
Modular, Higher-Order Cardinality Analysis
in Theory and Practice

Ilya Sergey
IMDEA Software Institute
ilya.sergey@imdea.org

Dimitrios Vytiniotis Simon Peyton Jones
Microsoft Research

{dimitris,simonpj}@microsoft.com

Abstract
Since the mid ’80s, compiler writers for functional languages (es-
pecially lazy ones) have been writing papers about identifying and
exploiting thunks and lambdas that are used only once. However it
has proved difficult to achieve both power and simplicity in prac-
tice. We describe a new, modular analysis for a higher-order lan-
guage, which is both simple and effective, and present measure-
ments of its use in a full-scale, state of the art optimising compiler.
The analysis finds many single-entry thunks and one-shot lambdas
and enables a number of program optimisations.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; F.3.2 [Logics
and Meanings of Programs]: Semantics of Programming Lan-
guages — Program analysis, Operational semantics

General Terms Languages, Theory, Analysis

Keywords compilers, program optimisation, static analysis, func-
tional programming languages, Haskell, lazy evaluation, thunks,
cardinality analysis, types and effects, operational semantics

1. Introduction
Consider these definitions, written in a purely functional language
like Haskell:

wurble1, wurble2 :: (Int -> Int) -> Int
wurble1 k = sum (map k [1..10])
wurble2 k = 2 * k 0

f1 :: [Int] -> Int
f1 xs = let ys = map costly xs

in wurble (\n. sum (map (+ n) ys))

Here we assume that costly is some function that is expensive to
compute and wurble is either wurble1 or wurble2. If we replace
ys by its definition, we could transform f1 into f2:

f2 xs = wurble (\n. sum (map (+ n) (map costly xs)))

A compiler like GHC can now use short-cut deforestation to fuse
the two maps into one, eliminating the intermediate list altogether,
and offering a substantial performance win (Gill et al. 1993).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
POPL ’14, January 22–24, 2014, San Diego, CA, USA.
Copyright c© 2014 ACM 978-1-4503-2544-8/14/01. . . $15.00.
http://dx.doi.org/10.1145/2535838.2535861

Does this transformation make the program run faster or slower?
It depends on wurble! For example, wurble1 calls its function
argument ten times, so if wurble = wurble1, function f2 would
compute costly ten times for each element of xs; whereas f1
would do so only once. On the other hand if wurble = wurble2,
which calls its argument exactly once, then f2 is just as efficient as
f1, and map/map fusion can improve it further.

The reverse is also true. If the programmer writes f2 in the first
place, the full laziness transformation (Peyton Jones et al. 1996)
will float the sub-expression (map costly xs) out of the \n-
expression, so that it can be shared. That would be good for
wurble1 but bad for wurble2.

What is needed is an analysis that can provide a sound approxima-
tion of how often a function is called – we refer to such an analysis
as a cardinality analysis. An optimising compiler can then use the
results of the analysis to guide its transformations. In this paper we
provide just such an analysis:

• We characterise two different, useful forms of cardinality,
namely (a) how often a function is called, and (b) how often
a thunk is forced in a lazy language (Section 2). Of these, the
former is relevant under both call-by-need and call-by-value,
while the latter is specific to call-by-need.
• We present a backwards analysis that can soundly and effi-

ciently approximate both forms of cardinality for a non-strict,
higher-order language (Section 3). A significant innovation is
our use of call demands to model the usage of a function; this
makes the analysis both powerful and modular.
• We prove that our algorithm is sound; for example if it claims

that a function is called at most once, then it really is (Sec-
tion 4). This proof is not at all straightforward, because it must
take account of sharing — that is the whole point! So we can-
not use standard denotational techniques, but instead must use
an operational semantics that models sharing explicitly.
• We formalise a number of program optimisations enabled by

the results of the cardinality analysis, prove them sound and,
what is more important, improving (Section 5).
• We have implemented our algorithm by extending the Glasgow

Haskell Compiler (GHC), a state of the art optimising compiler
for Haskell. Happily, the implementation builds directly on
GHC’s current strictness and absence analyser, and is both
simple and efficient (Section 6).
• We measured how often the analysis finds called-once func-

tions and used-once thunks (Section 7); and how much this
knowledge improved the performance of real programs (Sec-
tions 7.1–7.2). The analysis proves quite effective in that many
one-shot lambdas and single-entry thunks are detected (in the
range 0-30%, depending on the program). Improvements in per-
formance are modest but consistent (a few percent): programs
already optimised by GHC are a challenging target!

We discuss related work in Section 8. Distinctive features of our
work are (a) the notion of call demands, (b) a full implementation
measured against a state of the art optimising compiler, and (c) the
combination of simplicity with worthwhile performance improve-
ments.

2. What is Cardinality Analysis?
Cardinality analysis answers three inter-related questions, in the
setting of a non-strict, pure functional language like Haskell:
• How many times is a particular, syntactic lambda-expression

called (Section 2.1)?
• Which components of a data structure are never evaluated; that

is, are absent (Section 2.3)?
• How many times is a particular, syntactic thunk evaluated (Sec-

tion 2.4)?

2.1 Call cardinality
We saw in the introduction an example where it is helpful to
know when a function calls its argument at most once. A lambda
that is called at most once is called a one-shot lambda, and they
are extremely common in functional programming: for example a
continuation is usually one-shot. So cardinality analysis can be a
big win when optimising continuation-heavy programs.

Nor is that all. As we saw in the Introduction, inlining under a one-
shot lambda (to transform f1 into f2) allows short-cut deforesta-
tion to fuse two otherwise-separate calls of map. But short-cut de-
forestation itself introduces many calls of of the function build:

build :: (forall b. (a -> b -> b) -> b -> b) -> [a]
build g = g (:) []

You can see that build calls its argument exactly once, and inlin-
ing ys in calls like (build (\cn. ...ys...)) turns out to be
crucial to making short-cut deforestation work in practice. Gill de-
votes a section of his thesis to elucidating this point (Gill 1996,
Chapter 4.3). Gill lacked an analysis for one-shot lambdas, so his
implementation (still extant in GHC today) relies on a gross hack:
he taught GHC’s optimiser to behave specially for build itself, and
a couple of other functions. No user-defined function will have this
good behaviour. Our analysis subsumes the hack, by providing an
analysis that deduces the correct one-shot information for build,
as well as many other functions.

2.2 Currying
In a higher order language with curried functions, we need to be
careful about the details. For example, consider

f3 a = wurble a (\x.let t = costly x in \y. t+y)

wurble1 a g = g 2 a + g 3 a
wurble2 a g = sum (map (g a) [1..1000])

If wurble was wurble1, then in f3 it would be best to inline t at
its use site, thus:

f4 a = wurble1 a (\x.\y. costly x + y)

The transformed f4 is much better than f3: it avoids allocating a
thunk for t, and avoids allocating a function closure for the \y.
But if f3 called wurble2 instead, such a transformation would be
disastrous. Why? Because wurble2 applies its argument g to one
argument a, and the function thus computed is applied to each of
1000 integers. In f3 we will compute (costly a) once, but f4
will compute it 1000 times, which is arbitrarily bad.

So our analysis of wurble2 must be able to report “wurble2’s
argument g is called1 once (applied to one argument), and the

1 We will always use “called” to mean “applied to one argument”.

result is called many times”. We formalise this by giving a usage
signature to wurble, like this:

wurble1 :: U → Cω(C 1(U))→ •
wurble2 :: U → C 1(Cω(U))→ •

The notation Cω(C 1(U)) is a usage demand: it describes how a
(function) value is used. The demand type U → Cω(C 1(U))→ •
describes how a function uses its arguments, therefore it gives a
usage demand for each argument. (The “•” has no significance; we
are just used to seeing something after the final arrow!) Informally,
the C 1(d) means “this argument is called once (applied to one
argument), and the result is used with usage d”, whereas Cω(d)
means “this argument may be called many times, with each result
used with usage d”. The U means “is used in some unknown way
(or even not used at all)”. Note that wurble1’s second argument
usage is Cω(C 1(U)), not Cω(Cω(U)); that is, in all cases the
result of applying g to one argument is then called only once.

2.3 Absence
Consider this function

f x = case x of (p,q) -> <cbody>

A strictness analyser can see that f is strict in x, and so can use
call-by-value. Moreover, rather than allocate a pair that is passed to
f, which immediately takes it apart, GHC uses a worker/wrapper
transformation to pass the pieces separately, thus:

f x = case x of (p,q) -> fw p q
fw p q = <cbody>

Now f (the “wrapper”) is small, and can be inlined at f’s call
sites, often eliminating the allocation of the pair; meanwhile fw
(the “worker”) does the actual work. Strictness analysis, and the
worker/wrapper transform to exploit its results, are hugely impor-
tant to generating efficient code for lazy programs (Peyton Jones
and Partain 1994; Peyton Jones and Santos 1998).

In general, f’s right-hand side often does not have a syntacti-
cally visible case expression. For example, what if f simply
called another function g that was strict in x? Fortunately the
worker/wrapper transform is easy to generalise. Suppose the right
hand side of f was just <fbody>. Then we would transform to

f x = case x of (p,q) -> fw p q
fw p q = let x = (p,q) in <fbody>

Now we hope that the binding for x will cancel with case expres-
sions in <fbody>, and indeed it usually proves to be so (Peyton
Jones and Santos 1998).

But what if <fbody> did not use q at all? Then it would be stupid
to pass q to fw. We would rather transform to:

f x = case x of (p,q) -> fw p
fw p = let x = (p, error "urk") in <fbody>

This turns out to be very important in practice. Programmers sel-
dom write functions with wholly-unused arguments, but they fre-
quently write functions that use only part of their argument, and ig-
noring this point leads to large numbers of unused arguments being
passed around in the “optimised” program after the worker-wrapper
transformation. Absence analysis has therefore been part of GHC
since its earliest days (Peyton Jones and Partain 1994), but it has
never been formalised. In the framework of this paper, we give f a
usage signature like this:

f :: U (U ,A)→ •
The U (U ,A) indicates that the argument is a product type; that is,
a data type with just one constructor. The A (for “absent”) indicates
that f discards the second component of the product.

