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Abstract
Curried functions apparently take one argument at a time,
which is slow. So optimizing compilers for higher-order lan-
guages invariably have somemechanism for working around
currying by passing several arguments at once, as many as
the function can handle, which is known as its arity. But
such mechanisms are often ad-hoc, and do not work at all
in higher-order functions. We show how extensional, call-
by-name functions have the correct behavior for directly
expressing the arity of curried functions. And these exten-
sional functions can stand side-by-side with functions native
to practical programming languages, which do not use call-
by-name evaluation. Integrating call-by-name with other
evaluation strategies in the same intermediate language ex-
presses the arity of a function in its type and gives a princi-
pled and compositional account of multi-argument curried
functions. An unexpected, but significant, bonus is that our
approach is equally suitable for a call-by-value language and
a call-by-need language, and it can be readily integrated into
an existing compilation framework.

CCS Concepts • Software and its engineering → Se-
mantics; Compilers.

Keywords arity, extensionality, type systems
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1 Introduction
Consider these two function definitions:

f1 = λx . let z = h x x in λy.e y z

f2 = λx .λy. let z = h x x in e y z

It is highly desirable for an optimizing compiler to η ex-
pand f1 into f2. The function f1 takes only a single argu-
ment before returning a heap-allocated function closure;
then that closure must subsequently be called by passing the
second argument. In contrast, f2 can take both arguments
at once, without constructing an intermediate closure, and
this can make a huge difference to run-time performance in
practice [Marlow and Peyton Jones 2004]. But this η expan-
sion could be bad if (h x x) was expensive, because in a call
like (map (f2 3) xs), the expensive computation of (h 3 3)
would be performed once for each element of xs , whereas in
(map (f1 3) xs) the value of (h 3 3) would be computed only
once. An optimizing compiler should not cause an asymp-
totic slow-down!
So the question becomes “does (h x x) do serious work?”

We should transform f1 into f2 only if it does not. But what
exactly do wemean by “serious work?” For example, suppose
we knew that h was defined as h = λp.λr .λq.blah; that is, h
cannot begin to do any work until it is given three arguments.
In this case, it is almost certainly a good idea to η expand f1
and replace it with f2. For this reason GHC—an optimizing
compiler for Haskell—keeps track of the arity of every in-
scope variable, such as h, and uses that information to guide
such transformations. This notion of arity is not unique
to Haskell or GHC: the same impact of η expanding f1 to
f2, with its potential performance improvement and risk of
disastrous slow-down, is just as applicable in eager functional
languages like OCaml [Dargaye and Leroy 2009]. In fact, the
risks are even more dire in OCaml, where inappropriate η
expansion can change the result of a program due to side
effects like exceptions andmutable state. So arity information
is crucial for correctly applying useful optimizations.

The problem is that the very notion of “arity” is a squishy,
informal one, rooted in operational intuitions rather than
solid invariants or principled theory. In this paper we resolve
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that problem by characterizing arity formally in a type sys-
tem. However, the way we do so differs from previous work
[Bolingbroke and Peyton Jones 2009] in integrating types
with calling conventions (by which they mean arity) that
would require quite a large change for GHC to move from
a lazy-by-default to strict-by-default intermediate language.
Instead, our idea is to leverage multiple calling conventions
(by which we mean, e.g., call-by-name versus call-by-value)
to solve the issues surrounding arity and η laws with types.
The advantage of this approach is that it is less monolithic,
and can be added to a variety of existing systems without
disrupting orthogonal parts of their semantics or implemen-
tation, making it easier to incorporate into a serious compiler
like GHC. Supporting this idea, we make these contributions:

• (Section 3) We describe our approach by starting with
a standard call-by-value polymorphic λ-calculus, Fv ,
and extending it with a new function type that can
express higher arities. We call the extended language
F̃v , and give a self-contained meaning of arity in terms
of the type system and equational theory of F̃v .

• (Section 4) To demonstrate the minimal impact on
an existing implementation, we show the addition to
a standard call-by-value abstract machine which is
needed to support fast higher-arity function calls, but
otherwise keeping the same semantics as Fv .

• (Section 5) Since we intend to preserve the original
semantics of the above machine, we need to compile
F̃vprograms in a way that makes their evaluation strat-
egy explicit to a stock call-by-value implementation.
We show how to execute our extended intermediate
language by performing a simple translation from F̃v to
F̃-vbased on η expansion, which is shown to be correct.

• (Section 6) This approach does not just apply to call-by-
value languages. We explain how the same extension
can be made to a call-by-need λ-calculus by likewise
formalizing the notion of arity in Haskell programs.

We believe our approach could be integrated well with levity
polymorphism [Eisenberg and Peyton Jones 2017] (discussed
in Section 7) by extending their solution for polymorphism
of non-uniform representations to polymorphism of non-
uniform arities. Unlike previous work on optimizing curried
functions (whichwe discuss in Section 8) our approach grows
directly from deep roots in type theory; in particular call-
by-push-value [Levy 2001] and polarity [Danos et al. 1997;
Munch-Maccagnoni 2013; Zeilberger 2009], which tell us the
optimal evaluation strategy for a type based on its logical
structure. Polarity brings two optimizations for compiling
lazy functional languages—arity and call-by-value data rep-
resentations [Peyton Jones and Launchbury 1991]—under
the same umbrella.

2 The Key Idea
Informally, we say the arity of a function is the number of
arguments it must receive before “doing serious work.” So
if f has arity 3, then f, (f 3), and (f 3 9) are all partial
applications of f; the only time f will compute anything is
when it is given three arguments. We begin by explaining
why arity is important, before intuitively introducing our
new approach.

2.1 Motivation
There are several reasons why an optimizing compiler might
care about the arity of a function:

• A function of arity n can be compiled into machine
code that takes n arguments simultaneously passed
in machine registers. This is much, much faster than
taking arguments one at a time, and returning an in-
termediate function closure after each application.

• In Haskell, the expression (seq e1 e2) evaluates e1
to weak head-normal form, and then returns e2. Now
suppose we define

loop1, loop2 :: Int -> Int
loop1 = \x -> loop1 x
loop2 = loop2

(seq loop1 True) evaluates loop1 to a function clo-
sure, and returns True. In contrast, (seq loop2 True)
simply diverges because loop2 diverges. So Haskell
terms do not always enjoy η equivalence; in general,
λx .ex , e . But η equivalence does hold if e has arity
greater than 0—in other words, if e is sure to evaluate
to a closure—so knowing the arity of an expression can
unlock optimizations such as discarding unnecessary
calls. For example, (seq loop1 True) becomes True
since loop1 has arity 1. But this arity information is
not seen in the type: loop1 and loop2 have the same
type, but different arities (1 versus 0).

