stack of runnable threads,
and continue with the parent. Note that we treat the runnable
threads like a stack rather than a queue. If we were implementing
concurrency, then fairness would be a consideration and a differ-
ent data structure might be more appropriate. However, here the
scheduling policy is relevant only for performance, and so in the
sequential scheduler we use a stack for simplicity. We return to the
question of scheduling policies in Section 6.4.

When a thread has completed, its trace ends with Done; in that
case, we look for more work to do with reschedule:

sched state Done = reschedule state

Next we deal with creating new IVars:

sched state (New f) = do
r <- newIORef (Blocked [])
sched state (f (IVar r))

The case for Get checks the current contents of the IVar. If
it is Full, then we continue by applying the continuation in the
Get constructor to the value in the IVar. If the IVar is empty,
we block the current thread by adding its continuation to the list
already stored in the IVar and pick the next thread to run with
reschedule:

sched state (Get (IVar v) c) = do
e <- readIORef v
case e of
Full a -> sched state (c a)
Blocked cs -> do

writeIORef v (Blocked (c:cs))
reschedule state

The case for Put also checks the current state of the IVar. If
it is Full, then this is a repeated put, so the result is an error.
Otherwise, we store the value a in the IVar as Full a, and unblock
any blocked threads by applying them to a, and putting them in the
work pool.

sched state (Put (IVar v) a t) = do
cs <- modifyIORef v $ \e -> case e of

Full _ -> error "multiple put"
Blocked cs -> (Full a, cs)

let state’ = map ($ a) cs ++ state
sched state’ t

Finally, the implementation of runPar is below. Arranging for
the return value of the main thread to be communicated out is a
little tricky: the scheduler has no return value itself, and to give

it one would require parameterising all our types with the return
type (including Par and IVar). Instead, we create an IVar for the
purpose of collecting the return value, and compose the main Par
action, x, with a put operation to store the return value. (This is
similar to the technique we used to define the semantics of runPar
earlier.) When the scheduler returns, we extract the return value by
reading the IVar’s IORef.

runPar :: Par a -> a
runPar x = unsafePerformIO $ do

rref <- newIORef (Blocked [])
sched [] $ unPar (x >>= put_ (IVar rref))

(const Done)
r <- readIORef rref
case r of
Full a -> return a
_ -> error "no result"

6.3 A parallel work-stealing scheduler
We now modify the sequential scheduler described in the previ-
ous section to support true parallel execution, with a work-stealing
scheduling policy. Any scheduling policy can be implemented, of
course; the work-stealing algorithm happens to perform relatively
well on a wide range of parallel programs, but the optimal schedul-
ing policy may well depend on the algorithm to be parallelised
(Spoonhower 2009). Since our scheduler implementation is entirely
in Haskell and is relatively simple, different schedulers can be read-
ily implemented by the programmer, and over time we expect to
build up a library of scheduling algorithms.

As described earlier, the Par monad is independent of the
choice of scheduler. Specifically the definition of Trace, the defi-
nition of Par and its Monad instance, and the implementations of
fork, get, put and new all remain the same as in Section 6.1.

Our parallel scheduler works as follows:

• One Haskell thread is created per processor core. We call these
the worker threads.
• Each thread runs its own instance of the scheduler, and each

has a local work pool of runnable Traces. When the local work
pool runs dry, a scheduler attempts to steal items from the work
pools of other worker threads.
• When a worker thread cannot find any work to do it becomes

idle. The set of idle processors is represented as a list of MVars,
such that calling putMVar on one of these MVars will wake up
an idle worker thread. When a worker thread creates a new work
item, it wakes up one idle worker thread.
• When all work pools are empty, the computation is complete

and runPar can return.

For efficiency we use an IORef to represent shared state,
and atomicModifyIORef to perform atomic operations on it.
The atomicModifyIORef operation has the same signature as
modifyIORef that we used earlier:

atomicModifyIORef :: IORef a -> (a -> (a,b)) -> IO b

the difference is that the update is performed atomically; the con-
tents of the IORef are replaced by a lazy thunk representing the
result.