2.4 Thunk cardinality
Consider these definitions

f :: Int -> Int -> Int
f x c = if x > 0 then c + 1 else

if x == 0 then 0 else c - 1

g y = f y (costly y)

Since f is not strict in c, g must build a thunk for (costly y) to
pass to f. In call-by-need evaluation, thunks are memoised. That
is, when a thunk is evaluated at run-time, it is overwritten with the
value so that if it is evaluated a second time the already-computed
value can be returned immediately. But in this case we can see
that f never evaluates its second argument more than once, so
the memoisation step is entirely wasted. We call these single-entry
thunks.

Memoisation is not expensive, but it is certainly not free. Opera-
tionally, a pointer to the thunk must be pushed on the stack when
evaluation starts, it must be black-holed to avoid space leaks (Jones
1992), and the update involves a memory write. If cardinality anal-
ysis can identify single-entry thunks, as well as one-shot lambdas,
that would be a Good Thing. And so it can: we give f the usage
signature:

f :: ω∗U → 1∗U → •
The “ω∗” modifier says that f may evaluate its first argument more
than once, while the “1∗” says that it evaluates its second argument
at most once.

2.5 Call vs evaluation
For functions, there is a difference between being evaluated once
and called once, because of Haskell’s seq function. For example:

f1 g = g ‘seq‘ 1 -- f1 :: 1∗U → •
f2 g = g ‘seq‘ g 2 -- f2 :: ω∗C 1(U)→ •
f3 g = g 3 -- f3 :: 1∗C 1(U)→ •

The function seq evaluates its first argument (to head-normal form)
and returns its second argument. If its first argument is a function,
the function is evaluated to a lambda, but not called. Notice that
f2’s usage type says that g is evaluated more than once, but applied
only once. For example consider the call

f (\x. x + y)

How many times is y evaluated? For f equal to f1 the answer is
zero; for f2 and f3 it is one.

3. Formalising Cardinality Analysis
We now present our analysis in detail. The syntax of the language
we analyse is given in Figure 1. It is quite conventional: just lambda
calculus with pairs and (non-recursive) let-expressions. Constants
κ include literals and primitive functions over literals, as well as
Haskell’s built-in seq. We use A-normal form (Sabry and Felleisen
1992) so that the issues concerning thunks show up only for let
and not also for function arguments.

3.1 Usage demands
Our cardinality analysis is a backwards analysis over an abstract
domain of usage demands. As with any such analysis, the abstract
domain embodies a balance between the cost of the analysis and
its precision. Our particular choices are expressed in the syntax of
usage demands, given in Figure 1. A usage demand d is one of the
following:

• U (d†1 , d
†
2) applies to pairs. The pair itself is evaluated and its

first component is used as described by d†1 and its second by d†2 .

Expressions and values
e ::= x | v | e x | let x = e1 in e2

| case e1 of (x1, x2)→ e2
v ::= κ | λx.e | (x1, x2)

Annotated expressions and values
e ::= x | v | e x | let x

m
= e1 in e2

| case e1 of (x1, x2)→ e2
v ::= κ | λmx.e | (x1, x2)

Usage demands and multi-demands
d ::= C n(d) | U (d†1 , d

†
2) | U | HU

d† ::= A | n∗d
n ::= 1 | ω
m ::= 0 | 1 | ω

Non-syntactic demand equalities
Cω(U) ≡ U

U (ω∗U , ω∗U) ≡ U
U (A,A) ≡ HU

Usage types
τ ::= • | d† → τ

Usage type expansion
d† → τ � d† → τ

• � ω∗U → •
Free-variable usage environments (fv-usage)

ϕ ::= (x :d†), ϕ | ε
Auxiliary notation on environments

ϕ(x) = d† when (x :d†) ∈ ϕ
A otherwise

Usage signatures and signature environments
ρ ::= 〈k ; τ ; ϕ〉 k ∈ Z>0

P ::= (x :ρ),P | ε

transform(〈k ; τ ; ϕ〉, d)
= 〈τ ; ϕ〉 if d v C 1(. . . k -fold . . .C 1(U))
= 〈ω∗τ ; ω∗ϕ〉 otherwise

Figure 1: Syntax of terms, values, usage types, and environments

• C n(d) applies to functions. The function is called at most n
times, and on each call the result is used as described by d .
Call demands are, to the best of our knowledge, new.
• U , or “used”, indicating no information; the demand can use

the value in an arbitrary way.
• HU , or “head-used”, is a special case; it is the demand that seq

places on its first argument: seq ::HU → U → •.
A usage demand d always uses the root of the value exactly once;
it cannot express absence or multiple evaluation. That is done by
d†, which is either A (absent), or n ∗d indicating that the value is
used at most n times in a way described by d . In both C n(d) and
n∗d , the multiplicity n is either 1 or ω (meaning “many”). Notice
that a call demand C n(d) has a d inside it, not a d†: if a function
is called, its body is evaluated exactly once. This is different from
pairs. For example, if we have

let x = (e1, e2) in fst x + fst x

then e1 is evaluated twice.

Both U and HU come with some non-syntactic equalities, denoted
by ≡ in Figure 1 and necessary for the proof of well-typedness
(Section 4). For example, U is equivalent to a pair demand whose
components are used many times, or a many-call-demand where
the result is used in an arbitrary way. Similarly, for pairs HU is
equivalent to U (A,A), while for functions HU is equivalent to
C 0(A), if we had such a thing. In the rest of the paper all definitions

µ(d†) = m

µ(A) = 0 µ(n∗d) = n

d†1 & d†2 = d†3 d†1 t d†2 = d†3

A& d† = d†

d†&A = d†

n1∗d1 &n2∗d2 = ω∗(d1 & d2)

A t d† = d†

d† tA = d†

n1∗d1 t n2∗d2 = (n1 t n2)∗(d1 t d2)

d1 & d2 = d3 d1 t d2 = d3

d &U = U
U & d = U

d &HU = d
HU & d = d

Cn1 (d1) &Cn2 (d2) = Cω(d1 t d2)

U (d†1 , d
†
2) &U (d†3 , d

†
4) = U (d†1 & d†3 , d

†
2 & d†4)

d tU = U
U t d = U

d tHU = d
HU t d = d

Cn1 (d1) t Cn2 (d2) = Cn1tn2 (d1 t d2)

U (d†1 , d
†
2) tU (d†3 , d

†
4) = U (d†1 t d†3 , d

†
2 t d†4)

ϕ1 &ϕ2 = ϕ3 ϕ1 t ϕ2 = ϕ3

ϕ1 &ϕ2 = {(x :d†1 & d†2) | ϕi (x) = d†i }
ϕ1 t ϕ2 = {(x :d†1 t d†2) | ϕi (x) = d†i }

τ1 t τ2 = τ3

(d†1 → τ1) t (d†1 → τ2) = (d†1 t d†2)→ (τ1 t τ2)
τ t • = •

〈τ1 ; ϕ1〉 t 〈τ2 ; ϕ2〉 = 〈τ3 ; ϕ3〉

〈τ1 ; ϕ1〉 t 〈τ2 ; ϕ2〉 = 〈τ1 t τ2 ; ϕ1 t ϕ2〉

n∗d†1 = d†2 n∗τ1 = τ2 n∗ϕ1 = ϕ2

1∗d† = d†

ω∗d† = d†& d†

n∗• = •
n∗(d† → τ) = (n∗d†)→ (n∗τ)

n∗ϕ = {x : n∗ϕ(x) | x ∈ dom(ϕ)}

n1 t n2 = n3

1 t 1 = 1 ω t n = ω n t ω = ω

a v b

a v b ⇔ (a t b) = b

Figure 2: Demands and demand operations

P Ì e ↓ d ⇒ 〈τ ; ϕ〉 e

(x : ρ) ∈ P 〈τ ; ϕ〉 = transform(ρ, d)
VARDN

P Ì x ↓ d ⇒ 〈τ ; ϕ& (x :1∗d)〉 x

x /∈ dom(P)
VARUP

P Ì x ↓ d ⇒ 〈• ; (x :1∗d)〉 x

P Ì e ↓ de ⇒ 〈τ ; ϕ〉 e
LAM

P Ìλx.e ↓ Cn (de)⇒ 〈ϕ(x)→ τ ; n∗(ϕ\x)〉 λnx.e

P Ìλx.e ↓ Cω(U)⇒ 〈τ ; ϕ〉 e′

LAMU
P Ìλx.e ↓ U ⇒ 〈τ ; ϕ〉 e′

LAMHU
P Ìλx.e ↓ HU ⇒ 〈τ ; ε〉 λ1x.e

P Ì e1 ↓ C 1(d)⇒ 〈d†2→τr ; ϕ1〉 e1 P Ì∗y ↓ d†2 ⇒ ϕ2

APPA
P Ì e1 y ↓ d ⇒ 〈τr ; ϕ1 &ϕ2〉 e1 y

P Ì e1 ↓ C 1(d)⇒ 〈• ; ϕ1〉 e1 P Ì∗y ↓ ω∗U ⇒ ϕ2
APPB

P Ì e1 y ↓ d ⇒ 〈• ; ϕ1 &ϕ2〉 e1 y

P Ì∗xi ↓ d†i ⇒ ϕi i ∈ 1, 2
PAIR

P Ì (x1, x2) ↓ U (d†1 , d
†
2)⇒ 〈• ; ϕ1 &ϕ2〉 (x1, x2)

P Ì (x1, x2) ↓ U (ω∗U , ω∗U)⇒ 〈• ; ϕ〉 e
PAIRU

P Ì (x1, x2) ↓ U ⇒ 〈• ; ϕ〉 e

PAIRHU
P Ì (x1, x2) ↓ HU ⇒ 〈• ; ε〉 (x1, x2)

P Ì er ↓ d ⇒ 〈τ ; ϕr 〉 er
P Ì es ↓ U (ϕr (x), ϕr (y))⇒ 〈 ; ϕs〉 es CASE

P Ì case es of (x , y)→ er ↓ d ⇒ 〈τ ; ϕr\x ,y &ϕs〉
 case es of (x , y)→ er

P Ì∗x ↓ d† ⇒ ϕ

ABS
P Ì∗x ↓ A⇒ ε

P Ì x ↓ d ⇒ 〈τ ; ϕ〉 x
MULTI

P Ì∗x ↓ n∗d ⇒ n∗ϕ

Figure 3: Algorithmic cardinality analysis specification, part 1.

and metatheory are modulo-≡ (checking that all our definitions do
respect ≡ is routine).

