
This thesis has been submitted in fulfilment of the requirements for a

postgraduate degree (e. g. PhD, MPhil, DClinPsychol) at the University of

Edinburgh. Please note the following terms and conditions of use:

This work is protected by copyright and other intellectual property rights,

which are retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or

study, without prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without

first obtaining permission in writing from the author.

The content must not be changed in any way or sold commercially in

any format or medium without the formal permission of the author.

When referring to this work, full bibliographic details including the

author, title, awarding institution and date of the thesis must be given.

Inlining in the

Glasgow Haskell Compiler:

Empirical Investigation and

Improvement

Celeste Hollenbeck

T
H

E

U N I V E R S

I T
Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

THE UNIVERSITY OF EDINBURGH

2025

Abstract

Inlining has been claimed to be the single most important optimization in Haskell, and also the

optimization receiving the most attention. It is also considered one of the hardest optimizations

to get right. If done poorly, it may cause code bloat, cache misses, and register spilling; yet

if done well, it can provide orders of magnitude better performance in terms of run time and

code size. Despite its importance, the Glasgow Haskell Compiler’s inliner has not undergone

significant change in decades.

This thesis explores the decision space of GHC’s inliner; presents potential approaches to

re-imagining the inliner, along with data and discussion for why they do not work; and addi-

tionally provides a conceptually simple analysis which guides inlining decisions at the function

declaration site by advising the placement of compiler pragmas in source code.

The decision space exploration conducts an empirical investigation of the search space of

GHC’s inlining decisions as it pertains to the randomization of the magic numbers—or hand-

coded constant integers—in the inlining heuristic. We demonstrate that randomizing the magic

numbers produces some speedup over default GHC about half of the time, showing ample

room for improvement. Then using iterative search, we produce four configurations into which

we can cluster Haskell packages to produce a 26% mean speedup over 10 benchmark

packages.

Following search space exploration, we investigate three machine learning models to predict

inlining decisions: a genetic algorithm and neural networks from within the middle of the com-

piler, and graph neural networks to place pragmas at the source-code level. Our investigation

reveals that although we can train the models with a high degree of accuracy, their predictions

still fail to produce significant performance results when used in practice.

Finally, we devise a technique to place pragmas along hot call-chains—or complete, over-

approximated chains of functions connected to profiled hot spots—which yields a 10% run-

time speedup when combined with existing developer-placed pragmas, and 9% speedup

without existing pragmas. This approach uses packages’ abstract syntax trees to approximate

control flow in quadratic time, whereas a conventional context-insensitive flow analysis would

be cubic.

ii

Lay Summary

Inline expansion, also known as inlining, replaces a function call site with the body of the called

function during compilation. It has been claimed to be the single most important optimization

in the Glasgow Haskell Compiler (GHC), and it is also the optimization that has received the

most attention. Additionally, it is considered one of the hardest optimizations. Making bad

inlining decisions may cause code bloat, cache misses, and register spilling; yet if done well,

inlining can provide orders of magnitude better performance in terms of run time and code

size. Despite its importance to performance, the Glasgow Haskell Compiler’s inliner has not

been significantly changed in decades.

This thesis explores changes to GHC’s inlining decisions, presenting potential approaches to

re-imagining the inliner along with data and discussion for why they do not work. Additionally,

it provides a conceptually simple technique which guides inlining decisions by advising the

placement of compiler pragmas, a type of manually added annotations, that allow developers

to indicate to the compiler where to inline within the source code.

This thesis includes an empirical investigation of the search space of GHC’s inlining de-

cisions as it pertains to the randomization of the magic numbers—or hand-coded constant

integers—within the compiler. We demonstrate that randomizing the inliner’s magic numbers

produces some speedup over default GHC about half of the time, suggesting ample room for

improvement. Then using iterative search, we produce four configurations into which we can

cluster Haskell packages to produce a 26% mean speedup over 10 benchmark packages.

These benchmarks come from a framework introduced in the thesis, which produces them

from real-world programs in the Haskell community.

After this search space exploration, we investigate three machine learning models to predict

inlining decisions: a genetic algorithm and neural networks from within the middle of the com-

piler, and graph neural networks to place pragmas at the source-code level. Our investigation

reveals that although we can train the models with a high degree of accuracy, their predictions

still fail to produce significant performance results when used in practice.

Finally, we devise a technique to place pragmas along hot call-chains—a term we use to

describe complete, over-approximated chains of functions connected to hot spots identified

in code through profiling—which yields a 10% run-time speedup when placed alongside

developers’ existing pragmas, and a 9% speedup without the existing pragmas. This approach

uses packages’ abstract syntax trees (or tree representations of the program) to approximate

control flow in quadratic time, whereas a conventional context-insensitive flow analysis would

be cubic.

iii

Acknowledgements

The lion’s share of my gratitude goes to my advisor, Mike O’Boyle, who made this PhD possible

in the most challenging circumstances. No words can convey my appreciation.

Significant additional thanks goes to Matt Might, who got me started; Simon Peyton Jones,

who helped get me where I needed to be; Artem Pelenitsyn and Michael Ballantyne, good

friends and generous colleagues who gave significant time to mentor other students, including

myself; and Jan Vitek, for some advisorship along the way.

Thanks to Michel Steuwer for co-authoring my second Haskell paper and providing back-

ground knowledge on functional programming. I would also like to thank those whom I have

had the privilege to work alongside and call friends in academia: Hyeyoung, Julia, Ming-Ho,

Jordi, Elena, Alexi, Peter, Persie, Jackson, Steven, Pablo, Hugo, Akshar, Martynas, Ben, Brian,

Jonathan, Alex, José, Tianyi, Josh, Krit, Ariel, Will, Pierce, Petr, Leif, and so many more whom

I met at the University of Utah, Northeastern, and the University of Edinburgh—through labs,

classes, and the Undistinguished Lecture Series.

I would like to thank my friend James Nagel for the extensive support at the start of my

computer science career, personally and academically. I thank John Regehr and Suresh,

professors who stayed in my life and gave me sass on social media—one of the best things

that could happen post-masters degree. Additionally, I thank my friends in Edinburgh—Grace,

Pavel, Dan, Pierre-André, and Dom—who encouraged me across the finish line.

Of course, I thank my family: Mom, Dad, Mark, Bev, Josh, Ben, and Mike.

iv

ACKNOWLEDGEMENTS v

Contents

Abstract ii

Lay Summary iii

Acknowledgements iv

List of Figures xi

List of Tables xiv

1 Introduction 2

1.1 Inlining in the Glasgow Haskell Compiler . 3

1.2 Contributions . 4

1.2.1 Contributions of Chapter 4 . 4

1.2.2 Contributions of Chapter 5 . 4

1.2.3 Contributions of Chapter 6 . 5

1.3 Structure . 5

2 Technical Background 7

2.1 Compilers . 7

2.1.1 Compiler Architecture . 7

2.1.2 Compiler Pragmas . 9

2.1.3 Inlining . 10

2.2 Haskell . 12

2.2.1 The Haskell Programming Language 12

2.2.2 Hackage and Stackage . 12

2.2.3 The Haskell Cabal . 13

2.2.4 The Glasgow Haskell Compiler . 14

2.2.5 Inlining Pragmas in the Glasgow Haskell Compiler 17

2.3 Benchmarking . 18

2.3.1 Overview . 18

2.3.2 Benchmarking in the Glasgow Haskell Compiler 18

2.4 Profiling . 19

2.4.1 Sampling . 19

2.4.2 Instrumentation . 19

2.4.3 Profiling in Haskell with Cabal . 19

2.5 Machine Learning . 21

vi

CONTENTS vii

2.5.1 Terminology . 21

2.5.2 Supervised Learning . 22

2.5.3 Reinforcement Learning . 22

2.5.4 Unsupervised Learning . 24

2.5.5 Feature Selection . 24

2.5.6 Genetic Algorithms . 25

2.5.7 Convolutional Neural Networks . 26

2.5.8 Graph Neural Networks . 27

2.6 Evaluation Methodology . 28

2.6.1 Metrics . 28

2.7 Summary . 29

3 Related Work 30

3.1 Compiler Optimization . 30

3.1.1 Traditional Approaches to Compiler Optimization 31

3.1.2 Use of Profiling in Compiler Optimization 32

3.2 Inlining . 33

3.2.1 Inlining in Imperative and Object-Oriented Languages 33

3.2.2 Optimization of Inlining in Functional Languages 35

3.3 Machine Learning in Compilation . 37

3.3.1 Search-based Approaches . 37

3.3.2 Predictive Modeling Approaches . 39

3.3.3 Objectives . 44

3.4 Summary . 46

4 Investigating Magic Numbers: Improving the Inlining Heuristic in the Glasgow

Haskell Compiler 47

4.1 Introduction . 48

4.1.1 Overview of the GHC Inlining Heuristic 49

4.1.2 Magic Numbers in the Inliner . 51

4.2 Approach . 53

4.2.1 Optimization Space Exploration . 53

4.2.2 Characterization of the Parameters 53

4.2.3 Benchmark Construction . 54

4.2.4 Benchmark Selection . 55

4.2.5 Pragma Example . 56

4.3 Experimental Setup . 57

4.4 Experimental Results . 57

4.4.1 Performance Improvement . 58

4.5 Analysis . 60

CONTENTS viii

4.5.1 The Single Best Configurations . 66

4.5.2 Cross-Architecture Transference . 67

4.6 A Simple Machine Learning Predictive Model 68

4.7 Results Summary . 70

4.8 Summary . 71

5 Investigatory Work Towards Improving the Inlining Heuristic in the Glasgow

Haskell Compiler 72

5.1 Introduction . 73

5.2 Training an Inliner from a Genetic Algorithm 73

5.2.1 Motivation . 73

5.2.2 Formulating the Problem . 74

5.2.3 Method . 75

5.2.4 Design . 77

5.2.5 The Inlining Decision Features . 78

5.2.6 Training the Genetic Algorithm . 78

5.2.7 Performance of the Genetic Algorithm 80

5.3 Training ANNs to Predict Inlining from Best-Case Magic Numbers Training Data 83

5.3.1 Motivation . 83

5.3.2 Overview . 83

5.3.3 Production of the Labeled Training Data 83

5.3.4 Model Construction . 85

5.3.5 Training Accuracy and Performance 85

5.4 Using Graph Neural Networks to Predict Pragma Placement in Haskell Source

Code . 86

5.4.1 Motivation . 86

5.4.2 Overview . 87

5.4.3 Setup: Graph And Model Construction 87

5.4.4 Training a Model Over Pragmas with Verified Performance Benefit . . 89

5.4.5 Model Training . 91

5.4.6 A Naive Approach: Train by the Measured Benefit of Individual Inlining

Decisions . 91

5.4.7 Why Is Inlining So Hard To Predict? A Case Study 93

5.4.8 An Observation: Trying to Predict Where Developers Would Place

Pragmas . 96

5.5 Conclusions . 98

6 Hot Call-Chain Inlining for the Glasgow Haskell Compiler 99

6.1 Overview . 99

6.2 Introduction . 100

CONTENTS ix

6.2.1 An Example of a Case to Inline Call Chains 101

6.2.2 Challenges . 102

6.3 Method . 103

6.3.1 Profile Information . 103

6.3.2 Call Graph . 103

6.3.3 Pragma Placement . 104

6.4 Implementation . 104

6.4.1 Collection of Profiling Information 104

6.4.2 Coerced Inlining of Hot Call Chains and All Related Functions in GHC 105

6.5 Experimental Setup . 106

6.5.1 Data Collection . 106

6.5.2 Measurement of Performance Change 108

6.5.3 Inlining Policies . 108

6.6 Results . 109

6.6.1 The Naive Approach . 109

6.6.2 Hot Call Chains Without Developer Pragmas 110

6.6.3 Inlining Hot Call Chains with Developer Pragmas 111

6.6.4 Comparing the Number of Pragmas: Hot Call Chains Versus Developers’114

6.6.5 Adjusting the Threshold of Hot Call Chain Inlining 115

6.6.6 Effect On Binary Size and Compilation Time 116

6.6.7 Comparison Against Magic Numbers Alteration 116

6.6.8 Changing Input Data . 119

6.7 Conclusions . 119

6.8 Summary . 120

7 Conclusions 121

7.1 Summary of Contributions . 122

7.1.1 A Benchmark Framework for GHC 122

7.1.2 An Empirical Investigation of GHC’s Inlining Decisions 122

7.1.3 A Simple Cluster-Based Predictive Model for Performance Improvement122

7.2 Observations from Experiments to Improve GHC’s Inlining with Machine Learn-

ing . 122

7.2.1 A Simple Approximate Hot Call-Chain Algorithm for Inlining Decisions

in GHC . 123

7.3 Critical Analysis . 124

7.3.1 Selection Bias . 124

7.3.2 Exclusion of Local Functions from Hot Call-Chains 124

7.3.3 The Use of More Compute Power 125

7.3.4 More Aggressive Inlining in GHC . 125

CONTENTS x

7.4 Future Work . 125

Bibliography 138

List of Figures

2.1 Stages in the front end of the Glasgow Haskell Compiler, simplified. 8

2.2 Three common activation functions for neural networks: the ReLU, the tanh, and

the standard logistic function. 23

2.3 A feedforward neural network with 4 input nodes xi, two nodes hi in one hidden

layer, and one output node y. 24

4.1 Visualization of GHC’s Inliner. The function callSiteInline is declared in Core-

Unfold.hs and is called from Simplify.hs. Rounded boxes indicate functions, ovals

indicate conditions, and dotted boxes indicate unfolding IDs. 50

4.2 First part of the computeDiscount function, with the magic number 10, in Core-

Unfold.hs. 51

4.3 Second part of the computeDiscount function, with the magic number 10, in

CoreUnfold.hs. 52

4.4 GHC 8.10.3: CoreUnfold.hs, line 1640. The top line of code calculates the value

for res_discount’ seen in Figure 4.3. The developer’s comments highlight some

of the arbitrary decisions made. 52

4.5 Best-case speedups for each package, grouped by experiment. Speedups are

reported as run time ratio along the x-axis and labelled with speedup percentages

at the top of bars. The baseline is default GHC without pragmas in package code. 58

4.6 Geometric mean speedups for all experiments. Baseline: Default, without prag-

mas. "Search With Pragmas" and "Search Without Pragmas" show geometric

mean speedups of the averaged best configurations for each package. "Best

Configuration" experiments represent the single best configuration applied to all

10 packages. 58

4.7 Histogram of individual package speedups from search across 320 configurations

without (a) and with (b) package INLINE pragmas. 60

4.8 Maximum total speedup of the single best configuration observed over time, search

without pragmas (dotted line) and with pragmas (solid). 60

4.9 Top (a): Difference from default for each flag, by top configuration for 3 most

improved programs, without pragmas. Bottom (b): Values for each single best

configuration for each package. Yellow diamonds are default values. White bars

indicate sampling boundaries. 62

4.10 Histograms of parameter values for configurations within 1% of the optimal spee-

dup for each package, across all samplings. 63

xi

LIST OF FIGURES xii

4.11 Difference of inlining features, best-case configurations compared against default

GHC. 66

4.12 Best-performing single configurations. Top: with pragmas. Bottom: without prag-

mas. All speedups relative to baseline of unmodified GHC times without pragmas. 67

4.13 Execution times for best-case configurations for each project on alternative archi-

tecture. Geometric mean speedup of configurations without pragmas: 6%. Geo-

metric mean speedup of configurations with pragmas: 21%. 68

4.14 Performance of model. Speedups for each package, using a 4-cluster based

predictive model with pragmas. 69

5.1 The network described by the nodes and connections encoded above in Tables 5.4

and 5.3, also known as a “phenotype” in NEAT. 76

5.2 Genomes’ execution times per generation as violin plots with jitter. 82

5.3 Best-performing single configuration of magic numbers in the GHC inliner across

10 benchmarks, with developer inlining pragmas. 84

5.4 A small 7-line program written in Haskell. 88

5.5 A simplified representation of the function addexclaim in 5.4.3. 89

5.6 Boxplots of time collections for 8 pragmas determined to have significant spee-

dups in the file Kaucher.hs for the project intervals-0.9.1. The red line in-

dicates the value of the fastest default timing, or fastest time with no developer

pragmas removed. 92

5.7 A call graph of the functions in poly-0.3.3.0 which must be inlined together to

produce a speedup. 94

6.1 A simplified relationship of a group of functions in a file in set-cover. The func-

tions partitions, search, step, and updateState are marked with an asterisk

to indicate that the developers attached an INLINE pragma to them. 102

6.2 The process of retrieving recommended function names for inlining in a binary

format. 104

6.3 A fabricated example profile report showing significant cost centres along with

their module names, source code locations, and percent of total run time and

allocations. 105

6.4 A rotated histogram of the occurrence of executables’ hotspots in packages’ src

folders, as found in profiling reports. Executables include individual tests and

benchmarks indicated in packages’ cabal files. 107

6.5 Inserting INLINABLE pragmas along hot call chains versus inserting INLINE prag-

mas along hot call chains. Both timings compare against a baseline of timings with

all inlining pragmas removed. The numbers above each pair of bars represents

the highest percent of the two speedups observed for each package. 110

LIST OF FIGURES xiii

6.6 Leaving developer pragmas in and combining with hot call chain INLINE pragmas

(INLINE); leaving developer pragmas in and combining with hot call chain INLIN-

ABLE pragmas (INLINABLE); and developer pragmas alone (DEV). Speedups are

comparisons against default GHC with all inlining pragmas removed from packages.113

6.7 Leaving developer pragmas in and compiling with the additional INLINABLE pragma

recommendations along hot call chains. Speedups are over package timings with

only developer pragmas. 113

6.8 Coercing inlining for hot call chains for hotspots which take 1% or more of only

run time versus hot call chains for GHC’s default time and allocation hotspots. . . 115

6.9 Speedups of HCC with INLINABLE pragmas, speedups of HCC with INLINE

pragmas, speedups of packages compiled with the best configuration of magic

numbers (MN) for packages without inlining pragmas (configuration 229), and

speedups with MN 229 and HCC INLINABLE. The baseline is GHC with default

magic numbers and inlining pragmas removed. 118

6.10 Inserting INLINABLE pragmas along hot call chains in the benchmarks available

in the dataset versus no pragmas. 119

List of Tables

2.1 Grammar for the datatype that represents expressions in SystemFC. 14

2.2 Grammar for the datatype that represents types in SystemFC. 15

4.1 Inlining parameter dynamic flags, their descriptions, and original values. 54

4.2 Selected Stackage packages and their information. Source lines of code (SLOC)

are estimates. Descriptions were taken from the packages’ Hackage profiles. . . 56

4.3 Inlining decisions per package, default vs best magic number configuration. . . . 64

4.4 Collected IR data: their abbreviations, possible values, and descriptions. 65

4.5 Parameter values for configuration 229 (single best without pragmas) and 265

(best with pragmas). Default GHC values in rightmost column. 1) funfolding-fun-

discount. 2) funfolding-dict-discount. 68

4.6 Parameter values for configurations 136, 23, 237, and 278 in Figure 4.14. Default

GHC values shown in rightmost column. 1) funfolding-fun-discount. 2) funfolding-

dict-discount. 70

5.1 Type of non-trivial inlinings when compiling Cabal the Library. 74

5.2 The total number of inlinings reported per package using GHC’s default heuristics

with no developer inlining pragmas. 75

5.3 Information encoded in the node genes in NEAT. 76

5.4 Information encoded in the connection genes in NEAT. 76

5.5 Collected IR data: their abbreviations, possible values, and descriptions. 79

5.6 Additional features for the genetic algorithm. 80

5.7 Some of the hyperparameters used in the genetic algorithm that produced candid-

ate models to make inlining decisions. Exhaustive hyperparameters are specified

in a configuration file. 80

5.8 Packages used to train the genetic algorithm. 81

5.9 The mean speedup and percent of packages successfully compiled within each

generation of the genetic algorithm before it was stopped. 81

5.10 Configuration 265 Features and Values . 84

5.11 Inlining Prediction Accuracy . 85

5.12 Breakdown of Conflicting Inlining Labeling. Conflicting datapoints in the training

data have identical values for each of the collected features yet both Yes and No

for the classification to inline. 86

5.13 Packages used to produce graphs to train the graph neural network. 90

xiv

LIST OF TABLES xv

5.14 Pragmas in poly-0.3.3.0 which accounted for virtually all of the performance im-

provement. All of the pragmas occurred in the same module. 94

5.15 A confusion matrix of reasons why measures of significance on the addition and

removal methods of collecting training data contradict each other. 95

5.16 Inlining pragmas which significantly effected performance with their individual re-

moval or addition—but not both. 96

5.17 Functions with pragmas whose addition was measured to have a significant pos-

itive performance effect but whose removal had no significant effect. 96

6.1 Hotspots listed in a profiling report in the file Exact.hs in set-cover and their

associated time consumption. 101

6.2 Summary of geometric mean speedups along various policies of adding inlining

pragmas via profile guidance by identifying hot call chains (HCCs). 109

6.3 Packages with a speedup of 1% or more using a naive profile-guided inlining

method. 110

6.4 A breakdown, per package, of which hot call-chain policy performed better and

what speedup was observed from it. In cases where the recorded speedups are

the same, the policy “EITHER” is listed. Speedups were rounded to the nearest

percent, and the geometric mean of all best-case speedups is 9% 112

6.5 The speedups and number of pragmas for hot call chains versus those included

by developers. HCC with poly and set-cover uses all INLINABLE, and HCC

with loop and midi uses all INLINE pragmas. Developers use either pragma on

any function at their discretion. 114

6.6 Increases in mean compilation time and package sizes using four inlining policies.

Numbers are rounded to the nearest percent. 116

6.7 Package sizes with developer pragmas removed (Size MB); compiled sizes with

inlining pragmas added to all reported active hotspots’ call chains (HCC All); sizes

with inlining pragmas added to all reported hotspots with more than 1% run time

reported (HCC 1%); and percent increase in size for the two policies (Size %Inc.). 117

LIST OF TABLES 1

Chapter 1

Introduction

Functional programming formulates programs in terms of pure functions, like mathematical

functions, including higher-order functions which may be passed as first-class objects. This

style of declarative programming minimizes side effects and produces deterministic behavior,

along with modular code that is easier to reason about. Additionally, functional programming

idiomatically encourages the use of immutable data structures over state change and the

errors introduced by it. As a result of these qualities, functional languages produce software

that is known for its reliability and low prevalence of errors.

Haskell is a purely functional programming language, based on the lambda calculus, with type

inference and lazy evaluation. It is often regarded as a standard for functional programming

languages. Haskell compiles ahead of time to native machine code, offering competitive

performance against interpreted languages such as JavaScript, Python, and Ruby. To achieve

this performance, Haskell relies upon the heavy use of optimizations during compilation.

Among these optimizations, inlining is acknowledged to be among the most important. Ad-

ditionally, it is acknowledged to be one of the trickiest.

Inlining is a well-known compiler optimization to reduce function-call overhead, where the

compiler copies a called function’s definition code directly into the function that is calling

it. Within imperative programming languages, it removes the cost of pushing and popping

registers to the system stack as well as enabling further downstream optimizations. In some

cases, it can remove computed jumps—improving instruction cache behavior and, thus, exe-

cution time. Indiscriminate inlining, however, can cause excessive code size increase. Hence,

most research focuses on how to benefit from inlining without incurring this cost.

Inlining has been studied for many years, and there is an extensive literature on its use for

imperative and object-oriented languages [26, 66, 87, 156]. As functions are the foundation

of functional programming languages, functional languages can benefit even further from

inlining’s reduction of function-call overheads and incurred allocations. Haskell is a higher-

order polymorphic functional language where the treatment of functions, including inlining,

dominates performance concerns. The Glasgow Haskell Compiler’s (GHC’s) inlining was once

2

. Introduction 3

said to be its single most important optimization [126], responsible for 20–40% of its per-

formance gain [9, 139] (as opposed to 10–15% for imperative languages). Furthermore, the

improvement of this optimization has been driven mostly by decades of hand tuning through

trial and observation.

There has, however, been little further recent improvement. Although this may be partly due

to the complexity of GHC’s inlining heuristics [77], it is fundamentally a hard problem. The

problem of finding an optimal inlining strategy is known to be NP-hard [141], with knock-on

effects of subsequent optimizations exposed by inlining and an exponential inlining decision

search space of 2n, where n is the number of call sites which can be inlined [166]. As the

number of call sites may be considerably higher in functional languages due to a convention

of writing programs primarily through function composition, inlining optimization presents a

significant challenge.

1.1 Inlining in the Glasgow Haskell Compiler

GHC has three parts: a front end for parsing, scope analysis, type inference, and desugaring

to the intermediate Core language or Core IR; a middle part for performing Core-to-Core

transformations; and a back end which translates the Core IR to Cmm (a small language

similar to C--) which may then be passed to a choice of backends.

GHC’s inliner is part of the optimizer in GHC’s Simplifier, which resides in the middle part of

the compiler [71]. The inliner replaces functions with their definitions in places where it expects

a performance benefit, and it contains numerous safeguards to prevent inlining in detrimental

cases—for example, functions which it deems too large (to avoid a performance penalty) or

recursive functions where inlining might diverge.

When deciding whether to inline a function, GHC estimates whether the inlining will incur

excessive code bloat by computing the function’s size and then calculating and subtracting

“discounts” which estimate how much of that code cost will be eliminated by further trans-

formations [127]. The result of this calculation must fall beneath some threshold to trigger

inlining. Altogether, the calculations which go into GHC’s inlining decision process are known

as its “inlining heuristics”.

This thesis presents an exploration of various approaches to improve Haskell’s inlining heur-

istics, including through machine learning and profile-driven analysis, whereas previous ap-

proaches have typically relied upon hand tuning with limited benchmarks. Following a layout

of the technical background for the problem in Chapter 2 and related work in Chapter 3,

Chapter 4 explores the efficacy of using random search and iterative compilation to improve

1.1. Inlining in the Glasgow Haskell Compiler 4

the existing architecture of GHC’s inliner, Chapter 5 discusses attempts to apply machine

learning to GHC’s inlining decision framework and their resulting insights, and Chapter 6

presents a simple flow approximation to guide inlining pragmas closer to the source-code

level to effect significant run-time speedup.

1.2 Contributions

This thesis presents a discussion on the challenges of inlining in the Glasgow Haskell Com-

piler based upon real-world Haskell code through the use of controlled experiments, demon-

strates why inlining in functional programming languages is particularly hard to approach

from the middle of the compiler where code has already been converted into Core inter-

mediate representation, and presents a conceptually easy approach to direct inlining by over-

approximating flow via profiling and then analysis of a program’s abstract syntax tree. Al-

though ample work has been done in the space of inlining for other languages, little has been

done recently for Haskell. This thesis offers explanations for why machine-learning-based

approaches fail, presents a practical solution in which over-approximation is allowable in the

case of inlining, and posits a direction for further research.

1.2.1 Contributions of Chapter 4

Chapter 4 presents a benchmark framework which allows for the creation of benchmarks

from real-world Haskell code in the Hackage Haskell package repository; conducts an in-

depth experimental analysis of the performance of GHC’s inliner across a range of real-world

benchmarks; demonstrates with empirical evidence the benefits of using automated tuning

techniques to improve the performance of the GHC inliner; and demonstrates the benefits of

using a simple predictive model that delivers significant performance.

1.2.2 Contributions of Chapter 5

Drawing upon information from Chapter 4, Chapter 5 attempts to improve the inliner in the

Glasgow Haskell Compiler through experimental use of three machine learning techniques:

a genetic algorithm, neural networks in the middle section of the compiler, and graph neural

networks to predict inlining pragma placement at function declarations in the source code.

These experiments show that even when machine learning models are trained to high accur-

acy, performance improvements may not necessarily be seen. Additionally, reliable training

data cannot be generated under the assumption that inlining decisions are independent of

each other, such as measuring the effect of changing one inlining decision. Section 5.4.7 then

provides a case study which shows that functions which are related by control flow can have a

significant effect on performance when inlined altogether, which motivates the approach taken

in Chapter 6.

1.2. Contributions 5

1.2.3 Contributions of Chapter 6

Chapter 6 presents a profile-directed technique to recommend functions for inlining at the

source-code level. Noting from Chapter 5 that giving inlining pragmas to entire call-chains

of functions can effect a significant speedup in some real-world code, this chapter outlines

an easy-to-understand method which approximates control flow via the abstract syntax tree

so that inlining pragmas may be automatically added at function declaration sites. Experi-

mental results show that even though this is an over-approximation of control flow, an overall

10% mean speedup can be observed when applying this technique to real-world Haskell

packages. We see that there exists a subset of packages for which the technique provides

a large speedup, yet the packages which produce no speedup remain virtually unchanged

performance-wise; and furthermore, the technique produces a minimal change in code size,

at just 1% mean size increase and less than 7% size increase for any individual package.

1.3 Structure

The organization of this thesis and summary of its chapters are as follows:

Chapter 2 discusses the technical knowledge which comprises the work and contributions

presented in this thesis, along with an explanation of the methodology used for evaluation

of its experiments. The technical background includes compilers, the Haskell language and

ecosystem, benchmarking, profiling, and machine learning.

Chapter 3 presents work related to this thesis, which includes research on compiler optimiza-

tion; inlining in imperative, object-oriented, and functional languages; and machine learning in

optimization. As the work on compiler optimization is extensive, Chapter 3 presents samplings

of work organized in terms of search-based approaches, predictive modeling approaches, and

objectives.

Chapter 4 presents a benchmark suite for GHC based upon real-world packages from Hack-

age, the Haskell community’s central open-source package archive; explores a compilation

search space created from parameterizing and randomizing magic (hand-coded) numbers

inside GHC’s inlining heuristic at compile time to obtain optimal run-time speedups across

10 packages selected from Hackage; and introduces a simple model to cluster packages

against 4 best-case magic number configurations based upon response time. This chapter is

based on the work by Hollenbeck et al. [77], and it motivates further restructuring of GHC’s

inliner by empirically demonstrating that no single configuration of magic numbers approaches

the maximum mean speedups observed across all packages.

1.3. Structure 6

Chapter 5 presents experimental work aiming to improve GHC’s inlining heuristic from within

the Simplifier and then at the source-code level through inlining pragma prediction. At the

point of the Simplification pass, the work includes a genetic algorithm and artificial neural

networks intended to predict non-trivial inlining decisions. At the source-code level, the work

explores the use of graph neural networks to place INLINE or INLINABLE pragmas along

function declarations with the use of training data obtained from both real-world examples

of empirically tested “good” pragma-placement decisions and also experimentally produced

examples of pragma-placement decisions based upon iterative search. This chapter explains

why the aforementioned approaches failed to produce effective prediction models, motivating

a strategy that leverages control flow in Chapter 6.

Chapter 6 introduces hot call-chains, a strategy whereby an over-approximation of control flow

may be produced from a program’s abstract syntax tree, to be used in combination with the

placement of inlining pragmas at the source-code level along chains of connected functions

(called “hot call-chains”) to safely and effectively influence GHC’s inlining decisions. This

chapter motivates the technique with real-world code; outlines the experimental approach;

presents the resultant speedups; and discusses the use of hot call-chains in combination with

developer pragmas, along with a comparison of the use of either INLINE or INLINABLE prag-

mas along the hot call-chains. This chapter is based upon the work published in Hollenbeck

and O’Boyle [78].

Chapter 7 provides a summary of contributions presented in this thesis, along with a critical

analysis of the work done and an outline of future work.

Chapter 2

Technical Background

This chapter introduces some of the basics behind the technical concepts used in the work this

thesis presents. Compiler optimization spans programming languages, machine learning, and

software engineering; therefore, concepts are incorporated from each. Section 2.1 introduces

the basics of compilers: overview, components, pragmas, and inlining as it pertains to Haskell

in particular. Section 2.2 introduces Haskell—the language, the Haskell Cabal, the Hackage

and Stackage package archives, and the Glasgow Haskell Compiler (GHC). Section 2.3

introduces benchmarking and how it relates to GHC. Section 2.4 discusses profiling, its im-

plementation and how programs may be profiled with GHC and Cabal. Section 2.5 introduces

machine learning: its basic terminology, supervised versus unsupervised and reinforcement

learning, and the models used—neural networks, clustering, genetic algorithms, and graph

neural networks. Finally, Section 2.6 gives the metrics and formulae to calculate the mean

speedup.