• The trouble with limiting η equivalence is not unique
to seq in Haskell: the same issue arises in eager func-
tional languages, too. For example, consider similar
definitions in OCaml:

let rec loop1 x = loop1 x;;
let rec loop2 x y = loop2 x y;;

As before, loop1 and loop2 appear to be η equiva-
lent, but they are not the same function. For exam-
ple, let f = loop1 5 in true diverges whereas
let f = loop2 5 in true returns true. This is
because with eager evaluation, all closures are com-
puted in advance when bound; loop2 5 evaluates to a
closure but loop1 5 loops forever. So both eager and
lazy functional languages can have the same essen-
tial problem with restricted η equivalence, which can
block optimizations.
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• Fast calls for higher-order functions are a problem in
GHC and OCaml today. Consider this higher-order
function:
zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
zipWith f (a:as) (b:bs) = f a b : zipWith f as bs
zipWith f _ _ = []

The call to f in the body of zipWith is an “unknown
call” [Marlow and Peyton Jones 2004] where the com-
piler knows nothing about the arity of f. It might
expect one argument, or two, or even three (so that
zipWith would return a list of functions). Such un-
known calls impose runtime overhead, which is frus-
trating because the vastly-common case is that f is an
arity-2 function.

2.2 The Key Idea: A New Function Arrow
Our key idea is to add a new function type (σ { τ ), intro-
duced with λ̃x .e , alongside the existing one (σ → τ ). With
this idea, we can express that zipWith’s first argument f
is a function that takes precisely two arguments with the
following type:

f :: a { b { c

Now the call in zipWith’s body can be fast, passing two
arguments in registers with no runtime arity checks. This
new type can be added locally, when compiling zipWith,
without looking at its call sites (see Section 2.3).

The new type has the following intuitions:
• Terms of type (σ { τ ) enjoy unconditional η equiva-
lence: if e : σ { τ then (λ̃x . e x) = e .

• The type (σ { τ ) is unlifted; that is, it is not inhabited
by ⊥ (a divergent value). This is why η equivalence
holds unconditionally; it is nonsensical to have a pro-
gram of type (σ { τ ).

• This η equivalence also preserves work equivalence;
that is, η expansion does not change the number of re-
duction steps in a program run. For example, consider
these two programs

let f1 : Int { Int
f1 = letx = ack 2 3

in λ̃y.x + y
inmap f1 [1..1000]

let f2 : Int { Int

f2 = λ̃y. letx = ack 2 3
inx + y

inmap f2 [1..1000]

With an ordinary λ, one would expect these two pro-
gram to behave differently: in f1, the (expensive) func-
tion ack would be called once, with x ’s value being
shared by the 1000 calls of f1. But in f2, ack would
be called once for each of the 1000 invocations of f2.
With our new lambda λ̃, however, the two are precisely
equivalent, and in both cases ack is called 1000 times.
In effect, the binding for f1 is not memoised as a thunk,
but is intentionally treated in a call-by-name fashion, a
point we will return to.

• Values of type (σ { τ ), such as f1 or f2, are still fully
first-class: they can be passed to a function, returned
as a result, or stored in a data structure.

• At run-time, if f : τ1 { . . . τn { ρ, where ρ is not
of form ρ1 { ρ2, then f is bound to a heap-allocated
function closure of arity exactly n. This differs from
an ordinary function д : τ1 → . . . τn → ρ in a call-by-
value language because there is no guarantee that д is
bound to a closure which takesn arguments before per-
forming work. And it is even further different from an
ordinary function in a call-by-need language because
д itself might be bound to an unevaluated thunk.

• But what if the result type ρ was a type variable a? Is
it possible that a could be instantiated by (ρ1 { ρ2),
thereby changing f ’s arity and making nonsense of
our claim that types statically encode arity? No: in
our system you cannot instantiate a type variable with
such a type, which corresponds to similar existing
restrictions in GHC. For example, GHC does not let
type variable be instantiated with an unboxed, or un-
lifted type [Eisenberg and Peyton Jones 2017]. This
restriction is enforced by our type system and our new
function arrow fits neatly into this framework.

2.3 Adding Higher-Arity Functions to an
Intermediate Language

One of the major advantages to our approach to function
arity is that it is non-disruptive to orthogonal concerns of
an intermediate language. Rather than a monolithic solu-
tion like [Bolingbroke and Peyton Jones 2009], requiring
significant investment by changing the entire language, we
show here how to seamlessly add extensional higher-arity
functions to a λ-based calculus. Worded more formally, our
solution to higher-arity functions is a conservative extension
of an existing base language, meaning that the semantics and
implementation of the original features in the base language
are unchanged. In practical terms, being a conservative ex-
tension is important in the context of a compiler because it
means that its other orthogonal jobs, like translating the full
source language into the smaller core intermediate represen-
tation, do not need to be changed. And optimizations that
were performed on the base intermediate language—while
they may now make use of arity information provided by
types if it is advantageous to do so—are still correct to apply
directly as-is in the extended calculus.
While we anticipate that expert programmers may want

to write code that uses ({) directly, our main focus is on
using it internally, in the intermediate language of a compiler.
How, then, do higher-arity functions fit into the compiler
pipeline? Since there is no need to modify the front-end of
the compiler (the translation from the source language to
the intermediate language), the program can be first trans-
lated without generating any ({) functions, pessimistically
assuming arity 0. The arity analysis that is already being
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performed can then be formally captured in the types of
functions by replacing (→) with ({). But just arbitrarily
changing types is not sound! So how can the optimizer im-
prove function arity when it is entwined with types?
The so-called worker/wrapper transform is the standard

way that GHC uses to move information from the definition
of a function to its call sites [Gill and Hutton 2009], and is
especially useful for type-changing transformations. The
general technique is amenable to several optimizations, most
notably [Peyton Jones and Launchbury 1991]. Here, we use
worker/wrapper to improve the arity of types. For example,
we can split the standard Haskell zipWith function into a
worker and wrapper like so (where \x{e means λ̃x .e)

wzipWith :: (a { b { c) { [a] { [b] { [c]
wzipWith f (a:as) (b:bs) = f a b : wzipWith f as bs
wzipWith f _ _ = []

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
zipWith f = wzipWith (\a { \b { f a b)

The worker wzipWith is an arity 3 function, and its first
argument is an arity 2 function. That way, the call to f in
the body of wzipWith can be a fast binary call, even though
the definition of f is unknown. The purpose of the wrap-
per is to serve as an interface change, which can update
individual call sites by inlining. For example, we can make
the following simplifications in a call to zipWith, where the
boolean function has also been split into the arity 0 wrap-
per (||) :: Bool -> Bool -> Bool and arity 2 worker
|~| :: Bool { Bool { Bool:

zipWith (||) {- inline -}
==> wzipWith (\a { \b { (||) a b) {- inline -}
==> wzipWith (\a { \b { (|~|) a b) {- eta -}
==> wzipWith (|~|)

It may not look as if much has happened, but the new code is
much better: the higher-order call to (|~|) in the wzipWith
loop is now a fast call to a known-arity function.

3 Extending an Intermediate Language
With Higher-Arity Curried Functions

Since the choice of the beginning base calculus is rather ar-
bitrary, we choose a modest starting point: the call-by-value
system F, referred to here as Fv . We make this choice only for
illustrative purposes due to the fact that it is simple to state
formally, but still serves as a common core for strict func-
tional languages which can speak about important issues
such as polymorphism. However, the exact same extension
can be applied to a lazy λ-calculus—serving as an intermedi-
ate representation for Haskell programs—as well, which we
discuss later in Section 6.