3.2 Usage analysis

The analysis itself is shown in Figures 3 and 4. The main judgement
form is written thus

P Ì e ↓ d ⇒ 〈τ ; ϕ〉 e′

which should be read thus: in signature environment P , and under
usage demand d , the term e places demands 〈τ ; ϕ〉 on its compo-
nents, and elaborates to an annotated term e′. The syntax of each
of these components is given in Figure 1, and their roles in the
judgement are the following:

• The signature environment P maps some of free variables of
e to their usage signatures, ρ (Section 3.5). Any free variables
outside the domain of P have an uninformative signature.
• The usage demand, d , describes the degree to which e is eval-

uated, including how many times its sub-components are eval-
uated or called.
• Using P , the judgement transforms the incoming demand d into

the demands 〈τ ; ϕ〉 that e places on its arguments and free
variables respectively:

The usage that e places on its argument is given by τ , which
gives a demand d† for each argument.

The usage that e places on its free variables is given by its
free-variable usage (fv-usage), ϕ, which is simply a finite
mapping from variables to usage demands.

• We will discuss the elaborated expressions e′ in Section 3.7.

For example, consider the expression

e = λx . case x of (p, q)→ (p, f True)

Suppose we place demand C 1(U) on e , so that e is called, just
once. What demand does it then place on its arguments and free
variables?

ε Ì e ↓ C 1(U)⇒ 〈1∗U (ω∗U ,A)→ • ; {f 7→ 1∗C 1(U)}〉
That is, e will use its argument once, its argument’s first component
perhaps many times, but will ignore its arguments second compo-
nent (the A in the usage type). Moreover e will call f just once.

In short, we think of the analysis as describing a demand trans-
former, transforming a demand on the result of e into demands on
its arguments and free variables.

3.3 Pairs and case expressions
With these definitions in mind, we can look at some of the analysis
rules in Figure 3. Rule PAIR explains how to analyse a pair under
a demand U (d†1 , d

†
2). We simply analyse the two components,

under d†1 or d†2 respectively, and combine the results with “&”. The
auxiliary judgement Ì∗ (Figure 3) deals with the multiplicity of
the argument demands d†i .

The “&” operator, pronounced “both”, is defined in Figure 2, and
combines the free-variable usages ϕ1 and ϕ2. For the most part the
definition is straightforward, but there is a very important wrinkle
for call demands:

C n1(d1) &C n2(d2) = Cω(d1 t d2)

The “ω” part is easy, since n1 and n2 are both at least 1. But note
the switch from & to the least upper bound t! To see why, consider
what demand this expression places on f:

f 1 2 + f 3 4

Each call gives a usage demand for f of 1∗C 1(C 1(U)), and if we
use & to combine that demand with itself we get ω∗Cω(C 1(U)).
The inner “1” is a consequence of the switch to t, and rightly
expresses the fact that no partial application of f is called more
than once.

The other rules for pairs PAIRU, PAIRHU, and case expressions
CASE should now be readily comprehensible (ϕr\x ,y stands for
the removal of {x , y} from the domain of ϕr .).

3.4 Lambda and application
Rule LAM for lambdas expects the incoming demand to be a call
demand C n(de). Then it analyses the body e with demand de to
give 〈τ ; ϕ〉. If n = 1 the lambda is called at most once, so
we can return 〈τ ; ϕ〉; but if n = ω the lambda may be called

more than once, and each call will place a new demand on the
free variables. The n∗ϕ operation on the bottom line accounts for
this multiplicity, and is defined in Figure 2. Rule LAMU handles
an incoming demand of U by treating it just like Cω(U), while
LAMHU deals with the head-used demand HU , where the lambda
is not even called so we do not need to analyse the body, and e
is obtained from e by adding arbitrary annotations. Similarly the
return type τ can be any type, since the λ-abstraction is not going
to be applied, but is only head-used. Dually, given an application
(e y), rule APPA analyses e with demand C 1(d), reflecting that
e is here called once. This returns the demand 〈d†2 → τ2 ; ϕ1〉
on the context. Then we can analyse the argument under demand
d†2 , using Ì∗, yielding ϕ2; and combine ϕ1 and ϕ2. Rule APPB
applies when analysing e1 yields the less-informative usage type •.

3.5 Usage signatures
Suppose we have the term

let f = \x.\y. x True in f p q

We would like to determine the correct demands on p and q, namely
1∗C 1(U) and A respectively. The gold standard would be to analyse
f’s right-hand side at every call site; that is, to behave as if f were
inlined at each call site. But that is not very modular; with deeply
nested function definitions, it can be exponentially expensive to
analyse each function body afresh at each call site; and it does not
work at all for recursive functions. Instead, we want to analyse f,
summarise its behaviour, and then use that summary at each call
site. This summary is called f’s usage signature. Remember that
the main judgement describes how a term transforms a demand for
the value into demands on its context. So a usage signature must be
a (conservative approximation of this) demand transformer.

There are many ways in which one might approximate f’s demand
transformer, but rule LETDN (Figure 4) uses a particularly simple
one:
• Look at f’s right hand side λy1 . . . λyk. e1, where e1 is not a

lambda-expression.
• Analyse e1 in demand U , giving 〈τ1 ; ϕ1〉.
• Record the triple 〈k ;ϕ(y)→ τ1 ;ϕ1\y〉 as f’s usage signature

in the environment P when analysing the body of the let.

Now, at a call site of f, rule VARDN calls transform(ρ, d) to use
the recorded usage signature ρ to transform the demand d for this
occurrence of f.

What does transform(〈k ; τ ; ϕ〉, d) do (Figure 1)? If the demand
d on f is stronger than C 1(. . .C 1(U)), where the call demands
are nested k deep, we can safely unleash 〈τ ; ϕ〉 at the call site. If
not, we simply treat the function as if it were called many times, by
unleashing 〈ω∗τ ; ω∗ϕ〉, multiplying both the demand type τ and
the usage environment ϕ (Figure 2). Rule LETDNABS handles the
case when the variable is not used in the body.

3.6 Thunks
The LETDN rule unleashes (an approximation to) the demands of
the right-hand side at each usage site. This is good if the right hand
side is a lambda, but not good otherwise, for two reasons. Consider

let x = y + 1 in x + x

How many times is y demanded? Just once! The thunk x is de-
manded twice, but x’s thunk is memoised, so the y+1 is evaluated
only once. So it is wrong to unleash a demand on y at each of x’s
occurrence sites. Contrast the situation where x is a function

let x = \v. y + v in x 42 + x 239

Here y really is demanded twice, and LETDN does that. Another
reason that LETDN would be sub-optimal for thunks is shown here:

P Ì e1 ↓ U ⇒ 〈τ1 ; ϕ1〉 e1
τf = ϕ1(y)→ τ1

P , f :〈k ; τf ; ϕ1\y 〉 Ì e2 ↓ d ⇒ 〈τ ; ϕ2〉 e2
ϕ2(f) v n ∗ Cn1 (. . . (Cnk (. . .) . . .))

LETDN
P Ì let f = λy1 . . . yk.e1 in e2 ↓ d ⇒ 〈τ ; (ϕ2\f)〉

 let f
n
= λn1y1 . . . λnk yk.e1 in e2

P Ì e1 ↓ U ⇒ 〈τ1 ; ϕ1〉 e1
τf = ϕ1(y)→ τ1 ϕ2(f) = A

P , f :〈k ; τf ; ϕ1\y 〉 Ì e2 ↓ d ⇒ 〈τ ; ϕ2〉 e2 LETDNABS
P Ì let f = λy1 . . . yk.e1 in e2 ↓ d ⇒ 〈τ ; (ϕ2\f)〉

 let f
0
= λ1y1 . . . λ1yk.e1 in e2

P Ì e2 ↓ d ⇒ 〈τ ; ϕ2〉 e2
n∗dx = ϕ2(x) P Ì e1 ↓ dx ⇒ 〈 ; ϕ1〉 e1 LETUP
P Ì let x = e1 in e2 ↓ d ⇒ 〈τ ; ϕ1 & (ϕ2\x)〉

 let x
n
= e1 in e2

P Ì e2 ↓ d ⇒ 〈τ ; ϕ2〉 e2 A = ϕ2(x)
LETUPABS

P Ì let x = e1 in e2 ↓ d ⇒ 〈τ ; ϕ2\x 〉
 let x

0
= e1 in e2

Figure 4: Algorithmic cardinality analysis specification, part 2 (let-rules).

let x = (p,q) in case x of (a,b) -> a

The body of the let places usage demand 1 ∗ U (U ,A) on x, and
if we analysed x’s right-hand side in that demand we would see
that q was unused. So we get more information if we wait until we
know the aggregated demand on x, and use it to analyse its right-
hand side.

This idea is embodied in the LETUP rule, used if LETDN does
not apply (i.e., the right hand side is not a lambda). Rule LETUP
first analyses the body e2 to get the demand ϕ2(x) on x ; then
analyses the right-hand side e1 using that demand. Notice that
the multiplicity n of the demand that e2 places on x is ignored;
that is because the thunk is memoised. Otherwise the rule is quite
straightforward. Rule LETUPABS deals with the case when the
bound variable is unused in the body.

3.7 Elaboration

How are we to take advantage of our analysis? We do so by elabo-
rating the term during analysis, with annotations of two kinds (see
the syntax of annotated expressions in Figure 1):

• let-bindings carry an annotation m ∈ 0, 1, ω, to indicate how
often the let binding is evaluated.
• Lambdas λmx.e carry an annotation m ∈ 0, 1, ω, to indicate

how often the lambda is called. 0 serves as an indicator that the
lambda is not supposed to be called at all.