When we require not only atomicity but also blocking, we use
MVars. Alternatively, we could have used STM for all of the shared
state, although that would add some overhead to the implementa-
tion.

The scheduler state SchedState is no longer just a work pool,
but a record with four fields:

data SchedState = SchedState
{ no :: Int,

workpool :: IORef [Trace],
idle :: IORef [MVar Bool],
scheds :: [SchedState] }

containing, in order:

• no: the thread number
• workpool: the local work pool, stored in an IORef so that other

worker threads may steal from it
• idle: an IORef shared by all threads, containing the list of cur-

rently idle worker threads, each represented by an MVar Bool
(The Bool indicates whether the computation is complete or
not: if a thread is woken up with putMVar m False then it
should continue to look for more work, otherwise it should
stop.)
• scheds: the list of SchedStates corresponding to all sched-

ulers (this is used by the current scheduler to find other
workpools to steal from).

The reschedule function has the same signature as before, but
is different in two ways: first, we must use atomicModifyIORef
to remove an item from the work pool, and second if the work pool
is empty the scheduler attempts to steal from other work pools.
Stealing is implemented by a function steal that we shall describe
shortly.

reschedule :: SchedState -> IO ()
reschedule state@SchedState{ workpool } = do

e <- atomicModifyIORef workpool $ \ts ->
case ts of
[] -> ([], Nothing)
(t:ts’) -> (ts’, Just t)

case e of
Nothing -> steal state
Just t -> sched state t

We add a new auxilliary function pushWork that is used for
adding a new item to the local work pool. It also checks the list of
idle worker threads; if there are any, then one is woken up.4

pushWork :: SchedState -> Trace -> IO ()
pushWork SchedState { workpool, idle } t = do

atomicModifyIORef workpool $ \ts -> (t:ts, ())
idles <- readIORef idle
when (not (null idles)) $ do
r <- atomicModifyIORef idle $ \is ->

case is of
[] -> ([], return ())
(i:is) -> (is, putMVar i False))

r -- wake one up

The scheduler itself has the same signature as before:

sched :: SchedState -> Trace -> IO ()

Fork and Done are straightforward:

sched state (Fork child parent) = do
pushWork state child
sched state parent

4 Note that we first read the list of idle threads using a non-atomic
readIORef and only use atomicModifyIORef if the list is found to be
non-empty. This avoids performing an atomic operation in the common case
that all schedulers are working.

sched state Done = reschedule state

The implementation of New is unchanged. Get is different only
in that an atomicModifyIORef is needed to operate on the con-
tents of the IVar:

sched state (Get (IVar v) c) = do
e <- readIORef v
case e of

Full a -> sched state (c a)
_other -> do

r <- atomicModifyIORef v $ \e -> case e of
Full a ->
(Full a, sched state (c a))

Blocked cs ->
(Blocked (c:cs), reschedule state)

r

Put requires atomicModifyIORef to operate on the IVar, and
calls pushWork to wake up any blocked gets, but otherwise is
straightforward:

sched state (Put (IVar v) a t) = do
cs <- atomicModifyIORef v $ \e -> case e of

Full _ -> error "multiple put"
Blocked cs -> (Full a, cs)

mapM_ (pushWork state . ($ a)) cs
sched state t

The steal function implements work-stealing. It loops through
the list of SchedStates (omitting the current one, which is known
to have an empty work pool). For each sibling worker, we attempt to
remove an item from its work pool using atomicModifyIORef. If
successful, we can call sched to continue executing the stolen work
item. If we get to the end of the list without stealing anything, we
create a new MVar, add it to the idle list, and block in takeMVar,
waiting to be woken up. The result of the takeMVar is a Bool value
indicating whether we should stop, or continue to look for more
work to do.