3.1 Syntax
We give the syntax of F̃v—a simple language based on a con-
ventional system Fv for expressing higher-arity functions—in
Fig. 1. Expressions in F̃v include the usual λ-abstractions and
applications (of the forms λx :σ .e and e u) for functions of

Types

r , s, t ∈ Kind ::= V Source (CBV)
| E Extensional (CBN)

a,b, c ∈ TyVar
τ ,σ , ρ ∈ Type ::= a Type variable

| σ → τ CBV function
| ∀a.τ CBV polymorphism
| σ { τ CBN function
| ∀̃a.τ CBN polymorphism

Expressions

x,y, z ∈ Var
e,u,v ∈ Expr ::= x Variable

| e д Application
| λx.e CBV abstraction
| λ̃x.e CBN abstraction
| error τ Erroneous result

д ∈ Arg ::= u | σ
x, a ∈ BoundVar ::= x :τ Term binding

| a Type binding

Shorthand
λrx.e

λVx.e = λx.e
λEx.e = λ̃x.e

σ
r
→ τ

σ V→ τ = σ → τ
σ E→ τ = σ { τ

∀ra.τ
∀Va.τ = ∀a.τ
∀Ea.τ = ∀̃a.τ

Figure 1. Syntax of F̃v : call-by-value system Fv extended
with call-by-name λ-abstractions.

some type σ → τ . Expressions also allow for polymorphism
with the analogous syntax of the form λa.e for abstracting
a type variable a in the polymorphic type ∀a.τ , and e σ for
specializing the polymorphic term e with the specific type σ .
We also include the expression error τ to allow for the possi-
bility of run-time errors when a value of type τ is expected.
Note that this addition is not fundamental, it just shows the
robustness of the approach.
Our extension with higher-arity functions is highlighted

in the figure, and consists of one new form of expression and
two new types. In types, we introduce a new form of function,
σ { τ . The purpose of this new function type is that (unlike
→ arrows) multiple{ arrows chain together into a single,
higher-arity abstraction. Intuitively, this chaining could be
viewed in terms of multiple-argument functions (similar to
[Bolingbroke and Peyton Jones 2009]) like so

τ { σ { ρ ≈ (τ ,σ ) { ρ

however we do not require that all the arguments of a func-
tion be grouped together, allowing for the usual currying
and partial application even for higher-arity functions in F̃v .
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We also introduce a new form of polymorphism, ∀̃a.τ that
similarly chains together along with{. Incrementally chain-
ing polymorphism with function arguments is another ad-
vantage of our approach over [Bolingbroke and Peyton Jones
2009]. In order to view them both as a polymorphic multi-
argument function, we would have to combine polymorphic
abstraction and functions into a single monolithic type like

∀̃a.τ { σ ≈ (a, τ ) { σ

with the understanding that in (a, τ ) { σ , the type variable
a introduced on the left-hand side of the arrow is in scope
for both τ and σ . Such monolithic types immediately be-
come more complex because ∀̃s and {s could be nested
in any way, requiring a notion of telescoping in the in-
put of a function that reaches into its output. For example,
∀̃a.τ { ∀̃b .σ { ρ chains together as the multi-argument
function (a, τ ,b,σ ) { ρ, where a is in scope for τ , σ , and
ρ, but b is only in scope for σ and ρ. Our approach keeps
higher-arity functions and polymorphism separate from one
another, completely avoiding the need for telescoping.

To go along with the two new forms of types, we also have
a new form of abstraction: λ̃x :σ .e for introducing a function
of type σ { τ and λ̃a.e for introducing polymorphism of
type ∀̃a.τ (where e is of type τ ). The two new types share
the same syntax for application as in the base system Fv . The
primary reason to distinguish λ from λ̃ is for the purpose
of determining the types of annotated terms: without the
distinction, we don’t know whether λx :a.x should be of type
a → a or a { a absent additional context.

Distinguishing the base language features from the exten-
sion is an essential ingredient in our approach: it allows us
to preserve the semantics for the original V-subset of the lan-
guage, which remains untouched while we add the semantics
for new E-features. And it is important to know which of the
two we are dealing with (the original base language or the
extension) because the two semantics need not (and in this
case will not) be the same. Having the distinction lets us add
an entirely new evaluation strategy as a conservative exten-
sion to a seemingly incompatible base calculus. To achieve
this goal, we just need to distinguish between the new types
introduced by the extension and the original types of Fv . This
is done by classifying types as either V (for the base Fv types)
or E (for the extensional types being added on top), which
are two different basic kinds of types. In ordinary system Fv ,
kinds are not necessary, since every type has the same kind
(sometimes written ⋆). Classifying types as just V or E can
be seen as a rather rudimentary kind system. But this style
of classification makes it possible to extend the kind system
with more advanced features in a more full-fledged system.

3.2 Type System
We present the type system for F̃v in Fig. 2. Again, the ex-
tension to the base language is highlighted in the figure. In

Typing environments

Γ ::= x1 : τ1 . . . xn : τn
Classifying types τ : r

a : V σ → τ : V ∀a.τ : V σ { τ : E ∀̃a.τ : E

Checking types Γ ⊢ e : τ

Γ, x : τ ⊢ x : τ Var
Γ ⊢ error τ : τ Error

Γ, x : σ ⊢ e : τ
Γ ⊢ λx :σ .e : σ → τ

→I
Γ ⊢ e : σ → τ Γ ⊢ u : σ

Γ ⊢ e u : τ →E

Γ ⊢ e : τ a < FV (Γ)

Γ ⊢ λa.e : ∀a.τ ∀I
Γ ⊢ e : ∀a.τ σ : V
Γ ⊢ e σ : τ [σ/a] ∀E

Γ, x : σ ⊢ e : τ
Γ ⊢ λ̃x :σ .e : σ { τ

{I Γ ⊢ e : σ { τ Γ ⊢ u : σ
Γ ⊢ e u : τ {E

Γ ⊢ e : τ a < FV (Γ)

Γ ⊢ λ̃a.e : ∀̃a.τ
∀̃I Γ ⊢ e : ∀̃a.τ σ : V

Γ ⊢ e σ : τ [σ/a] ∀̃E

Figure 2. Type system of F̃v .

the base system Fv language, there is only one kind of type
(denoted here by V). However, since our extension has added
a new kind of types (denoted by E), checking whether τ : r
holds points out the dichotomy between the two. And this
distinction can be done by just reading the head connective
of the type. As such, the base language features (type vari-
ables a, arrows →, and quantifiers ∀) are all assigned the
kind V. In contrast, the extension (arrows{ and quantifiers
∀̃) are assigned the kind E.

Also note that, for now, we choose not to add E type vari-
ables in addition to the existing V ones inherited from the
base system F, since this extension is not necessary for cap-
turing arity in types.Wewill further discuss the ramifications
of this choice later in Section 7.

Next, Fig. 2 shows the typing rules. The rules for the base
language are conventional for system Fv , showing how to
type check variables as well as abstractions and applications
for both functions and polymorphism. The highlighted typ-
ing rules are essentially the same as the ones for system
Fv , except that they refer to the new forms of arrow and
quantifier.