2.1 Compilers

2.1.1 Compiler Architecture

What is a compiler?

A compiler is a program which translates source code into another form of code. Often,

this translation is between high-level, human-readable code and machine-executable binary;

however, other types of compilation may also occur. Compilers that convert high-level code to

another high-level code are known as source-to-source compilers, transcompilers, or trans-

pilers. Assemblers compile from assembly language to machine code, and disassemblers

compile machine code into assembly language.

A compiler is typically composed of a front end, which takes in source code and produces

an intermediate representation (IR); a middle, which performs optimizations over the IR; and

a back end, which performs architecture-specific optimizations and code generation. These

parts will be further described in this section.

7

2.1. Compilers 8

This thesis is primarily concerned with the Glasgow Haskell Compiler (GHC), but both general

compiler architecture and some specifics about GHC will be discussed in this section.

The Front End of a Compiler

The front end of a compiler converts source code into an abstract syntax tree (AST) to be

passed to the middle of a compiler. The stages of this transformation typically include lexing,

parsing, and some analyses and transformations. Figure 2.1 depicts these stages in their

usual sequence.

Figure 2.1: Stages in the front end of the Glasgow Haskell Compiler, simplified.

The lexer itself can be broken down into a scanner, which may include a tokenizer, which

takes in a stream of characters and produces sequential tokens. For example, the input

2 + (3 * y) might produce tokens like:

CONST(2) PLUS LPAREN CONST(3) MULT VAR(Y) RPAREN

After stripping the input of whitespace and comments, which have no effect on compilation,

the tokenizer passes these tokens to the parser. From the lexer, the tokens are passed to the

parser, which encodes them in a nested structure called an abstract syntax tree (AST). An

AST represents the program in tree form.

In the Glasgow Haskell Compiler, the analysis passes in the front end include:

• Renaming: The Renamer resolves the scope of identifiers in the source files to make

all identifier names unique and prevent clashes.

• Typechecking: The compiler ensures that the types of all inputs to operands are

compatible with their operations; e.g., the program will not attempt to multiply an integer

with a string.

• Desugaring: Code written in shorter human-readable syntax is converted into more

verbose syntax which is better for machine execution.

2.1. Compilers 9

The Middle of a Compiler

The middle of a compiler performs optimizations over the IR, taking in the IR and producing

transformed IR, typically with the aim of making the resulting code smaller and/or faster. Often,

these optimizations are independent of the targeted architecture. Some examples of such

optimizations include but are not limited to:

Inlining: Discussed more in Section 2.1.3.

Dead-code elimination: Removes code which is determined to be unreachable

or will have no effect on the program.

Constant propagation: Determines which variables have known constants at

compile time.

Let-floating: Floating bindings from one place to another.

Strictness analysis: proving whether a function is strict in one or more of its

arguments to enable the use of a more efficient calling convention.

Most of the optimizations in GHC occur in the middle of the compiler, also known as the

Simplifier, which performs transformations over CoreIR. More information about GHC’s middle

and its IR, CoreIR, can be found in Sections 2.2.4 and 2.2.4, respectively.

The Back End of a Compiler

The back end of the compiler takes IR from the middle of the compiler after the architecture-

independent optimizations have completed. It may additionally perform some optimizations

for the target architecture, then outputs machine code targeted to a specific processor or

operating system. This process typically includes register allocation and the generation of

assembly code.

2.1.2 Compiler Pragmas

Compiler Directives

A compiler directive is a statement that a programmer may write into the source code of a

program which will instruct the compiler on some aspect of how the code should be compiled.

Some examples of directives in C include #include, which includes a file in the source code;

#define, which indicates the definition of a macro; and #ifdef, which includes a section of

code if a macro is defined using the #define directive.

2.1. Compilers 10

Compiler Pragmas

Compiler pragmas are lines of code specific to individual compilers, rather than the grammars

of languages themselves, which programmers may write into the source code to instruct a

compiler on how to process and optimize certain input programs.

Compiler Optimization

When converting from one language to another—be it source code or a spoken human

language—multiple interpretations of the same thing can be made which result in different

translations. For example, idioms that exist in one language may not exist in the other, res-

ulting in a variable selection of valid translations with differing qualities like brevity, precision,

generalizability, etc. In the context of computing, programmers are most often concerned with

two qualities of the result: its size and its execution time.

Optimizations of compilers typically aim to maximize some desirable quality—performance—

by minimizing some undesirable quality: e.g., we want to minimize the size of generated code

or its execution time to save on space or energy expenditure. This thesis specifically ad-

dresses the minimization of execution time in one compiler for one optimization: the Glasgow

Haskell Compiler and the optimization of inlining.

2.1.3 Inlining

Overview

When a compiler inlines a function, it copies the code of the function directly from its definition

into the site of the code calling it. This is done as an alternative to call linkage, where control

is transferred to the target routine, entailing a passing of the function’s parameters and the

return of the function’s value if applicable.

Too much inlining may cause code to get significantly larger, sometimes resulting in code

bloat, which may slow down performance if the resulting code bloat causes thrashing. Al-

ternatively, inlining may reduce the size of the resultant program even when a function is

inlined numerous times. This is the case with very small functions, because the compiler may

generate more code to handle registers and parameters than it would to simply inline the body

of the function. It may also make execution faster by removing extra instructions associated

with the call overhead.

It cannot be expected that inlining will make a difference for every program. In cases where

performance is database-, network-, or I/O-bound, clever inlining may not offer much improve-

ment.

2.1. Compilers 11

Inlining in Haskell

In functional languages, inlining may simply be described as replacing the use of an identifier

in an expression with the identifier’s definition. An example in Haskell, originally presented by

Peyton Jones and Marlow [126], is given below:

l e t f = \ x −> x*3 in f (a+b) − c

=⇒ (a+b) *3 − c

Peyton Jones and Marlow [126] identify three distinct program transformations that collectively

perform the inlining for the example above:

1. The inlining itself replacing a use of a let-bound identifier (here: f) by a copy of its

definition (here: \x −> x*3):

l e t f = \ x −> x*3 in f (a+b) − c

=⇒ l e t f = \ x −> x*3 in (\ x −> x *3) (a+b) − c

2. Dead code elimination that removes unnecessary let-bindings where the bound iden-

tifier is not used in the body of the let, as it is the case in the example:

l e t f = \ x −> x*3 in (\ x −> x *3) (a+b) − c

=⇒ (\ x −> x *3) (a+b) − c

3. β -reduction transforming a lambda application into a let-binding, enabling further in-

lining:

(\ x −> x *3) (a+b) − c

=⇒ (l e t x = a+b in x *3) − c

To finalize the example, we perform more inlining and dead code elimination steps:

(l e t x = a+b in x *3) − c

=⇒ (l e t x = a+b in (a+b)*3) − c

=⇒ (a+b)*3 − c

As Haskell is a lazy and pure functional language, inlining, dead code elimination, and β -

reduction are always legal transformations that do not alter the program’s meaning. Dead code

elimination and β -reduction are easy to implement, as both of them are generally beneficial,

whereas deciding when to inline what identifier is challenging. Therefore, GHC performs inlin-

ing with careful consideration, despite its heavy reliance on good inlining decisions for further

optimization. To determine when inlining may expose further opportunities for optimization,

GHC must examine the context in which the inlinee occurs to balance the benefits of inlining

with potential negative effects, such as code duplication.

2.2. Haskell 12

2.2 Haskell

2.2.1 The Haskell Programming Language

Haskell is a pure, general-purpose, functional, declarative, lazily evaluated language first

released in 1990. It has garbage collection (versus static lifetime checking) and automatic

memory management.

Haskell is statically typed, but type annotations are optional and inferred at compile time

through bidirectional type checking. It compiles ahead of time directly to native machine code,

unlike interpreted languages such as Python, Ruby, or JavaScript.

Additionally, Haskell has a rich type system which supports parametric polymorphism, algeb-

raic data types, class-based polymorphism, runtime type inspection, existential quantification,

type families, type equalities, higher-rank polymorphism, and kind polymorphism [183].

2.2.2 Hackage and Stackage

Hackage is the central package archive for Haskell [36]. All packages in Hackage are open

source. Stackage is a set of Stable Hackage package sets, where eat set is a distribution of

Haskell packages that are compatible and build with each other. Each of these sets is issued

as a Stackage Nightly snapshot and then a Long Term Support (LTS) release.

Some terminology used in Haskell, Hackage, and Stackage include:

Module

A module in Haskell is a collection of code, under a namespace, in an environment

of imports. A module contains declarations and expressions and may export its

resources [70].

Program

A Haskell program is a set of modules.

Package

A package is a library of Haskell modules. Every Haskell program must define a

Main module with a main function for a main package [160].

Dependency

A dependency is a package upon which a given source package relies, and it is

indicated by a name and version or version range [158].

2.2. Haskell 13

2.2.3 The Haskell Cabal

The Haskell Cabal (Cabal) [159] is a system for building and packaging Haskell programs. It

contains both cabal-the-tool, which enables installation of Cabal, and cabal-the-library, which

contains Cabal’s code.

The Haskell Cabal Package Structure

The .cabal File

A package’s .cabal file provides information about the package to the Cabal build system.

Some of its fields include the executable name and main file, dependencies and their versions

for building, whether the package is a library, its exposed modules, options for compilation,

etc.

Tests

In a Cabal package, individual tests can be indicated with the test-suite field which includes

a name for the test. Additional fields for the test indicate the location of its source folders and

main file. This structure allows tests to be executed with the cabal test command.

Benchmarks

Benchmarks may be indicated in the Cabal package by the convention benchmark name and

must have a name argument. A benchmark is a pure function or impure action that can be

evaluated by comparison with a standard, e.g., for run time.

Commands

The command new-build will build every component of every package. It is run from the

top-level directory. By default, Cabal will pass -O2 to GHC for the level of optimization.

The -O2 Optimization Level

This is the default optimization level used by Cabal, and it can be described as “Apply every

non-dangerous optimisation, even if it means significantly longer compile times.” [163]

These optimizations, not included at lower optimization levels, include:

-fasm-shortcutting

Enable shortcutting at the assembly stage of the code generator. That is, if a block

is only an unconditional jump, replace jumps to it by jumps to its successor.

-fdicts-strict

Make dictionaries strict, allowing the worker wrapper to fire on dictionary con-

straints. This often results in better run time.

-fspec-constr

Turn on call-pattern specialization to specialize recursive functions.

2.2. Haskell 14

-fstg-lift-lams

Enable late lambda lifting on the Spineless Tagless G-machine (STG) intermediate

language.

The command new-test target will run the given target(s) test suites. If the tests have not

already been built by passing -enable-tests, then they will be built.

2.2.4 The Glasgow Haskell Compiler

The Glasgow Haskell Compiler (GHC) is a free and open-source compiler for Haskell. GHC

supports concurrency, parallelism, profiling by time and allocation, and has a cross-platform

software environment. It is Haskell’s most popular compiler, and it is written in Haskell. Its

runtime system, however, is written in C and C--.

CoreIR

GHC’s IR, CoreIR, is an implementation of SystemFC, which is System F extended with

support for non-syntatic type equality. Its grammar includes metavariables, literals, term- and

type-level variables, expressions, types, and coercions. Figure 2.1 presents the datatypes for

SystemFC ’s expressions and variables, and Figure 2.2 presents its types [51].

e,u ::= Expressions, GHC/Core.hs:Expr
| n Var: Variable
| lit Lit: Literal
| e1 e2 App: Application
| jumplui

i App: Jump
| λn.e Lam: Abstraction
| let binding in e Let: Variable binding
| join jbinding in e Let: Join binding

| case e as n return tau of alti
i

Case: Pattern match
| e▷ γ Cast: Cast
| e{tick} Tick: Internal note
| τ Type: Type
| γ Coercion: Coercion

Table 2.1: Grammar for the datatype that represents expressions in SystemFC.

GHC’s Simplifier

GHC’s middle, also known as the Simplifier, performs most of the source-to-source optimiza-

tions over CoreIR. Some of these optimizations include:

Inlining: Discussed more in Section 2.1.3. The process of inlining may expose

the resulting IR to further and different optimization opportunities.

2.2. Haskell 15

τ,κ,σ ,φ ::= Types/kinds, GHC/Core/TyCo/Rep.hs:Type
| n TyVarTy: Variable
| τ1 τ2 AppTy: Application
| T τi

i TyConApp: Application of type constructor
| τ1 → τ2 FunTy: Function
| ∀n.τ ForAllTy: Type and coercion polymorphism
| lit LitTy: Type-level literal
| τ ▷ γ CastTy: Kind cast
| γ CoercionTy: Coercion used in type

Table 2.2: Grammar for the datatype that represents types in SystemFC.

Demand analysis: In GHC, demand analysis is a form of strictness analysis,

which analyzes the divergence properties of functions. This attempts to determine

whether the functions may or may not diverge—which means to cause abnor-

mal termination (such as failure with an error message) or loop infinitely—when

given certain arguments. Demand analysis is a backward abstract interpretation

approach to strictness analysis.

Rewriting with rules: Rewrite rules in Haskell allow developers to instruct GHC

to rewrite code that matches a given pattern into a different specified form, using

the RULES pragma with an optional phase-control number which specifies at what

phase the rule should fire. This rewriting happens during the simplification pass.

Let-floating: Let-floating refers to the relocation of let or letrec bindings for

performance improvement in heap allocation or execution time [124].

Constrained product result analysis: Determines when a function can profitably

return multiple results in registers [15].

Specialization: GHC’s specialization pass makes a monomorphic copy of every

unique type a polymorphic function is called with, which removes some dynamic

dispatches.

Constant folding: the process of recognizing and evaluating constant expres-

sions with known values at compile time.

Beta reduction: is computing the result of applying a function to an expression.

2.2. Haskell 16

The Guidance Data Type In GHC’s Inliner

The guidance is a data type attached to expressions being considered for unfolding, and

it carries some additional information to help guide that decision. Which type of unfolding

guidance to attach to each expression is determined in GHC before occurrence analysis,

which takes place before simplification; and the assignment of unfolding guidance may also

be influenced by placement of inlining pragmas in source code. There are three types of

unfolding guidance:

UnfNever

UnfWhen

UnfIfGoodArgs

UnfNever

If an item receives an UnfNever folding guidance, it is automatically excluded from consid-

eration for inlining. The two situations in which an UnfNever guidance is given are: if the

expression is calculated to have a size that is TooBig, or if the item is a top-level bottoming

function. A bottoming function is a function that either fails due to error or goes into an infinite

loop which returns nothing, and “top-level” means it is declared at the outermost level of a

module.

UnfWhen

The UnfWhen data type constructor is shown below. As indicated in its comments, an ex-

pression is given a guidance of UnfWhen to disregard the size of the item when determining

whether to inline. This is often the case with very small functions.

UnfWhen { -- Inline without thinking about the *size* of the uf_tmpl

-- Used (a) for small *and* cheap unfoldings

-- (b) for INLINE functions

-- See Note [INLINE for small functions] in CoreUnfold

ug_arity :: Arity, -- Number of value arguments expected

ug_unsat_ok :: Bool, -- True <=> ok to inline even if unsaturated

ug_boring_ok :: Bool -- True <=> ok to inline even if the context

-- is boring

-- So True,True means "always"

}

2.2. Haskell 17

UnfIfGoodArgs

The UnfIfGoodArgs guidance is given to all other functions whose RHS is neither too big nor

small enough to warrant inlining without further consideration. Its data constructor is shown

below.

UnfIfGoodArgs { -- Arose from a normal Id; the info here is the

-- result of a simple analysis of the RHS

ug_args :: [Int], -- Discount if the argument is evaluated.

-- (i.e., a simplification will definitely

-- be possible). One elt of the list per

-- *value* arg.

ug_size :: Int, -- The "size" of the unfolding.

ug_res :: Int -- Scrutinee discount: the discount to

-- substract if the thing is in

} -- a context (case (thing args) of ...),

-- (where there are the right number of

-- arguments.)

2.2.5 Inlining Pragmas in the Glasgow Haskell Compiler

Developers may manually add annotations to code, called pragmas, which give compiler-

specific instructions for the build. Both the INLINABLE and INLINE pragma mark a function

for more aggressive inlining and allow it to be specialized at use sites, even across modules.

A module is a collection of functions, datatypes, classes, etc., defined together in the same

namespace. Modules may import things from other modules when those things are marked

as exported in their own modules. To inline functions from another module, however, it is

necessary to have the unfolding, or the body, of the function available in an interface file. For

very large functions, this will not happen unless they are explicitly annotated by an inlining

pragma.

The INLINABLE pragma marks a function for inlining, where otherwise it may have been

disqualified on account of its size, but allows GHC to make the final decision. An INLINABLE

pragma would look something like this:

big_function :: Int -> Int

{-# INLINABLE big_function #-}

2.2. Haskell 18

The INLINE pragma is stronger than INLINABLE. In comparison, the INLINE pragma makes

GHC inline the function at every call site, as long as it is applied to at least as many argu-

ments as there are on the left-hand side of its definition and inlining is safe (for example, not

recursive). GHC will copy the unoptimized function definition into the interface file so that it

can be used by externally defined functions. The INLINE pragma would look something like

this:

big_function :: Int -> Int

{-# INLINE big_function #-}

It is still safe to put either inlining pragma on a recursive function: GHC can simply ignore it in

that case [165]. In general, the INLINABLE pragma is considered safer to use for performance

because GHC is allowed to make a cost-based judgment call on whether to inline it. The IN-

LINE pragma, however, will largely override GHC’s cost-benefit analysis—sometimes inlining

things where size outweighs the potential benefits of inlining. Therefore, it is more likely to

see a performance loss when placing an INLINE pragma in an ill-advised spot as opposed to

INLINABLE [91].

2.3 Benchmarking

2.3.1 Overview

In computing, a benchmark is a test that measures the relative performance of the execution

of a program or some other operation against a comparable reference evaluation. For the sake

of this thesis, benchmarks are executions of Haskell programs with regard to the performance

metric of wall clock time.

2.3.2 Benchmarking in the Glasgow Haskell Compiler

The Glasgow Haskell compiler group released a benchmark suite for lazy functional program-

ming systems in 1993 called nofib [123]. These programs have since served as GHC’s

canonical benchmark suite, and they are still maintained to the date of this thesis. The nofib

benchmark suite contains four types of single-threaded benchmarks, along with microbench-

marks for the -threaded runtime. Within the single-threaded benchmarks, the four categor-

ies are: imaginary, which are considered “toy” benchmarks, like puzzle solvers; spec-

tral, which contains algorithmic kernels; real, which are command-line interface applica-

tions which the documentation describes as “rather aged”; and shootout, which are bench-

marks from a benchmarks game called “language shootout”. The nofib benchmarks have

long since been considered out-of-date [105] but have not received a comparable replace-

ment.

2.4. Profiling 19

2.4 Profiling

Profiling measures characteristics of a program as it runs, such as its memory use, instruction

activity, or time complexity. To do this, a program called a profiler either samples information

from or inserts instrumentation into the program to be evaluated. However, because sampling

has an element of randomness to its data collection, the information it provides is less com-

plete.

2.4.1 Sampling

With sampling, the profiler examines the program’s call stack at specified intervals—for ex-

ample, after every millisecond—to collect information about the functions that are currently

executing. This technique has very little effect on the execution of the application under

examination.

2.4.2 Instrumentation

A profiler may insert hooks into the program’s code or inject code into its binary which allows

it to collect more precise information about it during its execution, such as the run time of each

of its functions or their call count. The injection of these hooks, however, induces overhead.

2.4.3 Profiling in Haskell with Cabal

GHC will insert instrumentation into programs which can provide profile information for time

and space consumption. Time measurements report CPU time, and space measurements

include memory allocations. By default, profiling of a program’s libraries is not enabled. When

a program is profiled with GHC, only code written in the program will be instrumented. Blocking

safe foreign calls will not be instrumented, but unsafe foreign calls will be instrumented. A

safe foreign call is guaranteed to leave the Haskell system in a state that allows callbacks

from external code. That is, the safe call accounts for the possibility of heap-allocated Haskell

values to change to allow for garbage collection.

In profiling Haskell, the execution time or space of a program is its cost. Costs are attributed to

cost centres, which are program annotations which enclose expressions. Cost centres may

enclose other cost centres, which may produce a cost-centre stack to produce a call-tree of

cost attributions.

At the time of this work, profiling through GHC may be run by building a program with profiling

flags such as -fprof-auto or -prof and then running it with the +RTS -p options. An

example of this, provided in the Glasgow Haskell Compiler 9.8.1 user guide illustrates how

to profile a toy fibonacci program:

2.4. Profiling 20

main = print (fib 30)

fib n = if n < 2 then 1 else fib (n-1) + fib (n-2)

To profile, the program is compiled accordingly:

$ ghc -prof -fprof-auto -rtsopts Main.hs

$./Main +RTS -p

121393

This produces output similar to the following in a .prof file:

Wed Oct 12 16:14 2011 Time and Allocation Profiling Report (Final)

Main +RTS -p -RTS

total time = 0.68 secs (34 ticks @ 20 ms)

total alloc = 204,677,844 bytes (excludes profiling overheads)

COST CENTRE MODULE %time %alloc

fib Main 100.0 100.0

COST individiual inherited

CENTRE MODULE no. entries %time %alloc %time %alloc

MAIN MAIN 102 0 0.0 0.0 100.0 100.0

CAF GHC.IO.Handle.FD 128 0 0.0 0.0 0.0 0.0

CAF GHC.IO.Encoding.Iconv 120 0 0.0 0.0 0.0 0.0

CAF GHC.Conc.Signal 110 0 0.0 0.0 0.0 0.0

CAF Main 108 0 0.0 0.0 100.0 100.0

main Main 204 1 0.0 0.0 100.0 100.0

fib Main 205 2692537 100.0 100.0 100.0 100.0

The second section gives a report of the “most costly functions in the program” [162] which

may be referred to as a program’s “hotspots”. By default, the profiling report counts the most

costly functions as those which consume 1% or more of either run time or allocations in the

target program.

2.4. Profiling 21

For the version of GHC used in this thesis, profiling instrumentation is inserted before optimiz-

ations. As of GHC 9.4.1, the option -fprof-late enables the compiler to add automatic cost

centre annotations after optimizations.

2.5 Machine Learning

Machine learning is a collection of methods used to enable computers to solve problems via

classification and decision making by inferring from patterns in data. Machine learning can be

either supervised or unsupervised. Supervised learning uses labeled training data to “teach”

models to classify, and unsupervised learning produces decisions from unlabeled data. Some

commonly used terms are defined below for the subsections that follow.

2.5.1 Terminology

Model (machine learning)
A program which can make decisions or predictions about a dataset. In machine
learning, the decisions may include (but are not limited to) labelling of two or
more classes; regression, or estimation of the value of a dependent variable
based upon one or more independent variables; similarity learning, or quantifying
how similar objects are to each other; clustering, or discovering groups within a
dataset; or dimensionality reduction, which is transforming data from a higher-
dimensional space to a lower-dimensional space.

Training data
A set of examples used to train a model. For mathematical models, training data
is often represented as an input vector of features and may be accompanied by
an output vector (or scalar) which the model is supposed to learn.

Testing data
A set of examples which the model has not seen during training. The model
is tasked to make predictions over the testing data, from which a metric of its
expected accuracy may be ascertained.

Features
Features for machine learning are informative measurements of characteristics of
examples of things over which the model learns and for which the model makes
predictions. Most features are represented as numerical vectors or tensors. Con-
tinuous features are often referred to as numeric, and discrete-valued charac-
teristics (arbitrary values which can be converted to “bins” of a certain numerical
value, such as numbers corresponding to colors) are referred to as categorical
features.

2.5. Machine Learning 22

2.5.2 Supervised Learning

In supervised learning, machine learning models use labeled training data to learn how to

make classifications or predictions over unseen testing data. Supervised learning includes

active learning, classification, and regression. With supervised learning, an objective function

for prediction is learned through iterative optimization—often stochastic gradient descent.

2.5.3 Reinforcement Learning

The basis of reinforcement learning involves an artificially intelligent agent taking actions in a

dynamic environment to maximize one or more defined rewards. By learning patterns in data

over a smaller number of observations, reinforcement learning aims to reduce search time for

a solution and eliminate the need to generate a large number of data points for the alternative

of supervised learning.

Reinforcement Learning may be modeled as a Markov decision process, where the definition

of a Markov decision process has four components: S, a finite set of states; A, a finite set

of actions; T , a transition function of the form T : S×A× S → [0,1]; and a reward function,

R : S×A×S → R. [172]

One or more optimality criteria must be defined for the agent to try to maximize (or minimize)

to learn a policy. One example would be the finite horizon model

E

[
h

∑
t=0

ri

]
, (2.1)

where the agent wants to optimize the expected value of the reward r across time steps t for

the known horizon number h. The criterion can be modified to, for example, give more value

to later rewards by multiplying r by a discount factor γ t where 0 ≤ γ < 1.

Feedforward Neural Networks

In feedforward neural networks (FFNNs), there do not exist any connections between the

networks’ units that form a cycle. that is to say, there are no connections that go backward to

previous layers. Information may only travel forward in an FFNN from the input nodes to the

output nodes.

Assuming an n-dimensional input, x, an FFNN computes a function f that approximates

prediction(s) y:

f (x)≈ y (2.2)

2.5. Machine Learning 23

The training for the FFNN is a set of training data in pairs of (x,y). An FFNN may have zero

to multiple hidden layers between its input nodes, which accept x, and output nodes, which

emit y. Figure 2.3 depicts a feedforward neural network with four input nodes xi, one hidden

layer with two nodes hi, and one output node y. The hidden layer nodes and output node

may have activation functions. If we allow vi = ∑xi +b, where xi is the value of the incoming

ith connection and b is a bias, then two historically common activation functions would be

the sigmoids (σ) of tanh(vi) (hyperbolic tangent function) and (1+ e−vi)−1 (standard logistic

function). We can therefore re-write the FFNN equation as:

σ(∑vi +b)≈ y (2.3)

where vi is the input from the last hidden layer before the output node(s), which may itself

contain an activation and multiple inputs.

More recently, rectified linear unit (ReLU) activations have been gaining popularity for their

resistance to vanishing gradient problems and relative computational simplicity. Their activa-

tion is defined as:

f (x) =

x if x > 0

0 otherwise

Figure 2.2 depicts linear graphs for the inputs and outputs of the three activation functions

described.

Figure 2.2: Three common activation functions for neural networks: the ReLU, the tanh, and
the standard logistic function.

2.5. Machine Learning 24

Figure 2.3: A feedforward neural network with 4 input nodes xi, two nodes hi in one hidden
layer, and one output node y.

2.5.4 Unsupervised Learning

Unsupervised learning works with data sets that have no labels. With unsupervised learning,

models infer patterns or associations in the data. For example, some unsupervised learning

methods include clustering, or grouping data together by some attributes; anomaly detection,

or identifying outliers in data; or latent variable learning, where observable variables are

related to latent or hidden variables.

Clustering

Clustering, or cluster analysis, groups objects together by similarity of attributes. Some types

of clustering include centroid-based clustering, or clusters where groups have a central vec-

tor and group membership is determined by which centroid each object is most similar to;

connectivity-based clustering, where objects are placed in groups with other objects to which

they are closest by some distance measure; and model-based clustering, where objects are

assigned to distributions to which they are most likely to belong.

2.5.5 Feature Selection

Feature selection in machine learning is the process of choosing and cleaning a set of features

to represent the problem situation for use with the model. Ideally, features should be relevant

and help predict a correct output. Irrelevant features can slow down training or degrade

predictive accuracy. Some common problems which arise from inadequate selection or rep-

resentation of features may include

2.5. Machine Learning 25

Multicollinearity

In the case of linear regression with ordinary least squares, when two or more

predictive variables in a predictive model have a strong linear relationship—i.e.,

one variable can be written in terms of a linear function of the other—the output of

the model may vary widely for small changes in its input. This happens because

solving the least squares minimum problem min∥y−Xβ∥2 may be approached

by solving for the normal equation (X⊺X)β = X⊺y; and when sets of variables

in X are multicollinear, the inverse of X⊺X has an ill-conditioned inverse. That is,

the approximate inverse may be incomputable or may have large rounding errors.

Although stochastic gradient descent is resistant to multicollinearity, it may cause

slower convergence.

Curse of dimensionality

The addition of each new feature adds a new dimension to the data set, which

increases the space in which the data resides and hence requires more datapoints

to avoid data sparsity. With the addition of more dimensions, datapoints appear

increasingly dissimilar and farther apart, which makes learning more challenging.

Loss of information

Removal of informative features during data cleaning may result in the loss of

signal which would be important for learning.

2.5.6 Genetic Algorithms

Genetic algorithms are a class of evolutionary algorithms, where evolutionary algorithms

produce a population of individuals which evolve over some number of generations [125].

Within these populations, individuals are candidate solutions to a given optimization problem;

and like the idea of Darwinian fitness, one or more of them selectively combine to produce

new individuals for the next generation.

More specifically, genetic algorithms have the following steps and components, canonically [48]:

1. An objective function.

2. Candidate solutions represented as genomes, which contain all of the in-

formation necessary to produce a functioning version of the solution.

3. Random generation of a population(s).

4. Mating of two genomes via crossover, where genes within the genomes are

inherited in the offspring, often with an element of probability.

5. Iteration of population production for either a fixed number of generations or

until one or more fitness criteria are reached.

2.5. Machine Learning 26

Genetic algorithms may be used to solve both constrained and unconstrained optimization

problems—where constrained optimization problems have constraints on the system’s vari-

ables and unconstrained optimization problems in which there are no such constraints. Con-

vergence often takes numerous evaluations, and genetic algorithms may or may not converge

onto a solution.

2.5.7 Convolutional Neural Networks

Overview

A convolutional neural network (CNN) is a deep neural network in which hidden layers per-

form convolutions with convolution kernels. The application of these kernels results in the

production of feature maps which capture patterns of interest in the image. Examples of such

features include shapes, edges, and texture.

Convolution

In mathematics, a convolution can be obtained by combining two functions, f and g, to form

a third function, (f ∗g). As a formula, this third function may be expressed as

(f ∗g)(t) :=
∫

∞

−∞

f (τ)g(t − τ)dτ, (2.4)

where t denotes a time step or the position of a sliding window of input on the τ axis, where τ

is a dummy variable after one of the functions has been reflected on the τ axis (e.g., g(τ)→
g(−τ). The calculation of this integral allows a mirror of the function g to be “slid” over the

function f to create a waveform representing the area under their intersection in “time”.

Applications of convolutions include machine vision—for example, where convolution ker-

nels in convolutional neural networks may use peaks in cross-correlations to indicate pat-

tern matching; and for image processing, edge detection and blurring. Applications further

removed from computing extend to physics, electrical engineering, fluid dynamics, and nu-

merous other areas of science.

The Kernel Method

Classification in machine learning relies upon linear separability—or the ability to divide points

in some N-dimensional space by slicing through it with a hyperplane, whereupon points on one

side belong to one class and points on the other belong to another class. We denote a linear

classifier parameterized by weights w̃ ∈ Rn−1 and bias b ∈ R, such that the classifier may be

represented as

2.5. Machine Learning 27

h(x̃i) = σ(w̃T x̃i+b). (2.5)

In cases where the points are not linearly separable, no such hyperplane may exist to make

the desired separation with h(x̃i).

One trick to overcome this challenge is to map the points onto a space with more dimensions,

creating one or more new axes upon which the desired linear separation can be made.