Note that there is a race condition here. We do not atomically
look at all the scheduler queues simultaneously, so it is possible
that we reach the end of the list and become idle, while another
worker has added items to its work pool. This could result in lost
parallelism, but typically work items are being created regularly
and the problem would be rectified quickly. So far we have not
observed the problem in practice, but if it did become an issue,
then there are a number of ways to fix it, for example using STM.

steal :: SchedState -> IO ()
steal state@SchedState{ idle, scheds, no=my_no }

= go scheds
where

go (x:xs)
| no x == my_no = go xs
| otherwise = do

r <- atomicModifyIORef (workpool x) $
\ts -> case ts of

[] -> ([], Nothing)
(x:xs) -> (xs, Just x)

case r of
Just t -> sched state t
Nothing -> go xs

go [] = do
m <- newEmptyMVar
r <- atomicModifyIORef idle $

\is -> (m:is, is)
if length r == numCapabilities - 1

then mapM_ (\m -> putMVar m True) r
else do

done <- takeMVar m
if done then return ()

else go scheds

Finally, the runPar operation is a small elaboration of the pre-
vious sequential version. We create one SchedState for each core
(the number of which is given by numCapabilities). Then, we
create one thread per core with forkOnIO; this GHC primitive cre-
ates a thread which is tied to a particular core and may not be mi-
grated by the runtime system’s automatic load-balancing mecha-
nisms. One of these threads runs the “main thread” (that is, the Par
computation passed to runPar); this should normally be chosen to
be the current CPU, since it is likely to be cache-hot. In the imple-
mentation below, we simply refer to it as main_cpu and omit the
details. The non-main threads simply call reschedule, and hence
will immediately start looking for work to do. An MVar is used to
pass the final result from the main thread back to runPar, which
blocks in takeMVar until the result is available before returning it.

runPar :: Par a -> a
runPar x = unsafePerformIO $ do

let n = numCapabilities
workpools <- replicateM n $ newIORef []
is <- newIORef []
let scheds =

[SchedState { no = x,
workpool = wp,
idle = is,
scheds=(main:others) }

| (x,wp) <- zip [0..] workpools]

m <- newEmptyMVar
forM_ (zip [0..] states) $ \(cpu,state) ->

forkOnIO cpu $
if (cpu /= main_cpu)

then reschedule state
else do

rref <- newIORef Empty
sched state $

runPar (x >>= put_ (IVar rref))
(const Done)

r <- readIORef rref
putMVar m r

r <- takeMVar m
case r of

Full a -> return a
_ -> error "no result"

6.3.1 Correctness
If some subterm evaluates to ⊥ during execution of runPar, then
the value of the whole runPar should be ⊥. The sequential sched-
uler implements this, but the parallel scheduler given above does
not. In practice, however, it will make little difference: if one of the
workers encounters a ⊥, then the likely result is a deadlock, be-
cause the thread that the worker was executing will probably have
outstanding puts. Since deadlock is semantically equivalent to ⊥,
the result in this case is equivalent. Nevertheless, modifying the im-
plementation to respect the semantics is not difficult, and we plan
to modify our real implementation to do this in due course.

6.4 Optimising the scheduler
The implementation given above was used in generating the bench-
mark measurements presented in the next section, and gives en-
tirely acceptable results for many benchmarks. However, when
pushed to the limit, particularly with very fine-grained parallelism,
there are overheads in this implementation that become apparent
(measurements of the overhead are given in Section 7.2).

There are several ways in which we can reduce the overhead, as
outlined in the following sections.

6.4.1 Deforesting Trace

As we remarked earlier, the Trace datatype is a useful device
for separating the scheduler from the Par monad implementation,
but it is not a fundamental requirement of the implementation.
We can eliminate the intermediate Trace data structure entirely
mechanically, and thereby specialise the Par monad to a particular
scheduler, as follows. First we define

type Trace = SchedState -> IO ()

and then replace each constructor in Trace with a function of the
same type, whose implementation is the appropriate case in sched.
For example, instead of the Fork constructor, we define

traceFork :: Trace -> Trace -> Trace
traceFork child parent = ...

and then replace instances of Fork with traceFork. Finally, we
replace any calls of the form sched state t with t state.