Figure 3 shows the elaborated terms after the “ ”. The operational
semantics (Section 4) gets stuck if we use a thunk or lambda more
often than its claimed usage; and the optimising transformations
(Section 5) are guided by the same annotations.

3.8 A more realistic language

The language of Figure 1 is stripped to its bare essentials. Our
implementation handles all of Haskell, or rather the Core language
to which Haskell is translated by GHC. In particular:

• Usage signatures for constants κ are predefined.
• All data types with a single constructor (i.e., simple products)

are treated analogously to pairs in the analysis.
• Recursive data types with more than one constructor and, cor-

respondingly, case expressions with more than one alterna-
tive (and hence also conditional statements) are supported. The
analysis is more approximate for such types: only usage de-
mands that apply to such types are U and HU not U (d†1 , d

†
2).

Furthermore, case expressions with multiple branches give rise
to a least upper bound t combination of usage types, as usual.
• Recursive functions and let-bindings are handled, using the

standard kind of fixpoint iteration over a finite-height domain.

4. Soundness of the Analysis
We establish the soundness of our analysis in a sequence of steps.
Soundness means that if the analysis claims that, say, a lambda is
one-shot, then that lambda is only called once; and similarly for
single-entry thunks. We formalise this property as follows:
• We present an operational semantics, written ↪−→, for the an-

notated language that counts how many times thunks have been
evaluated and λ-abstractions have been applied. The semantics
simply gets stuck when these counters reach zero, which will
happen only if the claims of the analysis are false (Section 4.1).
• Our goal is to prove that if an expression e is elaborated to e

by the analysis, then e in the instrumented semantics behaves
identically to e in a standard un-instrumented call-by-need se-
mantics (Section 4.3). For reasons of space we omit the rules
for the un-instrumented call-by-need semantics which are com-
pletely standard (Sestoft 1997), and are identical to the rules of
Figure 5 if one simply ignores all the annotations and the mul-
tiplicity side-conditions. We refer to this semantics as −→.
• We prove soundness by giving a type system for the annotated

terms, and showing that for well-typed terms, the instrumented
semantics ↪−→ simulates −→, in a type-preserving way.

4.1 Counting operational semantics
We present a simple counting operational semantics for annotated
terms in Figure 5. This is a standard semantics for call-by-need,
except for the fact that multiplicity annotations decorate the terms,
stacks, and heaps. The syntax for heaps, denoted with H, contains
two forms of bindings, one for expressions [x

m7→ Exp(e)] and one
for already evaluated expressions [x

m7→ Val(v)]. The multiplicity
m ∈ {0, 1, ω} denotes how many more times are we allowed to
de-reference this particular binding. The stacks, denoted with S,
are just lists of frames. The syntax for frames includes application
frames (• y), which store a reference y to an argument, case-
frames ((x , y) → e), which account for the execution of a case-
branch, and update frames of the form #(x ,m), which take care
of updating the heap when the active expression reduces to a value.
The first component of an update frame is a name of a variable to
be updated, and the second one is its thunk cardinality.

Rule ELET allocates a new binding on the heap. The rules EBETA
fires only if the cardinality annotation is non-zero; it de-references
an Exp(e) binding and emits an update frame. Rules EBETA,
EAPP, EPAIR and EPRED are standard. Notice that EBETA also
fires only if the λ’s multiplicity m is non-zero. Note that the analy-
sis does not assign zero-annotations to lambdas, but we need them
for the soundness result.

Rule ELKPV de-references a binding for an already-evaluated ex-
pression [x

m7→ Val(v)], and in a standard semantics would return
v leaving the heap unaffected. In our counting semantics however,

Heaps
H ::= ε

| [x
m7→ Exp(e)],H

| [x
m7→ Val(v)],H

Stacks
S ::= ε | (• y) : S

| #(x ,m) : S
| ((x , y)→ e) : S

Auxiliary definitions
split(λmx . e) = (λm1x.e, λm2x.e)

where m1+m2=m
split(v) = (v, v) otherwise

〈H0 ; e0 ; S0〉 ↪−→ 〈H1 ; e1 ; S1〉

ELET 〈H ; let x
m
= e1 in e2 ; S〉 ↪−→ 〈H, [x m7→ Exp(e1)] ; e2 ; S〉

ELKPE 〈H, [x m7→ Exp(e)] ; x ; S〉 ↪−→ 〈H ; e ; #(x ,m) : S〉 if m ≥ 1

ELKPV 〈H, [x m+17→ Val(v)] ; x ; S〉 ↪−→ 〈H, [x m7→ Val(v1)] ; v2 ; S〉
s.t. split(v)=(v1, v2)

EUPD 〈H ; v ; #(x ,m + 1) : S〉 ↪−→ 〈H, [x m7→ Val(v1)] ; v2 ; S〉
s.t. split(v)=(v1, v2)

EBETA 〈H ; λmx.e ; (• y) : S〉 ↪−→ 〈H ; e[y/x] ; S〉 if m ≥ 1

EAPP 〈H ; e y ; S〉 ↪−→ 〈H ; e ; (• y) : S〉
EPAIR 〈H ; case es of (x , y)→ er ; S〉 ↪−→ 〈H ; es ; ((x , y)→ er) : S〉
EPRED 〈H ; (x1, x2) ; ((y1, y2)→ er) : S〉 ↪−→ 〈H ; er [x1/y1, x2/y2] ; S〉

Figure 5: A non-deterministic counting operational semantics. The guards for counting restrictions are highlighted by grey boxes.

we need to account for two things. First, we decrease the multiplic-
ity annotation on the binding (from m + 1 to m in rule ELKPV).
Moreover, the value v can in the future be used both directly (since
it is now the active expression), and indirectly through a future
de-reference of x . We express this by non-deterministically split-
ting the value v, returning two values v1 and v2 whose top-level
λ-annotations sum up to the original (see split in Figure 5). Our
proof needs only ensure that among the non-deterministic choices
there exists a choice that simulates −→. Rule EUPD is similar ex-
cept that the heap gets updated by an update frame.

4.2 Checking well-annotated terms

We would like to prove that if we analyse a term e , producing an
annotated term e, then if e executes for a number of steps in the
standard semantics −→, then execution of e does not get stuck in
the instrumented semantics ↪−→ of Figure 5. To do this we need
to prove preservation and progress lemmas, showing that each step
takes a well-annotated term to a well-annotated term, and that well-
annotated terms do not get stuck.

Figure 6 says what it means to be “well-annotated”, using notation
from Figures 1 and 2. The rules look very similar to the analysis
rules of Figures 3-4, except that we check an annotated term,
rather than producing one. For example, rule TLAM checks that
the annotation on a λ-abstraction (m) is at least as large as the
call cardinality we press on this λ-abstraction (n). As evaluation
progresses the situation clarifies, so the annotations may become
more conservative than the checker requires, but that is fine.

A more substantial difference is that instead of holding concrete
demand transformers ρ as the analysis does (Figure 1), the environ-
ment P holds generalised demand transformers %. A generalised
demand transformer is simply a monotone function from a demand
to a pair 〈τ ; ϕ〉 of a type and a usage environment (Figure 6). In
the TLETDN rule, we clairvoyantly choose any such transformer %,
which is sound for the RHS expression – denoted with P `t e1 : %.
We still check that that e1 can be type checked with some demand
d1 that comes from type-checking the body of the let (ϕ2(x)). In
rule TVARDN we simply apply the transformer % to get a type and
fv-usage environment.

Rule WFTRANS imposes two conditions necessary for the sound-
ness of the transformer. First, it has to be a monotone function on
the demand argument. Second, it has to soundly approximate any
type and usage environment that we can attribute to the expression.
One can easily confirm that the intensional representation used in
the analysis satisfies both properties for the λ-expressions bound
with LETDN.

Because these rules conjure up functions % out of thin air, and
have universally quantified premises (in WFTRANS), they do not
constitute an algorithm. But for the very same reasons they are
convenient to reason about in the metatheory, and that is the only
reason we need them. In effect, Figure 6 constitutes an elaborate
invariant for the operational semantics.

4.3 Soundness of the analysis
The first result is almost trivial.

Lemma 4.1 (Analysis produces well-typed terms). If P Ì e ↓
d ⇒ 〈τ ; ϕ〉 e then P ` e ↓ d ⇒ 〈τ ; ϕ〉.
We would next like to show that well-typed terms do not get stuck.
To present the main result we need some notation first.

Definition 4.1 (Unannotated heaps and stacks and erasure). We use
H and S to refer to an un-instrumented heap and stack respectively.
We use e\ = e to mean that the erasure of all annotations from e is
e , and we define S\ = S and H\ = H analogously.

We can show that annotated terms run for at least as many steps as
their erasures would run in the un-instrumented semantics:

Theorem 4.2 (Safety for annotated terms). If ε ` e1 ↓ HU ⇒
〈τ ; ε〉 and e1 = e\1 and 〈ε ; e1 ; ε〉 −→k 〈H ; e2 ; S〉 then there
exist H, e2 and S, such that 〈ε ; e1 ; ε〉↪−→k 〈H ; e2 ; S〉, H\ = H ,
S\ = S and e\2 = e2.

Unsurprisingly, to prove this theorem we need to generalise the
statement to talk about a single-step reduction of a configuration
with arbitrary (but well-annotated) heap and stack. Hence we intro-
duce a well-annotated configuration relation, denoted ` 〈H ; e ;S〉,
that extends the well-annotation invariant of Figure 6 to configu-
rations. For reasons of space, we only give the statement of the
theorem below, and defer the details of the well-annotation relation
to the extended version of the paper (Sergey et al. 2013).

Lemma 4.3 (Single-step safety). Assume that ` 〈H1 ; e1 ; S1〉. If
〈H\

1 ; e\1 ; S\
1〉 −→ 〈H2 ; e2 ; S2〉 in the un-instrumented semantics,

then there exist H2, e2 and S2, such that 〈H1 ; e1 ; S1〉 ↪−→
〈H2 ; e2 ; S2〉, H\

2 = H2, e\2 = e and S\
2 = S2, and moreover

` 〈H2 ; e2 ; S2〉.
Notice that the counting semantics is non-deterministic, so Lemma 4.3
simply ensures that there exists a possible transition in the count-
ing semantics that always results in a well-typed configuration.
Lemma 4.3 crucially relies on yet another property, below.