Assuming feature vectors {xi}m
i=1 are not linearly correlated to fit their regression targets

{yi}m
i=1, it may be possible to find an appropriate feature mapping φ(x) such that the points

are separable in a higher dimension.

The feature mapping, however, may require a much higher dimension than x, making φ(x)

problematically costly to compute. Here, the Representer Theorem helpfully states that the

problem of finding wTϕ(x) is the same as finding ∑
m
i=1 αiϕ(xi)

Tϕ(x).

2.5.8 Graph Neural Networks

Graph neural networks (GNNs) are neural networks which can operate over input structured

as a graph, where graphs are objects containing information which can be represented as

nodes linked by edges. These models can make predictions about any part of the graphs—

including their nodes, edges, and the entirety of the graph.

Message Passing

Graph neural networks all use a form of neural message passing, where messages represen-

ted as vectors are passed between nodes in the graph [20]. Message passing allows inference

over a graph in a manner which is permutation equivariant, meaning the output remains the

same regardless of the node ordering or permutation of the rows and columns in its adjacency

matrix [69].

Implementations of GNNs in this thesis use message passing layers formulated as

x′i = γΘ

xi,
⊕

j∈N (i)

φΘ (xi,x j,e j,i)

 , (2.6)

where
⊕

is a differentiable, permutation-invariant function like max, mean, min, mul, or sum,

and γΘ and φΘ are differentiable functions such as multi-layer perceptrons [164]. The message

passing scheme is a generalization of the convolution operator to irregular domains.

The graph neural networks models in this thesis use a convolutional operator of

X′ = D̂
−1/2

ÂD̂
−1/2

XΘ, (2.7)

2.5. Machine Learning 28

where Â is the adjacency matrix with self-inserted loops and Â is its diagonal degree matrix.

2.6 Evaluation Methodology

2.6.1 Metrics

Speedup

Calculation of speedup in execution time for the experiments presented in this thesis is done

in terms of relative performance, where new execution times are compared to those of a

baseline—or default execution time. The formula is thus:

speedup =
tbaseline

tnew

Geometric Mean Speedup

The geometric mean calculates the average of a set of real numbers in terms of their product.

The formulaic definition of the geometric mean may be presented as:

(
n

∏
i=1

xi

) 1
n

= n
√

x1x2 · · ·xn

This may alternatively be calculated as the arithmetic mean in logscale:

exp

(
1
n

n

∑
i=1

lnai

)

The geometric mean of a dataset where one or more values equals zero becomes zero itself,

and these formulas are not meant to be used with negative numbers. Therefore, for the sake

of the experiments in this thesis, the geometric mean speedup is calculated with respect to

the speedup defined above, which will always be a positive non-zero ratio.

The geometric mean is a more appropriate measure than the arithmetic mean when calcu-

lating with performance ratios because the arithmetic mean does not give useful results for

normalized numbers [53].

2.7. Summary 29

2.7 Summary

This chapter presented a basic introduction to the minimal knowledge required to understand

the experiments which will be presented in Chapters 4, 5, and 6. This included an introduction

to compilers, Haskell and its ecosystem, benchmarking, profiling, and machine learning.

Chapter 3

Related Work

This chapter presents the research done in relation to the contributions of this thesis. As the

study of compiler optimization is extensive, related work can be organized and presented

in a number of ways. Here, we present related work as an overview of compiler optim-

ization in Section 3.1, including sections on traditional approaches and optimization with

profiling; in Section 3.2, research related to inlining presented in chronological order for non-

functional languages, followed by inlining in functional languages and Haskell specifically; and

in Section 3.3, machine learning in compilation, broken down into search-based approaches,

predictive modeling approaches, and objectives.

3.1 Compiler Optimization

The earliest example of compiler optimization may date back to FORTRAN, which promised

to reduce personnel and machine debugging time through easy coding and fast execution in

its 1954 preliminary report [39], which states:

“Since FORTRAN should virtually eliminate coding and debugging, it should be
possible to solve problems for less than half the cost that would be required
without such a system.”

Compilers do not, of course, eliminate coding and debugging; they merely lift it out of machine

language and into source code. To enable this efficiently, about 25% of the instructions in the

first FORTRAN compiler were written for optimization [142]. In the decades following, the field

of compiler optimization has burgeoned, and it can be taxonomically discussed in a number

of ways.

An early grouping of compiler optimizations divides them by global optimization versus local

optimization. Global optimization considers the entire program, and local optimization con-

siders one expression or statement at a time [?]. Another early grouping divides optimizations

into three categories: machine dependent, where code execution is sensitive to the particular

machines (e.g., register placement); architecture dependent, where performance may be

tuned to hardware that is common between machines; and architecture independent, where

gains can be made regardless of the computer system [142].

30

3.1. Compiler Optimization 31

3.1.1 Traditional Approaches to Compiler Optimization

Machine-dependent Optimizations

As an early example of machine-dependent optimization, the Project for the Advancement of

Coding Techniques (PACT) [110] compiler used a tabular set of rules tailored to the registers

of the IBM 701 [142]. A generalized optimization still relevant today would be the peephole

optimization, which takes place in post-processing. Peephole optimizations scrutinize the

object code to find and rewrite inefficient sequences of instructions [106].

Initially, peephole optimizations corrected hand-written, machine-specific patterns; however,

systems later generalized and pattern-matched these optimizations automatically. For ex-

ample, Davidson and Fraser [43] match the emitted effects of symbolic simulations of sets

of two- and three-instruction sequences against machine instruction descriptions, replacing

instructions in instances where they can be reduced.

Architecture-dependent Optimizations

Early optimization work focusing on machines with common architecture included tree trans-

formations in arithmetic expressions for instruction elimination in machines with common

numbers of accumulators [6, 118]; instruction reordering [3] and dependency analysis for

instruction scheduling [17, 167] for machines capable of executing parallel instructions. These

architectures also prompted research into calculating and approaching maximum potential

parallelization via, e.g., expression tree manipulation [129, 131, 154].

Architecture-independent/Global Optimization

Architecture-independent optimizations examine the entire program, often through flow ana-

lysis. Basic examples include constant propagation, which determines which variables will

have known constants at compile time [54]; common subexpression elimination [35], where

redundant computations are eliminated; and dead variable elimination, where unused vari-

ables are removed.

Constant propagation may be solved by determining a constant’s reaching definition through

a data-flow analysis which can determine statically where definitions may be reached within

code [4]. Algorithms addressing this problem can often be used for dead code elimination,

common subexpression elimination, elimination of redundant register loads, and live expres-

sion analysis as well.

A general solution by Kildall [88] uses a node traversal algorithm to keep track of changes in

variable values at each basic block. Further work handles predicates and loops by evaluating

conditional branches with constant operands [179, 180].

3.1. Compiler Optimization 32

3.1.2 Use of Profiling in Compiler Optimization

Just-In-Time Compilation and Virtual Machines

Profile-guided optimization (PGO) in virtual machines, such as the JVM, use a combina-

tion of compiled and interpreted code and insert counters into code blocks which increment

whenever it is used. This approach is known as tiered compilation, which has at least one low

tier and high tier. When counters surpass a threshold, that code is designated as high tier and

compiled with more optimizations [149]. Work in this area includes methods such as profile

caching to persist profiling information across multiple application executions [12, 104].

Jantz and Kulkarni [83] explore single versus multi-level compilation, prioritization of method

compilation, compilation options at various levels, single- versus multi-threaded compilers,

and examination of many-core machines.

In .NET, the JIT compiler uses both tiered compilation and dynamic PGO [169], where the

code’s execution performance may change in the process of running a single instance of an

application based upon information from that same run.

Profiling in Static Compilation

In static compilers, profiling information may sometimes be used to optimize compilation on

a per-program basis. The GNU C++ compiler can optimize compilation based upon statistics

collected from runs of its compiled programs. To enable this, programs may be compiled with

special flags, run, and then recompiled with the generated statistics. This may be useful for

branch prediction, loop unrolling, and loop peeling, among other things [56].

In 1992, Chang et al. [30] describe their implementation of a fully automatic inliner for C, which

includes the use of a profiler to determine node (function) and arc (static function call) weights

in call graphs. Benchmarks must be provided to obtain the profiling information.

A study by Grove et al. [65] showed experimentally through profiling that, for dynamic dispatch,

receiver class distributions were strongly peaked and stable. Although the work was for C++,

its results generalize to other languages with polymorphism.

Profiling in Functional Language Compilers

Bowman et al. [19] present a design for optimized profile-guided meta-programming in a

meta-programming system and demonstrate its use with case expressions, receiver class

prediction, and data structure recommendation. The system is described as general-purpose,

but the authors implement examples in Chez Scheme and Racket, and they additionally

suggest it for use in template Haskell, MetaOCaml, and Scala.

3.2. Inlining 33

3.2 Inlining

3.2.1 Inlining in Imperative and Object-Oriented Languages

Before 2000

In 1988, Davidson and Holler [44] wrote a tool called INLINER which automatically inlined C

modules. Although an instance was presented where inline expansion degraded performance,

the size of the executable was otherwise shown not to cause performance problems. Kaser

and Ramakrishnan [87] discuss power versus flexibility of inlining policies, where flexibility is

the expressive capacity of the policy and power is the measure of a desired value of merit, and

experimentally compares four different version-based inlining policies which do not consider

additional specialization opportunities.

Deshpande and Somani [47] empirically study sets of C and C++ programs which show that

C++ benefits more from inlining due to smaller function size and larger call stack depth. Also

using empirical methods, Dean and Chambers [46] use inlining “trials” to capture the effects of

inlining decisions and are stored in a persistent database for consultation in future decisions

with similar call sites, using type group analysis, leading to performance gain.

One of the earliest experimental studies of inlining happened in Davidson and Holler [45],

where the authors studied automatic inlining on a set of C programs and made some obser-

vations leading to improvements, including copy propagation on some parameters and the

omission of local temporaries when a function’s return value is used as a right-hand side of

an assignment to a simple variable or when the function returns nothing.

Leupers and Marwedel [98] use a branch-and-bound algorithm to explore candidate inlinings

while minimizing the number of dynamic function calls under a code size constraint, applying

this method to C compilers for embedded processors.

2000 to 2010

Earlier work by Kulkarni et al. [93] use neuro-evolution to construct inlining heuristics for

the Java HotSpot server compiler and the Maxine VM C1X compiler, then construct human-

readable decision trees from these models.

For the X10 compiler, Alpern et al. [5] introduce context-driven partial inlining and guarded

partial inlining. In these techniques, respectively, part of the called method is inlined based

upon information available at the call site, or the frequently taken path through the callee is

inlined and accompanied by a test and method to handle other paths.

3.2. Inlining 34

Sewe et al. [144] predicts where nested inlining will occur in the Jikes RVM with information

in programs’ dynamic call graphs, to potentially eliminate guards in cases where call-sites are

monomorphic. They do this by incentivizing the compiler to inline virtual calls if there exists a

precise-induced or extant-induced edge targeting a method in the dynamic call graph. That is,

the called method is of a precise type or, if extant-induced, a supertype in certain cases.

Lokuciejewski et al. [101] use random forests with features extracted from IR and the worst-

case execution time (WCET) analyses to outperform standard inlining heuristics in the WCC

C compiler against programs’ WCET. Cavazos and O’Boyle [26] created inlining heuristics

for the Jikes RVM compiler using a genetic algorithm trained from features of the caller and

callee.

In Cooper et al. [37], an inliner for GCC is formulated as a condition string composed of

clauses in disjunctive normal form which is applied in a postorder walk over expressions in the

call graph, from the leaves to the root. Parameters in the condition are updated by a hillclimber

algorithm with random descent to give a program-specific, adaptive inlining scheme.

Chakrabarti and Liu [29] introduce the concept of inline specialization, where a call site

occurring in more than one call chain may be inlined selectively and in the most profitable

version for each call site.

Zhao and Amaral [186] suggest an adaptive approach for the temperature threshold of the

inlining heuristic, where temperature indicates cycle-heavy calling edges whose callee is small

relative to the program. They posit that this adjustment of the temperature threshold on a per-

program basis helps to prevent over-inlining in large benchmarks or insufficient inlining in

small benchmarks. In Hazelwood and Grove [72], the authors use adaptive context-sensitive

profiling to inline the appropriate versions of callees at each call site in the Jikes RVM.

Suganuma et al. [156] provide instrumentation in a Java JIT to dynamically collect call sites’

distribution and invocation frequency and identify hot methods, as opposed to constructing a

dynamic call graph through sampling during program execution, then use this information to

hypothetically demonstrate that profiling information may be effective for improving compila-

tion or performance.

2010 to the Present

In the last ten years, Theodoridis et al. [166] present work which primarily gives an exhaustive

empirical analysis of inlining policies for binary size reduction over the SPEC2017 benchmark

suite with LLVM, but they also present a simple autotuning strategy. The autotuner performs

parallel compilations where the edges of the call graph are inlined and checked for size

reduction. Results of previous rounds are then used as initial inputs to subsequent rounds.

3.2. Inlining 35

For Java’s Jalapeño dynamic optimizing compiler, Arnold et al. [11] use a combination of static

and profile-based heuristics for inlining using static and dynamic call graphs with weighted

edges and nodes. Profiling information is represented as weighted nodes, where nodes rep-

resent procedures or methods and their weights represent the dynamic frequency of their

calls.

Prokopec et al. [130] present an algorithm for JIT compilers that uses adaptive decision

thresholds, callsite clustering, and deep inlining trials. Callsite clustering refers to identifying

related callsites, and deep inlining trials are performed by propagating callsites’ argument

types throughout the call tree and optimizing the entire call tree to estimate performance

savings.

To reduce compilation time for Java as it is JIT-compiled, Ochoa et al. [120] trade off a

significant increase in code size and minor increase in execution time. They do this by using

abstract interpretation to compute reusable method summaries of inlining candidates’ poten-

tial optimizations.

In 2021, an artificial neural network (ANN) is used to predict resultant code size after code

duplication passes in GraalVM, where the feature vectors are comprised of counters for the

node types in the Graal IR. Over several benchmarks, code size for the ANN ranged from 3%

to 25% larger than the default GraalVM, and run time ranged from 3% slower to 14% faster;

however, only one benchmark was over 3% faster than default.

3.2.2 Optimization of Inlining in Functional Languages

Appel [10] introduced “loop headers”, implemented in an intermediate language in Standard

ML, to distinguish between recursive calls and outside calls to the function. Loop headers

enable invariant arguments to be lifted out of loops and provide a binding site for variables.

Jagannathan and Wright [81] implemented an inlining optimizer for R4RS Scheme based

upon a polyvariant control-flow analysis [21, 86]; however, even a simple context-insensitive

control-flow analysis is cubic in complexity and difficult to implement in practice [63].

Heintze and McAllester [74] present a linear-time subtransitive CFA which calculates a full

transitive closure of a call graph in quadratic time; however, the algorithm does not handle

untyped or recursively typed programs.

In a functional language versus an imperative language, functional representations of code

create more closure allocations; or in other words, they allow more opportunities to eliminate

allocations via inlining. Significant work has been done to expose opportunities to eliminate

these allocations in OCaml [111].

3.2. Inlining 36

The MLton compiler uses whole-code optimization for Standard ML, which uses “defunctoriz-

ation”, “duplication”, and “defunctionalization” [147] which reduce modules, polymorphic data

types and functions, and higher-order functions into first-order code based upon look-up data

structures. This transforms the code into a simply typed, first-order intermediate language (IL)

which can be combined with aggressive inlining and dead code elimination.

Danvy and Schultz [41] describe lambda-dropping, in which recursive programs are given

blocks with lexical scope. This then allows blocks to float and allows for further reasoning

about and optimization of the program. Lambda-dropping is presented as a symmetric trans-

formation to lambda-lifting [85], in which block-structured programs are turned into recursive

equations while preserving meaning.

Work by Serrano [143] lays a framework for inlining recursive functions in which the inlining

decisions is based upon the size of the function, the size of the call, and the location of the

call. The algorithm, demonstrated in Scheme, allows code growth by a specified factor for

each call site; and when the inlining occurs, the algorithm recurs and reduces the factor.

Inlining Optimization in Haskell

Most approaches to compiler inlining optimization target imperative programs where the control-

flow graph and function parameter types are statically known. Haskell is a higher-order poly-

morphic functional language where the treatment of functions, including inlining, dominates

performance concerns.

The most influential work for inlining in Haskell, and other functional programming languages,

are the key lessons presented by Peyton Jones and Marlow [126] from work on the Glasgow

Haskell compiler’s (GHC’s) inliner. In this work, the authors confirm that GHC’s inlining is both

the single most important optimization and that its improvement is made through ten years

of hand tuning through trial and observation. They present an algorithm to inline recursive

functions—namely identifying a loop breaker to prevent non-termination, identifying conditions

for when inlining should occur in GHC, and how to track lexical and dynamic environments to

enable additional transformations when the state of free variables becomes known at the

inlining site. For hand tuning, GHC has a canonical benchmark suite called NoFib [123].

3.3. Machine Learning in Compilation 37

3.3 Machine Learning in Compilation

3.3.1 Search-based Approaches

Iterative Compilation

The process of iterative compilation involves generating a number of different versions of

a program and comparing them, often according to execution time or binary size. Some of

its early applications include work for embedded systems and kernel benchmarks. Using a

simple iterative search algorithm, Bodin et al. [18] come within 0.3% of optimal execution

time while visiting less than 1% of the total search space—demonstrating a use case for

embedded systems, although the approach is too expensive for general computing. Kisuki

et al. [90] created multiple compilations using four search algorithms to find loop unroll factors

and tile sizes over three sets of small kernel benchmarks from multimedia applications, using

the Fortran77 compiler.

Work by Agakov et al. [2] later proposed to reduce the search space of this approach by

learning probabilities of improvement for transformations, given the prior sequences of trans-

formations, by representing sequential transformations as Markov chains. Sequences and

transformations that yielded performance gains were used as initial populations in a genetic

algorithm (GA), trained over C programs, which was evolved to make predictions for further

transformations.

For LLVM, Ganser et al. [58] focus on parallelization and tiling within the polyhedra space,

showing that a simple random search of configurations can deliver performance without the

need for more expensive technologies such as genetic algorithms.

In Chen et al. [32], the authors demonstrate that iterative optimization may be largely data-

insensitive by collecting 1000 data sets for 32 programs using Intel’s ICC and GNU’s GCC

and finding at least one set of compiler optimizations that achieves 86% or greater speedup

across all data sets for each.

Auto-Tuning

Auto-tuning of compilers primarily focuses on the automatic selection of optimizations and the

phase-ordering of those optimizations [13]. Machine learning has led to contributions in auto-

tuning through the use of, but not limited to: search space exploration, deep neural networks,

and Bayesian methods.

Compilers for deep learning, which are specialized to optimize models trained by deep learn-

ing frameworks, have received a large amount of attention in only the last few years. Recent

work in Tollenaere et al. [168] defines a structured configuration space for faster convergence

onto loop transformations for tensor computations, compared to previous auto-tuning code

3.3. Machine Learning in Compilation 38

generators, focusing on two-dimensional convolutions on CPUs. Also for exploring trans-

formations to tensor programs to target hardware, Gibson and Cano [62] introduce transfer-

tuning, where similar auto-schedules may be identified and reused between programs, and

demonstrating the technique on pre-tuned DNNs to new DNNs.

Work by Ryu et al. [135] aims to predict optimized tensor operation codes without repeated

search and hardware measurements by using a transformer-based predictor. Zhang et al.

[184] use Bayesian Upper Confidence Bounds (UCB) to predict the performance gains of

tensor operators with uncertainty quantification.

Advancements with auto-tuning in compilers for other fields of computing include Liu et al.

[99], which aims to solve multitask optimization of application code for exascale and Message

Passing Interface (MPI) applications, using Gaussian processes in Bayesian optimization.

Similarly, Hellsten et al. [75] reason about permutation, ordered, and continuous parameter

types with known and unknown parameter constraints for compiler systems targeted towards

CPUs, GPUs, and FPGAs using Bayesian optimization. Also for porting code across different

platforms, Ashouri et al. [14] present an autotuning framework based upon Bayesian networks

and independent microarchitecture features.

For multicore autotuning, Ganapathi et al. [57] use kernel canonical correlation analysis (KCCA)

to find multivariate correlations between vectors of configuration parameters and performance

metrics, demonstrating this technique over stencil code optimizations with features including

thread count, software prefetching, padding, etc.

Ansel et al. [7] present OpenTuner, a general framework to build domain-specific multi-objective

program autotuners; employ search technique ensembles for tuning; and demonstrate the

framework’s use on small and large search spaces exceeding 103600 configurations.

Training Data Generation

Generation of labeled training data for machine learning for compilation can become costly

due to compilation time combined with the search space of numerous exposed and unexposed

heuristics. In GraalVM, Mosaner et al. [113] propose compilation forking, where each potential

heuristic parameter is forked during compilation and executed with n parameter values to be

explored, producing datapoints to compare local optimization decisions.

Another method to generate data for ML models used in compilation is multi-versioning [33,

96], where multiple versions of code are generated on the whole-program or partial-program

level (e.g., function level) [31, 61, 189].

3.3. Machine Learning in Compilation 39

Automated Feature Extraction

Namolaru et al. [119] propose a method to systematically generate numerical features from

a program using Datalog representations of binary relations encoded in subgraphs produced

during compilation, such as control flow, def-use chains, and intermediate representation. An

example of such a feature would be taking an aggregate of the number of store instructions in

basic blocks to determine the average number of stores per basic block. They propose the use

of domain knowledge to incrementally add features for use in a predictive model and evaluate

the technique on an independent identically distributed (IID) model and a Markov model, per

those used in [2], to select sets of optimizations among 88 in GCC.

Heuristic Discovery/Creation

Mosaner et al. [114] use the compilation forking method from Mosaner et al. [113] to produce

training data over code features to automatically create heuristics by tuning neural networks

at run time in a dynamic compiler, using loop peeling as an example.

Leather et al. [97] use genetic algorithms to explore features over program IR and increment-

ally build an optimization feature set through a greedy approach, demonstrating their system

on loop unrolling in GCC. For targeting multiple architectures, Saha et al. [138] present a

framework which provides and trains models over training data which it generates on the

targeted platform, providing an abstracted interface for a set of common modeling and tuning

problems and demonstrating it on register allocation for GPU kernels. Their autotuner pro-

duces multiple variations of code for training data from a small number of samples by varying

parameters such as tiling, unrolling, optimization flags, and thread geometry.

Option Selection

For ordering compiler optimizations, also known as phase ordering, Kulkarni and Cavazos [92]

use neuro-evolution to construct an artificial neural network which predicts orderings on a per-

program basis, implemented for the Jikes RVM. Zhong et al. [187] use simulated annealing to

tune optimization options in the GNU Compiler Collection.

3.3.2 Predictive Modeling Approaches

Compiler optimizations may be grouped by choice of predictive models. Some examples of

such modeling decisions are presented as follows.

3.3. Machine Learning in Compilation 40

Regression

Linear regression is a statistical model that may be considered a simple form of machine

learning. Dubach et al. [50] use linear regression to predict speedups in code execution time

based off of code features transformed into a smaller feature vector with principal component

analysis (PCA).

Jiang et al. [84] identify correlations of program component behaviors—e.g., trip counts between

loops—to inform behavior prediction for optimization. They introduce seminal behaviors, a

core set of behaviors that strongly correlate with other program behaviors and reveal them-

selves within the initial 10% of execution time, and calculate these behaviors statistically via

the Pearson product-moment correlation coefficient. The authors then use least mean squares

linear regression and regression trees as predictive models, demonstrating the technique in

profile-directed-feedback compilation in the IBM XL compiler.

Logistic Regression, a simple method for supervised learning, may be used to predict two

or more categorical values as output. For example, Cavazos et al. [24] predict optimal vector

masks of compiler option recommendations using logistic regression with an input of values

from 60 performance counters. Cavazos and O’Boyle [27] predict which optimization set to use

in the Jikes RVM JIT compiler on a per-method basis using logistic regression over bytecode

features.

Polynomial regression, unlike linear regression, can fit non-linear relationships between

variables. In Luo et al. [102], the authors use polynomial regression to predict the similarity of

feature vectors against those in a database associated with optimal solution spaces—or a set

of optimal solutions—for stencil autotuning.

Support Vector Machines

Wen et al. [181] schedule multiple program kernels on CPU/GPU heterogeneous platforms

using static code features with a support vector machine (SVM). The training data and test

data are OpenCL kernels, and the SVM predicts a large speedup or not.

To predict optimization sequences for runtime speedup, Park et al. [122] extract a graph-

based characterization of programs’ control-flow graphs from intermediate representation for

use with SVMs combined with graph-based kernels including the shortest path graph kernel,

Gaussian kernel, and Brownian bridge kernel.

For auto-parallelization, Wang et al. [178] use profiling-based dependence analysis to identify

parallelization candidates and SVMs to map decisions. They demonstrate this approach on

the NAS and SPEC CPU2000 benchmarks over two multicore platforms.

3.3. Machine Learning in Compilation 41

Taylor et al. [157] use SVMs to map OpenCL kernels onto embedded heterogeneous multi-

core platforms and choose the processor frequency, and the approach is adaptable to different

optimization goals. Also for parallelization, Zhang et al. [185] use SVMs to predict resource

partition and task granularity, evaluated on a CPU-XeonPhi mixed heterogeneous many-core

platform.

Artificial Neural Networks

Singh et al. [148] compare multiple linear regression with ANNs for predicting parallel ap-

plication scalability and find that the linear regression has slightly better performance and

accuracy; however, the study uses a simple 3-layer feed-forward neural network. In addition to

linear regression, Dubach et al. [50] use ANNs to predict run-time speedups by code features.

After identifying 6 program features, Yuki et al. [182] generate synthetic programs from these

features to use as training data for an ANN to predict tile size selection models. Taking an

end-to-end approach, Cummins et al. [40] train deep neural networks over raw source code

to predict optimal mapping for heterogeneous parallelism and GPU thread coarsening factors

for OpenCL.

Decision Trees

A decision tree is a structure which may be represented as a flowchart of tests upon attributes

of the item being considered for classification, and it may be produced from supervised

training data or in an unsupervised manner using techniques such as clustering [175] or

genetic programming [22]. Decision trees have been effectively used to generate optimization

heuristics such as those used in loop unrolling [112] and to automatically generate OpenCL

code for GPUs from data-parallel OpenMP programs [64]. Algorithms may also combine

the decisions from multiple decision trees into a random forest. In Benedict et al. [16], the

authors use random forest modeling to predict energy consumption of OpenMP applications

in compilers.

Online Learning

Online learning aims to train models over incremental data points, rather than batch learning

which learns over large batches of data points at a time—which often scale poorly in real-

world problems with evolving data. Many online learning problems may be formulated as an

Online Convex Optimization problem [76]. Compilation problems are often formulated in the

context of online learning due to the cost of computing each data point (e.g., a compilation

instance of a program or benchmark suite).

3.3. Machine Learning in Compilation 42

Reinforcement Learning

For compilers, reinforcement learning may be used where creation of labeled training data

is difficult or impossible, such as learning the relationship between IR codes and effective

optimization strategies [145], determining high-level synthesis phase ordering to create digital

hardware circuits [68], and optimizing inlining [170].

Bayesian Optimization

Bayesian optimization has been demonstrably useful to estimate auto-tuning parameters in

compilers, such as unrolling factors, tiling factors, parallelization schemes, and autoschedul-

ing [75]. Although Bayesian optimization was initially used for estimations over parameters

with continuous compact domains, research suggests they may be a good choice for discrete

domains as well [60].

Evolution-based Algorithms

Although genetic algorithms are not themselves predictive models, they are used to create and

tune predictive models. Cooper et al. [38] presented an early genetic algorithm to determine

ordering of optimization sequences to optimize for code size for C and FORTRAN. Ansel et al.

[8] use a genetic tuning algorithm to generate candidate populations of compiled algorithms

for variable-accuracy domains such as signal processing or NP-hard problems which allow

approximate solutions.

For a variety of compiler heuristics, Stephenson et al. [153] use evolutionary algorithms to

search the solution space of priority functions, which are functions that prioritize options for a

compiler algorithm—for example, list scheduling, data prefetching, and register allocation.

Also for multiple optimizations, Hoste and Eeckhout [79] search the Pareto frontier of individual

optimizations in all compilations levels of the GNU Compiler Collection (e.g., -O1, -O2, etc.)

that can be toggled, using a multi-objective search algorithm based the Strength Pareto

Evolutionary Algorithm [190, 191].

Garciarena and Santana [59] use estimation of distribution algorithms (EDAs) including a

genetic algorithm, a univariate marginal distribution algorithm, and a dependency-level EDA

to learn probabilistic models of solutions that learn patterns among the solutions—including

interactions between variables (i.e., compiler flags).

3.3. Machine Learning in Compilation 43

Cascaded Prediction

Cascaded prediction uses predictors arranged in two or more levels. For example, Driesen

and Holzle [49] use a two-level cascaded approach for branch predictions: the first predictor

handles inexpensive predictions, and the second predictor makes more computation-intensive

decisions if the first predictor fails.

Involving machine learning, Magni et al. [103] use a cascaded neural network approach to

iteratively query the model at every opportunity for thread coarsening—across new programs

and upon the same program after a previous thread coarsening, as repeated coarsening may

have beneficial or deleterious effects for performance.

Clustering

Sherwood et al. [146] present a cluster-based analysis of large-scale program behavior to

identify program subset simulation points for computer architecture research. They create

basic block vectors—or 1-dimensional arrays representing static blocks in the program—which

may potentially have millions of dimensions, use random linear projection to project the data

onto a 15-dimensional space, then cluster the data points with k-means using Euclidean and

Manhattan distance measures. Centroids are considered representatives for each cluster.

For streaming parallelism to multi-core processors, Wang and O’Boyle [177] predict ideal par-

tition structure with the nearest neighbor classifier by evaluating randomly generated partitions

represented by 10 features including pipeline depth, branches per instruction, and maximum

dynamic rate. They demonstrate this approach over StreamIt applications with the StreamIt

compiler.

For performance prediction, Hoste et al. [80] transform a set of microarchitecture-independent

characteristics—information relating to the instruction mix, ILP, register traffic, working set

size, etc.—into spaces in which they can compute relative distance measurements against a

set of benchmark programs. They compare normalization, principal component analysis, and

a genetic algorithm for computing weight assignments as techniques to produce a data trans-

formation matrix which maps programs of interest into a new space; and in this new space,

the speedup prediction is a weighted harmonic average over the speedups of benchmarks,

called “proxies”, near the position of the given application.

3.3. Machine Learning in Compilation 44

3.3.3 Objectives

Tasks at every level of the compiler may be targeted for improvement with machine-learning-

driven optimization. Some examples include but are not limited to: for the front end, CPU and

GPU partitioning; for the middle, phase ordering, flag selection, and vectorization; and or the

back end, register allocation and instruction scheduling.

High-level Optimizations

Saroliya et al. [140] use deep Q-learning for hierarchical partitioning on GPUs by targeting

both co-scheduling and resource partitioning with an accompanying co-scheduling and re-

source management system which employs offline training with online optimization. Saba

et al. [136] formulate a system-wide optimization problem to determine co-scheduling de-

cisions, resource partitioning, and power capping. They use a simple feed-forward neural

network over the inputs of hardware configuration and performance counters collected from

the CPU and GPU during a profile run for jobs in a set to predict a slowdowns and the affect of

power capping. Additionally they use Edmonds’ algorithm for finding a spanning arborescence

of minimum weight to optimize the hardware configuration and minimize the execution time of

co-scheduled jobs.

Middle Optimizations

Stephenson and Amarasinghe [152] use two supervised learning techniques, near neighbor

classification and support vector machines, to predict loop-unrolling factors using the Open

Research Compiler over the SPEC 2000 benchmark suite.