3.3 Equational Theory
In order to reason about programs in terms of high-level
syntactic rewriting, we give an equational theory for F̃v with
the axioms presented in Fig. 3. Notice that the first two
axioms, βV and∀ are the usual rules for resolving applications
of function and type abstraction in the call-by-value system
Fv . In particular, the βV rule is limited to substituting only
arguments which are values (syntactically, a variable or a
λ-abstraction). That’s because in call-by-value, arguments
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V ∈ Value ::= x | λx.e

(βV) (λrx :σ .e) V = e[V /x]

(∀) (λra.e) σ = e[σ/a]

(βE) (λrx :σ .e) u = e[u/x] (σ : E)

(η{) λ̃x :σ .(e x) = e : σ { τ (x < FV (e))

(η
∀̃
) λ̃a.(e a) = e : ∀̃a.τ (a < FV (e))

Figure 3. Equational theory of F̃v .

are evaluated first before the call is resolved, so that only
values may be passed to the function. For example,

(λz:a.λx :a.x) (error a) , λx :a.x

is not a valid equation because the two sides give vastly dif-
ferent results: evaluating the left-hand side causes an error at
run-time when the argument error a is encountered, whereas
the right-hand side is already a value.

Besides the usual call-by-value system Fv axioms, we have
additional axioms to handle higher-arity functions in F̃v . First
of all, we have the full version of the β axiom, denoted here
by βE, which can substitute expressions which are not values.
However, just allowing such a rule to apply whenever would
be dangerous—as illustrated by the inequality above. How
can we reconcile the difference between call-by-name and
call-by-value functions coexisting in the same language? We
can use the type of the argument to determine when the full
call-by-name β axiom is safe. If the parameter of a function
has type σ : E, then any expression may be substituted
since the argument should be handled in a call-by-name way.
Otherwise, if the function’s parameter has type σ : V, then
this is a call-by-value application, and only values may be
substituted. This side condition allows us to safely mix both
β axioms in the same language.

The primary motivation, though, is the addition of the full
η axioms η{ and η

∀̃
in Fig. 3. These are the equations that

allow us to use types to statically expand any expression
with the appropriate number of λ̃s to match its arity. As
usual, the η axioms only apply to expressions of the correct
type (for example, expanding 5 to λx .(5 x) is nonsensical).
We really do need to use a call-by-name understanding

for expressions of type σ { τ and ∀̃a.τ in order to support
these η axioms. For example, applying the analogous η axiom
to an erroneous expression of type a → b is not an equality

error (a → b) , λx :a.(error (a → b) x)

because the left-hand side evaluates to an error while the
right-hand side is a value. The safe version of the η axiom in
the call-by-value λ-calculus must be restricted like so

(η→) λx :σ .(V x) = V : σ → τ (x < FV (V ))

thereby avoiding the above counter example. However, even
admitting this restricted η axiom does not solve the problem
of explicating arity by expanding out every λ allowed by
a type. For example, if we have some unknown function
z : a → a → a, then the above η→ axiom gets stuck after
the first expansion:

z =η→ λx :a.(z x) ,η→ λx :a.λy:a.(z x y)

This is because the partial application z x might already
result in an error, so η→ no longer applies.
In order to fully η-expand a function of any higher arity,

we must ensure that even erroneous expressions of type
σ { τ can be safely η-expanded without changing the result
of a program. The consequence of this constraint is that the
only context in which we are ever allowed to evaluate an
expression of type σ { τ is a calling context that already has
an argument ready. This restriction on evaluation follows
the call-by-name strategy, making it safe to η-expand any
number of λ̃s like for the expression e : ∀̃a.a { a { a

e =η
∀̃
λ̃a.(e a)

=η{ λ̃a.λ̃x :a.(e a x)

=η{ λ̃a.λ̃x :a.λ̃y:a.(e a x y)

Note that as a side constraint necessary for satisfying the full
η axiom: expressions of type τ : E are not programs and can-
not be evaluated. Allowing such expressions to be programs
would let us observe the difference between error (a { b)

and λ̃x :a.(error (a { b) x) which, again, must be equivalent.

4 Adding Higher-Arity Calls to an Abstract
Machine

Now, lets consider how to run programs, with the goal of
performing higher-arity function calls to a stock implementa-
tion [Peyton Jones 1992]. As is the running theme, we begin
with a standard call-by-value abstract machine for system Fv
and only add an extension to function applications and calls
which is capable of passing multiple parameters at once. The
machine in question is specified by the operational seman-
tics in Fig. 4, and eagerly evaluates all function arguments in
a right-to-left order. Evaluated function parameters can be
either types (for specializing polymorphism) or closures, and
the stack consists of a pending function waiting for its argu-
ment (eB ◦ S) or a chain of parameters which are annotated
with the calling convention of their function (P r P ′ s P ′′ t S).
The purpose of keeping track of the calling convention of
function arguments is to remember the difference from the
base system Fv (for which r will always be V) and the new
form of extensional functions during β-reduction. Our only
significant extension to this base semantics is found in the β∗
rule. When limited to just expressions from the base call-by-
value system Fv , the β∗ performs the usual single-argument
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Runtime state

W ∈ WHNF ::= λrx.e Abstraction value
P ∈ Param ::=WB Closure parameter

| σ Type parameter
S ∈ Stack ::= ε Empty stack

| eB ◦ S Function application
| P r S Application chain

B ∈ Env ::= ε Empty environment
| [WB/x]B Closure binding
| [σ/a]B Type binding

Machine steps ⟨e |B |S⟩ 7→ ⟨e ′ |B′ |S ′⟩

(β∗) ⟨λrx.e | B | P r S⟩ 7→ ⟨e ′ | B′ | S ′⟩

(app∗(e, [P/x]B, S) = (e ′,B′, S ′))

(var) ⟨x | B | S⟩ 7→ ⟨W | B′ | S⟩ ([WB′/x] ∈ B)

(arg) ⟨e u | B | S⟩ 7→ ⟨u | B | (eB) ◦ S⟩

(fun) ⟨W | B | (eB′) ◦ S⟩ 7→ ⟨e | B′ | (WB) t S⟩ (e : τ : t)
(spec) ⟨e σ | B | S⟩ 7→ ⟨e | B | σ t S⟩ (e : τ : t)

Multi-arity application app∗(e,B, S) = (e ′,B′, S ′)

app∗(λ̃x.e,B, P E S) = app∗(e, [P/x]B, S)

app∗(e,B, S) = (e,B, S) (e , λ̃x.e ′ and S , P E S ′)

Figure 4. Abstract machine for F̃-v

function application like so

⟨λx.e | B | P V S⟩ 7→ ⟨e | [P/x]B | S⟩

However, β∗ is also capable of passing multiple arguments
at once during a single step, as defined by app∗(e,B, S). The
idea is that, once the first argument is being passed to a
function closure (of any r ), then all the following arguments
for the next E-function calls are passed, too, at the same
time. For example, a ternary function call beginning with a
V closure and followed by two E calls is performed by the
following single β∗ step:

⟨λx.λ̃y.λ̃z.(f z y x) | B | P V P ′ E P ′′ E ε⟩

7→ ⟨f z y x | [P ′′/z][P ′/y][P/x]B | ε⟩

All three parameters are substituted in exactly one step. In
this sense, the semantics in Fig. 4 explicitly models how to
add higher-arity function calls to a standard abstractmachine.
But if we want to run programs of F̃v on this stock call-by-
value machine, we will need to compile F̃v programs first
to implement the semantics of F̃v that was given in Fig. 3.
In particular, in order to reflect F̃v semantics with this stock
call-by-value machine, the compilation we describe next in
Section 5 will have to resolve the following two issues.