P ::= ε | P , (x :%) % ∈ d 7→ 〈τ ; ϕ〉

P ` e ↓ d ⇒ 〈τ ; ϕ〉

(x : %) ∈ P 〈τ ; ϕ〉 = %(d)
TVARDN

P ` x ↓ d ⇒ 〈τ ; ϕ& (x :1∗d)〉

x /∈ dom(P)
TVARUP

P ` x ↓ d ⇒ 〈• ; (x :1∗d)〉

d v Cn (de) m ≥ n P ` e ↓ de ⇒ 〈τ ; ϕ〉
TLAM

P ` λmx.e ↓ d ⇒ 〈ϕ(x)→ τ ; n∗(ϕ\x)〉

d v HU
TLAMHU

P ` λmx.e ↓ d ⇒ 〈τ ; ε〉

P ` e1 ↓ C 1(d)⇒ 〈τ1 ; ϕ1〉
τ1 � d†2 → τr P ∗̀ y ↓ d†2 ⇒ ϕ2

TAPP
P ` e1 y ↓ d ⇒ 〈τr ; ϕ1 &ϕ2〉

d v U (d†1 , d
†
2) P ∗̀ x1 ↓ d†1 ⇒ ϕ1 P ∗̀ x2 ↓ d†2 ⇒ ϕ2

TPAIR
P ` (x1, x2) ↓ d ⇒ 〈• ; ϕ1 &ϕ2〉

P ` er ↓ d ⇒ 〈τ ; ϕr 〉
P ` es ↓ U (ϕr (x), ϕr (y))⇒ 〈 ; ϕs〉 TCASE

P ` case es of (x , y)→ er ↓ d ⇒ 〈τ ; ϕr\x ,y &ϕs〉

m ≥ µ(ϕ2(x)) ϕ2(x) v n ∗ d1
P ` e1 ↓ d1 ⇒ 〈τ1 ; ϕ1〉 P `t e1 : %

P , (x :%) ` e2 ↓ d ⇒ 〈τ ; ϕ2〉 TLETDN
P ` let x

m
= e1 in e2 ↓ d ⇒ 〈τ ; (ϕ2\x)〉

m ≥ n P ` e2 ↓ d ⇒ 〈τ ; ϕ2〉
n∗dx = ϕ2(x) P ` e1 ↓ dx ⇒ 〈 ; ϕ1〉 TLETUP

P ` let x
m
= e1 in e2 ↓ d ⇒ 〈τ ; ϕ1 & (ϕ2\x)〉

P ` e2 ↓ d ⇒ 〈τ ; ϕ2〉 A = ϕ2(x)
TLETUPABS

P ` let x
m
= e1 in e2 ↓ d ⇒ 〈τ ; ϕ1 & (ϕ2\x)〉

P ∗̀ x ↓ d† ⇒ ϕ

TABS
P ∗̀ x ↓ A⇒ ε

P ` x ↓ d ⇒ 〈τ ; ϕ〉
TMULTI

P ∗̀ x ↓ n∗d ⇒ n∗ϕ

P `t e : %

∀d1, d2.d1 v d2 =⇒ %(d1) v %(d2)
∀d , ϕ, τ.(P ` e ↓ d ⇒ 〈τ ; ϕ〉) =⇒ 〈τ ; ϕ〉 v %(d)

WFTRANS
P `t e : %

Figure 6: Well-annotated terms

Lemma 4.4 (Value demand splitting). If P ` v ↓ (d1 & d2) ⇒
〈τ ; ϕ〉 then there exists a split split(v) = (v1, v2) such that:
P ` v1 ↓ d1 ⇒ 〈τ1 ; ϕ1〉 and P ` v2 ↓ d2 ⇒ 〈τ2 ; ϕ2〉 and
moreover τ1 v τ , τ2 v τ and ϕ1 &ϕ2 v ϕ.

Why is Lemma 4.4 important? Consider the following

let x = v in case x 3 of (y,z) -> x 4

HSIM1
ε ∝ ε

H1 ∝ H2

HSIM2
H1, [x

07→ Exp(e)] ∝ H2

n ≥ 1 H1 ∝ H2 e1 ∝ e2
HSIM3

H1, [x
n7→ Exp(e1)] ∝ H2, [x

n7→ Exp(e2)]

H1 ∝ H2
HSIM4

H1, [x
07→ Val(v)] ∝ H2

H1 ∝ H2 v1 ∝ v2
HSIM5

H1, [x
ω7→ Val(v1)] ∝ H2, [x

ω7→ Val(v2)]

SSIM1
ε ∝ ε

S1 ∝ S2
SSIM2

(#(x , 1) : S1) ∝ S2

S1 ∝ S2
SSIM3

(#(x , ω) : S1) ∝ (#(x , ω) : S2)

S1 ∝ S2
SSIM4

(• y) : S1 ∝ (• y) : S2

e1 ∝ e2 S1 ∝ S2
SSIM5

((x , y)→ e1) : S1 ∝ ((x , y)→ e2) : S2

Figure 7: Auxiliary simulation relation (heaps and stacks)

The demand exercised on x from the body of the let-binding will
be C 1(U) &C 1(U) = Cω(U) and hence the value v will be
checked against this demand (using the LETUP rule), unleashing
an environment ϕ. However, after substituting v in the body (which
is ultimately what call-by-need will do) we will have checked it
against C 1(U) and C 1(U) independently, unleashing ϕ1 and ϕ2

in each call site. Lemma 4.4 ensures that reduction never increases
the demand on the free variables of the environment, and hence
safety is not compromised. It is precisely the proof of Lemma 4.4
that requires demand transformers to be monotone in the demand
arguments, ensured by WFTRANS.

Theorem 4.5 (Safety of analysis). If ε Ì e1 ↓ HU ⇒ 〈τ ; ε〉 e1
and 〈ε ; e1 ; ε〉 −→k 〈H ; e2 ; S〉, then there exist H, e2 and S, such
that 〈ε ; e1 ; ε〉↪−→k 〈H ; e2 ; S〉, H\ = H , S\ = S and e\2 = e2.

The proof is just a combination of Lemma 4.1 and Theorem 4.2.

5. Optimisations
We discuss next the two optimisations enabled by our analysis.

5.1 Optimised allocation for thunks
We show here that for 0-annotated bindings there is no need to
allocate an entry in the heap, and for 1-annotated ones we don’t
have to emit an update frame on the stack. Within the chosen
operational model, this optimisation is of dynamic flavour so we
express this by providing a new, optimising small-step machine
for the annotated expressions. The new semantics is defined in
Figure 8. We will show that programs that can be evaluated via
the counting semantics (Figure 5) can be also evaluated via the
optimised semantics in a smaller or equal number of steps.
The proof is a simulation proof, hence we define relations between
heaps / optimised heaps, and stacks / optimised stacks that are
preserved during evaluation.

〈H0 ; e0 ; S0〉 =⇒ 〈H1 ; e1 ; S1〉

OPT-ELETA 〈H ; let x
0
= e1 in e2 ; S〉 =⇒ 〈H ; e2 ; S〉

OPT-ELETU 〈H ; let x
n
= e1 in e2 ; S〉 =⇒ 〈H[x

n7→ Exp(e1)] ; e2 ; S〉 where n ≥ 1

OPT-ELKPEM 〈H, [x ω7→ Exp(e)] ; x ; S〉 =⇒ 〈H ; e ; #(x , ω) : S〉
OPT-ELKPEO 〈H, [x 17→ Exp(e)] ; x ; S〉 =⇒ 〈H ; e ; S〉
OPT-ELKPV 〈H, [x ω7→ Val(v)] ; x ; S〉 =⇒ 〈H, [x ω7→ Val(v)] ; v ; S〉
OPT-EUPD 〈H ; v ; #(x , ω) : S〉 =⇒ 〈H, [x ω7→ Val(v)] ; v ; S〉
OPT-EBETA 〈H ; λmx.e ; (• y) : S〉 =⇒ 〈H ; e[y/x] ; S〉
OPT-EAPP 〈H ; e y ; S〉 =⇒ 〈H ; e ; (• y) : S〉
OPT-EPAIR 〈H ; case es of (x , y)→ er ; S〉 =⇒ 〈H ; es ; ((x , y)→ er) : S〉
OPT-EPRED 〈H ; (x1, x2) ; ((y1, y2)→ er) : S〉 =⇒ 〈H ; er [x1/y1, x2/y2] ; S〉

Figure 8: Optimised counting semantics

Definition 5.1 (Auxiliary ∝-relations). We write e1 ∝ e2 iff e1
and e2 differ only on the λ-annotations. H1 ∝ H2 and S1 ∝ S2 are
defined in Figure 7.

For this optimisation the annotations on λ-abstractions play no role,
hence we relate any expressions that differ only on those.

Figure 7 tells us when a heap H is related with an optimised heap
Hopt with the relation H ∝ Hopt . As we have described, there are
no 07→ bindings in the optimised heap. Moreover notice that there
are no bindings of the form [x

17→ Val(v)] in either the optimised
or unoptimised heap. It is easy to see why: every heap binding
starts life as [x

m7→ Exp(e)]. By the time Exp(e) has become a
value Val(v), we have already used x once. Hence, if originally
m = ω then the value binding will also be ω (in the optimised or
unoptimised semantics). If it was m = 1 then it can only be 0 in the
un-optimised heap and non-existent in the optimised heap. If it was
m = 0 then no such bindings would have existed in the optimised
heap anyway.

The relation between stacks is given with S ∝ Sopt . Rule SSIM2
ensures that there are no frames #(x , 1) in the optimised stack. In
fact during evaluation it is easy to observe that there are not going
to be any update frames #(x , 0) in the original or optimised stack.

We can now state the optimisation simulation theorem.