For auto-vectorization, Mendis et al. [107] propose a strategy for learning vectorization similar

to the method used by [95], where the decision procedure is formulated as a Markov Decision

Process for use with the DAGGER algorithm [134] to collect traces from the Integer-Linear

Programming solver over the vectorization problem, after which the traces are used as training

data for a Gated Graph Neural Network for a parameterized policy. In [67], an end-to-end

vectorization approach entails feeding benchmark source code into a loop extractor to produce

loop code segments which are then fed to en embedding generator, after which the learned

embeddings are input into a Deep Reinforcement Learning (RL) agent which dynamically

determines the loops’ vectorization factors. Jain et al. [82] address loop distribution for vector-

ization and locality by generating a strongly connected component (SCC) dependence graph

for each loop and feeding them to an RL model that determines their distribution order by

performing topological walks over the graphs.

3.3. Machine Learning in Compilation 45

Low-level Optimizations

Wang and O’Boyle [176] used predictive modeling to map program parallelization for OpenMP

programs to Intel Xeon and Cell processors, using feed-forward neural networks to predict

scheduling and support vector machines for scheduling policy classification.

Very recently, the problem of register allocation has been addressed as a graph-coloring

problem [28] with reinforcement learning. VenkataKeerthy et al. [174] use an embedded multi-

agent hierarchical reinforcement learning (RL) algorithm in LLVM Register allocation schemes

based upon machine learning have semantic constraints which need consideration; e.g.,

register types must be considered and variables in the same live range must not be assigned

to the same register. In RL, these constraints may be imposed in the action space. Das et al.

[42] use a deep learning network based upon several layers of LSTM which output a color for

each node of graph. Because the network may allocate the same color, or register, to nodes

connected by an edge—meaning multiple results have been assigned to the same register—

the authors augment the network with a color correction phase.

Work for instruction scheduling includes Eliot et al. [52], where the order of instructions in basic

blocks are claimed to be scheduled near-optimally in the SPEC95 benchmark of FORTRAN

and C code. The authors use a small variety of supervised learning techniques, including

decision trees and feed-forward neural network, with only five features. Cavazos and Moss

[25] use supervised learning with induced heuristics to predict scheduling benefits for basic

blocks in the Jikes RVM. In this work, the authors learn rule set induction over block features

to determine when to schedule blocks, as scheduling can sometimes degrade performance.

Architecture-specific Optimizations

Cavazos et al. [23] train feed-forward neural networks (FFNNs) in a supervised manner over a

vector of transformation sequences with observed speedups as response to predict execution

time on any given architecture, with the motivation that sometimes architectures can only be

evaluated on a simulator—which can take more time than running on the actual processor.

Similarly, Nadeem et al. [117] use FFNNs to predict the behavior of chip-multiprocessor

design configurations in regard to energy-delay and execution time using “reaction-based

modeling”, where predictions are based off of observations of program behavior on a subset

of architecture configurations. They evaluate their approach on both explicitly parallel and

thread-level speculation applications.

Vaswani et al. [173] use micro-architecture sensitive models empirically, including the use

of radial basis function networks (a type of neural network), parameterized by binary and

numeric compiler flags, heuristics, and micro-architectural parameters to predict an execution

time response. Additionally, they use genetic algorithms based upon empirical models frozen

at platform-specific settings to explore near-optimal solutions.

3.3. Machine Learning in Compilation 46

For GPUs, Liu et al. [100] use cross-input models predicting parameterized values for optimiz-

ations. They first take an iterative empirical approach that caches attempted predictions made

by a hill climber in a performance database, then the information in the database is processed

to find relations between inputs and optimization decisions through the use of regression

trees.

3.4 Summary

This chapter discussed the related work pertaining to the topics presented in this thesis,

including multiple ways of organizing the research related to compiler optimizations. Although

several advancements have been explored in this chapter in relation to inlining, less previous

work exists for inlining in functional languages—with very little work for inlining in Haskell,

specifically.

Chapter 4

Investigating Magic Numbers:

Improving the Inlining Heuristic in the

Glasgow Haskell Compiler

In this chapter, we present an in-depth study of the effect of inlining on performance in

functional languages. We specifically focus on the inlining behavior of GHC and present

techniques to systematically explore the space of possible magic number values, or con-

figurations of magic numbers, where magic numbers are hand-coded numeric values written

into the source code of GHC’s inlining heuristic. We evaluate the performance of these magic

number configurations on a set of real-world benchmarks where inline pragmas are present.

Pragmas may slow down individual programs, but on average they improve performance by

10%. Searching for the best configuration of magic numbers on a per-program basis increases

this performance to an average of 27%. Searching for the best configuration for each program

is, however, expensive and unrealistic, requiring repeated compilation and execution.

This chapter determines a new single configuration of magic numbers that gives a 22%

improvement on average across the benchmarks. Finally, we use a simple machine learning

model that predicts the best configuration on a per-program basis, giving a 26% average

improvement.

Contributions from this chapter include a benchmark framework which allows the creation of

benchmarks from real-world Haskell code in the Hackage Haskell package repository; an in-

depth experimental analysis of the performance of GHC’s inliner across a range of real-world

benchmarks; a demonstration with empirical evidence for the benefits of using automated

tuning techniques to improve the performance of the GHC inliner; and a demonstration of the

benefits of using a simple predictive model that delivers significant performance.

Section 4.1 provides an overview of GHC and its inliner, with a focus on magic numbers inside

the inlining heuristic. The approach of the experiments are described in Section 4.2, including

the modified compilation parameters, constructed benchmark framework, and benchmark se-

lection. Section 4.3 outlines the experimental setup and Section 4.4 the experimental results.

47

. Investigating Magic Numbers: Improving the Inlining Heuristic in the Glasgow Haskell Compiler48

The experiments and their results are then analyzed in Section 4.5, which also discusses best

configurations of magic numbers across the benchmarks and how well the approach transfers

across architectures. Section 4.6 outlines a simple predictive model to map programs to con-

figurations, and Section 4.7 summarizes experimental results. Finally, Section 4.8 summarizes

the chapter.

4.1 Introduction

Peyton Jones and Marlow [126], the primary developers of the Glasgow Haskell Compiler,

pointed out that inlining is particularly important in functional languages, as it subsumes other

optimizations that are performed separately in an imperative setting, such as copy propagation

and jump elimination.

In addition, functional programs often contain significantly more functions that need to be

considered for inlining, due to the frequent use of anonymous functions (a.k.a., lambda ex-

pressions) and the cultural encouragement to use function abstractions abundantly. Further-

more, inlining is not restricted to functions but can be performed for every let-bound variable.

Practical functional programming relies on the ability of optimizing compilers, such as the

Glasgow Haskell Compiler (GHC), to aggressively inline function calls and compile away the

complex abstractions expressed in user code.

Peyton Jones and Marlow call effective inlining “particularly crucial in getting good perform-

ance”, state that “it is our experience that the inliner is a lead player in many [performance]

improvements”, and also “No other single aspect of the compiler has received so much

attention” [2002]. Similarly, Minsky highlights the significance for OCaml, as “inlining is about

more than just function call overhead. That’s because inlining grows the amount of code that

the optimizer can look at at a given point, and that makes other optimizations more effective”

[2016]. While OCaml has improved inlining with a new compiler intermediate representation,

maybe surprisingly, the approach of GHC to inlining has not changed significantly in the last

20 years.

If this optimization is so critical to functional programming in general, and GHC’s performance

in particular—why has it not been re-examined, given the massive hardware changes wit-

nessed in the last 20 years? A likely reason is that its inlining decisions are poorly understood,

rely on hard-wired constants, and are scattered throughout the compiler. While Peyton Jones

and Marlow [126] describe the overall design choices of the GHC inliner and particular imple-

mentation challenges, they avoid discussing the crucial numerical parameters that make up

the heuristics that eventually decide to inline or not. The heuristics’ complex implementation

and their reliance on these numbers makes evaluating and modifying GHC’s inlining behaviour

difficult.

4.1. Introduction 49

These hand-coded numerical parameters reflect the GHC developers’ “best guess” as to what

should be inlined, and they are often accompanied by comments expressing the arbitrary

nature of the choices made for their values. This highlights them as magic numbers, or

constant numbers written directly into the source code [109], and makes modification challen-

ging. Furthermore, changes to these parameters—and GHC in general—are still performance

tested against the nofib benchmark suite described by Partain in 1993. The nofib suite itself

is falling into obsoleteness, as observed by Marlow already over 15 years ago [2005]. Inlining

in GHC is thus a compiler optimization that is thought to be highly significant, yet difficult to

modify and evaluate.

Dissatisfaction with the performance of GHC’s inliner is highlighted by developers’ frequent

use of pragmas to manually annotate their code in an attempt to coerce GHC to inline specific

functions and improve performance. Our investigations revealed that 1 in 5 of Haskell projects

uploaded to Hackage, the Haskell community’s central package archive, contain manually

inserted “inline” compiler pragmas.

In this chapter, we systematically study inlining in the context of functional languages. We

focus specifically on the performance of GHC’s inliner, as GHC is one of the most widely used

optimizing functional compilers and known to deliver good performance. While our experi-

mental evaluation is specific to GHC, our methodology and findings are of interest to compiler

engineers of other functional languages.

4.1.1 Overview of the GHC Inlining Heuristic

The logic for GHC’s inlining decisions is scattered throughout the codebase. A search for

“CoreUnfold” brings up 30 different files in GHC’s compiler directory. We thus present a

simplified account of the heuristic, depicted in Figure 4.1.

The callSiteInline function (top right of Figure 4.1) is invoked to determine whether to

inline or not. Any inlining decision which requires nontrivial consideration is labeled as a

CoreUnfolding and passed to the function tryUnfolding (middle of Figure 4.1), which

makes a value judgment based upon the estimated size of the callee, its arguments, how it fits

within its context, and other interesting attributes. At a highly simplistic level, it calculates the

cost and benefit of inlining: if the cost minus benefit is less than a threshold, then it performs

inlining.

The calculation happens in this line

small_enough =

(s ize − d iscount) <= ufUseThreshold d f l ags

4.1. Introduction 50

Figure 4.1: Visualization of GHC’s Inliner. The function callSiteInline is declared in
CoreUnfold.hs and is called from Simplify.hs. Rounded boxes indicate functions, ovals indicate
conditions, and dotted boxes indicate unfolding IDs.

4.1. Introduction 51

which determines acceptability for inlining, where size is determined by a traversal of the

inlinee and discount is calculated with consideration to the inlinee’s arguments, the con-

tinuation, and dynamic flags optionally set upon compilation. The discount represents the

potential value gained from inlining, which would offset the cost of inlining large things. This

computation happens when the Simplifier—a module where GHC iteratively applies optim-

izations to the Core intermediate representation (Core IR) code—calls tryUnfolding on a

CoreUnfolding.

Each inlining decision additionally depends upon considerations including but not limited to:

the type of the expression, its arity, its number and characterization of arguments, the phase

of compilation, and a number of calculated discounts and thresholds written directly into GHC

simply as best-judgment constants.

4.1.2 Magic Numbers in the Inliner

The calculations for both size and discount rely upon several magic numbers written dir-

ectly into the inliner. An example of the use of these numbers occurs in the first few lines of

the function computeDiscount, shown in Figure 4.2, which computes a discount value for

all functions being considered for inlining. In computeDiscount, the number 10 refers to a

discount given for the function itself.

computeDiscount : : [I n t] −> I n t −> [ArgSummary]
−> C a l l C t x t
−> I n t

computeDiscount arg_discounts
res_d iscount
a rg_ in fos
con t_ in fo

= 10 −− Discount o f 10 because the r e s u l t
−− rep laces the c a l l
−− so we count 10 f o r the f u n c t i o n i t s e l f

Figure 4.2: First part of the computeDiscount function, with the magic number 10, in
CoreUnfold.hs.

In this example, making the number 10 larger would give the inlinable item a larger discount

to offset its size, increasing its likelihood to be inlined. Such a modification would make all

functions more likely to be inlined because they would start with a higher base discount,

before the addition of any discounts based upon their arguments. These would be calculated

in the lines immediately following in computeDiscount, as shown in Figure 4.3.

4.1. Introduction 52

+ 10 * length ac tua l_arg_d iscounts
+ round (ufKeenessFactor d f l ags *

−− Discount o f 10 f o r each arg suppl ied ,
−− because the r e s u l t rep laces the c a l l

fromIntegral (t o t a l _a rg_d i scoun t +res_discount ’))

Figure 4.3: Second part of the computeDiscount function, with the magic number 10, in
CoreUnfold.hs.

Additionally, the term res_discount’, short for “result discount”, adds a discount when an

efficiency is expected to be gained through inlining—for example, through case reductions. Its

numerical value is computed by considering a simplified version of the context, represented

by the data type CallCtxt. The original code of Figure 4.4 shows how some of these

possible CallCtxt values are assigned to the magic number 40 to return as a result for

res_discount’ in one single line of code, along with the comments right after it which debate

its accuracy.

_ −> 40 ‘ min ‘ res_d iscount
−− ToDo : t h i s 40 ‘ min ‘ res_d iscount doesn ’ t
−− seem r i g h t
−− f o r DiscArgCtxt i t shouldn ’ t mat ter because
−− the f u n c t i o n w i l l get the arg d iscount
−− f o r any non− t r i v arg
−− f o r RuleArgCtxt we do want to be keener to
−− i n l i n e ; but not on ly cons t ruc to r r e s u l t s
−− f o r RhsCtxt I suppose t h a t exposing a data
−− con i s good i n general
−− And 40 seems very a r b i t r a r y

Figure 4.4: GHC 8.10.3: CoreUnfold.hs, line 1640. The top line of code calculates the value
for res_discount’ seen in Figure 4.3. The developer’s comments highlight some of the
arbitrary decisions made.

Magic numbers such as these are scattered throughout the entire inliner, and its decisions are

fundamentally dependent upon them. We set out in this chapter to study the impact of these

magical numbers systematically.

4.2. Approach 53

4.2 Approach

For this study, we wanted to answer the question: Could a modification to the inliner’s thresholds

yield a performance improvement across Haskell code execution time? If the answer to that

question is yes, then we face two additional questions: If so, how much improvement might

we expect to see by modifying GHC’s inlining thresholds? If not, how should we then modify

GHC to attain an optimal improvement?

It is necessary to answer these questions before redesigning the inliner, given the complexity

of the system. Thus, we constructed a set of benchmarks with the intention of revealing

weaknesses in GHC’s inlining decision process. We then modified GHC 8.10.3 such that we

could change its inliner’s magic number values through dynamic flags to see how much we

could affect the benchmarks’ execution times through the inliner alone.

4.2.1 Optimization Space Exploration

Because parameterizing all of the inliner’s thresholds would have been intractable, we focused

on 10 hand-coded magic-number constants to expose as dynamic flags, which could then be

passed into GHC when compiling an application. Additionally, in our optimization space, we

included two of GHC’s built-in dynamic flags. Combined, this totals 12 parameters.

To approximately quantify the type of inlining decisions being performed, we added hooks to

GHC 8.10.3 and compiled it against the Cabal library, where Cabal is the canonical system

for building and installing Haskell packages. During compilation, GHC performed 8,708,142

nontrivial inlining decisions, where “nontrivial” means any inlining for which it is not obvious

that it should definitely be inlined. Among these nontrivial inlinings, 81.8% were designated

as UnfIfGoodArgs—which means their unfolding would be large enough to require consid-

eration, but not so large to immediately disqualify it from inlining. Before deciding whether to

inline, GHC gives these potential inlinings a reduction in their calculated sizes via a discount

calculation:

discounted_size = size − discount .

We therefore decided to create parameters from magic numbers involved in the calculation of

size and discount.

4.2.2 Characterization of the Parameters

Each parameter was selected because it had a direct impact on GHC’s inlining decisions and

would likely produce an observable effect on runtime performance. Table 4.1 describes each

parameter and gives their names and original values.

4.2. Approach 54

Flag Description
Original

Value

nontrivarg-disc Discount for an argument labeled “NonTrivial”. 10

funcitself-disc Constant discount value added to every function inlined. 10

actarg-disc Discount for each argument. 10

discargctxt-disc Context is the argument of a function with non-zero argu-
ment discount.

40

ruleargctxt-disc Context is the argument of a function with rules. 40

rhsctxt-disc The context is the right-hand side of a let. 40

arbctxt-disc The wild card remaining to catch any other type of context
and calculate its discount.

40

cosbase Base size value of a class op. 20

cosargs Size metric added for each argument of a class op. 10

bigalt Size component of the biggest alternative when scrutiniz-
ing a case expression argument.

20

funfolding-fun-discount Adjust the eagerness of GHC to inline functions. 60

funfolding-dict-discount Adjust the eagerness of GHC to inline dictionaries. 30

Table 4.1: Inlining parameter dynamic flags, their descriptions, and original values.

Three parameters, cosbase, cosargs, and bigalt, calculate various components of an inlinee’s

size. The remaining 9 help calculate its discount, or the numerical value estimated to offset

the cost of inlining. We also included the built-in GHC dynamic flags -funfolding-fun-discount

and -funfolding-dict-discount, as they both pertained specifically to inlining.

4.2.3 Benchmark Construction

To experimentally evaluate the performance of GHC’s inliner, we needed a benchmark suite

that would allow us to analyze the performance impact of different inlining decisions.

The nofib benchmark suite was originally constructed to be a substantial, diverse, relevant

set of programs in 1993; but now, most of its programs run for a fraction of a second, as

pointed out by Marlow [105]. Unfortunately, despite its age, nofib has yet to be replaced or

upgraded. As an alternative, we wanted to allow developers to experiment and evaluate on in-

terchangeable, testable, real-world packages from Hackage so that the resultant benchmarks

would be heterogeneous and relevant to real-world needs. We based that assumption on

previous work to construct a benchmark suite for JavaScript, as described by Richards et al.

[133].

4.2. Approach 55

We therefore constructed a tool in Python to select Hackage packages specifically to suit

our benchmarking goal: to identify room for execution time improvement as it pertains to

inlining. These programs needed to run for an adequate amount of time, perform a variety

of different tasks, and have consistent execution times such that the same inlining decisions

would reproduce the same results.

The benchmark framework itself therefore had the capability to:

1. Download packages by url,

2. Build the packages,

3. Control for noise introduced by generation of random tests, and

4. Record timings of tests or benchmarks present in the packages.

Section 4.2.4 gives more information about controlling for noise introduced by random test

generation.

4.2.4 Benchmark Selection

Stackage is a distribution of a subset of Hackage, where packages within the same snapshot

will build together and pass all of their tests. For our benchmarks, we selected packages

contained within a single Stackage snapshot.1 In this Stackage Nightly build, 854 of 2218

packages (about 39%) used QuickCheck, a tool which generates random tests developed by

Claessen and Hughes [34]. Initially, these randomly generated tests were a significant source

of unwanted noise. To address this, we set QuickCheck’s random seed to one constant and

made its test times consistent. We then enabled our scripts to automatically patch all selected

packages’ dependencies with our modified QuickCheck.

In our Stackage snapshot, 421 of the 2218 packages contained INLINE pragmas—or about

19%. We hypothesized these packages may provide code where developers had identified a

good set of problems upon which to evaluate inlining.

Influenced by our observation of pragmas, we identified 236 packages with INLINE pragmas

in their “src” folders that could be run with cabal new-test. From those packages, we sub-

selected 10 which each ran over 4 seconds, decreasing the likelihood that any speedup

percentages observed would fall outside the range of noise. Table 4.2 characterizes the

selected 10 packages.

1. stackage−nightly−2020−01−31

4.2. Approach 56

Package Version SLOC Description
Default
Sec.

INLINE
Pragmas

hw-rankselect 0.13.3.1 1387 Efficient rank and select opera-
tions on large bit-vectors

8.18 88

ListLike 4.6.3 3402 The ListLike package provides
typeclasses and instances to
allow polymorphism over many
common datatypes.

23.04 2

loop 0.3.0 155 Fast loops (for when GHC can’t
optimize forM_)

19.94 8

metrics 0.4.1.1 1819 High-performance application
metric tracking

58.48 9

midi 0.2.2.2 5094 Handling of MIDI messages
and files

19.18 2

monoid-subclasses 1.0.1 4900 Subclasses of Monoid 35.12 334
nonempty-containers 0.3.3.0 10055 Non-empty variants of contain-

ers data types
4.38 520

poly 0.3.3.0 2040 Haskell library for univariate
and multivariate polynomials,
backed by Vector.

94.56 57

reinterpret-cast-0.1.0 0.1.0 122 Memory reinterpretation
casts for Float/Double and
Word32/Word64

26.86 3

set-cover 0.1 2781 Solve exact set cover problems
like Sudoku, 8 Queens, Soma
Cube, Tetris Cube

15.55 16

Table 4.2: Selected Stackage packages and their information. Source lines of code (SLOC)
are estimates. Descriptions were taken from the packages’ Hackage profiles.

4.2.5 Pragma Example

User-inserted compiler pragmas may hint that a compiler’s optimization decisions could be

improved. This snippet from poly contains the INLINE pragma {-# INLINE integral #-}:

−− | Compute an i n d e f i n i t e i n t e g r a l o f a polynomial ,

−− s e t t i n g constant term to zero .

−−

−− >>> i n t e g r a l (3 * X^2 + 3) : : UPoly Double

−− 1.0 * X^3 + 3.0 * X

i n t e g r a l : : (Eq a , F r a c t i o n a l a , Vector v (Word , a)) =>

Poly v a −> Poly v a

i n t e g r a l (Poly xs) = Poly

$ map (\ (p , c) −> (p+1 , c / (f r o m I n t e g r a l p + 1))) xs

{−# INLINE i n t e g r a l #−}

Here, the function integral is overloaded. Without inlining it, integral would get passed a

dictionary of functions for the possible types of ‘a’.

4.2. Approach 57

When integral is inlined, GHC may see that ‘a’ has a specific type—for example, float—and

then specialize for it. In this way, we can sometimes substitute the retrieval and application of

unknown higher-order functions with single machine instructions by telling GHC to inline with

pragmas. This makes the resultant code much faster.

4.3 Experimental Setup

To analyze, explore, and improve the performance of the GHC inliner, we perform an in-depth

experimental evaluation on our benchmarks. In all experiments, programs are executed 10

times and average time is reported. The default baseline is the execution time of a package

compiled with unmodified GHC 8.10.3 and INLINE pragmas disabled. We refer to such exe-

cution times as without pragmas. If INLINE pragmas are enabled, this is referred to as with

pragmas.

We wanted to explore both parameter values which were likely to yield good performance

and also values from a larger range; therefore, we sampled from both a normal distribution

and a uniform distribution. Sampling from a normal distribution stays near GHC’s original

values at the mean and assumes that they are reasonable values. The normal distribution

therefore takes µ as the original flag’s value and σ = 0.4. If the generated number was

negative, number generation recurred until sampling produced a positive value. We ran 140

configurations randomized in this manner: 70 on the packages with pragmas and 70 without.

We ran additional configurations from a uniform distribution with a lower bound of 0 and

an upper bound of 2 ∗ N, where N was the default value. For this experiment, we collected

250 configurations without pragmas and 250 with pragmas. The final result contained 640

randomly sampled data points, 320 without pragmas and 320 with pragmas. When we eval-

uate the performance impact of searching for good configurations, we refer to this as search.

We ran all benchmarks in isolation, sequentially, on a dedicated server (AMD EPYC 7720P

CPU, 2.0 GHz and 256 GB RAM).

4.4 Experimental Results

We first examine the impact of pragmas and a per-program parameter configuration search on

the benchmarks. Then we analyze both the best-performing parameter values, as determined

by execution time, and their impact on inlining decisions. Next, we evaluate the performance of

the best single fixed-parameter configuration for all programs. We then evaluate and analyze

a simple cluster-based model to predict good configurations for an unseen program. Finally,

we examine to what extent inlining is architecture-dependent.

4.4. Experimental Results 58

4.4.1 Performance Improvement

Figure 4.5 shows the best performance improvements found when adding pragmas and con-

figuration search on a per-program basis. All best configurations reported in this figure came

from the uniform distribution. The respective geometric means across all programs are sum-

marised in Figure 4.6.

Figure 4.5: Best-case speedups for each package, grouped by experiment. Speedups are
reported as run time ratio along the x-axis and labelled with speedup percentages at the top
of bars. The baseline is default GHC without pragmas in package code.

Figure 4.6: Geometric mean speedups for all experiments. Baseline: Default, without prag-
mas. "Search With Pragmas" and "Search Without Pragmas" show geometric mean speedups
of the averaged best configurations for each package. "Best Configuration" experiments
represent the single best configuration applied to all 10 packages.

4.4. Experimental Results 59

Pragmas. “Default with pragmas” in Figure 4.5 shows the performance difference when IN-

LINE pragmas are included in the code versus the baseline (code with pragmas removed).

The geometric mean speedup for this experiment was 10%, as shown in Figure 4.6. However,

most of this improvement came from one package, poly, which had a 154% speedup. Although

six of the other packages had a speedup above zero, only one had a speedup above 3%.

In fact, two packages had negative speedups at -4%, where the pragmas actually had a

detrimental effect on execution time. While pragmas can improve the performance of Haskell

code, their use shows a variance of results. This may have multiple explanations, three of

which are 1) developers may insert pragmas where GHC would normally inline anyway, 2) the

effectiveness of the pragmas has changed over time or architectures, or 3) the effectiveness

of the pragmas is not verified by or reflected in test cases.

Search. If we search and evaluate configurations in our space on each program without prag-

mas enabled and report the best value, we get the results labeled “Search without pragmas”

in Figure 4.5. If we repeat this search experiment with pragmas enabled, we get the results in

Figure 4.5 labeled “Search with pragmas”.

As the results in Figure 4.6 show, searching for the best configuration on a per-program basis

significantly improves performance. Although searching with pragmas gives, on average, bet-

ter performance than searching without pragmas, Figure 4.5 shows there are 5 programs

where searching without pragmas gives a better individual speedup than the other two ex-

periments: monoid-subclasses, nonempty-containers, hw-rankselect, ListLike, and midi. If we

calculate the geometric mean of the best speedups across all experiments, we achieve the

maximum possible speedup of 27% shown in Figure 4.6. Finally, independent of pragmas,

searching always delivers a performance improvement. Performance improves without prag-

mas by 9% and actually has a greater additional impact of 16% (26% vs 10%) on packages

with pragmas.

Speedup distribution. Figure 4.7 shows the histograms of speedups achieved with and

without pragmas. While the majority of results are clustered around 1 (where 1 indicates

no change in execution time), there are some significant positive and negative outliers. For

the configurations with pragmas, a speedup over default was observed 64% of the time; and

for the configurations with pragmas removed, a speedup was observed 50% of the time. This

reflects the earlier observation that inline pragmas, on average, improve performance.

In Figure 4.8, we examine the best speedup achieved over time as we search the configuration

space. The x-axis is the number of configurations evaluated, while the y-axis reports the best

speedup achieved so far. There are two lines representing presence of pragmas, solid with

pragmas and dotted without pragmas. The baseline is default GHC without pragmas. While

most speedup is achieved early in the search, many configurations are needed to find the

best performance.

4.5. Analysis 60

(a) (b)

Figure 4.7: Histogram of individual package speedups from search across 320 configurations
without (a) and with (b) package INLINE pragmas.

Figure 4.8: Maximum total speedup of the single best configuration observed over time,
search without pragmas (dotted line) and with pragmas (solid).

4.5 Analysis

In this section, we examine how the best values of parameters vary across programs.

4.5. Analysis 61

Parameters

Distribution. In Figure 4.9, we took the single best configuration for each package and plotted

its values for each parameter. Optimal values for each flag, and for each package, are spread

across the range of the random distributions from which they are sampled—with the exception

of funfoldingfun, which almost entirely prefers a value above 50 (minus one data point).

Looking at a wider set of the most performant configurations, in Figure 4.10 we filtered the

data to include configurations within 1% of the optimal value for each project. We additionally

excluded configurations with less than a 3% speedup, which removed all configurations for

the packages loop and metrics. In the remaining data, the flag actarg seems to clearly prefer

a value higher than its default (except for 3 configurations in which its value is 0); the flag

cosbase mostly prefers a value lower than its default; but overall, all of the flags contain values

from the lower and upper bounds of their random distributions.

Variation across most-improved programs. If we examine the three best-performing pro-

grams in more detail, Figure 4.9a shows the percent difference from the default values of

the best flag configurations for these three packages (without pragmas). The three packages

in question, poly, nonempty-containers, and set-cover, have respective speedups of 14%,

20%, and 25%. For almost any flag, the three packages strongly differ—with the flag arbctxt

having the least disagreement at +20%,-10%, and +17.5%. Where Figure 4.9b suggests all

packages’ best-case configurations differ widely on their ideal values, Figure 4.9a confirms

that this disagreement holds even among the three packages with the highest observed

speedups.

Reflecting on intuition. We case matched the context parameters discargctxt, ruleargctxt,

rhsctxt, and arbctxt to collect values to address the comments in Figure 4.4. Recall the

developer deliberated over what the value of the magic number for the call context should be

and speculated that the value for DiscArgCtxt should not matter, the value for RuleArgCtxt

should perhaps be higher ("keener to inline"), the value for RhsCtxt should probably be high

to expose the inlining, and 40 seems rather arbitrary for all of them. The data disagrees with

the comments on the two points of: ruleargctxt seems to slightly prefer being at or below 40,

and so does rhsctxt. For all four contexts, the range of their values in optimal configurations

varies widely.

4.5. Analysis 62

(a)

(b)

Figure 4.9: Top (a): Difference from default for each flag, by top configuration for 3 most im-
proved programs, without pragmas. Bottom (b): Values for each single best configuration for
each package. Yellow diamonds are default values. White bars indicate sampling boundaries.

4.5. Analysis 63

Figure 4.10: Histograms of parameter values for configurations within 1% of the optimal
speedup for each package, across all samplings.

Inline Decisions

Table 4.3 shows a comparison of GHC’s default inlining behavior to that of the best config-

uration for each package. To summarize, every best configuration considers more total items

for inlining than default GHC, with an averaged 48% increase in number of combined yes and

no decisions. Nine of the ten packages decide to inline more total items than default GHC,

4.5. Analysis 64

Package
Total Decisions % Inlined

Avg. Size

Inlined

Default Best Def. Best Def. Best

hw-rankselect-0.13.3.1 1,166,781 1,515,164 6.0% 5.7% 14 18

ListLike-4.6.3 910,967 999,237 7.8% 7.4% 15 19

loop-0.3.0 363,940 384,689 6.0% 6.0% 21 25

metrics-0.4.1.1 355,448 363,286 6.5% 6.4% 19 20

midi-0.2.2.2 713,076 1,140,791 6.9% 4.8% 26 31

monoid-subclasses-1.0.1 954,442 1,668,907 5.1% 3.6% 19 29

nonempty-containers-0.3.3.0 920,901 1,769,534 5.3% 2.8% 26 31

poly-0.3.3.0 1,405,465 2,635,700 7.1% 3.1% 17 32

reinterpret-cast-0.1.0 361,600 383,446 6.0% 5.8% 20 22

set-cover-0.1 414,699 877,758 6.0% 3.1% 19 27

Table 4.3: Inlining decisions per package, default vs best magic number configuration.

with the exception of poly-0.3.3.0. However, all packages inline a smaller percentage of

the decisions, relative to total decisions, than default. Additionally, all packages’ best configur-

ations decided to inline larger items, with an averaged inlining size of 25.4 versus the default’s

averaged size of 19.6.

Characterizing Good Inline Decisions

To better understand the inlining behavior of the default versus best configurations, we col-

lected information vectors for the inlined code in both cases containing information about the

compiler intermediate representation (Core IR) at each inlined site, along with the yes or no

decision. Summaries of the derived IR vectors are shown in Table 5.5.

Collection of the Core IR features. To collect features of the inlining decisions, we parsed

both the body of the expression being inlined and the calling context, for every nontrivial

inlining decision in the benchmarks. Additionally, we included the variables lone_var (LVAR);

size (SIZE); is_wf (WF); the type of unfolding (FOLDTY); and the number of arguments to

the expression (ARGS). In each decision, we tallied the number of occurrences of expression

and continuation Core IR features in a bag-of-words manner, then appended the values for

LVAR, WF, FOLDTY, SIZE, and the yes or no inlining decision.