4.1 Differences in Evaluation Order
If we just run an arbitrary F̃v expression, then the result
might be wrong! That’s because the machine in Fig. 4 uses
just a call-by-value evaluation order, and has no idea that
some expressions should be treated in a call-by-name way
as specified by the axioms in Fig. 3. For example, we have

(λx :σ{τ .I ) (error σ{τ ) =βE I

where I = λa.λ̃x :a.x is the identity function, but instead at
run-time we get an error (i.e. a stuck state):

⟨(λx :σ{τ .I ) (error σ{τ ) | ε | ε⟩

7→ ⟨error σ{τ | ε | (λx :σ{τ .I )ε ◦ ε⟩

̸7→

In this case, the equational theory gives the intended result
and the machine is wrong. But we don’t want to modify the
existing machine, since it is already perfectly serviceable for
the base language.
Instead, we should elaborate the input programs them-

selves so that they give the correct result even on a purely
call-by-value machine. Thankfully we don’t need to do any-
thing as drastic as continuation-passing style in order to
make the evaluation order explicit. Rather,η expansion comes
in to solve the problem for us. As a pleasant side benefit, just
η-expanding the call-by-name expression to make the arity
explicit in the syntax also makes the evaluation order ex-
plicit! So there is no need to change the implementation of
the machine; strategically η expanding the program gives
the correct result as in:

⟨(λx :σ{τ .I ) (λ̃y:σ .error σ{τ y) | ε | ε⟩

7→ ⟨λ̃y:σ .error σ{τ y | ε | (λx :σ{τ .I )ε ◦ ε⟩

7→ ⟨λx :σ{τ .I | ε | (λ̃y:σ .error σ{τ y)ε V ε⟩

7→ ⟨I | [(λ̃y:σ .error σ{τ y)ε/x]ε | ε⟩

4.2 Run-Time Arity Mismatch
There is a new kind of error that might occur at run-time: it
may be the case that the machine gets stuck if the arity of a
function and the call stack do not match. For example, there
could be too many E-parameters and not enough λ̃s like so

⟨λx :σ{τ .λ̃y:ρ.x | B | P1 V P2 E P3 E ε⟩ ̸7→

This is a stuck configuration because the multiple-argument
application operation is not defined in this case, since there
are not enough λ̃s to match the last E-parameter remaining
on the stack:

app∗((λ̃y:ρ.x), [P1/x]B, (P2 E P3 E ε))
= app∗(x, [P2/y][P1/x]B, (P3 E ε))

In this case, too, applying the missing η-expansion to sup-
ply all the λ̃s allowed by the type fixes the dynamic arity
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Type-driven EJeKд : τ (invariant, e д : τ )

(λ̃) EJλ̃x.eKε : τ = λ̃x.EJeKε : σ (e : σ )

(η{) EJeKд : σ{τ = λ̃x :σ .EJeKд, x : τ (e , λ̃x :σ .e ′)

(η
∀̃
) EJeKд : ∀̃a.τ = λ̃a.EJeKд,a : τ (e , λ̃a.e ′)

(V) EJeKд : τ = CJeKд (τ : V)

Type-generic CJeKд

(var) CJxKд = x д

(err) CJerror τ Kд = error τ д

(λ) CJλrx.eKд = (λrx.EJeKε : τ ) д (e : τ )
(app) CJe uKд = CJeK(EJuKε : σ ),д (u : σ )
(spec) CJe σKд = CJeKσ ,д

Figure 5. Pre-processing transformation from F̃v to F̃-v

mismatch problem:

⟨λx :σ{τ .λ̃y:ρλ̃z:σ .(x z) | B | P1 V P2 E P3 E ε⟩

7→ ⟨x z | [P3/z][P2/y][P1/x]B | ε⟩

The opposite case is when there are too few E-parameters
on the stack to fill all of the λ̃s. For example, we could have

⟨(λx :a{a.λ̃y:a.x y) Ia | ε | ε⟩

7→∗ ⟨λx :a{a.λ̃y:a.x y | ε | Iaε V ε⟩

̸7→

where Ia = λ̃x :a.x : a { a. But notice that the type of the
input program was a { a, which is call-by-name (E), not
call-by-value (V)! As pointed out previously in the context of
the equational theory, validating the η axioms requires us to
restrict programs to expressions of V-types. This condition
already rejects the term (λx :a{a.λ̃y:a.x y) Ia as a valid input
program because it has the type a { a. As it turns out,
this same condition on the final type of result that well-
typed programs are allowed to produce also eliminates the
possibility that there are not enough parameters on the stack
to complete a higher-arity function call.

5 Compiling Extensional Functions
We just saw some examples of how strategic η expansion
can let us run extensional, higher-arity functions on a stock
call-by-value machine. But is there a general procedure for
compiling any F̃v expression? Here, we demonstrate a trans-
formation for inserting all the missing λ̃s allowed by the
types of sub-expressions via η{ and η

∀̃
expansion, thereby

making the arity implied by types explicit in the syntax of
the program. This transformation is given in Fig. 5 and con-
sists of two parts. EJeKε : τ uses the type τ of e to insert any

Restricted η-long typing rules Γ ⊢η e : τ

Γ, x : τ ⊢η x : τ ηVar
Γ ⊢η error τ : τ ηError

Γ, x : σ ⊢Eη e : τ

Γ ⊢η λrx :σ .e : σ r
→ τ

η→I
Γ, x : σ ⊢η e : σ r

→ τ

Γ, x : σ ⊢η e x : τ
η→Ex

Γ ⊢η e : σ r
→ τ Γ ⊢Eη u : σ

Γ ⊢η e u : τ η→E

Γ ⊢Eη e : τ a < FV (Γ)

Γ ⊢η λra.e : ∀ra.τ
η∀I Γ ⊢ e : ∀a.τ σ : V

Γ ⊢ e σ : τ [σ/a]
η∀E

Checking η-expansion Θ; Γ ⊢Eη e : τ

Γ, x : τ ⊢Eη e : σ

Γ ⊢Eη λ̃x :τ .e : τ { σ
η{I

Γ ⊢Eη e : τ a < FV (Γ)

Γ ⊢Eη λ̃a:k .e : ∀̃a:k .τ
η∀̃

τ : V Γ ⊢η e : τ
Γ ⊢Eη e : τ

V

Figure 6. Type system of F̃-v .

λ̃ missing from e (in the η{ and ηλ̃ steps). CJeKε handles all
the other cases by descending down a chain of applications
(in the app and spec steps). To do so, both transformations
are parameterized by a list, д, of the arguments surround-
ing the expression. So in their full generality, we have the
η-expansion transformation EJeKд : τ (where e д : τ ) and
the helping CJeKд.
The purpose of this compilation process is to transform

an F̃v program into an equivalent one that gives the correct
answer. The first fact about the transformation is that it just
elaborates the original expression by selectively applying η.

Proposition 1 (η Elaboration). For a typed F̃v expression e
such that Γ ⊢ e : τ ,

1. e =η{η∀̃ (EJeKε : τ ), and
2. e =η{η∀̃ (CJeKε).