We have experimented with this optimisation but at present it
fails to achieve any significant benefit due to deficiencies in GHC’s
optimiser.

6.4.2 Alternative scheduling policies
Choice of scheduling policy may have an asymptotic effect on
space usage (Spoonhower 2009), and so ideally we would like to be
able to select the scheduling policy per-algorithm and at runtime.
Some of the scheduling options we have in mind are:

• scheduling the child rather than the parent of fork first. This is
as simple as switching the arguments to Fork.
• oldest-first or random work-stealing. This requires changing the

data structure used to represent the work queue from a list to
something else, such as Data.Sequence. Another option is to
use lock-free work-stealing deques, which are implemented in
the GHC runtime system for par, but not currently available
at the Haskell level. We hope to expose this functionality to
Haskell and hence make it possible to use lock-free work-
stealing deques in our Par monad scheduler.

While our primary implementation supports scheduling the par-
ent in fork and newest-first work-stealing only, we have an experi-
mental version that also supports child-first scheduling of fork and
random work stealing, selectable at compile-time5 and we hope to
be able to allow runtime-selectable schedulers in the future.

6.4.3 Optimising nested runPars
Each call to runPar creates a new gang of Haskell threads and
schedulers. This is a rather large overhead, and so the current imple-
mentation of runPar is only suitable for large-scale parallelism. If
multiple runPars are active simultaneously, their threads will com-
pete with each other for the processors, and pathological schedul-
ing may occur. Ideally, nested or simultaneous runPars should co-
operate via a global scheduling policy. Perhaps therefore runPar
should maintain some global state and each instance of runPar
should share the same scheduling resources. We plan to investigate
this in future work.

7. Performance
In this section we analyse the performance of the Par monad in
two ways: firstly we measure the raw overhead imposed by the

5 Indeed, toggling those options can reduce the running time of parfib by
40% from what is reported in Section 7.2.

Par monad, and secondly we consider the scaling properties of a
selection of existing parallel benchmarks when using both the Par
monad and the Strategies abstraction.

7.1 Experimental setup
We benchmarked on a machine containing 4 Intel Xeon E7450
processors running at 2.4GHz. Each processor has 6 cores, for a
total of 24 cores. The OS was Windows Server 2008, and we used
a development version of GHC (7.1.20110301).6

GHC by default uses a 2-generation stop-the-world parallel
garbage collector. We configured the runtime to use a fixed nursery
size of 1MB (which we have measured as close to optimal for this
hardware). We also used a fixed overall heap size chosen for each
benchmark to be about three times the maximum heap residency
required by the program. The purpose here is to level the playing
field: by using a fixed heap size we eliminate the possibility that one
version is gaining an advantage by using a larger memory footprint
in order to reduce the overhead of GC. A larger heap size also helps
avoid artifacts due to the timing of old-generation GCs.

The Par implementation used is exactly the work-stealing im-
plementation as described in Section 6.

7.2 Overhead
To assess the overhead of the Par monad relative to the low-
level par/pseq operations used in the Strategies library, we used
the parfib microbenchmark. The implementations are as follows,
with par/pseq on the left and the Par monad version on the right:

parfib :: Int -> Int parfib :: Int -> Par Int
parfib n | n < 2 = 1 parfib n | n < 2 = return 1
parfib n = parfib n = do

x ‘par‘ y ‘pseq‘ (x+y) xf <- spawn_ $ parfib (n-1)
where y <- parfib (n-2)

x = parfib (n-1) x <- get xf
y = parfib (n-2) return (x+y)