Theorem 5.1 (Optimised semantics). If 〈H1 ;e1 ;S1〉 ∝ 〈H2 ;e2 ;S2〉
and 〈H1 ;e1 ;S1〉 ↪−→ 〈H′1 ;e′1 ;S′1〉 then there exists k ∈ {0, 1} s.t.
〈H2 ; e2 ;S2〉 =⇒k 〈H′2 ; e′2 ;S′2〉 and 〈H′1 ; e′1 ;S′1〉 ∝ 〈H′2 ; e′2 ;S′2〉.
Notice that the counting semantics may not be able to take a
transition at some point due to the wrong non-deterministic choice
but in that case the statement of Theorem 5.1 holds trivially. Finally,
we tie together Theorems 5.1 and 4.5 to get the following result.

Theorem 5.2 (Analysis is safe for optimised semantics). If Ì e1 ↓
HU ⇒ 〈τ ; ε〉 e1 and 〈ε ; e1 ; ε〉 −→n 〈H ; e2 ; S〉 then
〈ε ; e1 ; ε〉 =⇒m 〈H ; e2 ; S〉 s. t. e\2 = e2, m ≤ n , and there exist
H2 and S2 s.t. H\

2 = H and S\
2 = S and H2 ∝ H and S2 ∝ S.

Theorem 5.2 says that if a program e1 evaluates in n steps to e2
in the reference semantics, then it also evaluates to the same e2
(modulo annotation) in the optimised semantics in n steps or fewer;
and the heaps and stacks are consistent. Moreover, the theorem has
informative content on infinite sequences. For example it says that
for any point in the evaluation in the reference semantics, we will
have earlier reached a corresponding intermediate configuration in
the optimised semantics with consistent heaps and stacks.

5.2 let-in floating into one-shot lambdas
As discussed in Section 2, we are interested in the particular case of
let-floating (Peyton Jones et al. 1996): moving the binder into the
body of a lambda-expression. This transformation is trivially safe,
given obvious syntactic side conditions (Moran and Sands 1999,
§4.5), however, in general, it is not beneficial. Here we describe
the conditions under which let-in floating makes things better in
terms of the length of the program execution sequence.

We start by defining let-in floating in a form of syntactic rewriting:
Definition 5.2 (let-in floating for one-shot lambdas).

let z
m1= e1 in (let f

m2= λ1x . e in e2)

=⇒ let f
m2= λ1x . (let z

m1= e1 in e) in e2,

for any m1, m2 and z /∈ FV (e2).

Next, we provide a number of definitions necessary to formulate
the so called improvement result (Moran and Sands 1999). The
improvement is formulated for closed, well-formed configurations.
For a configuration 〈H ; e ; S〉 to be closed, any free variables in H,
e and S must be contained in a union dom(H) ∪ dom(S), where
dom(H) is a set of variables bound by a heap H, and dom(S) is a
set of variables marked for update in a stack S. A configuration is
well-formed if dom(H) and dom(S) are disjoint.

Definition 5.3 (Convergence). For a closed configuration 〈H;e;S〉,

〈H ; e ; S〉 ⇓N def
= ∃H′, v,N . 〈H ; e ; S〉 ↪−→N 〈H′ ; v ; ε〉

〈H ; e ; S〉 ⇓≤N def
= ∃M . 〈H ; e ; S〉 ⇓M and M ≤ N

The following theorem shows that local let-in floating into the body
of a one-shot lambda does not make the execution longer.

Theorem 5.3 (Let-in float improvement). For any H and S, if

〈H ; let z
m
= e1 in (let f

m1= λ1x . e in e2) ; S〉 ⇓N

and z /∈ FV (e2), then

〈H ; let f
m1= λ1x . (let z

m
= e1 in e) in e2 ; S〉 ⇓≤N .

Even though Theorem 5.3 gives a termination-dependent result, its
proof (Sergey et al. 2013) goes via a simulation argument, hence
it is possible to state the theorem in a more general way without
requiring termination.

We also expect that the improvement result extends to arbitrary
program contexts, but have not carried out the exercise.

6. Implementation
We have implemented the cardinality analyser by extending the de-
mand analysis machinery of the Glasgow Haskell Compiler, avail-
able from its open-source repository.2 We briefly summarise some
implementation specifics in this section.

6.1 Analysis

The implementation of the analysis was straightforward, because
GHC’s existing strictness analyser is already cast as a backwards
analysis, exactly like our new cardinality analysis. So the existing
analyser worked unchanged; all that was required was to enrich
the domains over which the analyser works.3 In total, the analyser
increased from 900 lines of code to 1,140 lines, an extremely
modest change.

We run the analysis twice, once in the middle of the optimisation
pipeline, and once near the end. The purpose of the first run is to
expose one-shot lambdas, which in turn enable a cascade of sub-
sequent transformations (Section 6.3). The second analysis finds
the single-entry thunks, which are exploited by the code genera-
tor. This second analysis is performed very late in the pipeline (a)
so that it sees the result of all previous inlining and optimisation
and (b) because the single-entry thunk information is not robust to
certain other transformations (Section 6.4).

6.2 Absence

GHC exploits absence in the worker/wrapper split, as described in
Section 2.3: absent arguments are not passed from the wrapper to
the worker.

6.3 One-shot lambdas

As shown in Section 5.2, there is no run-time payoff for one-shot
lambdas. Rather, the information enables some important compile-
time transformations. Specifically, consider

let x = costly v in . . . (λy. . . . x . . .) . . .

If the λy is a one-shot lambda, the binding for x can be floated
inside the lambda, without risk of duplicating the computation of
costly. Once the binding for x is inside the λy , several other
improvements may happen:

• It may be inlined at x ’s use site, perhaps entirely eliminating
the allocation of a thunk for x .
• It may enable a rewrite rule (eg foldr/build fusion) to fire.
• It may allow two lambdas to be replaced by one. For example

f = λv. let x = costly v inλy. . . . x . . .
=⇒ f = λv.λy. . . . (costly v) . . .

The latter produces one function with two arguments, rather
than a curried function that returns a heap-allocated lambda
(Marlow and Peyton Jones 2006).

6.4 Single-entry thunks

The code that GHC compiles for a thunk begins by pushing an up-
date frame on the stack, which includes a pointer to the thunk. Then
the code for the thunk is executed. When evaluation is complete,
the value is returned, and the update frame overwrites the thunk
with an indirection to the values (Peyton Jones 1992). It is easy to
modify this mechanism to take advantage of single-entry thunks:
we do not generate the push-update-frame code for single-entry

2 http://github.com/ghc/ghc
3 This claim is true in spirit, but in practice we substantially refactored the
existing analyser when adding usage cardinalities.

Program Synt. λ1 Synt. Thnk1 RT Thnk1

anna 4.0% 7.2% 2.9%
bspt 5.0% 15.4% 1.5%
cacheprof 7.6% 11.9% 5.1%
calendar 5.7% 0.0% 0.2%
constraints 2.0% 3.2% 4.5%
cryptarithm2 0.6% 3.0% 74.0%
gcd 12.5% 0.0% 0.0%
gen regexps 5.6% 0.0% 0.2%
hpg 5.2% 0.0% 4.1%
integer 8.3% 0.0% 0.0%
life 3.2% 0.0% 1.8%
mkhprog 27.4% 20.8% 5.8%
nucleic2 3.5% 3.1% 3.2%
partstof 5.8% 10.7% 0.1%
sphere 7.8% 6.2% 20.0%
... and 72 more programs
Arithmetic mean 10.3% 12.6% 5.5%

Table 1. Analysis results for nofib: ratios of syntactic one-shot
lambdas (Synt. λ1), syntactic used-once thunks (Synt. Thnk1) and
runtime entries into single-entry thunks (RT Thnk1).

thunks. There is a modest code size saving (fewer instructions gen-
erated) and a modest runtime saving (a few store instructions saved
on thunk entry, and a few more when evaluation is complete).

Take care though! The single-entry property is not robust to
program transformation. For example, common sub-expression
elimination (CSE) can combine two single-entry thunks into one
multiple-entry one, as can this sequence of transformations:

let y
1
= e in let x = y + 0 in x ∗ x

Identity of + =⇒ let y
1
= e in let x = y in x ∗ x

Inline x =⇒ let y
1
= e in y ∗ y Wrong!

This does not affect the formal results of the paper, but it is the rea-
son that our second run of the cardinality analysis is immediately
before code generation.

7. Evaluation
To measure the accuracy of the analysis, we counted the propor-
tion of (a) one-shot lambdas and (b) single-entry thunks. In both
cases, these percentages are of the syntactically occurring lambdas
or thunks respectively, measured over the code of the benchmark
program only, not library code. Table 1 shows the results reported
by our analysis for programs from the nofib benchmark suite (Par-
tain 1993). The numbers are quite encouraging. One-shot lambdas
account for 0-30% of all lambdas, while single-entry thunks are
0-23% of all thunks.

The static (syntactic) frequency of single-entry thunks may be very
different to their dynamic frequency in a program execution, so we
instrumented GHC to measure the latter. (We did not measure the
dynamic frequency of one-shot lambdas, because they confer no di-
rect performance benefit.) The “RT Thunk” column of Table 1 gives
the dynamic frequency of single-entry thunks in the same nofib
programs. Note that these statistics include single-entry thunks
from libraries, as well as the benchmark program code. The re-
sults vary widely. Most programs do not appear to use single-entry
thunks much, while a few use many, up to 74% for cryptarithm2.