The invariants created by the η-elaboration process can
be captured in the form of a type system, shown in Fig. 6.
This type system is a restriction of Fig. 2 by mandating η-
expansion in the arguments to function calls and underneath
any λ (either λ or λ̃). We refer to the strict subset of F̃v ex-
pressions which are well-typed according to this restricted
system (i.e., expressions e such that Γ ⊢η e : τ ) as the exe-
cutable sub-language F̃-v .

Proposition 2 (Compilation). For a typed F̃v expression e
such that Γ ⊢ e : τ ,

1. Γ ⊢Eη (EJeKε : τ ) : τ is a F̃-v expression, and

2. Γ ⊢η (CJeKε) : τ is a F̃-v expression when τ : V.
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Runtime State

W ∈ WHNF ::= λrx.e
P ∈ Param ::= x | σ
S ∈ Stack ::= ε Empty stack

| P r S Application Chain
| !x ; S Thunk update

H ∈ Heap ::= ε Empty heap
| x := e;H Thunk allocation

Machine steps ⟨e |H |S⟩ 7→ ⟨e ′ |H ′ |S ′⟩

(β∗) ⟨λrx.e | H | P r S⟩ 7→ ⟨e ′ | H | S ′⟩

(app∗(e[P/x], S) = (e ′, S ′))

(push) ⟨e P | H | S⟩ 7→ ⟨e | H | P t S⟩ (e : τ : t)
(alloc) ⟨letx = u in e | H | S⟩ 7→ ⟨e[y/x] | y := u;H | S⟩

(force) ⟨x | x := e;H | S⟩ 7→ ⟨e | x := e;H | !x ; S⟩
(memo) ⟨W | x := e;H | !x ; S⟩ 7→ ⟨W | x :=W ;H | S⟩

Multi-arity application app∗(e, S) = (e ′, S ′)

app∗(λ̃x.e, P E S) = app∗(e[P/x], S)

app∗(e, S) = (e, S) (e , λ̃x.e ′ and S , P E S ′)

Figure 7. A lazy abstract machine extended with higher-
arity function calls

We are now equipped to properly run F̃v expressions by
first compiling to the sub-language F̃-v . Doing so lets us use
the same implementation of the base call-by-value system
Fv (with support for faster multiple-argument function calls)
while still satisfying the mixed call-by-value and call-by-
name semantics of F̃v .

Definition 1 (Programs). An expression e is an F̃-v program
if ε ⊢η e : τ and τ : V.

Proposition 3 (Operational soundness). For any F̃-v pro-
gram e , if e = V (for some value V according to Fig. 3) then
⟨e |ε |ε⟩ 7→∗ ⟨W |B |ε⟩ (for someW and B).

6 Sharing and Lazy Evaluation
So far, we showed how to extend an existing language with
higher-arity using extensional functions to get the F̃v calcu-
lus. But the starting point—the call-by-value system Fv—was
not important; we needed to begin somewhere for the pur-
pose of illustration. Because we formally distinguish the
base language (Fv ) in the extended calculus (̃Fv ) in order
to preserve two different semantics, we can choose a base
language with any evaluation strategy and apply the same ex-
tension. Of particular interest, we could have instead started
with an intermediate language that uses lazy evaluation, and
achieve higher-arity functions using the same technique. The
question then becomes “how do higher-arity, extensional

functions interact with sharing and memoization in a call-
by-need language like Haskell?”

6.1 A Higher-Arity Lazy Machine
To avoid repetition, we will only discuss the interesting dif-
ferences that laziness poses when compared with Sections 3
to 5. In order to model laziness and sharing, we can use the
standard construct letx :τ = u in e which should be read as
“first evaluate e and remember x = u; only evaluate u if x is
needed in e .” This understanding of let-bindings is formal-
ized by the call-by-need abstract machine in Fig. 7. In this
machine, function parameters cannot be arbitrary expres-
sions; they are pointers into the heap H which are allocated
by the alloc step. As such, they are only ever evaluated when
the variable is referenced (by the force step) after which its
binding will be updated with its value (by the memo step).

Just like with the call-by-value machine of Section 4, this
lazy machine requires some pre-processing step for elaborat-
ing the evaluation strategy of extensional functions. The elab-
oration for lazy evaluation is the same sort of η-expansion
as the one in Section 5, with a few minor differences. First,
since function parameters must be variables, we should take
care to name arguments with a let. Second, to compile a let,
we should η-expand the bound expression, and push all the
surrounding arguments into its body. These additions are
expressed by the following new lines for the transformation
(where we use a list of parameters P instead of arguments):

CJe xKP = CJeKx, P

CJe uKP = CJletx :τ = u in e xKP (x , u : τ )

CJletx :τ = u in eKP = letx :τ = EJuKε : τ inCJeKP

6.2 Forcing Thunks
Haskell-like languages have the capability of forcing thunks
even when their value is not yet needed using an operation
like seq to evaluate them to weak-head normal form. As
mentioned in Section 2, seq is precisely the operation that
invalidates η expansion for lazy function closures. This is
unacceptable for our approach, since we heavily rely on the
η law to make the evaluation strategy explicit at run-time.

Thankfully, the same solution we used to differentiate
the evaluation strategy of the base language and the higher-
arity function space—that is, distinguishing the two types of
programs—also solves the issue of inappropriate forcing due
to seq. In Section 3, there wasn’t even the possibility of a call-
by-name type variable, so the type of seq : ∀a.∀b .a → b →

b prevents it from being applied to higher-arity functions,
thereby rescuing their η law. Even if we were to go to a
more expressive system with arity polymorphism (discussed
next in Section 7), the type variables a and b only range
over lazy (call-by-need) types, which rules out extensional
(call-by-name) ones. Note that if our lazy base calculus has
a polymorphic case expression of the form case e of x → u
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which forces e , then it too needs to follow the interface of
seq described above; e cannot have a call-by-name type.

6.3 Work Preservation
Even though both call-by-need and call-by-name are non-
strict evaluation strategies, they still have a crucial differ-
ence: call-by-need shares the work done to evaluate bindings,
whereas call-by-need repeats work every time the binding
is used. So we must take care that adding call-by-name to
a call-by-need language does not accidentally cause work
duplication, as that could have a severe performance penalty.
With our methodology, work is preserved automatically

because we distinguish work-sharing bindings (call-by-need)
from ones that are intended to be repeated (call-by-name).
If we bind a variable of a call-by-need type, then we intend
to share its work, so the η law does not apply in general
which prevents duplication. But if an expression e has a
call-by-name type, then we do not plan to share its work
anyway because it must be treated as λ̃x .(e x). This gives an
optimizer more freedom to η expand, which is something
call-by-need compilers are sensitive about doing because
it may duplicate work. Moreover, distinguishing the two
kinds of function types allows us to simplify the runtime
representation of functions. Call-by-name functions can be a
direct pointer to a closure instead of a pointer to a thunk like
call-by-need functions, which avoids the need to dynamically
check whether the closure has been evaluated yet.