We measured the time taken to evaluate parfib 34 on a single
processor with each version. The results were as follows:

version time (slowdown) memory allocated
par/pseq 0.29s 0.17GB
Par monad 6.15s (21×) 6.19GB

So the overhead of the Par monad is at least a factor of 21 over
par/pseq. This is unarguably high, but there is ample opportunity
for improvement: we examined the code generated by GHC for the
Par monad version and observed several opportunities for optimi-
sation that are not yet being performed by GHC’s optimiser. Hence
there is reason to believe that by paying attention to GHC’s op-
timiser and by optimising the Par monad itself (Section 6.4) we
should be able to reduce the overhead considerably.

Neither version of the parfib benchmark above parallelises
well in practice, because the granularity is much too fine. As with
many divide-and-conquer algorithms, it is necessary to define a
cut-off point below which the normal sequential version of the
algorithm is used. Given a suitable cut-off point for parfib, the
overhead of the Par monad becomes irrelevant (as indeed it is in
most of our actual benchmarks). Running parfib 43 with a cut-
off at 24, both implementations achieve a speedup of 21× on 24
cores and almost identical running times.

6 the Par library works on older versions too, but we added an extra prim-
itive in GHC 7.1 that allows a thread to determine which processor it is
running on, which allows runPar to make a better choice about how to
place the main thread, which in turn improves performance slightly.

7.3 Scaling
To measure scaling performance we used a selection of benchmarks
from two sources. The following benchmarks were taken from the
Intel CnC Haskell7 distribution, and converted into two versions,
one using Strategies and one using the Par monad:

• blackscholes: An implementation of the Black-Scholes al-
gorithm for modeling financial contracts. This program is a
straightforward use of parMap in both Strategies and Par ver-
sions.
• nbody: calculate the forces due to gravity between a collection

of bodies in 3-dimensional space.

The following benchmarks were obtained from the nofib
benchmark suite and converted to use the Par monad:

• mandel: a mandelbrot set renderer.
• matmult: matrix multiplication (unoptimised; using a list-of-

lists representation for the matrices).
• minimax: a program to find the best move in a game of 4×4

noughts-and-crosses, using alpha-beta searching of the game
tree to a depth of 6 moves. The game tree is evaluated in
parallel.
• queens: calculate the number of solutions to the N-queens

problem for 14 queens on a 14x14 board. Parallelism is via
divide-and-conquer.
• sumeuler: compute the sum of the value of Euler’s function

applied to each integer up to a given bound.

We measure the wall-clock running time of the whole program,
which in some cases includes a sequential component where the
program constructs its input data (matmult in particular has to
construct the input matrices); the sequential component obviously
limits the possible speedup.

Figure 5 shows the scaling results up to 24 cores for each bench-
mark, comparing the Strategies version with the Par monad ver-
sion. In each case the baseline (1-core) result is the same program
compiled for sequential execution. We have omitted the results be-
low 12 cores, which are largely uninteresting. Error bars are shown
at one standard deviation; in most case the deviation is too small
to be visible, except in one case — the 24-core result for minimax
shows high variability. We believe this is an artifact of the high rate
of GC performed by this benchmark together with the requirement
that each GC perform a full synchronisation across all cores.

The results are surprisingly similar, and show a high degree
of parallelism being achieved by both Strategies and Par. At 24
cores, two programs perform slightly better with Par: mandel and
minimax, whereas one program is slightly worse: queens.

While the graphs only measure scaling, the absolute perfor-
mance is also almost identical: the Strategies versions are on av-
erage 1% faster at 1 core, 2% slower at 12 cores and 2% slower at
24 cores.

Hence we conclude that for typical parallel programs, the choice
between Par and Strategies makes little difference to scaling or
overall performance.

8. Related Work
Many parallel programming systems include a fork/join construct
for dividing control flow, for example: Habanero Java (Cavé et al.
2010) and Cilk (Blumofe et al. 1995). These work well for divide-
and-conquer algorithms and other problems where dataflow closely
matches control flow.