4.5. Analysis 65

Abbr. Value Description

Continuation Features

CSt Int Stop[e] = e

CCI Int CastIt co K)[e] = K[e ‘cast‘ co]

CAV Int (ApplyToVal arg K)[e] = K[e arg]

CAT Int (ApplyToTy ty K)[e] = K[e ty]

CSe Int (Select alts K)[e] = K[case e of alts]

CSB Int

(StrictBind x xs b K)[e] =

let x = e in K[\xs.b]

or equivalently = K[(\x xs.b) e]

CSA Int StrictArg (f e1 ..en) K)[e] = K[f e1 .. en e]

Argument Features

AINT Int The argument has structure.

AIVA Int The argument is a constructor application,
partial application, or constructor-like.

AITA Int The argument is not interesting, i.e., de-
serves no unfolding discount.

ARGS Int The number of arguments

Expression Features

LVAR Int Indicates if the expression is a lone vari-
able.

IFV Int Number of vars that don’t occur in a coer-
cion.

IFJI Int Number of join variables

IFL Int Number of literals

IFCase Int Number of case expressions

IFR Int Number of recursive lets

IFLNR Int Number of non-recursive lets

IFCast Int Number of cast expressions

IFLam Int Number of lambda abstractions

IFApp Int Number of applications

FOLDTY { 0, 1 } Type of unfolding: UnfWhen or UnfIf-
GoodArgs

SIZE Int The size of the expression

WF { 0, 1 } GHC estimate if expr. will not duplicate
work

Table 4.4: Collected IR data: their abbreviations, possible values, and descriptions.

The Continuation Features in Table 4.4 are constructors of the data type SimplCont de-

scribing a strict context that does not bind any variables. It represents the rest of the expres-

sion, above the point of interest, and allows GHC’s Simplifier to traverse it like a zipper. The

inlinee’s expression is represented by the features in Expression Features, where the values

Var, Lit, Case, Cast, Lam, and App are constructors of the recursive data type CoreExpr.

The features IFR and IFLNR indicate recursive let and non-recursive let, respectively, which

are pattern matched against compositions of the values Let, Rec, and NonRec.

4.5. Analysis 66

Analysis. We averaged the collected feature vectors across all call sites and programs and

compared the difference between the default and best configurations, as shown in Figure 4.11.

For some features there is little difference, such as Case expressions (IFCase), Stop values

(CSt), join variables (IFJI), and work-free expressions (WF). For other features, there is

significant difference—such as far fewer inlinings for CastIt (CCI) and StrictBind (CSB),

and far more inlinings for non-recursive lets (IFNLR) and recursive lets (IFR). Additionally,

the sizes of the best-case inlinings are 31% larger than GHC’s default inlinings. As an explan-

ation, non-recursive let is an example of an inlining decision associated with anonymous

functions particular to functional languages. In summary, then, these features suggest that

more inlinings should be performed over anonymous functions, and larger things should be

inlined.

Figure 4.11: Difference of inlining features, best-case configurations compared against
default GHC.

4.5.1 The Single Best Configurations

While searching for good configurations yields better performance, it is interesting to ask if

a single fixed configuration can perform better than the default across all programs. If so,

this could replace the existing hard-wired numeric values. Figure 4.12 shows the speedups

achieved when applying the two best single configurations recorded across all of the pack-

ages: the single best configuration with pragmas and the single best configuration without

pragmas, respectively. Table 4.5 shows these two configurations’ parameter values. On av-

erage, a mean speedup of 7% is achieved with pragmas disabled, and 22% with pragmas

enabled. Thus, when searching for ideal configurations is too expensive, then using a new

single best configuration gives already significant improvement.

4.5. Analysis 67

Figure 4.12: Best-performing single configurations. Top: with pragmas. Bottom: without
pragmas. All speedups relative to baseline of unmodified GHC times without pragmas.

4.5.2 Cross-Architecture Transference

To investigate whether inlining behavior is independent of platform, we evaluated the best

performing configurations on a new machine. The second machine was an Intel Xeon CPU

E3-1270 v6 with 4 cores running at 3.8 GHz with 62 GB RAM on Debian GNU/Linux 10.

The results are shown in Figure 4.13. On average, we are able to obtain a 6% and 21%

improvement without and with pragmas, respectively. These numbers are promisingly close to

results found on the original machine, where 9% and 26% were respectively found. These en-

couraging results show that improvements to the inliner may port across machines; however,

further work will be needed to confirm this.

4.6. A Simple Machine Learning Predictive Model 68

Parameter 229 (Without
Pragmas)

265 (With
Pragmas)

GHC

nontrivarg-disc 15 11 10

funcitself-disc 6 1 10

actarg-disc 17 17 10

discargctxt-disc 55 40 40

ruleargctxt-disc 38 60 40

rhsctxt-disc 54 19 40

arbctxt-disc 23 34 40

cosbase 0 22 20

cosargs 15 2 10

bigalt 37 38 20

funfolding-fun1 71 115 60

funfolding-dict2 58 49 30

Table 4.5: Parameter values for configuration 229 (single best without pragmas) and 265
(best with pragmas). Default GHC values in rightmost column. 1) funfolding-fun-discount. 2)
funfolding-dict-discount.

Figure 4.13: Execution times for best-case configurations for each project on alternative
architecture. Geometric mean speedup of configurations without pragmas: 6%. Geometric
mean speedup of configurations with pragmas: 21%.

4.6 A Simple Machine Learning Predictive Model

We saw that when searching for the best configuration per program, we achieve an aver-

age speedup of 26%; however, only 22% is achievable with a single, fixed, best-on-average

configuration. Next, we investigate whether a simple machine learning approach can improve

performance without the need to search many configurations to find an optimum.

We use a simple top-down dynamic programming algorithm for clustering: start with the single

configuration that has the most programs at their optimal performance as the initial cluster,

then place the poorest performing program into a new cluster within its own best configuration

along with any other program that performs better in that configuration. Recur on this step

until just before the number of desired clusters is exceeded.

4.6. A Simple Machine Learning Predictive Model 69

With a new unseen program, we must determine which cluster it belongs to based on similarity

of features. Although static or dynamic program features could be used, we instead use the

speedups of the program on a set of selected configurations to determine which cluster it

belongs in. Depending on the speedups the program exhibits against each configuration,

we allocate it to the cluster of the fastest speedup and assign it that configuration of magic

numbers.

Figure 4.14: Performance of model. Speedups for each package, using a 4-cluster based
predictive model with pragmas.

Analysis. To analyse the results, we focus on a single clustering, where we trained the model

without the first benchmark and then assigned it to the best cluster. This is presented in

Figure 4.14, showing an average speedup of 26% across the benchmark suite.

Table 4.6 shows the values of the parameters in each cluster configuration. It can be high-

lighted that some parameters are similar across clusters, but seldom in complete agreement.

The cosargs parameter has the closest values to each other at 13, 12, 15, and 11—also

near the default 10. The funfolding-fun-discount parameter is consistently higher than

default GHC across all four configurations. Three clusters (136, 237, and 278) have very close

values of bigalt near 38, but cluster 23 prefers this value at 9; and similarly, three clusters

prefer a discargctxt-disc value in the twenties, yet cluster 136 prefers a value of 60.

This further supports the possibility that no single configuration will ever approach the optimal

improvement observed so far for each type of program.

4.7. Results Summary 70

Parameter 136 23 237 278 GHC

nontrivarg-disc 6 5 6 14 10

funcitself-disc 11 13 7 13 10

actarg-disc 18 16 14 11 10

discargctxt-disc 60 28 29 22 40

ruleargctxt-disc 0 32 13 24 40

rhsctxt-disc 56 17 39 54 40

arbctxt-disc 64 69 32 35 40

cosbase 1 17 38 7 20

cosargs 13 12 15 11 10

bigalt 37 9 38 38 20

funfolding-fun1 71 101 77 108 60

funfolding-dict2 43 21 17 57 30

Table 4.6: Parameter values for configurations 136, 23, 237, and 278 in Figure 4.14. Default
GHC values shown in rightmost column. 1) funfolding-fun-discount. 2) funfolding-dict-discount.

4.7 Results Summary

Our experiments demonstrated that a change of the GHC inliner could yield a significant

performance improvement, demonstrably up to 27%, which we attained by modifying the

inliner’s magic numbers. However, much of that improvement is uncovered with the help of

INLINE pragmas already written into the cody by package developers.

A single new magic number configuration, with help from pragmas, can get us to a 22%

improvement over default GHC—and 26% when packages are clustered into 4 different con-

figurations of magic numbers. Without pragmas, a single best configuration can give us a

7% improvement, and we can get a 9% speedup with a 4-configuration clustering. These

configuration changes have been shown to improve performance across architectures as well.

To achieve the maximum speedup observed with the help of pragmas, however, the entirety

of GHC’s inliner should be rethought. The data suggests that no single set of magic numbers

will optimize all different types of programs. A newer inlining heuristic should also give more

consideration to anonymous functions, and it should inline larger things. The complexity of this

problem indicates that machine learning would be a good alternative to further hand tuning.

4.8. Summary 71

4.8 Summary

This chapter introduced a benchmark framework which constructed benchmarks by running

executable code from real-world Haskell packages selected from Hackage. Controlling for

nondeterminism in the packages’ random test generation allowed us to turn tests with vary-

ing execution times into executables with consistent execution times, upon which we could

measure changes to GHC’s inlining heuristic.

We then presented an empirical exploration of the GHC inlining heuristic’s decision space

through modification of hand-coded constants in GHC’s inliner, which are also known as

magic numbers. Although a relatively small number of magic numbers are parameterized,

randomized, and explored to effect inlining decisions, the observed performance changes are

considerable across a selection of 10 benchmarks from Hackage, suggesting ample room for

improvement in GHC’s inlining decision making process.

We reiterate, however, that simply changing magic numbers does not achieve the full observed

speedup when single configurations are applied across all the packages. These results motiv-

ate a rethinking of GHC’s inliner altogether, which we attempt in Chapter 5 from inside GHC’s

Simplifier; however, we will also see that the experimental exploration of inlining decisions in

Chapter 5 guides us to a more effective control-flow directed approach discussed in Chapter 6

at the source-code level, which effects the desired significant speedups.

Chapter 5

Investigatory Work Towards

Improving the Inlining Heuristic in the

Glasgow Haskell Compiler

Drawing upon the information learned in Chapter 4, this chapter attempts to improve GHC’s

inliner through an experimental, empirical approach. This chapter presents experiments which

attempt to redesign the inliner to achieve the maximum-observed speedup seen in Chapter 4,

without the aid of the package developers’ inlining pragmas.

The contributions of this chapter include the exploration of three experimental approaches

to improve GHC’s inliner using machine learning: a genetic algorithm, neural networks, and

graph neural networks. Although the experiments do not produce significant performance

speedups, they provide useful insights for the solution provided in Chapter 6.

Section 5.2 introduces a genetic algorithm. Because of GHC’s compile times, we observe that

we must either try another approach or attempt to seed the population with pre-trained neural

networks, which we introduce in Section 5.3.

In Section 5.3, we attempt to train neural networks over the benchmark packages in Chapter 4,

as we can produce labeled training data of ideal inlining decisions by setting GHC’s magic

numbers (as discussed in Chapter 4) to the optimal values preferred by each individual

package. We see, however, that although we can train the neural networks to high accuracy,

we cannot achieve the same compile times seen in Chapter 4. We observe that there is a tiny

fraction of training data which has identical features but also has both 0 and 1 labels, suggest-

ing that correctly making a very small fraction of decisions heavily determines performance

outcome.

In Section 5.4, we approach the problem instead at the source-code level, to predictively place

inlining pragmas at function declarations. We attempt to collect training data by adding or

removing individual pragmas and noting run-time differences. Despite high training accuracy

again, no significant speedups are observed—even when overfitting and predicting on the

same package.

72

. Investigatory Work Towards Improving the Inlining Heuristic in the Glasgow Haskell Compiler73

Exploration of why these attempts failed leads to the insights explained in Section 5.4.7.

These insights will motivate the hot call chain approach described in Chapter 6, a technique

that successfully achieves a significant speedup by inlining along call chains of hot functions

identified by profiling.

5.1 Introduction

In the previous chapter, we explored the space of the Glasgow Haskell Compiler’s inlining

decisions by parameterizing and modifying its hand-coded constants, or magic numbers, at

compile time.

Through an iterative search of these randomized numeric parameters, we found that each of

10 packages selected from Stackage was able to achieve a significant speedup—3% or faster

execution time, compared to GHC’s default inlining heuristic. However, we observed that no

single configuration of magic numbers achieved the maximum-observed mean speedup of

27%, and each package preferred its own unique set of magic numbers. Further, the maximum

observed mean speedup of any configuration was only 7% without the inclusion of developers’

inlining pragmas in the packages’ original source code.

The last chapter’s results concluded that because the magic numbers could not be modified

to one configuration that gives a speedup near that of the best-case speedup for all packages

with the help of developer pragmas, the magic numbers themselves were likely not capturing

the right information to make more optimal decisions. Therefore, a redesign of the inliner is

warranted.

5.2 Training an Inliner from a Genetic Algorithm

5.2.1 Motivation

Work by Cavazos and O’Boyle [26] showed promising results for improving the inlning heuristic

in the Jikes JVM compiler through the use of a genetic algorithm. Additionally, some research

suggests that genetic algorithms could offer a better solution than neural networks because

they are resistant to problems faced from gradient descent [155]. This section explains an

attempt to use a similar approach to construct a machine-learning-based model for GHC’s

inliner using a genetic algorithm.

5.2. Training an Inliner from a Genetic Algorithm 74

This attempt to modify the inlining heuristic in GHC aimed to replace the decision point in the

Simplifier where the compiler decided whether or not to inline items with an UnfIfGoodArgs

unfolding “guidance”. An unfolding guidance of UnfIfGoodArgs is attached to normal iden-

tifiers [128], or items upon which the inliner will calculate its size-related cost/benefit analysis

to decide whether to inline. For more information about GHC’s inlining guidance, see Sec-

tion 2.2.4.

Inlining Type Total Inlinings Percent

UnfIfGoodArgs 7124938 82%

UnfWhen 1281453 15%

UnfNever 301756 3%

Table 5.1: Type of non-trivial inlinings when compiling Cabal the Library.

To approximate the percent of non-trivial inlinings accounted for by the UnfIfGoodArgs

guidance, we compiled Cabal the Library and recorded counts of all non-trivial inlinings which

passed through the Simplifier for inlining consideration. As explained in 2.2.3, Cabal is the

system that builds and packages Haskell libraries and programs, and cabal-the-library is the

code which carries out that building and distribution. Table 5.1 shows that UnfIfGoodArgs

makes up a substantial 82% of cabal-the-library ’s non-trivial inlinings.

5.2.2 Formulating the Problem

Inlining in GHC may be formulated as a reinforcement learning problem, where an agent

interacts with its environment in an iterative process to maximize a reward signal towards

some objective [116]. GHC is the agent, the environment is the compilation, and the reward

signal in this case is the measured run time of the compiled packages. Research suggests

that for reinforcement learning problems, genetic algorithms may be a competitive alternative

to the use of deep neural networks in cases where tasks have sparse or deceptive reward

functions [155]; and additionally, work by Cavazos and O’Boyle [26] had already used a

genetic algorithm for inlining for the Jikes RVM with promising results. We therefore proposed

to construct a replacement inliner for non-trivial unfoldings (that is, inlining problems which

could not be definitively decided before application of GHC’s inlining heuristic) using a genetic

algorithm.

5.2. Training an Inliner from a Genetic Algorithm 75

5.2.3 Method

We aimed to replace a crucial part of GHC’s inliner with a neural network, produced from a

genetic algorithm, which would take a feature vector as input and then output a binary decision

to inline or not. Specifically, we used a genetic algorithm called NEAT Python [150, 151], and

feature vectors included features from the Magic Number work described in Chapter 4.

Because we would be replacing the cost-benefit calculation of the inlining heuristic in the

middle of the compiler, our new model would be fired potentially millions of times per each

package compilation. Making the models as small as possible would help keep compilation

times under control, and it was therefore also desirable to use the smallest set of features

possible—additionally to control for multicollinearity.

Package Total Inlinings

reinterpret-cast-0.1.0 361,600

loop-0.3.0 363,940

metrics-0.4.1.1 355,448

set-cover-0.1 414,699

midi-0.2.2.2 713,076

nonempty-containers-0.3.3.0 920,901

ListLike-4.6.3 910,967

monoid-subclasses-1.0.1 954,442

hw-rankselect-0.13.3.1 1,166,781

poly-0.3.3.0 1,405,465

Average 756,732

Table 5.2: The total number of inlinings reported per package using GHC’s default heuristics
with no developer inlining pragmas.

Table 5.2 shows the total number of non-trivial inlining decisions recorded per package within

the inliner within the Simplification pass in the middle of the compiler. The fewest recorded in-

lining decisions were 361,600 in reinterpret-cast-0.1.0, and the most were 1,405,465 in

poly-0.3.3.0. Across the ten packages, there was an average of 756,732 inlining decisions

per package.

5.2. Training an Inliner from a Genetic Algorithm 76

The NEAT Algorithm

Overview. The NEAT algorithm produces populations of candidate genomes by breeding to-

gether a subset of genomes from the previous generation which are determined to be the best

performers. Performance is determined by means of a fitness function that is defined for the

given problem. The fitness function must return a single real number, and a hyperparameter

can specify which function to use to judge it (e.g., maximum or minimum).

Genomes. A genome encodes the information for constructing a neural network, but it also

contains information about the set of mutations that built these instructions and in what order

the mutations were added. Genomes contain node genes, which contain information about

neurons, and connection genes, which contain information about connections between neur-

ons [121]. Table 5.3 shows the information contained in node genes, and Table 5.4 shows the

information contained in connection genes.

Node Id 1 2 3 4 5

Node Type input input hidden hidden output

Table 5.3: Information encoded in the node genes in NEAT.

Input Node 1 1 2 2 3 4

Output Node 3 4 3 4 5 5

Weight 0.2 -0.3 0.8 -0.1 0.5 0.2

Enabled True True False True True True

Table 5.4: Information encoded in the connection genes in NEAT.

The information in the node and connection genes can then be used to produce a neural

network, which is also known as a “phenotype”—similarly to a phenotype in biology, which is

a set of observable characteristics arising from an organism’s genotype and environment. The

neural network, or phenotype, composed from Tables 5.3 and 5.4 is depicted in Figure 5.1.

Figure 5.1: The network described by the nodes and connections encoded above in
Tables 5.4 and 5.3, also known as a “phenotype” in NEAT.

5.2. Training an Inliner from a Genetic Algorithm 77

Populations. The first population is constructed with a set of random features according

to given hyperparameters. The NEAT algorithm starts with a minimally small architecture

which will be built upon via the introduction of mutations in later generations. For the sake of

simplification, we set the starting neural networks to all be feed-forward neural networks with

25 hidden nodes, none of which were initially connected, and allowed the algorithm to only

manipulate connections between the nodes—e.g., enable connections, disable connections,

and perturb connection weights. This is architecturally the same as building a neural network

from scratch but limiting the hidden layer to a potential growth to 25 hidden nodes.

It is difficult to estimate a priori how large to make a neural network to maximize classification

accuracy [94]; however, some rules-of-thumb are considered acceptable estimates. If the data

is not suspected to be linearly separable, then there should be at least one hidden layer. If

there is a relatively small number of features (as opposed to thousands or millions), then one

or two hidden layers are acceptable. The number of hidden neurons may typically be less

than the number of inputs and greater than the number of outputs. Also, the number of hidden

neurons may be about 2/3 the number of inputs [73, 137].

Evolution. Genomes are changed across generations by mutation or crossover. In mutation,

attributes of the genes in a genome may be randomly changed according to likelihoods

assigned in the configuration as hyperparameters. This includes perturbation of connection

weights, addition of nodes, and activation or deactivation of connections. For crossover, two

genomes are combined together—where genes that have the same key are combined and

genes that do not have common keys across the two genomes are copied from the higher-

performing parent.

Termination. The algorithm runs until a member of one of its populations exceeds a given suc-

cess threshold or for the specified maximum number of generations (if the success threshold

is not met).

5.2.4 Design

The NEAT algorithm produces candidate inliner models at every generation, where the models

are binarized and passed to a modified GHC as a custom flag. Inside the Simplifier at the in-

lining decision point, a function called callSiteInline, where GHC decides how to proceed

with inlining depending upon unfolding guidance, passes features to the model and receives

boolean decisions to inline or not. Genomes for the candidates whose inlining decisions result

in faster test run times are then used as blueprints to build the next generation, by mixing pairs

of genomes together and introducing random mutations.

5.2. Training an Inliner from a Genetic Algorithm 78

5.2.5 The Inlining Decision Features

Table 5.5 recapitulates the features derived from Chapter 4, which represent a combination of

attributes about each inlining decision’s function body and context. We restarted the genetic

algorithm multiple times for debugging purposes and to add additional features, shown in

Table 5.6, in an attempt to provide the model with enough data to speed up learning. These

additional features were readily available in GHC’s Simplifier at the point of the calls to the

machine learning model. Their addition did not produce a significant effect.

5.2.6 Training the Genetic Algorithm

The fitness function for each generation calculated the geometric mean speedup across all

the packages, for each genome. The speedup referred to wall clock execution time of tests

specified in the packages’ cabal files. As in Chapter 4, random generation of tests was made

consistent by setting the random seed in QuickCheck to be the same number across all runs.

At the beginning of each generation, the best performers from the previous generation were

“bred” together to make the next generation, using a survival threshold of 20% of the previous

population. Several such hyperparameters can be specified in the genetic algorithm, some of

which appear in Table 5.7

As previously mentioned, 25 hidden nodes served as a maximum value of hidden nodes,

as connections to them are disabled at the beginning of the run of the genetic algorithm; so

in practice, the total number of hidden nodes would be some value between the number of

inputs and the number of outputs. The population size of 100 is an acceptable value, as a

rough estimate for recommended population size is commonly somewhere between 50 and

200 [1]. Although the fitness threshold was set to terminate at a 43% mean speedup, mean

total speedup was reported at the end of each generation; thus, the run of the algorithm

could be monitored for plateaued performance. Because addition of new hidden nodes was

disabled, we made the probability of adding or deleting a connection relatively high, at 50%

each, and additionally set the weight mutation rate high at 80%. The survival threshold, or

minimum fitness to allow individuals to survive to the next generation, was left at the default

of 0.2.

The genetic algorithm was trained over 20 packages, including 8 of the 10 packages from

Chapter 4: nonempty-containers-0.3.3.0, hw-rankselect-0.13.3.1, loop-0.3.0, set-

cover-0.1, poly-0.3.3.0, metrics-0.4.1.1, ListLike-4.6.3, and reinterpret-cast-

0.1.0. These packages are listed in Table 5.8, and they were selected based upon having

a test run time greater than 5 seconds and a successful compilation that took less than 5

minutes.

5.2. Training an Inliner from a Genetic Algorithm 79

Abbr. Value Description

Continuation Features

CSt Int Stop[e] = e

CCI Int CastIt co K)[e] = K[e ‘cast‘ co]

CAV Int (ApplyToVal arg K)[e] = K[e arg]

CAT Int (ApplyToTy ty K)[e] = K[e ty]

CSe Int (Select alts K)[e] = K[case e of alts]

CSB Int

(StrictBind x xs b K)[e] =

let x = e in K[\xs.b]

or equivalently = K[(\x xs.b) e]

CSA Int StrictArg (f e1 ..en) K)[e] = K[f e1 .. en e]

Argument Features

AINT Int The argument has structure.

AIVA Int The argument is a constructor application,
partial application, or constructor-like.

AITA Int The argument is not interesting, i.e., de-
serves no unfolding discount.

ARGS Int The number of arguments

Expression Features

LVAR Int Indicates if the expression is a lone vari-
able.

IFV Int Number of vars that don’t occur in a coer-
cion.

IFJI Int Number of join variables

IFL Int Number of literals

IFCase Int Number of case expressions

IFR Int Number of recursive lets

IFLNR Int Number of non-recursive lets

IFCast Int Number of cast expressions

IFLam Int Number of lambda abstractions

IFApp Int Number of applications

FOLDTY { 0, 1 } Type of unfolding: UnfWhen or UnfIf-
GoodArgs

SIZE Int The size of the expression

WF { 0, 1 } GHC estimate if expr. will not duplicate
work

Table 5.5: Collected IR data: their abbreviations, possible values, and descriptions.

5.2. Training an Inliner from a Genetic Algorithm 80

Abbr. Value Description

enough_args { 0, 1 } The number of arguments is ≥ the unfold-
ing arity

boring_ok { 0, 1 } The result of inlining the expression is no
bigger than the expression itself

uf_arity Int The unfolding arity

cont_info_ftr { 0, 1 } ×7 A one-hot encoding indicating whether
the context type was BoringCtxt,
CaseCtxt, ValAppCtxt, DiscArgCtxt,
RuleArgCtxt, RhsCtxt, or other

Table 5.6: Additional features for the genetic algorithm.

Hyperparameter Value

Hidden nodes 25

Population size 100

Fitness threshold 1.428

Fitness criterion max

Add connection probability 0.5

Delete connection probability 0.5

Connection weight mutation rate 0.8

Survival threshold 0.2

Table 5.7: Some of the hyperparameters used in the genetic algorithm that produced
candidate models to make inlining decisions. Exhaustive hyperparameters are specified in
a configuration file.

5.2.7 Performance of the Genetic Algorithm

Compile time in GHC is currently notoriously slow [89], and poor inlining heuristics makes

them even slower. For the genetic algorithm, timeouts for compilation and testing were set

at 30 minutes each, so the worst-case time necessary for each generation was about 30+

30+((30∗5))∗20), which accounts for one compilation and one test run to be discarded (in

case it contained any additional test compilation)—which could be built in parallel—and five

test runs, which must be run sequentially and in isolation for each package on each genome.

This worked out to about 3,060 minutes, 51 hours, or 2.13 days to run each generation with

a population of 100. Larger populations are preferable to raise the chance of learning a good

model, and the number of generations necessary to produce a result through a GA may vary

widely, from 100 to hundreds of thousands of generations [132]. It could have realistically

taken a year to obtain a result from the GA, assuming the algorithm did not have to be

debugged and restarted.

5.2. Training an Inliner from a Genetic Algorithm 81

Package name Default time

ListLike-4.6.3 51.809

RSA-2.4.1 45.835

Ranged-sets-0.4.0 10.351

combinatorial-0.1.0.1 24.846

exp-pairs-0.2.0.0 97.630

hsini-0.5.1.2 25.924

http-conduit-2.3.7.3 5.299

hw-rankselect-0.13.3.1 13.196

json-rpc-1.0.1 98.818

loop-0.3.0 44.245

metrics-0.4.1.1 79.729

nonempty-containers-0.3.3.0 7.129

oauthenticated-0.2.1.0 11.558

poly-0.3.3.0 220.133

ramus-0.1.2 7.570

regex-applicative-0.3.3.1 26.639

reinterpret-cast-0.1.0 59.815

replace-megaparsec-1.2.0.0 8.063

scientific-0.3.6.2 41.428

set-cover-0.1 34.622

throttle-io-stream-0.2.0.1 15.470

x509-validation-1.6.11 14.662

Table 5.8: Packages used to train the genetic algorithm.

Table 5.9 shows increasingly higher percentages of successfully compiled packages at each

new generation, which is one metric of improvement. Better inlining strategies are correlated

with faster compile times, and poor inlining strategies can often cause compilation to diverge.

Generation Mean Speedup Successfully Compiled

1 0.16 66.7%

2 0.27 90.5%

3 0.28 83.2%

Table 5.9: The mean speedup and percent of packages successfully compiled within each
generation of the genetic algorithm before it was stopped.

5.2. Training an Inliner from a Genetic Algorithm 82

Additionally, Figure 5.2 shows that the algorithm seemed to be learning and making an im-

provement in terms of execution times, as evidenced by the recorded mean speedups of each

genome. Across the three generations depicted, the mean of the geometric mean speedups

across all genomes increased with each subsequent generation. However, the third genera-

tion was still 72% slower than default GHC—implying the need for several more generations

just to have a mean compilation time comparable to default GHC. With the experiment re-

quiring so much time to conduct, it was necessary to look for faster ways to learn a new

inlining strategy. Section 5.3 discusses an approach which seeds the initial population with

neural networks which have already been trained rather than starting with minimal random

architectures.

Figure 5.2: Genomes’ execution times per generation as violin plots with jitter.

Although it would have been possible to continue running a genetic algorithm with more

time and/or compute power to see whether a better inlining heuristic than the default could

be achieved, ultimately its success seems unlikely because of the matters discovered and

discussed in Section 5.5.

5.2. Training an Inliner from a Genetic Algorithm 83

Speeding Up the Genetic Algorithm with a Seed Population

To address the problem of slow training time using the genetic algorithm, we decided to train

an initial population of neural networks with gradient descent over the individual packages.

This effort is described in the next section, Section 5.3, and the intent was to breed the per-

package trained neural networks together using the existing genetic algorithm to create a

generalized classifier which would work over the given and unseen packages.

5.3 Training ANNs to Predict Inlining from Best-Case Magic Num-

bers Training Data

5.3.1 Motivation

Following the attempt to improve inlining with a genetic algorithm which produced neural

networks randomly from scratch, as described in Section 5.2, it seemed reasonable to in-

stead try to use—or at least start with—a supervised learning approach. The next attempt

aimed to create labeled training data which showed good instances to inline based upon the

performance improvements demonstrated in Chapter 4. This training data could then be used

to train a supervised learning model.

5.3.2 Overview

The plan hypothesized that by using the magic number parameters presented in Chapter 4

compiled over the set of packages with their pragmas included, as this combination produced

the largest observed speedup, feature vectors at the point of each inlining decision could

be emitted along with GHC’s decision of whether or not to inline. These sets of feature

vectors and decision labels could then be used to train one or more deep neural networks

to output the correct set of decisions required to compile the aforementioned packages with

the maximum-observed speedup; and thereafter, the network(s) could be tuned to generalize

to other packages.

5.3.3 Production of the Labeled Training Data

GHC was modified to output the numerical values of each feature listed in Section 4.11 at

every decision point to inline an item at a call site in the Simplification pass. Using Config-

uration 265 from the work performed in Chapter 4, for which poly-0.3.3.0 had a 315%

speedup with pragmas, and compiling poly-0.3.3.0 with its developer pragmas, 2,071,017

inlining decisions were recorded along with their accompanying features. A summary of Con-

figuraton 265 can be seen in Table 5.10.

5.3. Training ANNs to Predict Inlining from Best-Case Magic Numbers Training Data 84

Feature Value Feature Value

FI 1 AC 17

AA 17 FFD 17

NTA 11 FDD 11

DAC 40 CB 40

RAC 60 CA 60

RC 19 BA 19

Table 5.10: Configuration 265 Features and Values

To recapitulate, Configuration 265 was the single best configuration across the 10 benchmarks

from Chapter 4. Its speedup for set-cover was additionally 29%, whereas the best-observed

configuration for set-cover was 30%; and for monoid-subclasses, this configuration produced a

6% speedup compared to the package’s best-observed speedup of 7%. Therefore, this single

configuration could be used to produce nearly optimally labeled data for three packages.

Figure 5.3: Best-performing single configuration of magic numbers in the GHC inliner across
10 benchmarks, with developer inlining pragmas.

Imbalance of Classification Labels

Examining poly-0.3.3.0, Configuration 265 produced 2,071,017 non-trivial labeled inlining

decisions for that package. Of those labeled decisions, GHC decided not to inline 1,953,547

items and to inline 117,470 items. That means 5.7% of the considered items were inlined.