7 Arity Polymorphism
In Section 3, we began with a calculus (system Fv ) that had
a notion of polymorphism, and added to it higher-arity cur-
ried functions. The base language and the extension were
distinguished by different kinds of types (written V versus
E, respectively). A consequence of this decision meant that
there was only polymorphism over the original V types, but
not over the new E types. For example, if we just added a pair-
ing constructor Pair : ∀a.∀b .a → b → (a,b), then we could
only instantiate Pair with call-by-value (V) types, but not
extensional types (E). On the surface, putting higher-arity
functions inside a pair seems reasonable. But to quantify over
higher-arity types, there are some serious issues surrounding
arity polymorphism to consider.

Notice that the polymorphism already available in F̃v does
allow for polymorphism over functions that might have dif-
ferent arity. For example, consider the identity function

id : ∀a.a { a

id = λa.λ̃x :a.x

Even though a is a V-type variable, it can still be instantiated
with call-by-value function types that are called with multi-
ple arguments. For example, id can be applied to unary (like

id) and binary function (like const ) as follows:

const : ∀a .̃∀b .a { b { a

const = λa.λ̃b .λ̃x :a.λ̃y:b .x

id (∀a.a { a) id : (∀a.a { a)

id (∀a .̃∀b .a { b { a) const : ∀a .̃∀b .a { b { a

In this sense, the polymorphism allowed by F̃v is analogous to
[Bolingbroke and Peyton Jones 2009]. But F̃v is more expres-
sive, because in addition to call-by-value function closures
(which might have a higher arity by starting with ∀ or →
and continuing with multiple ∀̃s or {s) it also allows for
“naked” higher-arity functions of kind E.

Now suppose that we just added type variables of kind
E (we will distinguish the two kinds of type variables by
a : V versus a : E at their binding site à la system Fω ). What
goes wrong? We could now write the following alternative
identity and constant functions over E types:

idE : ∀̃a:E.a { a = λ̃a:E.λ̃x :a.x

constE : ∀̃a:E.̃∀b:E.a { b { a = λ̃a:E.λ̃b:E.λ̃x :a.λ̃y:b .x

But remember, in order to be able to evaluate programs
with a stock implementation, we need to be able to fully
η-expand them! This makes both the evaluation strategy and
the arity of each function call fully explicit in the syntax
of the program. But how much expansion is necessary? In
both of the above cases, it depends on the instantiation of
a, which can include any number of additional { arrows
which must “fuse” with the preceding ones. For example, if
we specialize the a in idE to the type of the identity function,
we learn that we are missing one λ̃, and so that special case
should be expanded once, but if we specialize a to the type
of the constant function, it is instead missing two λ̃s, like so:

idE (̃∀a:E.a{a) =η{ λ̃x :̃∀a:E.a{a.λ̃y:a.x y

idE (̃∀a:E.̃∀a:E.a{b{a)

=η{ λ̃x :̃∀a:E.̃∀b:E.a{b{a.λ̃y:a.λ̃z:b .x y z

In each case, depending on the type of the higher-order
parameter x , x will be called at a different arity, which is no
longer known at compile-time in the definition site of idE.
The problem with polymorphic types a of kind E is that

E types posses a form of non-uniformity: they may vary
in their calling convention in terms of the number of argu-
ments they expect. Unlike V types for which arity checking is
done dynamically at run-time (“unknown” functions in the
parlance of [Marlow and Peyton Jones 2004]), the different
arity of E types is “known” at compile-time. This property is
essential for fast code generation: the call site of an E func-
tion type will just assume a particular arity for passing some
number of arguments at once and call that function without
consulting its meta-data. As such, the arity of E types must
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be statically predictable, which conflicts with generic type
variables a : E.

There is another, better-known, non-uniformity problem
with polymorphism: data representation. For example, con-
sider the projection function: snd : (a,b) → b = λ(x,y).y.
When both a and b are unknown polymorphic types, how
can we generate code for extracting the second component
of the pair? This is quite a complicated question when the
values of different types may be represented by different
sizes and layouts in memory. If the pair (x,y) is stored con-
tiguously in memory, then the offset to the beginning of y
depends on the size of the value x : when x is a character it
may 8-bits, but when it is a double-precision floating point
number it takes up 64-bits. Likewise, we need to know the
size of y to know how many bytes to move. And the situa-
tion is further exacerbated when certain types of values, like
floating-points, require special code for parameter passing.

A common solution to these problems with polymorphism
is to enforce uniform representation: every type is constrained
to values represented by pointer-sized data. With this so-
lution, all of the above problems vanish, but at the cost of
extra boxing: if a value cannot fit within the constraints of a
pointer-like shape, then there is an extra level of indirection
by replacing the value with a pointer to the value. The indi-
rection of boxing is costly in practice, and so an optimizing
compiler should use unboxed values when possible, but this
may come at the cost of disabling polymorphism.
An interesting approach to reconciling unboxing with

polymorphism was introduced by [Eisenberg and Peyton
Jones 2017] called “levity polymorphism.” One can view lev-
ity polymorphism as a conservative extension of a conven-
tional functional language relying on uniform representation
with the following novel features:

1. unboxed types (e.g., integer and floating-point num-
bers) with a variety of different representations,

2. polymorphism over typeswith a known (i.e.,monomor-
phic) representation, and

3. polymorphism over representations themselves.

The key idea to make levity polymorphism work is to en-
rich kinds to be informative enough to determine the repre-
sentations of values, even when the specific type of those
values are yet unknown. Pleasantly, points 1 and 2 together
do not cause issue for compilability. Only point 3 could be
trouble, which encapsulates all of the above issues we dis-
cussed about compiling non-uniform polymorphism. And
thankfully, [Eisenberg and Peyton Jones 2017] gives a simple,
fundamental, requirement to ensure compilability:

Never move or store a levity-polymorphic value.

We believe that the same basic idea can be applied to
enhance the polymorphism over functions with non-uniform
arity. As future work, we would like to further enrich the
language of kinds to fill in arity information even when the

specific type is unknown. This extension could give a rich
language of kinds with the goal of statically tracking:

1. the specific evaluation strategy of function arguments
(e.g., call-by-value versus call-by-name) as in Section 3,

2. the number of arguments the function accepts before
doing serious work (the traditional notion of arity),

3. the representation of each argument (so that specific
parameter-passing code is known at the call site), and

4. the representation of its result (so that higher-arity
functions can be composed).

The purpose of such an extension would be to maintain
information about both representations and arity in a com-
positional way: arities and representations should still be
inferred from kinds no matter how deeply nested functions
and data structures become.

8 Related Work
8.1 Uncurrying
The classic way to handle multi-argument function calls is
to uncurry the function [Bolingbroke and Peyton Jones 2009;
Dargaye and Leroy 2009; Hannan and Hicks 1998]. Similar
to the work here, they too focus on solving fast higher-arity
calls inside higher-order functions.
Like us, uncurrying techniques aim to encode arity in

types, resulting in the introduction of new function types.
Both [Dargaye and Leroy 2009] and [Bolingbroke and Pey-
ton Jones 2009] use a compound, multiple-argument function
type (σ0, . . . ,σn) → τ for uncurrying. As discussed in Sec-
tion 3, multi-argument functions requires special support
in the presence of polymorphism, which ends up entwining
the two different language features into one. This involves
a telescoped introduction of type variables in the (many)
arguments of the function which remain in scope for the
return type. Our approach based on extensional functions
completely avoids this technical problem since the structure
of our higher-arity types ∀̃a.τ and σ { τ are exactly the
same as the original curried definition of functions.