7 http://hackage.haskell.org/package/haskell-cnc

http://hackage.haskell.org/package/haskell-cnc

10
11
12
13
14
15
16
17
18
19

12 16 20 24

+

+

+
+

3

3

3
3

blackscholes

8
9

10
11
12
13
14

12 16 20 24

+

+

+
+

3

3

3 3

mandel

10
11
12
13
14
15
16
17

12 16 20 24

+

+

+
+

3

3

3 3

matmult

5
5.5

6
6.5

7
7.5

8
8.5

9
9.5

12 16 20 24

+

+
+

+

3

3

3

3

minimax

10
11
12
13
14
15
16
17
18
19

12 16 20 24

+

+

+

+

3

3

3

3

nbody

9
10
11
12
13
14
15
16
17

12 16 20 24
+

+

+
+

3

3

3 3

queens

11
12
13
14
15
16
17
18
19
20
21

12 16 20 24
+

+

+
+

3

3

3
3

sumeuler

Strategies 3

Par monad +

Key

Figure 5. Speedup results on 24 cores (Y axis is speedup, X axis is number of OS threads)

Some of these models also integrate synchronous data struc-
tures as primitives, structuring the parallel scheduler around them.
pH (Nikhil 2001), described in Section 1, is one example, includ-
ing both IVars and MVars. Further, the Concurrent ML model pro-
vides synchronous point-to-point communication and has recently
been paralellised (Reppy et al. 2009). Manticore (Fluet et al. 2007)
is a parallel variant of ML that supports both the CML program-
ming model and a selection of parallel constructs including explicit
futures.

CML, pH (with MVars), and Manticore (with its pcase con-
struct) are all nondeterministic. Other systems, based on Syn-
chronous Data Flow (Lee and Parks 2002) such as StreamIt (Gor-
don et al. 2006), retain determinism but are significantly less ex-
pressive than the Par monad, being limited to first-order kernel
functions and communication channels. Kahn process networks
(Lee and Parks 2002) are more general that Synchronous Dataflow,
but to our knowledge there are no practical parallel programming
systems currently available based on this abstraction. One that is
closely related, however, is the Intel Concurrent Collections (CnC)
model (Budimlic et al. 2010). CnC provides a superset of the Par
monad’s functionality, including an extension of IVars that store
a collection of key-value pairs. But CnC is a more complex model
than Par and its implementations are focused on statically known
networks rather than dynamic (forking) computations.

Finally, the dataflow model of computation induced by the Par
monad and its IVars is very similar to that of the Skywriting lan-
guage (Murray and Hand 2010), although the context (distributed-
memory cloud computing) is quite different. Indeed, with coarser
grains of computation we conjecture that our monadic formalism
constitutes an excellent domain-specific language for large-scale
parallel programming, something we hope to try in the future.

A sceptical reader might reasonably ask whether the Par monad
merely solves a problem that is unique to Haskell, namely laziness.
After all, many of the difficulties identified in Section 2 relate to
reasoning about strictness, a problem that simply does not arise
in a call-by-value language. True enough – but the strict-vs-lazy
debate is a larger question than we address here; what we show
in this paper is how to integrate selective control over evaluation
order into a lazy language, without throwing the baby out with the
bathwater. Moreover the Par monad lifts the implementation of the
parallel fabric to the library level where it is vastly more malleable;
a direct benefit of this is the ability to easily change the scheduling
policy. This would be useful in any language, strict or lazy.

8.1 Comparison with par and Strategies
In Section 2 we outlined some difficulties with using the par
operator and Strategies, and claimed that our new interface would
avoid the problems; here we return to assess that claim, and also
offer some comments on the other differences between the Par
monad and Strategies.

Is the Par monad any easier to use than par?