To account for the sparsity of inlined data points versus non-inlined data points, we used

oversampling to correct the imbalance of classes in the training data.

5.3. Training ANNs to Predict Inlining from Best-Case Magic Numbers Training Data 85

5.3.4 Model Construction

Each model was a feedforward neural network with 25 hidden nodes with ReLU activations

and a sigmoid activation output. Training used binary cross entropy loss with the Adam optim-

izer set at a learning rate of .01. The models trained for 80 epochs or a plateau in learning.

The weights from the trained neural networks could be transferred to the initial population of

neural networks in the genetic algorithm via a script.

5.3.5 Training Accuracy and Performance

The trained model predicted when not to inline, according to this compilation of poly-0.3.3.0

from GHC, with 99.6% accuracy over the do-not-inline data. For when to inline, the model pre-

dicted with 93.6% accuracy over the do-inline data. These numbers are depicted in Table 5.11.

GHC Not Inlined 1,953,547 GHC Inlined 117,470

Predicted Not Inlined 1,945,861 Predicted Inlined 109,905

Accuracy 99.6% Accuracy 93.6%

Table 5.11: Inlining Prediction Accuracy

Despite this, when plugging the model’s weights into GHC, compilation and run time were

orders of magnitude slower than GHC’s default decisions.

As another example, we attempted to explore the neural architecture on set-cover-0.1

alone because its compile and run times were relatively small and, as aforementioned, the

same magic number configuration produced a near-optimal speedup for it. The set-cover-

0.1 package had a default run time of 15.485 seconds. The altered configuration of magic

numbers for set-cover-0.1 without developer pragmas gave a run time of 13.185 seconds;

however, the training data generated from compilation of that configuration gave a run time of

17.715 seconds—a 12.6% slow down. This result came from a neural network with 35 hidden

nodes and trained for 150 epochs.

As a sanity check, we plugged a “coin-toss” inliner into GHC to randomly choose whether

or not to inline with a 50% probability. For the random inliner, compilation time on poly-

0.3.3.0 timed out after 10 minutes, preventing a collection of test time. On set-cover-0.1,

compilation took 1 minute 14 seconds, compared to 37 seconds default; then, it timed out

after 10 minutes for testing.

5.3. Training ANNs to Predict Inlining from Best-Case Magic Numbers Training Data 86

Ambiguously Labeled Training Data

Upon investigation, and as seen in Table 5.12, 2.88% of the data had conflicting labels. That

is, 2.5% of the data which had a No label also had a Yes label, and 9.4% of the data which

had a Yes label also had a No label.

GHC No-Inline Conflicting Labels 48,526 GHC Inline Conflicting Labels 1,1070

Percent From “No” 2.5% Percent From “Yes” 9.4%

Percent From Total 2.3% Percent From Total 0.53%

Total conflicting data in dataset: 59,596 labels 2.88%

Table 5.12: Breakdown of Conflicting Inlining Labeling. Conflicting datapoints in the training
data have identical values for each of the collected features yet both Yes and No for the
classification to inline.

In cases where the training data had multiple possible labels for the same feature vectors,

it may be concluded that the chosen representation of features is not descriptive enough. It

may be possible to adjust the features to try to increase accuracy; however, given that the total

percent of mispredicted data which should be Yes and was instead No was merely 0.53% of

the dataset (not even 1%), it seemed apparent that approaching the problem differently would

provide a solution faster than trying to further increase accuracy.

It is also possible that some amount of the data with conflicting labels came from duplicated

or sufficiently similar code where one or more duplicates have an inlining pragma and one

or more duplicates do not. In this case, we presumably want to inline the duplicates as well.

Section 5.4.8 provides an observation as to what may happen in that event. In summary, it

leads to over-inlining in the packages examined.

5.4 Using Graph Neural Networks to Predict Pragma Placement

in Haskell Source Code

5.4.1 Motivation

Rather than attempting to learn from every decision made inside the inliner, the next approach

tried to determine when it would be advantageous to place an inlining pragma directly into

source code, at the place of the function declaration. Evidence from Chapter 4 suggested

that well-informed inlining pragmas may induce significant speedups in some situations, so

perhaps it could be possible to learn when this is the case? Additionally, there would be no

5.4. Using Graph Neural Networks to Predict Pragma Placement in Haskell Source Code87

significant additional compilation time inside GHC with this approach, because it would not

change the decision process for every non-trivial inlining candidate. Further, programmers

could potentially review pragma recommendations made by the model before proceeding with

compilation if they were placed directly back into the source code.

A program may be conceptualized as a graph, and it will be parsed as such at the beginning

of compilation. Using a graph neural network over a graph representation of the program in

combination with a convolutional neural network (CNN) would enable the CNN to recognize

multi-scale, hierarchical features within the code [188]. “Multi-scale” means a feature can

be recognized regardless of its topological scale, and “hierarchical feature” learning is the

learning of features of varying levels of complexity in different layers of the CNN. Further, a

graph neural network could reason about the program as a whole and make decisions about

inlining once at any function declaration, rather than multiple times through repeated passes

in the Simplifier.

5.4.2 Overview

Chapter 4 showed that although it was possible to see dramatic speedups from the use of

inlining pragmas, examples of packages with such pragmas were rare despite the extensive

use of inlining pragmas in the Haskell community’s central package archive, Hackage. The

first experiment in this section aims to identify pragmas that have any measurable benefit at

all and train a model to place them in similar places across multiple packages, as described

in Section 5.4.4. An even simpler attempt in Section 5.4.7 tries to look at the notable success

of pragmas in poly-0.3.3.0, the package from Chapter 4 with by far the greatest observed

speedup from developer pragmas, and simply predict where the developers of that package

may have placed pragmas in other packages at similar points in code to see if any effect

could be observed. Finally, Section 5.5 gives some insights into why these approaches fail to

produce a speedup.

5.4.3 Setup: Graph And Model Construction

Graph neural networks make predictions over data which is encoded as a graph. In the case

of a program, this could reasonably be a control-flow graph. At the time of these experiments,

the version of GHC used had no instrumentation to output an interprocedural control-flow

graph.

Although we tried to find an existing tool to produce flow graphs, few options were available.

The leading candidate, graph-trace, produced a 36 GB graph for set-cover-0.1. That pack-

age had about 2,781 source lines of code (SLOC), which was about the median SLOC among

the 10 packages in Chapter 4. Graphs of this size would have been too large to work with; so

as a proxy, we decided to use abstract syntax trees (ASTs) produced during compilation for

each of the modules, which can be encoded as graphs.

5.4. Using Graph Neural Networks to Predict Pragma Placement in Haskell Source Code88

Constructing the ASTs: A Simple Example

Figure 5.4.3 presents a very small 7-line Haskell program. Following the renamer pass, GHC

produces an AST which is over 279-lines for this simple program, as presented in Appendix B.

(The AST in Appendix B is slightly modified to be more easily parsed in the experiments, so

the unmodified AST dump from GHC would be longer.)

1 addexclaim :: String -> String

2 addexclaim name = name ++ "!"

3

4 main = do

5 foo <- putStrLn "Hello, what’s your name?"

6 name <- getLine

7 putStrLn ("Hi, " ++ addexclaim(name))

Figure 5.4: A small 7-line program written in Haskell.

A simplified graph of the AST for the body of the addexclaim function is displayed in Fig-

ure 5.5. For any realistic package, processing the program as one single graph would be

intractable because of the size of the ASTs.

Graphs are instead created for individual functions. Line 11 of Appendix B indicates a Fun-

Bind, or a function binding for a function body with its name, “Main.addexclaim” on line 15 of

the AST. The FunBind indicates the root, or beginning, of the graph of the function body.

Additionally, the function “addexclaim” has a type signature, which is emitted starting on

line 223 of the AST with TypeSig followed later by the function’s name on line 226.

AST Graph Composition

For each function, we created a graph of the function’s abstract syntax tree; and if present,

we created a graph of the function’s type signature as well. Following collection of all function

and type signature graphs, we combined each function’s body and type signature together

into one graph for each function.

We parsed the ASTs of every source file in the packages to collect the names of all present

syntax features. There were 300 total, as shown in Appendix 2. Some examples of these

features include ClassDecl for a class declaration, BangPat for a bang pattern, and String-

Literal for a string literal. For variable values like fast strings and numbers, we changed the

parser to emit a constant value. For example, where a fast string may otherwise have been

FastString: "Hello World", we made the parser output FastString: "FASTSTRING".

See line 57 of Appendix 1 for an example.

5.4. Using Graph Neural Networks to Predict Pragma Placement in Haskell Source Code89

Figure 5.5: A simplified representation of the function addexclaim in 5.4.3.

5.4.4 Training a Model Over Pragmas with Verified Performance Benefit

Production of Labeled Training Data

The packages used to train the graph neural network were a different selection from those

used for the genetic algorithm or the ANNs trained over the altered-magic-number data in the

previous sections. For this experiment, we prioritized packages that had the largest number

of pragmas possible to maximize the likelihood of having enough training data; however, the

5.4. Using Graph Neural Networks to Predict Pragma Placement in Haskell Source Code90

packages also had to build and test successfully on the machine and have tests that ran for

some reasonable amount of time. Although we tried to select packages with tests that ran for

over 1 second, some exceptions were made for packages that had a high number of inlining

pragmas.

Here, training data would be composed of graphs representing functions with inlining pragmas

attached to them which have a verifiable significant effect on performance. Table 5.13 shows

the package names, the count of the inlining pragmas inserted by the packages’ developers,

and the minimum time recorded from running the package’s tests with their pragmas removed.

Package name Number Pragmas Default Time with No Pragmas

mono-traversable-1.0.15.1 750 205.706

nonempty-containers-0.3.3.0 520 4.550

folds-0.7.5 341 4.788

storablevector-0.2.13 298 4.280

intervals-0.9.1 213 24.606

paripari-0.6.0.1 190 5.707

persist-0.1.1.4 175 0.940

vector-algorithms-0.8.0.3 146 23.425

bitvec-1.0.2.0 66 3.225

poly-0.3.3.0 57 205.706

formatting-6.3.7 44 0.365

string-transform-1.1.1 36 1.051

set-cover-0.1 16 34.027

xeno-0.3.5.2 12 0.363

carray-0.1.6.8 11 3.250

classy-prelude-1.5.0 11 1.160

metrics-0.4.1.1 9 88.075

xlsx-0.8.0 5 7.020

SHA-1.6.4.4 5 1.457

data-interval-2.0.1 2 1.737

Table 5.13: Packages used to produce graphs to train the graph neural network.

When significance was measured by adding pragmas one at a time, this set of 20 packages

produced 1118 significant data points, where “significance” could be either a slow-down or

speed-up. Of these significant datapoints, 669 produced a speed-up and 449 produced a

slow-down.

5.4. Using Graph Neural Networks to Predict Pragma Placement in Haskell Source Code91

5.4.5 Model Training

Following some manual hyperparameter tuning, we used a graph convolutional network model

with 64 embedded features, 450 hidden nodes, batch size of 250, 2 convolutional layers,

global mean pooling, a linear output layer, and the Adam optimizer with a learning rate of

0.0001. Models were trained to a plateau of prediction accuracy with a set limit of 400 epochs.

5.4.6 A Naive Approach: Train by the Measured Benefit of Individual Inlining
Decisions

Two methods were used to produce training data to predict when to inline: measurement of

performance difference upon removal of a pragma and measurement of performance differ-

ence upon addition of a pragma. The second was attempted upon failure of the first.

Performance Difference With Pragma Removal

The first line of reasoning postulated that removal of an inlining pragma at a point in code

where inlining would be beneficial, but the compiler does not currently recognize it, would

produce a measurable slow-down of execution time. Therefore, each INLINE or INLINABLE

pragma was removed, one by one, with its resultant performance difference recorded.

For each pragma in the training data set, we removed the individual pragma, compiled, and

collected five run-time samplings of the package’s test execution. For default measurements,

we left all pragmas in and collected five timings. We then checked whether any of the pragma

removal timings overlapped with the default timings, labeling the pragma significant if they did

not and the modified timings were faster than default. Figure 5.6 shows boxplots for timings

collected on one pragma in the project intervals-0.9.1.

The test data was a set of 10 packages which were not used in the training set. The packages

in the test set were: alex-3.2.5, bv-little-1.1.1, hw-fingertree-strict-0.1.1.3,

approximate-0.3.2, hyperloglog-0.4.3, happy-1.19.12, distributive-0.6.1, hw-

fingertree-0.1.1.1, comonad-5.0.6, and bits-0.5.2.

Of the 2,907 developer pragmas in the 20 training packages, 1,625 were determined signific-

ant with no times overlapping with default. These 1,625 timings trained models from 81% to

90% accuracy.

The models predicted pragma recommendations over the graph representations of functions

extracted from the test set in CSV format, and the predicted pragmas were appended back

into the source files.

Although there appeared to be no significant drop in performance from any possible over-

inlining by adding pragma recommendations from the models, no significant positive change

in performance was observed over any packages.

5.4. Using Graph Neural Networks to Predict Pragma Placement in Haskell Source Code92

Figure 5.6: Boxplots of time collections for 8 pragmas determined to have significant
speedups in the file Kaucher.hs for the project intervals-0.9.1. The red line indicates
the value of the fastest default timing, or fastest time with no developer pragmas removed.

We created another set of training data which labeled datapoints significant one of the collec-

ted timings overlapped with the default timings—rather than no overlap. However, no signific-

ant differences in performance measurements arose from this data either.

Performance Difference with Pragma Addition

When the approach of training by pragma removal failed, a second round of data was collected

by instead measuring the performance difference when all pragmas were removed and then

each pragma was placed into the code on its own.

Attempts to learn an inlining policy with this data once again produced a high-accuracy

model: the training reached 91% accuracy over the training datapoints; but when the model’s

pragma recommendations were deployed into compilation, package test time again achieved

no significant measured speedup over default GHC.

Section 5.4.7 gives a more in-depth explanation of why these data sets failed to produce a

good machine learning model for inlining.

5.4. Using Graph Neural Networks to Predict Pragma Placement in Haskell Source Code93

5.4.7 Why Is Inlining So Hard To Predict? A Case Study

Motivation

One package in the Magic Numbers study, poly-0.3.3.0, achieved a 154% speedup just

with the addition of well-placed inlining pragmas. Efforts to predict where to place inlining

pragmas in poly-0.3.3.0 failed with machine learning, even when the model was deliber-

ately overfit. Training a graph neural network over poly-0.3.3.0 achieved a 94.1% training

accuracy; however, timing of its tests with the learnt model were no faster than running

the tests with all inlining pragmas removed. An inspection of the pragma recommendations

showed that a number of them had been correctly inferred, but not all. This makes sense when

considering that code may be extremely similar or identical across modules, yet developers

may choose to annotate only specific points of the code with inlining pragmas because they

have some knowledge of how it will be used.

This section reveals findings from a close inspection of the pragmas in poly-0.3.3.0 to

understand why no attempts to produce a performance improvement from pragma prediction

had thus far worked, despite good accuracy of models to emulate decision making of other

successful methods.

When Does Inlining Really Matter?

To inspect poly-0.3.3.0, we tried various combinations of pragma removal to uncover

which minimal set of pragmas were necessary to achieve the observed speedup. Despite

the package containing 57 total pragmas, only 10 of them accounted for almost all of the

performance gain. These 10 pragmas are presented in Table 5.14, and all 10 of them appear

in one file.

Furthermore, the functions to which all of the effective pragmas were attached were linked to

each other. Figure 5.7 roughly shows their call order, although arrows do not imply a direct

call—other functions may be present in the arrows between.

The important point is that if any function hop between the roots—convolution or karat-

suba—is either not inlined automatically by GHC or not explicitly inlined by the developer, then

the speedup is not gained. Therefore, it is reasonable to hypothesize that in order to see the

performance gain, these convolution and karatsuba functions need to be inlined all the

way up to where they are originally called in the source code.

5.4. Using Graph Neural Networks to Predict Pragma Placement in Haskell Source Code94

Function Name Pragma Type

(*) INLINE

times INLINE

karatsuba INLINABLE

convolution INLINABLE

subst INLINE

subst’ INLINE

substitute INLINE

substitute’ INLINE

deriv INLINE

deriv’ INLINE

Table 5.14: Pragmas in poly-0.3.3.0 which accounted for virtually all of the performance
improvement. All of the pragmas occurred in the same module.

Figure 5.7: A call graph of the functions in poly-0.3.3.0 which must be inlined together to
produce a speedup.

Analysis of the Data Collection: Why Performance Measurements Did Not Work

Using measured performance differences introduced by pragmas only makes sense when

their beneficial effects are independent of other pragmas. In cases where this occurs, it is

plausible that a comparison of a point in code where a pragma is added versus the same

point in code where a pragma is removed would have significant and opposite performance

5.4. Using Graph Neural Networks to Predict Pragma Placement in Haskell Source Code95

effects. When we examine the reported significance, by measurement, of pragmas in the

file Dense.hs—which has the 10 significant pragmas mentioned in Section 5.4.7—none of

the pragmas have both a positive observed effect when added and a negative effect when

removed.

Table 5.15 shows the breakdown of types of contradicting data between the two methods

of collection in the file Dense.hs where virtually all of the performance benefit from pragmas

occurs. The cell “Significant and Opposite Effects Observed" shows that no pragmas had both

a positive effect when added and a negative effect when removed. “Disagreement on Signific-

ance” shows that 22 pragmas were recorded to have a significant effect either positive when

added or negative when removed, but not both. “Significant but Effects Contradictory” shows

that no pragmas had a significant effect when added but a significant yet contradictory effect

when removed (for example, a speedup when added but also a speedup when removed).

Finally, “Removal and Addition Both Insignificant” showed that 10 pragmas in the file seemed

to have no effect at all, after removal or addition.

Significant and Opposite Effects Observed Disagreement on Significance

0 22

Significant but Effects Contradictory Removal and Addition Both Insignificant

0 10

Table 5.15: A confusion matrix of reasons why measures of significance on the addition and
removal methods of collecting training data contradict each other.

Table 5.16 shows that some of the significant pragmas in Table 5.14 showed a significant

effect when added alone but no significant effect when removed on their own, as seen in

the cell “Addition Positive but Removal Ineffective”. The 15 pragmas referred to in that cell

are listed in Table 5.17; and it can be seen that the significant pragmas times, karatsuba,

subst’, substitute’, deriv’, and deriv appear to have a small effect when added on

their own.

As a sanity check, we manually inlined all of the pragmas which had a positive measurable

speedup on their own. When compiled, the resultant binary had no significant speedup over

default execution with no pragmas. Even if the model had been trained to 100% accuracy over

the labeled data, it likely would not have learned anything of value.

5.4. Using Graph Neural Networks to Predict Pragma Placement in Haskell Source Code96

Removal Positive but Addition Ineffective Addition Positive but Removal Ineffective

3 15

Removal Negative but Addition Ineffective Addition Negative but Removal Ineffective

0 1

Table 5.16: Inlining pragmas which significantly effected performance with their individual
removal or addition—but not both.

Function Name Pragma Type
(+) INLINE

(-) INLINE

one INLINE

times INLINE

dropWhileEnd INLINE

karatsuba INLINABLE

scaleInternal INLINABLE

unscale INLINABLE

subst’ INLINE

substitute’ INLINE

deriv’ INLINE

deriv INLINE

integral’ INLINABLE

integral INLINABLE

var INLINE

Table 5.17: Functions with pragmas whose addition was measured to have a significant
positive performance effect but whose removal had no significant effect.

Potential for the Use of Profiling

When we removed all inlining pragmas and profiled poly-0.3.3.0, the functions subst and

subst’ were reported as the two functions taking the most execution time, by far. Respect-

ively, they ran for about 49% and 30% of the total time, each. Naturally, then, profiling seemed

to be a reasonable method to identify bottleneck functions, which lends motivation for the

profile-based approach presented in Chapter 6.

5.4.8 An Observation: Trying to Predict Where Developers Would Place Prag-
mas

We additionally wanted to predict where developers of one package would place pragmas

in another package. In order to do that, however, we first had to train a model that could

correctly predict where the developer pragmas had been placed in its own code. With pragma

predictions from a graph neural network, these predictions could easily be inspected manually

by placing them directly back into the source file to potentially provide interesting information.

5.4. Using Graph Neural Networks to Predict Pragma Placement in Haskell Source Code97

Unfortunately, the work in Chapter 4 showed that developers only produced significant spee-

dups on two packages, poly-0.3.3.0 and monoid-subclasses-1.0.1. However, monoid-

subclasses-1.0.1 only produced a 3% speedup with 334 pragmas, which would make post

hoc analysis difficult. Despite only having a 2% developer speedup, we included set-cover-

0.1 because it had a small yet substantial number of pragmas, shorter compile time, and

substantial yet manageable number of source lines of code.

Manual Inspection of Pragma Predictions

One observation we made regarded the antipattern of copied, pasted, and modified func-

tions appearing similar to the labeled significant functions—and additionally, code that simply

looked very similar. Many of the functions labeled with an inlining pragma in the two packages

appeared very similar to functions that had no pragmas. Even when training a package on

itself and trying to predict its own pragmas, the model would sometimes fail to predict a

pragma where it should have.

If we assume that inlining performance can be significantly improved by inlining entire call

chains, then one option to overcome the duplicate/near-duplicate code issue was making

the model more eager to inline (particularly by increasing the classification threshold) to

ensure all of the necessary functions received a pragma. Lowering the model’s classification

threshold could accomplish this by increasing the likelihood of the significant target function

receiving a pragma, but would incidentally inline several additional similar functions and trigger

a slowdown. Potentially, this issue may possibly also have been addressed by trying to make

the features richer, but many functions present in the chains did not appear very syntactically

unique in comparison to others. For these packages, assuming high enough discrimination

between decisions could not be reached, over-inlining was likely to occur.

Addressing Ambiguous Training Data and Developer Inlining Pragmas

Take, for example, the ambiguous training data in Section 5.3.5. If we assume it is caused

by the presence of a pragma on a function with duplicates having no pragmas and choose

to err on the side of the pragma, then we would decide to add pragmas to its duplicates. Our

attempts to approximate that approach by decreasing the classification threshold produced

either no speedup or an eventual slowdown, as the classification threshold was decreased.

5.5. Conclusions 98

5.5 Conclusions

This chapter experimentally explored three machine learning approaches to improve GHC’s

inliner: a genetic algorithm, neural networks in the Simplifier, and graph neural networks to

predict inlining pragma placement at the level of source code.

As a note, the most closely related work to the experiments in this chapter occurred in

Trofin et al. [170], where the authors presented a framework to integrate machine learning—

based upon reinforcement learning and evolution strategies—into the inliner for LLVM. The

biggest difference between that work and the work done in this thesis is that LLVM is a low-

level language, similar to assembly, which is not principally functional. As such, control flow

information was likely more accessible. Additionally, the authors’ optimization goal was binary

size reduction rather than execution time reduction, where execution time reduction is harder

or more time consuming to assess.

These experiments demonstrated that high prediction accuracy over labeled data does not

translate to improved performance during compilation, implying that a tiny number of inlin-

ing decisions may have a drastic effect on performance. Additionally, reliable training data

cannot be generated under the assumption that inlining decisions are independent of each

other—such as by measuring the effect of one inlining decision change. The case study in

Section 5.4.7 shows that actually, the relationship of functions with each other, and whether

functions related to performance bottlenecks are all inlined, can decide performance improve-

ment. For the package in this example, large performance improvements are observed when

all functions along the performance bottlenecks are given an INLINE or INLINABLE pragma.

As explained in Section 5.4.7, effective inlining can be demonstrated when every call leading

to a cost center is inlined. To find these call chains, we need some sort of flow analysis.

When functions or procedures are not first-class, intra- and inter-procedural analysis is rel-

atively straightforward. In functional languages, functions are first-class and can be passed

as variables. This means that functions do not have clear predecessors or successors when

examined statically. Furthermore, for first-class languages that have dynamic dispatch, which

function is invoked will depend upon runtime values. Thus, determining control flow in func-

tional languages is a difficult problem. This will be the motivation for the technique introduced

in Chapter 6.

Chapter 6

Hot Call-Chain Inlining for the

Glasgow Haskell Compiler

6.1 Overview

Chapter 5 presented evidence that performance could be improved by inlining every function

inside connected call chains. An additional observation suggested that the call chains which

incur the most run-time costs may be found by profiling. Profiling reports, however, will not fully

tell us which functions call which other functions. How, then, do we uncover the call graphs

of hot profiled functions and go about inlining the functions within them? As mentioned in the

previous chapter, control flow is a hard problem in functional languages.

This chapter presents a profile-directed technique to direct inlining decisions in the Glasgow

Haskell Compiler. We show that simply inlining “hot” functions, as revealed by profiling sum-

maries, does not lead to significant improvement. However, inlining along the hot dynamic

call graph is frequently beneficial. Due to the higher-order nature of Haskell, determining

this call graph is non-trivial. We develop a technique to extract call chains of hot functions

and leverage the Glasgow Haskell Compiler’s existing functionality to safely influence inlining

decisions through pragma placement along these chains.

We then show that hot call chain inlining yields a geometric mean speedup in run time of 9%

over GHC’s default inlining heuristics across 17 real-world Haskell packages. This method

can be used in the presence of pre-existing developer pragmas to produce a mean speedup

of 10% across those same packages. Furthermore, the hot call chain technique produces no

more than a 1% mean code size increase across all packages, and no more than a 7% code

size increase for any individual package.

Section 6.2 motivates the approach and provides an overview, giving an example of a call

chain from real-world code and explaining the challenges of control flow in functional lan-

guages. Section 6.3 describes the methods used to filter profiling information, collect call

graphs, and place inlining pragmas. Then Section 6.4 presents the tooling to binarize and

99

6.1. Overview 100

insert pragma recommendations and to collect profile information. Experimental setup is

described in Section 6.5, including package selection criteria, handling of rewrite rules and

randomly generated tests, response measurement, and description of each set of experi-

ments.

In Section 6.6, results are presented for each set of experiments, along with results for an

adjustment of significance thresholds for the profiling information, effects of hot call-chains on

binary sizes, comparison against the magic-number approach presented in Chapter 4, and

results for a change of input data (benchmarks versus tests). Of note, six of the packages

used in Chapter 4 are included in the benchmark set for this chapter’s experiments, but four

of the packages are excluded because they do not meet selection criteria; however, they are

included for completeness of comparison in Section 6.6.7. Finally, Section 6.7 concludes the

chapter.

6.2 Introduction

Chapter 4 established that the lack of progress on GHC’s inlining capabilities has led to

Haskell programmers taking matters into their own hands. A simple string search showed

that about 19% of all packages in Haskell’s central package archive, Hackage [36], contain

inlining pragmas. These pragmas may indicate programmers’ attempts to make their code run

faster than GHC’s default inlining strategy by coercing GHC to inline specific, perhaps larger

things than it otherwise would have. In practice, these pragmas often do not have much of a

performance effect; but in a handful of cases, they demonstrate that well-placed pragmas can

produce a significant speedup [77].

One approach to improve performance is to determine those sections of code that dominate

execution time. If these sections contain function calls, then perhaps simply inlining the in-

dicated functions from, for example, a profile summary may improve execution time without

excessive inlining. In Section 6.6.1, however, we show that such an approach provides limited

benefit.

We show that if we can further identify the call chain connected to the hotspot and inline

all functions within that chain, it is possible to achieve significant performance improvement.

However, determining such a call graph within Haskell is highly challenging, given its higher-

order nature. The problem of determining program control flow to precisely retrieve all of these

call chains, incidentally, is an exponential problem [108].

We demonstrate how inlining along full hot call graphs improves performance, and we present

a conceptually easy approximate technique to do so. Additionally, we show that overapproxim-

ation is allowable in the specific case of inlining optimization. Although profiling hot functions

is commonly used for optimization in other languages, it is not used for inlining in Haskell due

to the difficulty of computing control flow for a call-by-need functional language.

6.2. Introduction 101

We present a system which identifies profiling hotspots and cheaply approximates control

flow to recover their related call chains, which we call hot call chains (HCC). We encode

the names of the functions in these chains and pass them to a modified GHC that inserts

the corresponding inlining pragmas along the recommended call chains. We then apply this

technique to a set of 17 real-world packages, after removing developers’ inlining pragmas,

to we achieve a 9% mean speedup in run time over GHC’s default inlining optimizations.

Combining the hot call chain technique with existing developer pragmas brings the mean

speedup to 10%.

6.2.1 An Example of a Case to Inline Call Chains

As an illustration of how inlining chains of functions related to hotspots can produce bigger

performance improvements than simply inlining the functions identified as hotspots: In the

package set-cover, we observed three hotspots in its test-suites and benchmarks for top-

level functions declared in the file Exact.hs. Table 6.1 displays their names and percent time

consumption, per a profiling report.

Function Time (%)

intSetFromSetAssigns 7.6

updateState 6.9

step 4.2

Table 6.1: Hotspots listed in a profiling report in the file Exact.hs in set-cover and their
associated time consumption.

Our tool uncovered the call chain associated with the hotspot updateState, which had a

6.9% reported time consumption in the profile summary. We present the functions related

to updateState in a small graph in Figure 6.1 which has been extremely simplified. In this

figure, function names with an asterisk (*) indicate that the package developers had already

attached an INLINE pragma to the function declaration in the package’s source code.

If we were to attempt the “naive” approach (described in Section 6.6.1) of simply attaching

inlining pragmas to only the two hotspots in this graph, updateState and step, we would

get about a 1% speedup. However, we observed the developers themselves added INLINE

pragmas to much of the call chain on partitions, search, step, and updateState. These

pragmas produce about a 6.6% speedup. If we also add pragmas to the other three functions

in Figure 6.1, we then get a speedup of about 7.5%.

Our method uncovers another small chain in the same file:

intSetFromSetAssigns→ mapIntFromSet

Adding pragmas to these additional two functions then brings the total speedup for this file to

8%.

6.2. Introduction 102

Figure 6.1: A simplified relationship of a group of functions in a file in set-cover. The
functions partitions, search, step, and updateState are marked with an asterisk to
indicate that the developers attached an INLINE pragma to them.

To describe it intuitively, a reported hotspot may indicate an entry point into a chain of func-

tions, which can be conceptualized as nodes, connected in a path which calls down to one

or more computationally intensive functions at the end of the path. In this case, it is often

beneficial to inline every function in the path.

6.2.2 Challenges

Finding the call chains in bottlenecks requires some sort of flow analysis. When functions or

procedures are not first-class, intra- and inter-procedural analysis is relatively straightforward.

In functional languages, functions are first-class and can be passed as variables. This means

that functions do not have clear predecessors or successors when examined statically [108].

Furthermore, for first-class languages that have dynamic dispatch, which function gets in-

voked will depend upon runtime values.

The first popular approach to the flow problem in higher-order languages was k-CFA for some

value of k. 0-CFA is a context-insensitive (or mono-variant) analysis which does not distinguish

different instances of program variables or points. Its computational cost is polynomial—cubic

at best—and its computation is impractical for large programs [63]. Further, any k-CFA where

k ≥ 1 and a context-sensitive (poly-variant) analysis is performed is EXPTIME-complete [171].

6.3. Method 103

6.3 Method

6.3.1 Profile Information

To collect profile reports for our 17 packages, we profile each target package’s test suites and

benchmarks, where these are executable targets marked Test-Suite or Benchmark in the

package’s cabal file. We use GHC’s default threshold to identify hotspots taking either 1% or

more of execution time or allocations. Those functions identified as hotspots indicate nodes

in hot call chains, C. Given C, we determine all functions reachable on the call graph from

C using the approximation described in Section 6.3.2 and attach inlining pragmas to them

according to the system shown in Figure 6.2. In our implementation, specifically, the function

names given are passed in as a binary, and GHC attaches the pragmas during de-sugaring

of bindings.