In an approach more similar to ours, [Hannan and Hicks
1998] introduce an intermediate representation for their un-
currying transformation that involves adding annotated func-
tion types. The function type σ →⇑ τ fuses with τ when it is
also a function, and (σ →ϵ τ ) is a standard curried function
type. Our (σ { τ ) functions also have a fusion property, but
we do not require the codomain τ be function. [Hannan and
Hicks 1998]’s work avoids the problem of polymorphism
that other uncurrying techniques have by sticking to the
Hindley-Milner type system, where quantifiers only appear
in type schemes, but this is significantly less expressive than
the unrestricted quantifiers of system F [Girard et al. 1989].
Thus far, uncurrying-based arity presents a monolithic

approach which fuses several distinct language features and
can require switching to an entirely different evaluation strat-
egy like [Bolingbroke and Peyton Jones 2009], which can
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interfere with the rest of the compiler pipeline. As a gen-
eral design goal, our technique aims to be as non-disruptive
as possible, maintaining the same overall structure of pro-
grams and types for both lazy and strict languages (avoiding
both explicit uncurrying and thunking), and only requiring
that types inform us of the evaluation strategy. Thus, our
technique is better suited for integrating into existing im-
plementations because of its lower initial investment. As
a pleasant side benefit, our approach based on integrating
multiple evaluation strategies introduces opportunities for
optimizations unrelated to arity. For instance, in Haskell,
a call to f :: Int -> Int must first perform a dynamic
check to determine if f needs to be evaluated. In contrast,
calling f :: Int { Int can just immediately call fwithout
that dynamic check, because it must be bound to a closure.
Just uncurrying a higher-arity function does not express this
difference of evaluation strategy.

8.2 Arity in Compilation
The importance of function arity became apparent in the
once-pervasive categorical abstract machine [Cousineau et al.
1985] wherein curried functions would allocate many inter-
mediate closures. With the goal of fast multi-arity function
calls, the Krivine [Krivine 2007] and ZINC [Leroy 1990] ab-
stract machines repeatedly push arguments onto the stack
and an n-ary function will consume all n arguments it needs.
Another approach to speeding up curried programs is pre-
sented by [Marlow and Peyton Jones 2004] which combines
both statically and dynamically known arity information to
make fast calls. Statically, the compiler knows that a function
declared with 2 manifest lambdas has the arity 2. If a function
of known arity is fully applied, then the compiler can gener-
ate code that fuses the applications. For the cases where the
arity is unknown at compile time, e.g., inside higher-order
functions like zipWith, there is a dynamic check for when
calls can be fused. The crux of these approaches is that either
the compiler must propagate statically-known arity infor-
mation to the call site at compile-time, or there must be a
dynamic check for arity information at run-time.
The usage of arity information has long been an issue

in compilers leading to the development of complex arity
analyzers [Breitner 2014; Xu and Peyton Jones 2005] which
use the information to η expand and to float λ-abstractions
into and out of contexts; all while being careful to not dupli-
cate work. More recent work performs cardinality analysis
(which checks the usage of expressions) to apply the same
transformations [Sergey et al. 2014] and also to generate non-
updateable thunks at run-time if they will only be evaluated
once. Our goal is to improve the frequency of multi-arity
function calls, which is orthogonal to analysis. We can use ei-
ther simple analysis like syntactically-visible λ-abstractions
and applications, or those more thorough methods.

We seek to secure arity information inside the types of our
intermediate language; a place where it will be preserved

while optimizations freely manipulate the structure of terms.
To apply the standard worker/wrapper transformation, the
type is derived from counting λs and this is used to create
the worker and wrapper. The wrapper η expands higher-
order functions to produce higher-arity ({) functions. These
functions must appear fully applied in the wrapper which
may require further η expansion. We exploit the fact that
call-by-name functions can always appear fully applied due
to the η law in order to generate saturated applications.

8.3 Polarity
Our inspiration for the treatment of arity came from polarity
and call-by-push-value [Levy 2001; Munch-Maccagnoni 2013;
Zeilberger 2009], which study a type-based mixture of eval-
uation strategies in programming languages from the fields
of logic and type theory. These systems enjoy the strongest
possible extensionality laws (a.k.a. η axioms) for every type
[Munch-Maccagnoni 2009], even in the presence of recur-
sion and computational effects. To this end, every type has
an “innate” evaluation strategy which allows for mixing of
call-by-value constructs (like data types) with call-by-name
constructs (like functions).
Polarity has been used in the past to address other is-

sues relevant to intermediate languages and optimization,
like resolving the conflict between “strong sum” types and
non-termination [Munch-Maccagnoni and Scherer 2015]. Re-
cently, they have been extended with call-by-need constructs
[Downen and Ariola 2018; McDermott and Mycroft 2019]
used to support Haskell-like languages. Investigating the
consequences of these polarized languages in a practical
setting has lead us to find that the practical concerns of a
function’s arity and representation are actually semantic
properties of the function’s type.
Interestingly, types with an innate evaluation strategy

have arisen independently in practice. For example, consider
what happens if we have a type Int# for real, 64-bit ma-
chine integers suitable for storing directly in a register. In
an expression like f (g 1), where f and g both have type
Int# -> Int#, is (g 1) evaluated before or after f is called?
Since a value of type Int# is represented by a 64-bit machine
integer, there is no way to delay the call to g. Passing an
unboxed integer in a register means it is already a value,
so it must be evaluated ahead of time (call-by-value). This
insight lets GHC handle unboxed values [Peyton Jones and
Launchbury 1991].
There are different ways of formalizing polarity in a sys-

tem, and the closest one to our approach here is [Munch-
Maccagnoni 2009; Munch-Maccagnoni and Scherer 2015],
wherein type constructors can be applied to any types. Other
systems [Levy 2001; Zeilberger 2008] impose stronger con-
straints on types. In the notation here, we could restrict
σ { τ : E so that σ : V and τ : E. This style requires “polar-
ity shifts:” conversions between V and E kinds of types. With
shifts, we could remove the original type σ → τ : V, but that
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would go against our desire for a conservative extension; it
fundamentally changes the semantics of the base language,
changing the front-end translation into the intermediate lan-
guage. However, this alternative could have its own merits.
For example, GHC already uses monomorphic versions of
these shifts to represent the boxing and unboxing explicitly
in programs (e.g., the unboxed Int# type is primitive, and the
lazy Int is derived from it). Further investigation is required
to evaluate the relative practical merits of these two styles.

9 Conclusion
This work follows the tradition of designing calculi that
faithfully capture the practical issue of optimizing curried
function calls. On one hand, higher-order functions are very
important for expressiveness and currying can dramatically
reduce code size [Arvind and Ekanadham 1988]. On the other,
efficiency is also a concern; no one wants to be penalized for
writing elegant programs! Compiler writers have many tech-
niques to solve these problems, and we think some of these
can be put on solid ground with polarization and extension-
ality. Interestingly, the solutions for making fast calls across
higher-order functions and for unboxing tuples appear to be
dual to one another. As a pleasant side effect, this approach
is suitable for both strict and lazy functional languages. We
have implemented the ideas presented here as an extension
of GHC’s Core intermediate language as a proof of con-
cept.(available at https://github.com/zachsully/ghc/tree/eta-
arity).
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