7.1 Optimising nofib programs
In the end, of course, we seek improved runtimes, although the
benefits are likely to be modest. One-shot lambdas do not confer

http://github.com/ghc/ghc

Program Allocs Runtime
No hack Hack No hack Hack

anna -2.1% -0.2% +0.1% -0.0%
bspt -2.2% -0.0% -0.0% +0.0%
cacheprof -7.9% -0.6% -6.1% -5.0%
calendar -9.2% +0.2% -0.0% -0.0%
constraints -0.9% -0.0% -1.2% -0.2%
cryptarithm2 -0.3% -0.3% -2.3% -2.1%
gcd -15.5% -0.0% -0.0% +0.0%
gen regexps -1.0% -0.1% -0.0% -0.0%
hpg -2.0% -1.0% -0.1% -0.0%
integer -0.0% -0.0% -8.8% -6.6%
life -0.8% -0.0% -5.9% -1.8%
mkhprog -11.9% +0.1% -0.0% -0.0%
nucleic2 -14.1% -10.9% +0.0% +0.0%
partstof -95.5% -0.0% -0.0% -0.0%
sphere -1.5% -1.5% +0.0% -0.1%
... and 72 more programs
Min -95.5% -10.9% -28.2% -12.1%
Max +3.5% +0.5% +1.8% +2.8%
Geometric mean -6.0% -0.3% -2.2% -1.4%

Table 2. Cardinality analysis-enabled optimisations for nofib

any performance benefits directly; rather, they remove potential
obstacles from other compile-time transformations. Single-entry
thunks, on the other hand give an immediate performance benefit,
by omitting the push-update-frame code, but it is a small one.

Table 2 summarises the effect of cardinality analysis when running
the nofib suite. “Allocs” is the change in how much heap was
allocated when the program is run and “Runtime” is a change in
the actual program execution time.

In Section 2.1 we mentioned a hack, used by Gill in GHC, in which
he hard-coded the call-cardinality information for three particular
functions: build, foldr and runST. Our analysis renders this
hack redundant, as now the same results can be soundly inferred.
We therefore report two sets of results: relative to an un-hacked
baseline, and relative to a hacked baseline. In both cases binary
size of the (statically) linked binaries falls slightly but consistently
(2.0% average), which is welcome. This may be due to less push-
update-frame code being generated.

Considering allocation, the numbers relative to the non-hacked
baseline are quite encouraging, but relative to the hacked compiler
the improvements are modest: the hack was very effective! Other-
wise, only one program, nucleic2 shows a significant (11%) re-
duction in allocation, which turned out to be because a thunk was
floated inside a one-shot lambda and ended up never being allo-
cated, exactly as advertised.4

A shortcoming of nofib suite is that runtimes tend to be short and
very noisy: even with the execution key slow only 18 programs
from the suite run for longer than half second (with a maximum
of 2.5 seconds for constraints). Among those long-runners the
biggest performance improvement is 8.8% (for integer), with an
average of 2.3%.

4 One can notice that the new compiler sometimes performs worse than
the cardinality-unaware versions in a very few benchmarks in nofib. In
a highly optimising compiler with many passes it is very hard to ensure that
every “optimisation” always makes the program run faster; and, even if a
pass does improve the program per se, to ensure that every subsequent pass
will carry out all the optimisations that it did before the earlier improvement
was implemented. The data show that we do not always succeed. We leave
for the future some detailed forensic work to find out exactly why.

Program RT Thnk1 No-Opt RT RT ∆

binary-trees 49.4% 66.83 s -9.2%
fannkuch-redux 0.0% 158.94 s -3.7%
n-body 5.7% 38.41 s -4.4%
pidigits 8.8% 41.56 s -0.3%
spectral-norm 4.6% 17.83 s -1.7%

Table 3. Optimisation of the programs from Benchmarks Game

Library λ1 Thnk1 Benchmark Alloc ∆

attoparsec 32.8% 19.3% benchmarks -7.1%

binary 16.8% 0.9%
bench -0.2%
builder -0.3%
get -4.3%

bytestring 5.3% 4.3% boundcheck -0.5%
all -6.6%

cassava 26.4% 9.8% benchmarks -0.7%

Table 4. Analysis and optimisation results for hackage libraries

Program LOC GHC Alloc ∆ GHC RT ∆
No hack Hack No hack Hack

anna 5740 -1.6% -1.5% -0.8% -0.4%
cacheprof 1600 -1.7% -0.4% -2.3% -1.8%
fluid 1579 -1.9% -1.9% -2.8% -1.6%
gamteb 1933 -0.5% -0.1% -0.5% -0.1%
parser 2379 -0.7% -0.2% -2.6% -0.6%
veritas 4674 -1.4% -0.3% -4.5% -4.1%

Table 5. Compilation with optimised GHC

For more realistic numbers, we measured the improvement in run-
time, relative to the hacked compiler, for several programs from the
Computer Language Benchmarks Game.5 The results are shown in
Table 3. All programs were run with the official shootout settings
(except spectral-norm, to which we gave a bigger input value
of 7500) on a 2.7 GHz Intel Core i7 OS X machine with 8 Gb RAM.
These are uncharacteristic Haskell programs, optimised to within
an inch of their life by dedicated Haskell hackers. There is no easy
meat to be had, and indeed the heap-allocation changes are so tiny
(usually zero, and -0.2% at the most in the case of binary-trees)
that we omit them from the table. However, we do get one joyful re-
sult: a solid speedup of 9.2% in binary-trees due to fewer thunk
updates. As you can see, nearly half of its thunks entered at runtime
are single-entry.

7.2 Real-world programs
To test our analysis and the cardinality-powered optimisations on
some real-world programs, we chose four continuation-heavy li-
braries from the hackage repository:6 attoparsec, a fast parser
combinator library, binary, a lazy binary serialisation library,
bytestring, a space-efficient implementation of byte-vectors, and
cassava, a CSV parsing and encoding library.

These libraries come with accompanying benchmark suites, which
we ran both for the baseline compiler and the cardinality-powered
one. Table 4 contains the ratios of syntactic one-shot lambdas and
used-once thunks for the libraries, as well relative improvement
in memory allocation for particular benchmarks. Since we were
interested only in the absolute improvement against the state of

5 http://benchmarksgame.alioth.debian.org/
6 http://hackage.haskell.org/

http://benchmarksgame.alioth.debian.org/
http://hackage.haskell.org/

the art, we made our comparison with respect to the contemporary
version of (hacked) baseline GHC. The encouraging results for
attoparsec are explained by its relatively high ratio of one-shot
lambdas, which is typical for parser combinator libraries.

GHC itself is a very large Haskell program, written in a variety of
styles, so we compiled it with and without cardinality-powered op-
timisations, and measured the allocation and runtime improvement
when using the two variants to compile several programs. The re-
sults are shown in Table 5. As in the other cases, we get modest but
consistent improvements.

8. Related Work
8.1 Abstract interpretation for usage and absence
The goal of the traditional usage/absence analyses is to figure out
which parts of the programs are used, and which are not (Peyton
Jones and Partain 1994). This question was first studied in the
late 80’s, when an elegant representation of the usage analysis
in terms of projections (Hinze 1995) was given by Wadler and
Hughes (Wadler and Hughes 1987). Their formulation allows one
to define a backwards analysis — inferring the usage of arguments
of a function from the usage of its result — an idea that we adopted
wholesale. Our work has important differences, notably (a) call
demands C n(d), which appear to be entirely new; and (b) the
ability to treat nested lambdas, which requires us to capture the
usage of free variables in a usage signature. Moreover our formal
underpinning is quite different to their (denotational) approach,
because we fundamentally must model sharing.

8.2 Type-based approaches
The notion of “single-entry” thunks and “one-shot” lambdas is rem-
iniscent of linear types (Girard 1995; Turner and Wadler 1999),
a similarity that was noticed very early (Launchbury et al. 1993).
Linear types per se are far too restrictive (see, for example, Wans-
brough and Peyton Jones (1999, § 2.2) for details), but the idea of
using a type system to express usage information inspired a series of
“once upon a type” papers7 (Gustavsson 1998; Turner et al. 1995;
Wansbrough 2002; Wansbrough and Peyton Jones 1999).

Alas, a promising idea turned out to lead, step by step, into a deep
swamp. Firstly, subtyping proved to be essential, so that a function
that used its argument once could have a type like Int1 → Int ,
but still be applied to an argument x that was used many times
and had type Intω (Wansbrough and Peyton Jones 1999). Then us-
age polymorphism proved essential to cope with currying: “[Using
the monomorphic system] in the entirety of the standard libraries,
just two thunks were annotated as used-once” (Wansbrough 2002,
3.7). Gustavsson advocated bounded polymorphism to gain greater
precision (Gustavsson and Sveningsson 2001), while Wansbrough
extended usage polymorphism to data types, sometimes resulting
in data types with many tens of usage parameters. The interaction
of ordinary type polymorphism with all these usage-type features
was far from straightforward. The inference algorithm for a poly-
morphic type system with bounds and subtyping is extremely com-
plex. And so on. Burdened with these intellectual and implementa-
tion complexities, Wansbrough’s heroic prototype in GHC (around
2,580 LOC of brand-new code; plus pervasive changes to thou-
sands of lines of code elsewhere) turned out to be unsustainable,
and never made it into the main trunk.

Our system sidesteps these difficulties entirely by treating the prob-
lem as a backwards analysis like strictness analysis, rather than as a
type system. This is what gives the simplicity to our approach, but
also prevents it from giving “rich” demand signatures to third- and

7 The title, as so often, is due to Wadler.

higher-order functions: our usage types can account uniformly only
for the first- and second-order functions, thanks to call demands.
For example what type might we attribute to

f x g = g x

The usage of x depends on the particular g in the call, so usage
polymorphism would be called for. This is indeed more expressive
but it is also more complicated. We deliberately limit precision for
very higher-order programs, to gain simplicity.

At some level abstract interpretation and type inference can be seen
as different sides of the same coin, but there are some interesting
differences. For example, our LETDN and LETUP rules are explicit
about information flow; in the former, information flows from the
definition of a function to its uses, while in the latter the flow is
reversed. Type systems use unification variables to allow much
richer information flow — but at the cost of generating constraints
involving subtyping and bounds that are tricky to solve.

Another intriguing difference is in the handling of free variables:

let f = \x. y + x in if b then f 1 else y

How many times is the free variable y evaluated in this expression?
Obviously just once, and LETDN discovers this, because we un-
leash the demand on y at f’s call site, and lub the two branches of
the if. But type systems behave like LETUP: compute the demand
on f (namely, called once) and from that compute the demand on
y. Then combine the demand on y from the body of the let (used
at most once), and from f’s right hand side (used at most once),
yielding the result that y is used many times. We have lost the fact
that the two uses come from different branches of the conditional.
The fact that our usage signatures include the ϕ component makes
them more expressive than mere types — unless we extend the
type system yet further with an polymorphic effect system (Hage
et al. 2007; Holdermans and Hage 2010). Moreover, the analysis
approach deals very naturally with absence, and with product types
such as pairs, which are ubiquitous. Type-based approaches do not
do so well here.