6.3.2 Call Graph

As mentioned, determining actual control flow in Haskell is difficult due to its higher-order

nature. To tackle this, we use static code structure as an over-approximation of dynamic

control flow. We assume that if there exists a path in the abstract syntax tree (AST) from

a function definition a to a call of another function b, there is a control flow between a and

b. Determining this over-approximation is straightforward: we first examine the AST of each

function a and record all names of functions referenced within the tree: b1,b2, . . .bn. We insert

a into a graph and add edges to each node b1,b2, . . .bn. Edges from a to a due to recursive

calls are removed, and so are repeated function names.

We repeat this procedure for all functions in the program. As we are interested in call chains—

i.e., calls to other functions from a called function—we calculate the transitive closure of this

graph. As trees are special instances of a directed acyclic graph, this new graph defines the

reachability of one function from another, providing an over-approximation of control flow. This

can be determined using Floyd Washall in O(n3), though it could be reduced to O(E + µn)

using Purdom’s algorithm if dealing with large programs.

As implemented, inlining pragmas will be added to any function which lies in the call chain

of a profiled hotspot, whether that call site of the function is indeed hot or not. Therefore,

some of these call chain branches may not benefit from being coerced with pragmas. How-

ever, research has suggested that some extraneous inlining may not affect performance very

much [45]. Thus, our experiments err on the side of over-inlining.

6.3. Method 104

6.3.3 Pragma Placement

Our analysis produces a recommendation of which function names should receive an inlining

pragma in each file. It is possible to annotate the source files themselves with these pragmas;

however, we pass the recommendations directly to GHC with the implementation described

in Section 6.4. With either approach, functions are inlined at their definition site, as opposed

to individual call sites.

6.4 Implementation

To produce inlining recommendations, we compile packages with GHC with profiling enabled

to produce .prof files and module ASTs. We then pass the profiling information and ASTs to

a parsing script that collects the names of functions associated with the functions identified in

the profiles’ hotspots and output them into JSON objects. We only identify functions declared

at the top level of the module and not locally scoped functions which receive new names in

the Renamer pass to avoid name collision with other locally scoped functions in the same

module. Packages contained 4 to 609 such function names with an average of 130 for each

package.

We then binarize the JSON into data structures which can be passed to a modified version of

GHC which can then place pragmas in the binaries’ indicated functions. A diagram depicts the

production of the binaries in Figure 6.2. It is not necessary to have a version of GHC that is

modified to work with these binaries: the pragma recommendations can be added manually,

but binaries made for faster experimentation and had the combined benefit of being overridden

by developer pragmas as described in Section 6.6.3, resulting in even greater speedups.

Figure 6.2: The process of retrieving recommended function names for inlining in a binary
format.

6.4.1 Collection of Profiling Information

We first build each package, enabling tests and profiling, with the command:

cabal new-build all --enable-tests

--enable-profiling --with-compiler=<path>

We then generate .prof files which contain hotspots for each of the test and benchmark

targets specified in each project’s cabal file, by passing profiling flags to cabal run:

6.4. Implementation 105

Mon Feb 19 14:00 2024 Time and Allocation Profiling Report (Final)

Main +RTS -p -RTS

total time = 0.25 secs (246 ticks @ 1000 ms, 1 processor)

total alloc = 705,165,992 bytes (excludes profiling overheads)

COST CENTRE MODULE %time %alloc

COST

CENTRE MODULE SRC %time %alloc

funcA DA.M1 src/DA/M1.hs:<loc> 63.4 78.5

funcB DB.M2 src/DB/M2.hs:<loc> 9.3 4.0

funcC DA.M1 src/DA/M1.hs:<loc> 6.9 4.7

funcD Test1 test/Test1.hs:<loc> 3.3 0.9

funcE Test1 test/Test1.hs:<loc> 3.3 2.6

funcF Test2 test/Test2.hs:<loc> 2.4 0.7

funcG DB.M3 src/DB/M3.hs:<loc> 1.6 0.4

funcH DB.M3 src/DB/M3.hs:<loc> 1.2 2.5

Figure 6.3: A fabricated example profile report showing significant cost centres along with
their module names, source code locations, and percent of total run time and allocations.

cabal run <test> --with-compiler=<path> -- +RTS -p

Significant hotspots for each target are recorded in each .prof file in a table format sim-

ilar to the fabricated example below in Figure 6.3. More information on profiling is given in

Section 2.4.3.

Builds with profiling enabled are used to collect profiling information only and never used

for timings in experiments because profiling instrumentation affects GHC’s optimizations and

therefore also execution times.

6.4.2 Coerced Inlining of Hot Call Chains and All Related Functions in GHC

Following the parsing of ASTs and collection of functions associated with profiling hotspots, as

described in Section 6.3.2, a Haskell program then reads in the JSON containing hot call-chain

information for each package and serializes it into a binary object. GHC takes in the specific

binary for each package and compiles that package again, applying an inlining pragma to any

function identified as related to a hotspot for each module.

For this study, every function name in a binary receives the same type of pragma, INLINE or

INLINABLE, for each experimental compilation of a package.

6.5. Experimental Setup 106

6.5 Experimental Setup

Experimental design details for benchmark package selection, response measurement, and

determination of inlining policies explored are explained as follows.

6.5.1 Data Collection

Selection of Packages

We select 17 real-world packages from Stackage [55], a collection of repositories containing

Haskell packages grouped into Nightly Builds, where Nightly Builds are sets of packages

which will build and pass all of their tests together. These packages come from the Stackage

Nightly build1 mentioned in Hollenbeck et al. [77]. We base package selection on the following

criteria:

The packages have to successfully build and run tests and benchmarks (if present).

The packages’ tests and benchmarks (if present) have to run for more than 0.5

seconds.

The tool must successfully parse dependencies from the packages’ ASTs emitted

at compile time. This may fail in the event that none of a package’s hotspots

occurred in the src folder. For example, the only substantial hotspots for some

packages may have occurred in their test code. Not all packages in Stackage are

structured to have a src folder, but this is one easy way to reduce the likelihood

that speedups are observed from inlining code in test files.

We only explore hotspots in the src folders, with the intent to optimize the packages’ core

functionality and the likelihood that any observed speedups will generalize to other tests

and benchmarks. In actuality, some packages do not contain all of their core functionality

in a src folder. Figure 6.4 shows a distribution of the percent of significant cost centers

located in the src folder as opposed to other folders, on a per-executable basis. About 75%

of the executables have at least 25% of their hotspots residing in the src folder. Note: five

executables in Figure 6.4 indicate 0 hotspots in the src folder; however, other executables in

those packages contain at least one hotspot in the src folder.

Notably, six of the packages used for the experiments in Chapter 4 fit the above selection cri-

teria and were included, as explained further in Section 6.6.7. The packages hw-rankselect,

nonempty-containers, ListLike, and metrics were excluded.

1. stackage-nightly-2020-01-31

6.5. Experimental Setup 107

Figure 6.4: A rotated histogram of the occurrence of executables’ hotspots in packages’ src
folders, as found in profiling reports. Executables include individual tests and benchmarks
indicated in packages’ cabal files.

Rewrite Rules

We exclude packages with rewrite rules from the study because of the additional complexity

that would be required to accommodate them. A rewrite rule replaces pattern-matched code

with another indicated expression and may be accompanied by an INLINE pragma to allow

the substitution to happen before optimization. Rewrite rules may be specified in a RULES

pragma near the declaration of the function they rewrite. This example comes from the GHC

user guide [161]:

{-# RULES

"map/map" forall f g xs. map f (map g xs) =

map (f.g) xs

#-}

The rewrite rules pragma replaces the expression given on the left-hand side of the rule

with the right-hand side of the rule, with appropriate substitution. A RULES pragma may be

accompanied by an INLINE or NOINLINE pragma to ensure that the compiler does not

optimize the expression before it can be matched to a rule; however, adding an inlining pragma

is not a requirement when writing rules.

6.5. Experimental Setup 108

Randomly Generated Tests

Because random test generation can lead to inconsistent test and benchmark times, we

perform the same modification to a local copy of QuickCheck as seen in Hollenbeck et al. [77],

setting the random seed to make test generation consistent, and use that copy to replace any

of the packages’ QuickCheck dependencies.

6.5.2 Measurement of Performance Change

Experiments were run on an Intel Core i7-8700K CPU with 12 cores and a 3.7 GHz processor

with frequency at 1.5 GHz and boost disabled to control overclocking for reproducible timings.

Performance improvement was measured in terms of real execution time against a baseline of

the Cabal build command’s default GHC optimization level of O2, collecting 10 executions of

each package’s code with INLINE and INLINABLE pragmas removed. Following experimental

changes, 10 timings were again collected for each package. The minima for the baseline were

compared against the minima for the changes to determine speedups. All compilation time,

including for tests and benchmarks, was excluded in collected data by discarding the first test

run timing for any package.

6.5.3 Inlining Policies

We name and describe all of the inlining policies for the experiments in this list.

Naive:

Remove the developers’ pragmas and insert INLINABLE pragmas on only hot

functions.

HCC INLINE:

Remove the developers’ pragmas and insert INLINE pragmas along hot call

chains.

HCC INLINABLE :

Remove the developers’ pragmas and insert INLINABLE pragmas along hot call

chains.

Best-case HCC INLINABLE or INLINE:

Remove the developers’ pragmas and, per package, choose the better of HCC

INLINE or HCC INLINABLE.

Pragmas and HCC INLINABLE:

Keep the developers’ pragmas and insert INLINABLE pragmas along hot call

chains.

6.5. Experimental Setup 109

Pragmas and HCC INLINE:

Keep the developers’ pragmas and insert INLINE pragmas along hot call chains.

Pragmas and Best-case HCC INLINABLE or HCC INLINE:

Keep the developers’ pragmas and, per package, choose the better of HCC IN-

LINE or HCC INLINABLE.

For the experiments choosing a best-case policy, we calculate the results of both candidate

policies for each package and manually select the policy with faster run time for that individual

package.

6.6 Results

Table 6.2 provides the mean speedups of the 7 policies described in Section 6.5.3, and more

explanation of each experiment follows in this section.

Method Speedup

Naive 2%

HCC INLINE 4%

HCC INLINABLE 7%

Best-case HCC INLINABLE or INLINE 9%

Pragmas and HCC INLINABLE 8%

Pragmas and HCC INLINE 9%

Pragmas and Best-case HCC INLINABLE or HCC INLINE 10%

Table 6.2: Summary of geometric mean speedups along various policies of adding inlining
pragmas via profile guidance by identifying hot call chains (HCCs).

6.6.1 The Naive Approach

An immediate question for a profiling approach would be: What improvement can we see if we

simply add inlining pragmas to the function names of hotspots identified in the profiling report?

In our packages, such an approach gives a geometric mean speedup of about 2%. Table 6.3

shows that there are only 5 packages in the Naive experiment which have a speedup over

1%.

Notably, two of these packages have a significant speedup of 25% and 17%—midi-0.2.2.2 and

set-cover-0.1, respectively. However, those same packages have maximum observed spee-

dups of 51% and 23% when inlining along the hot call chains.

6.6. Results 110

Package Name Hotspots Naive Speedup

css-text-0.1.3.0 4 1%

monoid-subclasses-1.0.1 4 1%

texmath-0.12 2 1%

midi-0.2.2.2 20 25%

set-cover-0.1 17 17%

Table 6.3: Packages with a speedup of 1% or more using a naive profile-guided inlining
method.

6.6.2 Hot Call Chains Without Developer Pragmas

Figure 6.5: Inserting INLINABLE pragmas along hot call chains versus inserting INLINE

pragmas along hot call chains. Both timings compare against a baseline of timings with all
inlining pragmas removed. The numbers above each pair of bars represents the highest
percent of the two speedups observed for each package.

Figure 6.5 shows a comparison of speedups over the collection of packages when placing

either INLINE or INLINABLE pragmas along hot call chains. The following two sections dis-

cuss these results.

6.6. Results 111

HCC INLINE

The INLINE pragma along hot call chains gives much better run times for midi, loop,

and combinatorial; however, it also introduces significant slowdowns in the two packages

reinterpret-cast and bugsnag, likely due to the caveats of the INLINE pragma mentioned

in Section 2.2.5—that is, the INLINE pragma may push GHC to inline items which are so large

that they degrade performance. Additionally, INLINE fails to produce any substantial speedup

in poly, which shows the highest overall speedup of 73% with the INLINABLE pragma on hot

call chains. Overall, the HCC INLINE policy gives a geometric mean speedup of 4%.

HCC INLINABLE

The HCC INLINABLE policy gives a geometric mean speedup of 7%. As mentioned, Sec-

tion 2.2.5 explained GHC may fail to see the net benefit of a large inlining with a good

potential speedup with only an INLINABLE pragma; however, an INLINE pragma may result

in a large inlining with a poor performance result. Using INLINE on call chains may produce

both a number of higher speedups on some packages and a number of slowdowns on others,

whereas the more conservative INLINABLE is more likely to avoid instances of massive slow-

down caused by aggressive inlining, according to this dataset.

Best-case HCC INLINABLE or HCC INLINE

For each package, we then compare the policies of placing all-INLINE or all-INLINABLE prag-

mas across the entire hot call chain. Choosing the best-performing policy for each package

brings the mean speedup to 9%.

To further illustrate, Table 6.4 shows, per package, which policy performed better and what

its observed speedup was. In total, the HCC INLINE policy was better in 6 packages, the

HCC INLINABLE policy was better in 5 packages, and they were about the same in another

6 packages.

6.6.3 Inlining Hot Call Chains with Developer Pragmas

Do the developer pragmas in the packages effect a speedup? To address this, we compare

execution times of packages with developer pragmas against execution times of packages

with their developer pragmas removed. The developer pragmas achieve a mean speedup of

4% over no pragmas. The DEV bars in Figure 6.6 show developer pragma speedups for each

package.

As seen in Figure 6.7, if we inline along hot call chains and leave in developer pragmas, we

see about a 4% mean speedup over the timings of the packages run with just the developers’

inlining pragmas versus without.

6.6. Results 112

Package Better Policy Better Policy Speedup

reinterpret-cast INLINABLE -1%

bugsnag-hs INLINABLE 1%

relational-query INLINE 0%

express EITHER 0%

fitspec EITHER 0%

css-text INLINE 1%

fsnotify EITHER 0%

scrypt EITHER 0%

texmath INLINABLE 1%

general-games EITHER 0%

text-ldap INLINABLE 1%

monoid-subclasses EITHER 1%

combinatorial INLINE 8%

loop INLINE 15%

set-cover INLINE 23%

poly INLINABLE 73%

midi INLINE 51%

Table 6.4: A breakdown, per package, of which hot call-chain policy performed better and
what speedup was observed from it. In cases where the recorded speedups are the same, the
policy “EITHER” is listed. Speedups were rounded to the nearest percent, and the geometric
mean of all best-case speedups is 9%

It is important to note that, in our implementation using a binary, developer pragmas will

override any pragma recommendations given along hot call chains. When compiled through

the system described in Figure 6.2, call chain pragmas will only be attached to functions that

have no pragmas attached to them already.

As seen in Figure 6.6, we compile the packages with just their developers’ inlining pragmas

(DEV), developers’ pragmas and hot call chains with INLINABLE pragmas (INLINABLE), and

developers’ pragmas and hot call chains with INLINE pragmas (INLINE). We compare these

timings of each package to a baseline of the package with all inlining pragmas removed.

The geometric mean speedups for experiments with the hot call-chain technique applied to

packages while leaving developer pragmas in are as follows:

Pragmas and HCC INLINABLE. Using INLINABLE along hot call chains with developer prag-

mas gives about an 8% mean speedup, as depicted in Figure 6.6.

6.6. Results 113

Figure 6.6: Leaving developer pragmas in and combining with hot call chain INLINE pragmas
(INLINE); leaving developer pragmas in and combining with hot call chain INLINABLE prag-
mas (INLINABLE); and developer pragmas alone (DEV). Speedups are comparisons against
default GHC with all inlining pragmas removed from packages.

Figure 6.7: Leaving developer pragmas in and compiling with the additional INLINABLE
pragma recommendations along hot call chains. Speedups are over package timings with
only developer pragmas.

Pragmas and HCC INLINE. Combining hot call chain INLINE pragmas with developer prag-

mas gives about a 9% mean speedup, also depicted in Figure 6.6.

Pragmas and Best-case HCC INLINABLE or INLINE. Then taking the better policy of all

INLINE or all INLINABLE on hot call chains for each package, along with developer pragmas,

gives about a 10% mean speedup.

6.6. Results 114

Prioritizing Developer Pragmas Along Hot Call Chains

When implemented with a binary which passes in function names to receive a pragma, as

opposed to placing pragmas directly in source code, this system has an added advantage

of prioritizing the package developers’ choice of INLINE or INLINABLE at each function

declaration.

When inlining along hot call chains, prioritizing the pragma choice of the developer helps to

avoid the potential performance pitfalls of using the wrong pragma with a uniform approach of

one or the other. Thus, combining call chain inlining with well-placed pragmas already present

in the source code resulted in better speedups than either method alone.

6.6.4 Comparing the Number of Pragmas: Hot Call Chains Versus Developers’

How do the number of pragmas inserted via the hot call chain method compare to the number

of existing pragmas in packages?

Package Dev. Pragmas HCC Pragmas Dev. Speedup HCC Speedup

poly 99 118 77% 73%

set-cover 17 46 3% 23%

loop 8 8 15% 15%

midi 2 183 1% 51%

Table 6.5: The speedups and number of pragmas for hot call chains versus those included
by developers. HCC with poly and set-cover uses all INLINABLE, and HCC with loop

and midi uses all INLINE pragmas. Developers use either pragma on any function at their
discretion.

Table 6.5 shows the number of pragmas present in the four packages exhibiting the greatest

speedup with the hot call chain method, comparing the number of pragmas placed by de-

velopers versus the number of inlining pragmas recommended along hot call chains. For

loop-0.3.0, our method predicts the same number and location of inlining pragmas as the

developers, but these 8 functions are also the only candidates for pragmas by our criteria.

The developers for poly achieve a 77% speedup through their choice of 99 INLINE and

INLINABLE pragmas, whereas our hot call chain method with 118 pragmas—all INLINABLE—

comes within about 4% of that speedup at 73%.

For set-cover, HCC recommends 46 pragmas versus the developers’ 17, but HCC achieves

a 23% speedup versus the developers’ 3%. The package midi-0.2.2.2 only has 2 developer

pragmas, which give it a speedup that may fall within the range of noise at 0.5%; however, our

method recommends 183 INLINE pragmas which yield a 51% speedup.

6.6. Results 115

6.6.5 Adjusting the Threshold of Hot Call Chain Inlining

We set a higher threshold on the selection of hotspots over GHC’s default profiling hotspot se-

lection to see if more conservative inlining would produce a similar speedup. We filter for only

hotspots with 1% or more of run time, no longer considering allocations, and apply INLINABLE

pragmas along hot call chains. Figure 6.8 compares this experiment to our previous results of

hot call chains with INLINABLE along the GHC profiler’s default significant cost centres.

Figure 6.8: Coercing inlining for hot call chains for hotspots which take 1% or more of only
run time versus hot call chains for GHC’s default time and allocation hotspots.

Three packages with the largest speedups—poly-0.3.3.0, midi-0.2.2.2, and set-cover-0.1—

achieve about the same performance gains as seen when simply applying INLINABLE prag-

mas to all default hotspots in the src folder over these particular packages. Notably, the

package loop-0.3.0 does not receive a speedup. This package has a Hackage description

of “Fast loops (for when GHC can’t optimize forM_)”. Its src folder has 8 top-level function

declarations, and the developers assigned INLINE pragmas to all 8 of them. Two of these

functions did not meet the 1%+ run time threshold.

Results were otherwise very similar across packages, and minor differences per package may

be due to noise in measurements and rounding.

6.6. Results 116

6.6.6 Effect On Binary Size and Compilation Time

Table 6.6 shows that the mean compile time increase for the 17 packages when applying the

INLINE pragma along hot call chains is 16%; and for the INLINABLE pragma, it is 3%. For

comparison, we applied INLINE and INLINABLE pragmas to all top-level functions identified

in the ASTs and saw an 18% and 4% increase in compile time, respectively.

Policy Compile Time Mean Increase Package Mean Size Increase

INLINE All 18% 20%

INLINABLE All 4% 11%

HCC INLINE 16% 6%

HCC INLINABLE 3% 1%

Table 6.6: Increases in mean compilation time and package sizes using four inlining policies.
Numbers are rounded to the nearest percent.

However, the size of the compiled packages, as also indicated in Table 6.6, were smaller with

hot call chains than with the pragma-on-everything approach. For INLINE and INLINABLE on

all, we see a 20% and 11% increase in code size. For the hot call chains, in comparison, we

see for HCC INLINE and HCC INLINABLE a 6% and 1% increase in size, respectively.

As mentioned in Section 6.4, we only collect function names that are declared at the top level

of the module for any of these experiments. This may contribute to the modest change in

compilation time and size in comparison to the baseline package size with no pragmas.

Table 6.7 displays the build sizes for the packages for both HCC INLINABLE with default

GHC profiling hotspot thresholds and when filtering for only run time greater than 1% per

Section 6.6.5. For the default profiling thresholds, all but two of the packages have less than

1% code size increase: midi and poly, at about a 7% and 6% increase, respectively. The

1%+ threshold had a mean size change of -0.4%. Notably, text-ldap became significantly

smaller at −19.36% but had no time speedup, and midi still increased by 7%.

6.6.7 Comparison Against Magic Numbers Alteration

In Chapter 4, we did an extensive search of a compilation space of 12 magic numbers

hand-encoded in GHC’s inliner, where the magic numbers represented either size estimates

or discounts to determine inlining decisions for various program expressions in Core IR.

The study presents the most recent related work for GHC’s inliner and presents inlining

experiments over a benchmark of 10 packages chosen from Stackage to demonstrate room

for improvement for GHC’s inlining heuristics. We use the same Stackage Nightly build in this

6.6. Results 117

Package Size MB HCC All Size %Inc. HCC 1% Size %Inc.

bugsnag-hs 46.37 46.38 0.02 46.38 0.02

combinatorial 20.77 20.83 0.29 20.82 0.24

css-text 40.91 41.03 0.29 41.03 0.29

express 104.13 104.49 0.35 104.48 0.34

fitspec 27.84 27.91 0.25 27.87 0.11

fsnotify 15.89 15.90 0.06 15.90 0.06

general-games 42.91 43.09 0.42 43.08 0.40

loop 42.24 42.23 -0.02 42.00 -0.57

midi 45.22 48.32 6.86 48.31 6.83

monoid-subclasses 57.34 57.37 0.05 57.36 0.03

poly 53.75 57.08 6.20 57.07 6.18

reinterpret-cast 42.04 42.13 0.21 42.12 0.19

relational-query 53.13 53.14 0.02 53.14 0.02

scrypt 24.34 24.35 0.04 24.34 0

set-cover 30.45 30.61 0.53 30.61 0.53

texmath 173.32 173.34 0.01 173.33 0.01

text-ldap 29.86 30.03 0.57 24.08 -19.36

Mean 0.9% -0.4%

Table 6.7: Package sizes with developer pragmas removed (Size MB); compiled sizes with
inlining pragmas added to all reported active hotspots’ call chains (HCC All); sizes with inlining
pragmas added to all reported hotspots with more than 1% run time reported (HCC 1%); and
percent increase in size for the two policies (Size %Inc.).

study to measure improvement against recent work. In Chapter 4, we found a speedup of a

single best configuration of magic numbers which yielded a 7% speedup for 10 packages

when the developer pragmas were removed versus GHC’s default magic number values.

Some additional speedups were reported for related experiments.

The best-case magic number configuration from Chapter 4 only produced a 1.3% spee-

dup across the original 10 packages depicted in Table 4.2 on the architecture we used for

this set of experiments, but Figure 6.9 shows we observed speedups above 3% for midi-

0.2.2.2, set-cover-0.1, and reinterpret-cast-0.1.0. In comparison, hot call chains with

INLINABLE showed a 12% speedup across those 10 packages. If we choose the best of

HCC INLINE or INLINABLE across the 10 packages with pragmas removed, we get a 14%

speedup.

6.6. Results 118

Figure 6.9: Speedups of HCC with INLINABLE pragmas, speedups of HCC with INLINE

pragmas, speedups of packages compiled with the best configuration of magic numbers (MN)
for packages without inlining pragmas (configuration 229), and speedups with MN 229 and
HCC INLINABLE. The baseline is GHC with default magic numbers and inlining pragmas
removed.

Across all 17 packages in our study, we saw about a 0.4% mean speedup with the magic

numbers. Like the other experiments, the baseline was GHC with its default magic numbers

and inlining pragmas for all packages removed.

Figure 6.9 additionally shows the speedups of hot call chain inlining per package with either

INLINABLE or INLINE pragmas along all hot chains versus the speedup for the best config-

uration of magic numbers without pragmas (MN). The altered magic numbers seem to addi-

tionally show speedups for text-ldap-0.1.1.13 and combinatorial. For the remaining

packages outside of the study, however, there is frequently little effect or a small but significant

negative effect. Of the 21 total packages timed with the magic numbers, 11 of them showed

a slow-down of 1% or more with just magic number alteration (MN). For hot call chains, either

choice of pragma only gave 2 packages a slow-down of 1% or more.

It should be noted that hw-rankselect, nonempty-containers, ListLike, and metrics

were excluded from the packages for hot call-chain experimentation because they did not

meet the selection criteria; however, we included their results in Figure 6.9 for comparison

against our work in Chapter 4.

6.6. Results 119

6.6.8 Changing Input Data

The packages contained a smaller number of executables marked as benchmarks, in compar-

ison to test suites. Compiling the packages with INLINABLE along hot call chains and timing

these benchmarks gave similar results to those seen in the test suites. Figure 6.10 shows that

poly-0.3.3.0 and set-cover-0.1 had speedups of 34% and 25%, respectively. The remaining

three packages with benchmarks received no speedup. Notably, loop-0.3.0 also received

no speedup despite its tests achieving a 15% speedup with hot call chain inlining; however,

running loop-0.3.0 with the developer pragmas on the benchmarks versus without also did

not achieve the 15% speedup seen with the test suites.

Figure 6.10: Inserting INLINABLE pragmas along hot call chains in the benchmarks available
in the dataset versus no pragmas.

6.7 Conclusions

The hot call chain technique uses profile information to identify hotspots in packages, then

performs a simple lexical analysis of the AST to find functions related to those hotspots. GHC

is instructed to inline hot call chains with pragmas, which produces a significant speedup in

compiled programs. We have shown this technique is more effective than inlining hotspots on

their own. In the packages upon which we demonstrate this technique, there exists a subset of

packages for which the method produces a very large speedup; and for the remaining pack-

ages, performance and build sizes remain virtually the same. The computational complexity of

the hot call chain approach is worst-case quadratic in practice, and combining it with manually

well-placed INLINE or INLINABLE pragmas often boosts performance, as shown by using

the technique with pre-existing developer pragmas in the benchmark packages. Future work

could determine when either pragma would be preferable for specific functions.

6.8. Summary 120

6.8 Summary

This chapter presented a conceptually simple technique that over-estimates call chains con-

nected to functions determined “hot” by profiling with the Glasgow Haskell Compiler, then

places inlining pragmas (either INLINE or INLINABLE) along each function definition within

those chains. The empirical data presented demonstrated that this over-estimation produces

a speedup in a subset of packages, which combined with developer pragmas produces a

geometric mean speedup of 10% with the better choice of inlining pragma, while leaving the

binary size and run time of the other packages unaffected.

The technique in this chapter follows upon insights gained through investigatory work done in

Chapter 4 and Chapter 5 regarding information pertaining to developer pragmas, the reduced

complexity of inlining at the source code rather than during Simplification in the middle of the

compiler, and the insight to inline along entire call chains rather than at individual function

declarations.

Chapter 7

Conclusions

This thesis provided an exploration of the challenges of optimizing inlining in the Glasgow

Haskell Compiler, with an emphasis on machine learning approaches and the use of a simple

static analysis. Chapter 4 established room for improvement over the long-standing default

heuristics through experimentation and empirical evidence, also providing tooling to aid in the

supervised learning discussed in Chapter 5. It provided an empirical evaluation of inlining

strategies through a search of the heuristic space created by varying the magic numbers in

GHC, presenting a set of magic number configurations to yield speedups across a set of real-

world Haskell packages and additionally a simple clustering method to assign packages to

these configurations.

Chapter 5 introduced the machine learning approaches attempted to optimize GHC’s inliner

and discussed why these attempts failed. Features pertaining to the syntax of individual

inlining decisions seemed to have inadequate information to reach the potential speedups

exhibited in Chapter 4, motivating the case to approach the problem on a level more holistic

to the entire program, as presented in Chapter 6.

In Chapter 6, a simple flow analysis obtained by the abstract syntax tree yielded substantial

speedups, illustrating the importance of control flow to optimize inlining in Haskell. Although

previous work suggested the potential for control flow to effectively guide inlining decisions in

functional languages, the problem of determining control flow remained prohibitively difficult

to effect its use for inlining. Hot call-chains, as presented in Chapter 6, demonstrate that using

an over-approximation of control flow which errs on the side of inlining more execution paths

than those strictly determined to be hot by profiling still produces a significant speedup over

GHC’s default inlining heuristic.

We summarize the salient contributions of the thesis in this chapter and further critically

analyze the work done therein, concluding with directions for future work.

121

7.1. Summary of Contributions 122

7.1 Summary of Contributions

7.1.1 A Benchmark Framework for GHC

Section 4.2.3 established that Haskell has no formal benchmark suite that is up-to-date and

fully adequate for optimizing GHC, and Section 4.2.3 described a framework which allows

real-world packages from Hackage to be used as benchmarks. As Hackage is a live collection

of continually updated packages of real-world code submitted by the Haskell community,

appropriate sampling from Hackage for benchmarking allows for the creation of representative

and relevant benchmarks.

7.1.2 An Empirical Investigation of GHC’s Inlining Decisions

Section 4.5 provided an analysis of inlining decisions in GHC, including a characterization

of observed “good” decisions according to the analysis. Such an analysis can provide the

compiler’s developers with insight into what changes may potentially be made to the inliner in

order to encourage more of such “good” decisions to be made.

Analysis in Section 4.5 demonstrated that every package in the work performed in Chapter 4

prefers its own unique set of parameterized magic numbers. This observation suggests the

inadequacy of program features at the point of Simplification to fully guide inlining decisions

in GHC, which is a large part of GHC’s current inlining approach.

These analyses additionally demonstrated, with empirical evidence, how automated tuning

techniques may be used to improve performance of inlining within GHC.

7.1.3 A Simple Cluster-Based Predictive Model for Performance Improvement

Section 4.6 introduced a simple predictive model, based upon clustering and observation of

run-time speedups, to assign packages to the set of “best” magic number configurations given

in Section 4.5.1.

7.2 Observations from Experiments to Improve GHC’s Inlining

with Machine Learning

Chapter 5 presented three machine learning approaches to improve GHC’s inliner: a genetic

algorithm, neural networks, and graph neural networks. Analysis of these experiments yielded

some key observations about the challenges of inlining in GHC, which laid the foundations for

the approach in Chapter 6.

7.2. Observations from Experiments to Improve GHC’s Inlining with Machine Learning123

In Section 5.3, neural networks within the middle of the compiler were trained to predict

inlining decisions at the point of Simplification of CoreIR to CoreIR. At this point, the compiler

can potentially make millions of inlining decisions. Training data was generated by setting

GHC’s magic numbers to those preferred most by each package mentioned in Chapter 4 and

recording all (features, decision) outcomes. Although the models were trained to high

accuracy, they could not achieve the same compile times seen in Chapter 4. It was observed

that there was a tiny fraction of training data which had identical features but also had both

0 and 1 labels. If the ambiguity is assumed to be caused by an inline pragma, Section 5.4.8

showed by experimentation that erring on the side of the pragma can lead to over-inlining.