• Each fork creates exactly one parallel task, and the dependen-
cies between the tasks are explicitly represented by IVars. Par-
allel structure programmed in the Par monad is well-defined:
we gave an operational semantics in Section 5 in terms of the
Par monad operations themselves.
• The programmer does not need to reason about laziness. In

fact, we have deliberately made the put operation hyperstrict
by default, to head off any confusion that might result from
communicating lazy values through an IVar. Hence, if the

program is written such that each parallel task only reads inputs
from IVars and producing outputs to IVars, the programmer
can reason about the cost of each parallel task and the overall
parallelism that can be achieved.

Nevertheless, the Par monad does not prevent lazy computa-
tions from being shared between threads, and the reckless program-
mer might even be able to capture some (unreliable) parallelism us-
ing only fork and laziness. This is not likely to work well: the Par
monad scheduler cannot detect a thread blocked on a lazy compu-
tation and schedule another thread instead. Sharing lazy computa-
tions between threads in the Par monad is therefore to be avoided,
but unfortunately we lack a way to statically prevent it.

A key benefit of the Strategies approach is that it allows the al-
gorithm to be separated from the parallel coordination, by having
the algorithm produce a lazy data structure that is consumed by
the Strategy. The Par monad does not provide this form of modu-
larity. However, many algorithms do not lend themselves to being
decomposed in this way even with Strategies, because it is often
inconvenient to produce a lazy data structure as output. We believe
that higher-order skeletons (Section 4.2) are a more generally ef-
fective way to provide modular parallelism.

Strategies supports speculation in a strictly stronger sense than
Par. In Strategies, speculative parallelism can be eliminated by the
garbage collector when it is found to be unreferenced, whereas in
Par, all speculative parallelism must be eventually executed.

The scheduler for Strategies is built-in to the runtime system,
whereas the Par monad scheduler is written in Haskell, which
enables us to easily use different scheduling policies.

Strategies includes a parBuffer combinator that can be used
to evaluate elements of a lazy list in parallel. There is nothing di-
rectly equivalent in Par: all the parallelism must be complete when
runPar returns, so we cannot return a lazy list from runPar with
elements evaluated in parallel8. It is possible to program something
equivalent to parBuffer inside the Par monad, however.

Finally, Par and Strategies can be safely combined. The GHC
runtime system will prioritise Par computations over Strategies,
because sparks are only evaluated when there is no other work.

9. Conclusion
We have presented our new parallel programming model, and
demonstrated that it improves on the existing parallel program-
ming models for Haskell in certain key ways, while not sacrificing
performance on existing parallel benchmarks. In due course we
hope that it is possible to go further and show that the extra control
offered by the Par monad allows parallel algorithms to be tuned
more effectively; we encountered one case of this in the pipeline
example of Section 4.3.

It would be premature to claim that par and Strategies are re-
dundant; indeed Strategies has advantages outlined in the previous
section. Still, the difficulties with par indicate that it may be more
appropriate as a mechanism for automatic parallelisation, than as a
programmer-level tool.

References
Arvind, Rishiyur S. Nikhil, and Keshav K. Pingali. I-structures: data

structures for parallel computing. ACM Trans. Program. Lang. Syst.,
11:598–632, October 1989.

Clem Baker-Finch, David J. King, and Phil Trinder. An operational se-
mantics for parallel lazy evaluation. In Proceedings of the fifth ACM
SIGPLAN international conference on Functional programming, ICFP
’00, pages 162–173, 2000.

8 although we believe this may be possible with modifications to runPar

Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E.
Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: an efficient multi-
threaded runtime system. In Proceedings of the fifth ACM SIGPLAN
symposium on Principles and practice of parallel programming, pages
207–216, 1995.

Zoran Budimlic, Michael Burke, Vincent Cave, Kathleen Knobe, Geoff
Lowney, Ryan Newton, Jens Palsberg, David Peixotto, Vivek Sarkar,
Frank Schlimbach, and Sagnak Tasirlar. The CnC programming model.
Journal of Scientific Programming, 2010.