In short, an analysis-based approach has proved much simpler in-
tellectually than the type-based one, and far easier to implement.
One might wonder if a clever type system might give better results
in practice, but Wansbrough’s results (mostly zero change to alloca-
tion; one program allocated 15% more, one 14% less (Wansbrough
2002)) were no more compelling than those we report. Our proof
technique does however share much in common with Wansbrough
and Gustavsson’s work, all three being based on an operational se-
mantics with an explicit heap.

One other prominent type-based usage system is Clean’s unique-
ness types (Barendsen and Smetsers 1996). Clean’s notion of
uniqueness is, however, fundamentally different to ours. In Clean
a unique-typed argument places a restriction on the caller (to pass
the only copy of the value), whereas for us a single-entry argument
is a promise by callee (to evaluate the argument at most once).

8.3 Other related work

Call demands, introduced in this paper, appear to be related to the
notion of applicativeness, employed in the recent work on rele-
vance typing (Holdermans and Hage 2010). In particular, applica-
tiveness means that an expression either “guaranteed to be applied
to an argument” (S), or “may not be applied to an argument” (L).
In this terminology S corresponds to a “strong” version of our de-
mands Cω(d), which requires d @ U , and L is similar to our U .
The seq-like evaluation of expressions corresponds to our demand
HU . However, neither call- nor thunk-cardinality are captured by
the concept of applicativeness.

Abstract counting or sharing analysis conservatively determines
which parts of the program might be used by several components
or accessed several times in the course of execution. Early work
employed a forward abstract interpretation framework (Goldberg
1987; Hudak 1986). Since the forward abstract interpreter makes
assumptions about arguments of a function it examines, the abstract
interpretation can account for multiple combinations of those and
may, therefore, be extremely expensive to compute.

Recent development on the systematic construction of abstract
interpretation-based static analyses for higher-order programs,
known as abstracted abstract machines (AAM), makes it straight-
forward to derive an analyser from an existing small-step opera-
tional semantics, rather than come up with an ad-hoc non-standard
one (Van Horn and Might 2010). This approach also greatly sim-
plifies integration of the counting abstract domain to account for
sharing (Might and Shivers 2006). However, the abstract inter-
preters obtained this way are whole-program forward analysers,
which makes them non-modular. It would be, however, an interest-
ing future work to build a backwards analysis from AAM.

9. Conclusion
Cardinality analysis is simple to implement (it added 250 lines of
code to a 140,000 line compiler), and it gives real improvements for
serious programs, not just for toy benchmarks; for example, GHC
itself (a very large Haskell program) runs 4% faster. In the context
of a 20-year-old optimising compiler, a gain of this magnitude is a
solid win.

Acknowledgements We are grateful to Johan Tibell for the sug-
gestion to use benchmark-accompanied hackage libraries and the
cabal bench utility for the experiments in Section 7.2. We also
thank the POPL’14 reviewers for their useful feedback.

References
Erik Barendsen and Sjaak Smetsers. Uniqueness typing for functional

languages with graph rewriting semantics. Mathematical Structures in
Computer Science, 6(6):579–612, 1996.

Andy Gill. Cheap Deforestation for Non-strict Functional Languages. PhD
thesis, University of Glasgow, Department of Computer Schence, 1996.

Andy Gill, John Launchbury, and Simon Peyton Jones. A Short Cut
to Deforestation. In Proceedings of the Sixth ACM Conference on
Functional Programming Languages and Computer Architecture, pages
223–232, 1993.

Jean-Yves Girard. Linear logic: its syntax and semantics. In Proceedings
of the workshop on Advances in linear logic, pages 1–42. Cambridge
University Press, 1995.

Benjamin Goldberg. Detecting sharing of partial applications in functional
programs. In Functional Programming Languages and Computer Archi-
tecture, volume 274 of LNCS, pages 408–425. Springer-Verlag, 1987.

Jörgen Gustavsson. A type based sharing analysis for update avoidance
and optimisation. In Proceedings of the Third ACM SIGPLAN Interna-
tional Conference on Functional Programming (ICFP’98), pages 39–50.
ACM, 1998.

Jörgen Gustavsson and Josef Sveningsson. A usage analysis with bounded
usage polymorphism and subtyping. In Implementation of Functional
Languages (IFL 2000), Selected Papers, volume 2011 of LNCS, pages
140–157. Springer, 2001.

Jurriaan Hage, Stefan Holdermans, and Arie Middelkoop. A generic us-
age analysis with subeffect qualifiers. In Proceedings of the 12th
ACM SIGPLAN International Conference on Functional Programming
(ICFP’07), pages 235–246. ACM, 2007.

Ralf Hinze. Projection-based strictness analysis - theoretical and practical
aspects. PhD thesis, Bonn University, 1995.

Stefan Holdermans and Jurriaan Hage. Making “stricternes” more relevant.
In PEPM’10: Proceedings of the 2010 ACM SIGPLAN workshop on
Partial evaluation and program manipulation, pages 121–130. ACM,
2010.

Paul Hudak. A semantic model of reference counting and its abstraction.
In Proceedings of the 1986 ACM Conference on Lisp and Functional
Programming, pages 351–363. ACM, 1986.

Richard Jones. Tail recursion without space leaks. J. Funct. Program., 2
(1):73–79, 1992.

John Launchbury, Andy Gill, John Hughes, Simon Marlow, Simon Peyton
Jones, and Philip Wadler. Avoiding unnecessary updates. In Proceedings
of the 1992 Glasgow Workshop on Functional Programming, Workshops
in Computing, pages 144–153. Springer, 1993.

Simon Marlow and Simon Peyton Jones. Making a fast curry: push/enter
vs. eval/apply for higher-order languages. J. Funct. Program., 16(4-5):
415–449, 2006.

Matthew Might and Olin Shivers. Improving flow analyses via ΓCFA:
abstract garbage collection and counting. In Proceedings of the Eleventh
ACM SIGPLAN International Conference on Functional Programming
(ICFP’06), pages 13–25. ACM, 2006.

Andrew Moran and David Sands. Improvement in a Lazy Context: An
Operational Theory for Call-by-Need. In POPL’99: Proceedings of
the 26th annual ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 43–56. ACM, 1999.

Will Partain. The nofib benchmark suite of Haskell programs. In Pro-
ceedings of the 1992 Glasgow Workshop on Functional Programming,
Workshops in Computing, pages 195–202. Springer, 1993.

Simon Peyton Jones. Implementing Lazy Functional Languages on Stock
Hardware: The Spineless Tagless G-Machine. J. Funct. Program., 2(2):
127–202, 1992.

Simon Peyton Jones and Will Partain. Measuring the effectiveness of a sim-
ple strictness analyser. In Proceedings of the 1993 Glasgow Workshop
on Functional Programming, pages 201–220. Springer, 1994.

Simon Peyton Jones and André Santos. A transformation-based optimiser
for Haskell. Science of Computer Programming, 32(1-3):3–47, 1998.

Simon Peyton Jones, Will Partain, and André Santos. Let-floating: Mov-
ing Bindings to Give Faster Programs. In Proceedings of the First
ACM SIGPLAN International Conference on Functional Programming
(ICFP’96), pages 1–12. ACM, 1996.

Amr Sabry and Matthias Felleisen. Reasoning about programs in
continuation-passing style. In Proceedings of the 1992 ACM Conference
on Lisp and Functional Programming, pages 288–298. ACM, 1992.

Ilya Sergey, Dimitrios Vytiniotis, and Simon Peyton Jones. Modular,
Higher-Order Cardinality Analysis in Theory and Practice. Extended
version. Technical Report MSR-TR-2013-112, Microsoft Research,
2013. Available at http://research.microsoft.com/apps/pubs/
?id=204260.

Peter Sestoft. Deriving a lazy abstract machine. J. Funct. Program., 7(3):
231–264, 1997.

David N. Turner and Philip Wadler. Operational interpretations of linear
logic. Theor. Comput. Sci., 227(1-2):231–248, 1999.

David N. Turner, Philip Wadler, and Christian Mossin. Once upon a type.
In Proceedings of the Seventh ACM Conference on Functional Program-
ming Languages and Computer Architecture, pages 1–11. ACM, 1995.

David Van Horn and Matthew Might. Abstracting abstract machines. In
Proceedings of the 15th ACM SIGPLAN International Conference on
Functional Programming (ICFP’10), pages 51–62. ACM, 2010.

Philip Wadler and John Hughes. Projections for strictness analysis. In Func-
tional Programming Languages and Computer Architecture, volume 274
of LNCS, pages 385–407. Springer-Verlag, 1987.

Keith Wansbrough. Simple Polymorphic Usage Analysis. PhD thesis,
Computer Laboratory, University of Cambridge, 2002.

Keith Wansbrough and Simon Peyton Jones. Once Upon a Polymorphic
Type. In POPL’99: Proceedings of the 26th annual ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages
15–28. ACM, 1999.

http://research.microsoft.com/apps/pubs/?id=204260
http://research.microsoft.com/apps/pubs/?id=204260

	Introduction
	What is Cardinality Analysis?
	Call cardinality
	Currying
	Absence
	Thunk cardinality
	Call vs evaluation

	Formalising Cardinality Analysis
	Usage demands
	Usage analysis
	Pairs and case expressions
	Lambda and application
	Usage signatures
	Thunks
	Elaboration
	A more realistic language

	Soundness of the Analysis
	Counting operational semantics
	Checking well-annotated terms
	Soundness of the analysis

	Optimisations
	Optimised allocation for thunks
	let-in floating into one-shot lambdas

	Implementation
	Analysis
	Absence
	One-shot lambdas
	Single-entry thunks

	Evaluation
	Optimising nofib programs
	Real-world programs

	Related Work
	Abstract interpretation for usage and absence
	Type-based approaches
	Other related work

	Conclusion