Vincent Cavé, Zoran Budimlić, and Vivek Sarkar. Comparing the usability
of library vs. language approaches to task parallelism. In Evaluation and
Usability of Programming Languages and Tools, PLATEAU ’10, pages
9:1–9:6. ACM, 2010.

M.M.T. Chakravarty, R. Leshchinskiy, S. Peyton Jones, G. Keller, and
S. Marlow. Data Parallel Haskell: a status report. In DAMP’07 —
Workshop on Declarative Aspects of Multicore Programming. ACM
Press, 2007.

Koen Claessen. A poor man’s concurrency monad. Journal of Functional
Programming, 9:313–323, May 1999.

Murray Cole. Algorithmic Skeletons: structured management of parallel
computation. MIT Press, 1989.

Matthew Fluet, Mike Rainey, John Reppy, Adam Shaw, and Yingqi Xiao.
Manticore: a heterogeneous parallel language. In Proceedings of the
2007 workshop on Declarative aspects of multicore programming, pages
37–44, 2007.

M. I. Gordon et al. Exploiting coarse-grained task, data, and pipeline
parallelism in stream programs. In ASPLOS-XII: Proceedings of the
12th international conference on Architectural support for programming
languages and operating systems, pages 151–162, 2006.

John Launchbury and Simon L. Peyton Jones. Lazy functional state threads.
In Proceedings of the ACM SIGPLAN 1994 conference on Programming
language design and implementation, pages 24–35, 1994.

Edward A. Lee and Thomas M. Parks. Readings in hardware/software
co-design. chapter Dataflow process networks, pages 59–85. Kluwer
Academic Publishers, 2002.

Peng Li and Steve Zdancewic. Combining events and threads for scal-
able network services implementation and evaluation of monadic,
application-level concurrency primitives. In Proceedings of the 2007
ACM SIGPLAN conference on Programming language design and im-
plementation, PLDI ’07, pages 189–199, 2007.

Simon Marlow, Patrick Maier, Hans-Wolfgang Loidl, Mustafa K. Aswad,
and Phil Trinder. Seq no more: better strategies for parallel Haskell.
In Proceedings of the third ACM Haskell symposium on Haskell, pages
91–102, 2010.

Derek Gordon Murray and Steven Hand. Scripting the cloud with Sky-
writing. In HotCloud ’10: Proceedings of the Second Workshop on Hot
Topics in Cloud Computing, Berkeley, CA, USA, 2010. USENIX.

Rishiyur Arvind Nikhil. Implicit parallel programming in pH. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2001. ISBN 1-
55860-644-0.

John Reppy, Claudio V. Russo, and Yingqi Xiao. Parallel concurrent ML.
In Proceedings of the 14th ACM SIGPLAN international conference on
Functional programming, pages 257–268, 2009.

Enno Scholz. A concurrency monad based on constructor primitives, or,
being first-class is not enough. Technical report, Universitt Berlin, 1995.

Daniel John Spoonhower. Scheduling deterministric parallel programs.
PhD thesis, Carnegie Mellon University, 2009.

PW Trinder, K Hammond, H-W Loidl, and SL Peyton Jones. Algorithm +
strategy = parallelism. 8:23–60, January 1998.

	Introduction
	The challenge
	The Par Monad
	Derived combinators
	Dataflow
	Safety

	Examples
	A parallel type inferencer
	A divide and conquer skeleton
	Stream Processing Pipelines

	Operational Semantics
	The semantics
	Determinism

	Implementation
	Implementation of the Par monad
	A sequential scheduler
	A parallel work-stealing scheduler
	Correctness

	Optimising the scheduler
	Deforesting Trace
	Alternative scheduling policies
	Optimising nested runPars

	Performance
	Experimental setup
	Overhead
	Scaling

	Related Work
	Comparison with par and Strategies

	Conclusion