These neural networks were intended to be used as a seed population for a genetic algorithm,

as experiments in Section 5.2 which trained new inliner populations from scratch by using a

genetic algorithm were demonstrated to compile, run, and evolve prohibitively slowly.

Section 5.4 trained graph neural networks to approach the problem instead at the source-

code level, to predictively place inlining pragmas at function declarations. Training data was

produced by adding or removing individual pragmas and noting run-time differences. Despite

high training accuracy again, no significant speedups were observed—even when overfitting

and predicting on the same package. Modifying the data collection strategy from adding

pragmas one by one to removing pragmas one by one and comparing results demonstrated

that inlining decisions are highly dependent upon each other.

Manual exploration of the code revealed that developer pragmas with the highest impact on

performance in the packages were related to each other via chains of connected control

flow, and the functions at the top of these chains showed up as bottlenecks in a profiling

report. These insights, combined with those listed above, lead to the approach presented in

Chapter 6.

7.2.1 A Simple Approximate Hot Call-Chain Algorithm for Inlining Decisions in
GHC

Drawing from the observations in Chapter 5, Chapter 6 presented a simple technique, hot

call-chain inlining, to predict placement of inlining pragmas in Haskell source code based

upon profiling information and an over-approximated control flow graph derived from a pro-

gram’s abstract syntax tree. This technique is worst-case quadratic in practice and easier to

conceptualize than a more precise control flow algorithm. It may additionally be implemented

to defer to inlining pragmas already included in package code, where allowing the human

judgment of INLINE or INLINABLE in locations of existing pragmas is consistently shown to

produce the biggest speedup when combined with hot call-chains.

7.2. Observations from Experiments to Improve GHC’s Inlining with Machine Learning124

The use of hot call-chains on a set of 17 real-world Haskell packages produced with the

framework described in Section 4.2.3 demonstrated a 10% mean speedup when combined

with a choice of INLINE or INLINABLE pragmas along the hot call-chains of each package

with the developers’ inlining pragmas left undisturbed in the source code. Without developer

pragmas but allowing the better choice of all INLINE or all INLINABLE for each package, the

hot call-chain approach gives a 9% mean speedup.

Furthermore, the hot call-chain technique produces only a 1% mean increase in code size

across all packages, with no packages seeing a size increase above 7%. No significant run-

time slowdowns manifested in the dataset with this technique.

7.3 Critical Analysis

This section provides a self-evaluation of some of the work presented in this thesis in a critical

manner, addressing some potential concerns which may arise regarding design decisions and

execution.

7.3.1 Selection Bias

The packages chosen for the experiments in Chapters 4 and 6 all contain inlining pragmas,

as inserted by the packages’ developers. The intention behind this decision was that some

speedup may have already been discovered by the developers and may contribute toward an

oracle indicating a best-case inlining strategy against which solutions may be compared. In

actuality, developer pragmas did not consistently give speedups, and it is possible that code

sub-selected from Hackage which contains inlining pragmas may differ from code which is

otherwise randomly sampled from Hackage. However, inclusion of the packages in Chapter 4

was necessary in the experiments of Chapter 6 as a basis for comparison, as no other directly

related recent work had been done in the area of inlining in the Glasgow Haskell Compiler.

7.3.2 Exclusion of Local Functions from Hot Call-Chains

The experiments in this thesis used GHC version 8.10.3. When attaching inlining pragmas to

code via binary per the method described in Section 6.4, this version of GHC failed to discard

some pragma suggestions on local functions which would have caused non-terminating be-

havior during compilation. We tested the system with GHC 9.8.2, in which the issue appeared

to have been fixed and the packages compiled correctly; however, because we could not do

a direct performance comparison with packages compiled by GHC 9.8.2 to those compiled

with GHC 8.10.3, we instead opted to omit pragma recommendations in hot call chains on

locally scoped functions. To do this, we discarded function names which received a randomly

generated suffix after the renamer pass, as the random name generation serves to prevent

locally scoped names from colliding with each other.

7.3. Critical Analysis 125

7.3.3 The Use of More Compute Power

Some of the experiments run in this study could have been run with more compute power

or on a larger number of machines, if resources were available. This is particularly true for

the genetic algorithm presented in Section 5.2. However, analysis of the other experiments

in Chapter 5 demonstrated the significance of placement of functions inside call chains asso-

ciated with hotspots. Scaling the experiments likely would not have produced a model which

would produce performance results like those seen in Chapter 6, as no run-time characterist-

ics were included in the training data.

7.3.4 More Aggressive Inlining in GHC

The numbers presented in Table 6.6 suggest that GHC may be able to afford to perform more

aggressive inlining overall. Assuming that can be done with no negative effect, the magnitude

of the speedups produced by hot call-chains may be affected.

7.4 Future Work

Further substantial speedup may potentially be gained by determining whether to use an

INLINE or INLINABLE pragma at each individual function declaration in the hot call-chains,

as the choice between them has been shown to have significant performance effects when

examining hot call-chains when overridden by developer pragmas. This problem may be

suitable for machine learning.

Because the hot call chain work in this thesis was inspired by real-world code examples where

profiled hot spots notably had chains calling down to computationally expensive functions, it

would be useful to investigate whether these computationally expensive functions can be iden-

tified. Identifying these “expensive” leaf functions, perhaps additionally determining whether

they are likely to be called often, and adding inlining pragmas along their associated call

chains may yield a performance improvement without the need for profiling. It would still

be necessary to determine flow to find these functions’ callers; however, annotating these

expressions in the CoreIR may allow for some discovery of it as the code goes through multiple

optimization passes.

It may be possible for developers to identify functions as bottlenecks—via, e.g., a new pragma—

and allow GHC to perform aggressive inlining optimization during compilation. The entire

associated control flow graph may not be uncovered, but repeated optimization passes may be

able to uncover some of the control flow to produce some speedup. For example, Section 6.2.1

showed a case where developers placed pragmas along part of a call chain and uncovered a

measurable speedup.

7.4. Future Work 126

As mentioned in Section 7.3, locally defined functions were excluded from hot call-chains

because of a bug in GHC 8.10.3. Implementing further experiments in a newer version of

GHC where this issue is fixed may produce different results than those seen in this thesis.

The hot call-chain technique is not necessarily limited to use in Haskell. Every aspect of design

and implementation may be adapted to another compiler. It may be informative to apply the

technique to other functional languages as well.

Appendix 3: AST of a Simple Haskell Program

1 ("Just"

2 ("(,,,)"

3 ("HsGroup"

4 ("NoExtField")

5 ("XValBindsLR"

6 ("NValBinds"

7 [("(,)"

8 ("NonRecursive")

9 ("Bag(Located (HsBind Name))"

10 ([({LINENUMBERSsimple.hs:2:1-29 }

11 ("FunBind"

12 ("NameSet"

13 ([]))

14 ({LINENUMBERSsimple.hs:2:1-10 }

15 {Name: Main.addexclaim})

16 ("MG"

17 ("NoExtField")

18 ({LINENUMBERSsimple.hs:2:1-29 }

19 [({LINENUMBERSsimple.hs:2:1-29 }

20 ("Match"

21 ("NoExtField")

22 ("FunRhs"

23 ({LINENUMBERSsimple.hs:2:1-10 }

24 {Name: Main.addexclaim})

25 ("Prefix")

26 ("NoSrcStrict"))

27 [({LINENUMBERSsimple.hs:2:12-15 }

28 ("VarPat"

29 ("NoExtField")

30 ({LINENUMBERSsimple.hs:2:12-15 }

31 {Name: name_agd})))]

32 ("GRHSs"

33 ("NoExtField")

34 [({LINENUMBERSsimple.hs:2:17-29 }

35 ("GRHS"

36 ("NoExtField")

37 []

38 ({LINENUMBERSsimple.hs:2:19-29 }

39 ("OpApp"

127

Appendix 3: AST of a Simple Haskell Program

40 {Fixity: infixr 5}

41 ({LINENUMBERSsimple.hs:2:19-22 }

42 ("HsVar"

43 ("NoExtField")

44 ({LINENUMBERSsimple.hs:2:19-22 }

45 {Name: name_agd})))

46 ({LINENUMBERSsimple.hs:2:24-25 }

47 ("HsVar"

48 ("NoExtField")

49 ({LINENUMBERSsimple.hs:2:24-25 }

50 {Name: GHC.Base.++})))

51 ({LINENUMBERSsimple.hs:2:27-29 }

52 ("HsLit"

53 ("NoExtField")

54 ("HsString"

55 ("SourceText"

56 "\"!\"")

57 {"FastString:" "FASTSTRING"})))))))]

58 ({LINENUMBERS<no location info> }

59 ("EmptyLocalBinds"

60 ("NoExtField"))))))])

61 ("FromSource"))

62 ("WpHole")

63 []))])))

64 ,("(,)"

65 ("NonRecursive")

66 ("Bag(Located (HsBind Name))"

67 ([({LINENUMBERSsimple.hs:(4,1)-(7,41) }

68 ("FunBind"

69 ("NameSet"

70 ([{Name: Main.addexclaim}]))

71 ({LINENUMBERSsimple.hs:4:1-4 }

72 {Name: Main.main})

73 ("MG"

74 ("NoExtField")

75 ({LINENUMBERSsimple.hs:(4,1)-(7,41) }

76 [({LINENUMBERSsimple.hs:(4,1)-(7,41) }

77 ("Match"

78 ("NoExtField")

128

Appendix 3: AST of a Simple Haskell Program

79 ("FunRhs"

80 ({LINENUMBERSsimple.hs:4:1-4 }

81 {Name: Main.main})

82 ("Prefix")

83 ("NoSrcStrict"))

84 []

85 ("GRHSs"

86 ("NoExtField")

87 [({LINENUMBERSsimple.hs:(4,6)-(7,41) }

88 ("GRHS"

89 ("NoExtField")

90 []

91 ({LINENUMBERSsimple.hs:(4,8)-(7,41) }

92 ("HsDo"

93 ("NoExtField")

94 ("DoExpr")

95 ({LINENUMBERSsimple.hs:(5,5)-(7,41) }

96 [({LINENUMBERSsimple.hs:5:5-46 }

97 ("BindStmt"

98 ("NoExtField")

99 ({LINENUMBERSsimple.hs:5:5-7 }

100 ("VarPat"

101 ("NoExtField")

102 ({LINENUMBERSsimple.hs:5:5-7 }

103 {Name: foo_ajn})))

104 ({LINENUMBERSsimple.hs:5:12-46 }

105 ("HsApp"

106 ("NoExtField")

107 ({LINENUMBERSsimple.hs:5:12-19 }

108 ("HsVar"

109 ("NoExtField")

110 ({LINENUMBERSsimple.hs:5:12-19 }

111 {Name: System.IO.putStrLn})))

112 ({LINENUMBERSsimple.hs:5:21-46 }

113 ("HsLit"

114 ("NoExtField")

115 ("HsString"

116 ("SourceText"

117 "\"Hello, what’s your name?\"")

129

Appendix 3: AST of a Simple Haskell Program

118 {"FastString:" "FASTSTRING"})))))

119 ("SyntaxExpr"

120 ("HsVar"

121 ("NoExtField")

122 ({LINENUMBERS<no location info> }

123 {Name: GHC.Base.>>=}))

124 []

125 ("WpHole"))

126 ("SyntaxExpr"

127 ("HsLit"

128 ("NoExtField")

129 ("HsString"

130 ("NoSourceText")

131 {"FastString:" "FASTSTRING"}))

132 []

133 ("WpHole"))))

134 ,({LINENUMBERSsimple.hs:6:5-19 }

135 ("BindStmt"

136 ("NoExtField")

137 ({LINENUMBERSsimple.hs:6:5-8 }

138 ("VarPat"

139 ("NoExtField")

140 ({LINENUMBERSsimple.hs:6:5-8 }

141 {Name: name_ajo})))

142 ({LINENUMBERSsimple.hs:6:13-19 }

143 ("HsVar"

144 ("NoExtField")

145 ({LINENUMBERSsimple.hs:6:13-19 }

146 {Name: System.IO.getLine})))

147 ("SyntaxExpr"

148 ("HsVar"

149 ("NoExtField")

150 ({LINENUMBERS<no location info> }

151 {Name: GHC.Base.>>=}))

152 []

153 ("WpHole"))

154 ("SyntaxExpr"

155 ("HsLit"

156 ("NoExtField")

130

Appendix 3: AST of a Simple Haskell Program

157 ("HsString"

158 ("NoSourceText")

159 {"FastString:" "FASTSTRING"}))

160 []

161 ("WpHole"))))

162 ,({LINENUMBERSsimple.hs:7:5-41 }

163 ("LastStmt"

164 ("NoExtField")

165 ({LINENUMBERSsimple.hs:7:5-41 }

166 ("HsApp"

167 ("NoExtField")

168 ({LINENUMBERSsimple.hs:7:5-12 }

169 ("HsVar"

170 ("NoExtField")

171 ({LINENUMBERSsimple.hs:7:5-12 }

172 {Name: System.IO.putStrLn})))

173 ({LINENUMBERSsimple.hs:7:14-41 }

174 ("HsPar"

175 ("NoExtField")

176 ({LINENUMBERSsimple.hs:7:15-40 }

177 ("OpApp"

178 {Fixity: infixr 5}

179 ({LINENUMBERSsimple.hs:7:15-20 }

180 ("HsLit"

181 ("NoExtField")

182 ("HsString"

183 ("SourceText"

184 "\"Hi, \"")

185 {"FastString:" "FASTSTRING"})))

186 ({LINENUMBERSsimple.hs:7:22-23 }

187 ("HsVar"

188 ("NoExtField")

189 ({LINENUMBERSsimple.hs:7:22-23 }

190 {Name: GHC.Base.++})))

191 ({LINENUMBERSsimple.hs:7:25-40 }

192 ("HsApp"

193 ("NoExtField")

194 ({LINENUMBERSsimple.hs:7:25-34 }

195 ("HsVar"

131

Appendix 3: AST of a Simple Haskell Program

196 ("NoExtField")

197 ({LINENUMBERSsimple.hs:7:25-34 }

198 {Name: Main.addexclaim})))

199 ({LINENUMBERSsimple.hs:7:35-40 }

200 ("HsPar"

201 ("NoExtField")

202 ({LINENUMBERSsimple.hs:7:36-39 }

203 ("HsVar"

204 ("NoExtField")

205 ({LINENUMBERSsimple.hs:7:36-39 }

206 {Name: name_ajo})))))))))))))

207 ("False")

208 ("SyntaxExpr"

209 ("HsLit"

210 ("NoExtField")

211 ("HsString"

212 ("NoSourceText")

213 {"FastString:" "FASTSTRING"}))

214 []

215 ("WpHole"))))])))))]

216 ({LINENUMBERS<no location info> }

217 ("EmptyLocalBinds"

218 ("NoExtField"))))))])

219 ("FromSource"))

220 ("WpHole")

221 []))])))]

222 [({LINENUMBERSsimple.hs:1:1-30 }

223 ("TypeSig"

224 ("NoExtField")

225 [({LINENUMBERSsimple.hs:1:1-10 }

226 {Name: Main.addexclaim})]

227 ("HsWC"

228 []

229 ("HsIB"

230 []

231 ({LINENUMBERSsimple.hs:1:15-30 }

232 ("HsFunTy"

233 ("NoExtField")

234 ({LINENUMBERSsimple.hs:1:15-20 }

132

Appendix 3: AST of a Simple Haskell Program

235 ("HsTyVar"

236 ("NoExtField")

237 ("NotPromoted")

238 ({LINENUMBERSsimple.hs:1:15-20 }

239 {Name: GHC.Base.String})))

240 ({LINENUMBERSsimple.hs:1:25-30 }

241 ("HsTyVar"

242 ("NoExtField")

243 ("NotPromoted")

244 ({LINENUMBERSsimple.hs:1:25-30 }

245 {Name: GHC.Base.String})))))))))]))

246 []

247 []

248 []

249 []

250 []

251 []

252 []

253 []

254 []

255 [])

256 [({LINENUMBERSsimple.hs:1:1 }

257 ("ImportDecl"

258 ("NoExtField")

259 ("NoSourceText")

260 ({LINENUMBERSsimple.hs:1:1 }

261 {ModuleName: Prelude})

262 ("Nothing")

263 ("False")

264 ("False")

265 ("NotQualified")

266 ("True")

267 ("Nothing")

268 ("Nothing")))]

269 ("Just"

270 [("(,)"

271 ({LINENUMBERS<no location info> }

272 ("IEVar"

273 ("NoExtField")

133

Appendix 3: AST of a Simple Haskell Program

274 ({LINENUMBERS<no location info> }

275 ("IEName"

276 ({LINENUMBERS<no location info> }

277 {Name: Main.main})))))

278 [("Avail"

279 {Name: Main.main})])])

280 ("Nothing")))

134

Appendix 4: Syntax Features Collected for Graph Neural Networks of the Packages’
Functions

(,)

-BACKSLASH-NUL-

:%

ActiveAfter

AlwaysActive

And

AnnD

AnyclassStrategy

ArithSeq

AsPat

AvailTC

Avail

BangPat

BindStmt

BodyStmt

Boxed

CCallConv

CFunction

CImport

CLabel

CONSTNUM

CaseAlt

CatchAll

ClassDecl

ClassOpSig

ClosedTypeFamily

ClsInstD

ClsInstDecl

CompleteMatchSig

ConDeclField

ConDeclGADT

ConDeclH98

ConPatIn

DataDeclRn

DataDecl

DataFamInstD

DataFamInstDecl

DataFamily

DataType

DecBrL

DefD

DefaultDecl

DeprecatedTxt

DerivD

DerivDecl

DoExpr

EmptyLocalBinds

Exact

ExpBr

ExplicitBidirectional

ExplicitList

ExplicitTuple

ExprWithTySig

FL

False

FamDecl

FamEqn

FamilyDecl

FastString

FieldLabel

FieldOcc

FixSig

FixitySig

Fixity

ForD

ForallInvis

ForeignImport

FromSource

FromThenTo

FromThen

FromTo

From

FunBind

FunLike

FunRhs

GRHS

GRHSs

Generated

HasDollar

HasParens

Header

HsAnnotation

HsAppTy

HsAppType

HsApp

HsBangTy

HsBoxedOrConstraintTuple

HsBracket

HsCase

HsCharPrim

HsChar

HsDataDefn

HsDerivingClause

HsDo

HsExplicitListTy

HsForAllTy

HsFractional

HsFunTy

HsGroup

HsIB

HsIf

HsIntegral

HsInt{64

HsIsString

HsLamCase

HsLam

HsLet

HsListTy

HsLit

HsModule

HsMultiIf

HsNumTy

HsOpTy

HsOverLit

HsParTy

HsPar

HsQTvs

135

Appendix 4: Syntax Features Collected for Graph Neural Networks of the Packages’
Functions

HsQualTy

HsRecField

HsRecFields

HsRecFld

HsRuleRn

HsRule

HsRules

HsSCC

HsSpliceE

HsSpliceTy

HsSrcBang

HsStarTy

HsStrTy

HsStringPrim

HsString

HsTupleTy

HsTyLit

HsTyVar

HsUnboundVar

HsUnboxedTuple

HsUntypedSplice

HsValArg

HsValBinds

HsVar

HsWC

HsWildCardTy

IEModuleContents

IEName

IEPattern

IEThingAbs

IEThingAll

IEThingWith

IEVar

IL

ImplicitBidirectional

ImplicitSplice

ImportDecl

InfixCon

Infix

Inlinable

InlinePragma

InlineSig

Inline

InstD

IsPromoted

Just

KindSig

KindedTyVar

LINENUMBERS

LambdaExpr

LastStmt

LazyPat

LetStmt

ListComp

ListPat

LitPat

MG

Match

MinimalSig

Missing

ModuleAnnProvenance

ModuleName

NPat

NValBinds

NameSet

Name

NegApp

NeverActive

NewType

NewtypeStrategy

NoExtField

NoIEWildcard

NoInline

NoParens

NoSig

NoSourceText

NoSrcStrict

NoSrcUnpack

NoUserInline

Nominal

NonRecursive

None

NotPromoted

NotQualified

Nothing

OccName:

OpApp

OpenTypeFamily

Or

OverLit

Overlappable

Overlapping

Overlaps

PRIME-INT-PRIME

PRIME-OTHER-PRIME

PRIME-SPEC-PRIME

PRIME-WORD-PRIME

PRIMEPRIME

PSB

ParPat

Parens

PatBind

PatSynBind

PatSynSig

PlayRisky

PlaySafe

PrefixCon

Prefix

Present

QUOTES

Qual

QualifiedPre

RecCon

RecordCon

RecordUpd

Recursive

RoleAnnotD

136

Appendix 4: Syntax Features Collected for Graph Neural Networks of the Packages’
Functions

RoleAnnotDecl

RuleBndrSig

RuleBndr

RuleD

STSTRING

SectionL

SectionR

SigD

SigPat

SourceText

SpecInstSig

SpecSig

SpliceD

SpliceDecl

SrcStrict

SrcUnpack

StaticTarget

StockStrategy

StringLiteral

SynDecl

SyntaxExpr

TrueExprHole

True

TuplePat

TyClD

TyClGroup

TyFamInstD

TyFamInstDecl

TypBr

TypeSig

Unambiguous

Unboxed

Unqual

UserTyVar

ValBinds

ValD

ValueAnnProvenance

VarBr

VarPat

Var

ViewPat

WarningD

WarningTxt

Warning

Warnings

WildPat

WpHole

XValBindsLR

digit

funbind

gnode

list

root

typesig

{-# INLINE

{-# NOINLINE

{Name: ()}

{Name: (,)}

{Name: :}

{Name: GHC.Types. }

{Name: [}]

{abstract:UnitId}

"FastString:" "FASTSTRING"

Bag(Located (HsBind GhcPs))

Bag(Located (HsBind Name))

137

BIBLIOGRAPHY

Bibliography

[1] [n. d.]. Effects of Genetic Algorithm Options. https://www.mathworks.com/help/

gads/options-in-genetic-algorithm.html

[2] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M.F.P. O’Boyle, J. Thomson, M.

Toussaint, and C.K.I. Williams. 2006. Using machine learning to focus iterative optimiz-

ation. In International Symposium on Code Generation and Optimization (CGO’06). 11

pp.–305. https://doi.org/10.1109/CGO.2006.37

[3] R. W. Allard, K. A. Wolf, and R. A. Zemlin. 1964. Some effects of the 6600 computer on

language structures. Commun. ACM 7, 2 (feb 1964), 112–119. https://doi.org/

10.1145/363921.363940

[4] F. E. Allen and J. Cocke. 1976. A program data flow analysis procedure. Commun.

ACM 19, 3 (mar 1976), 137. https://doi.org/10.1145/360018.360025

[5] Bowen Alpern, Anonthy Cocchi, and David Grove. 2012. Some new approaches to

partial inlining. In Proceedings of the Sixth ACM Workshop on Virtual Machines and

Intermediate Languages (Tucson, Arizona, USA) (VMIL ’12). Association for Computing

Machinery, New York, NY, USA, 39–48. https://doi.org/10.1145/2414740.

2414749

[6] J.P. Anderson. 1964. A Note on Some Compiling Algorithms. In Communications of the

ACM.

[7] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley, Jeffrey

Bosboom, Una-May O’Reilly, and Saman Amarasinghe. 2014. OpenTuner: An Ex-

tensible Framework for Program Autotuning. In Proceedings of the 23rd International

Conference on Parallel Architectures and Compilation (Edmonton, AB, Canada) (PACT

’14). Association for Computing Machinery, New York, NY, USA, 303–316. https:

//doi.org/10.1145/2628071.2628092

[8] Jason Ansel, Yee Lok Wong, Cy Chan, Marek Olszewski, Alan Edelman, and Saman

Amarasinghe. 2011. Language and compiler support for auto-tuning variable-accuracy

algorithms. In International Symposium on Code Generation and Optimization (CGO

2011). 85–96. https://doi.org/10.1109/CGO.2011.5764677

[9] A.W. Appel. 1992. Compiling with Continuations.

[10] Andrew W. Appel. 1994. Loop Headers in λ -Calculus or CPS. Lisp Symb. Comput. 7,

4 (dec 1994), 337–343. https://doi.org/10.1007/BF01018615

BIBLIOGRAPHY 138

https://www.mathworks.com/help/gads/options-in-genetic-algorithm.html
https://www.mathworks.com/help/gads/options-in-genetic-algorithm.html
https://doi.org/10.1109/CGO.2006.37
https://doi.org/10.1145/363921.363940
https://doi.org/10.1145/363921.363940
https://doi.org/10.1145/360018.360025
https://doi.org/10.1145/2414740.2414749
https://doi.org/10.1145/2414740.2414749
https://doi.org/10.1145/2628071.2628092
https://doi.org/10.1145/2628071.2628092
https://doi.org/10.1109/CGO.2011.5764677
https://doi.org/10.1007/BF01018615

Appendix 4: Syntax Features Collected for Graph Neural Networks of the Packages’
Functions

[11] Matthew Arnold, Stephen Fink, Vivek Sarkar, and Peter F. Sweeney. 2000. A

comparative study of static and profile-based heuristics for inlining. In Proceedings of

the ACM SIGPLAN Workshop on Dynamic and Adaptive Compilation and Optimization

(DYNAMO ’00). Association for Computing Machinery, New York, NY, USA, 52–64.

https://doi.org/10.1145/351397.351416

[12] Matthew Arnold, Adam Welc, and V. T. Rajan. 2005. Improving virtual machine

performance using a cross-run profile repository. SIGPLAN Not. 40, 10 (oct 2005),

297–311. https://doi.org/10.1145/1103845.1094835

[13] Amir H. Ashouri, William Killian, John Cavazos, Gianluca Palermo, and Cristina Silvano.

2018. A Survey on Compiler Autotuning using Machine Learning. Comput. Surveys 51

(09 2018), 96:1–. https://doi.org/10.1145/3197978

[14] Amir Hossein Ashouri, Giovanni Mariani, Gianluca Palermo, Eunjung Park, John

Cavazos, and Cristina Silvano. 2016. COBAYN: Compiler Autotuning Framework Using

Bayesian Networks. ACM Trans. Archit. Code Optim. 13, 2, Article 21 (jun 2016),

25 pages. https://doi.org/10.1145/2928270

[15] Clement Baker-Finch, Kevin Glynn, and Simon Peyton Jones. 2004. Constructed

product result analysis for Haskell. J. Funct. Program. 14 (03 2004), 211–245. https:

//doi.org/10.1017/S0956796803004751

[16] Shajulin Benedict, Rejitha R.S., Philipp Gschwandtner, Radu Prodan, and Thomas

Fahringer. 2015. Energy Prediction of OpenMP Applications Using Random Forest

Modeling Approach. https://doi.org/10.1109/IPDPSW.2015.12

[17] D. Blum, S.K. Brown, A.G. Calavano, H.O. Hempy, and J. Suez. 1971. Current

Technologies in FORTRAN Object Code Optimizations. In International Business

Machines Corporation, TR 00.2240.

[18] François Bodin, Toru Kisuki, Peter Knijnenburg, Mike O’ Boyle, and Erven Rohou.

1998. Iterative compilation in a non-linear optimisation space. In Workshop on Profile

and Feedback-Directed Compilation. Paris, France. https://inria.hal.science/

inria-00475919

[19] William J. Bowman, Swaha Miller, Vincent St-Amour, and R. Kent Dybvig. 2015. Profile-

guided meta-programming. SIGPLAN Not. 50, 6 (jun 2015), 403–412. https://doi.

org/10.1145/2813885.2737990

[20] Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. 2021.

Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges.

arXiv:2104.13478 [cs.LG] https://arxiv.org/abs/2104.13478

139

https://doi.org/10.1145/351397.351416
https://doi.org/10.1145/1103845.1094835
https://doi.org/10.1145/3197978
https://doi.org/10.1145/2928270
https://doi.org/10.1017/S0956796803004751
https://doi.org/10.1017/S0956796803004751
https://doi.org/10.1109/IPDPSW.2015.12
https://inria.hal.science/inria-00475919
https://inria.hal.science/inria-00475919
https://doi.org/10.1145/2813885.2737990
https://doi.org/10.1145/2813885.2737990
https://arxiv.org/abs/2104.13478

Appendix 4: Syntax Features Collected for Graph Neural Networks of the Packages’
Functions

[21] M. A. Bulyonkov. 1984. Polyvariant mixed computation for analyzer programs. Acta

Informatica 21 (1984), 3–47. Issue 5. https://doi.org/10.1007/BF00271642

[22] Deborah R. Carvalho and Alex A. Freitas. 2004. A hybrid decision tree/genetic algorithm

method for data mining. Information Sciences 163, 1 (2004), 13–35. https://doi.

org/10.1016/j.ins.2003.03.013 Soft Computing Data Mining.

[23] John Cavazos, Christophe Dubach, Felix Agakov, Edwin Bonilla, Michael F. P. O’Boyle,

Grigori Fursin, and Olivier Temam. 2006. Automatic performance model construction

for the fast software exploration of new hardware designs. In Proceedings of the

2006 International Conference on Compilers, Architecture and Synthesis for Embedded

Systems (Seoul, Korea) (CASES ’06). Association for Computing Machinery, New York,

NY, USA, 24–34. https://doi.org/10.1145/1176760.1176765

[24] John Cavazos, Grigori Fursin, Felix Agakov, Edwin Bonilla, Michael F.P. O’Boyle, and

Olivier Temam. 2007. Rapidly Selecting Good Compiler Optimizations using Perform-

ance Counters. In International Symposium on Code Generation and Optimization

(CGO’07). 185–197. https://doi.org/10.1109/CGO.2007.32

[25] John Cavazos and J. Eliot B. Moss. 2004. Inducing heuristics to decide whether to

schedule. In Proceedings of the ACM SIGPLAN 2004 Conference on Programming

Language Design and Implementation (Washington DC, USA) (PLDI ’04). Association

for Computing Machinery, New York, NY, USA, 183–194. https://doi.org/10.

1145/996841.996864

[26] John Cavazos and Michael F. P. O’Boyle. 2005. Automatic Tuning of Inlining Heuristics.

In Proceedings of the 2005 ACM/IEEE Conference on Supercomputing (SC ’05). IEEE

Computer Society, USA, 14. https://doi.org/10.1109/SC.2005.14

[27] John Cavazos and Michael F. P. O’Boyle. 2006. Method-specific dynamic compilation

using logistic regression. In Proceedings of the 21st Annual ACM SIGPLAN Conference

on Object-Oriented Programming Systems, Languages, and Applications (Portland,

Oregon, USA) (OOPSLA ’06). Association for Computing Machinery, New York, NY,

USA, 229–240. https://doi.org/10.1145/1167473.1167492

[28] G. J. Chaitin. 1982. Register allocation & spilling via graph coloring. In Proceedings

of the 1982 SIGPLAN Symposium on Compiler Construction (Boston, Massachusetts,

USA) (SIGPLAN ’82). Association for Computing Machinery, New York, NY, USA,

98–105. https://doi.org/10.1145/800230.806984

[29] D.R. Chakrabarti and Shin-Ming Liu. 2006. Inline analysis: beyond selection heuristics.

In International Symposium on Code Generation and Optimization (CGO’06). 12 pp.–

232. https://doi.org/10.1109/CGO.2006.17

140

https://doi.org/10.1007/BF00271642
https://doi.org/10.1016/j.ins.2003.03.013
https://doi.org/10.1016/j.ins.2003.03.013
https://doi.org/10.1145/1176760.1176765
https://doi.org/10.1109/CGO.2007.32
https://doi.org/10.1145/996841.996864
https://doi.org/10.1145/996841.996864
https://doi.org/10.1109/SC.2005.14
https://doi.org/10.1145/1167473.1167492
https://doi.org/10.1145/800230.806984
https://doi.org/10.1109/CGO.2006.17

Appendix 4: Syntax Features Collected for Graph Neural Networks of the Packages’
Functions

[30] Pohua P. Chang, Scott A. Mahlke, William Y. Chen, and Wen-Mei W. Hwu. 1992.

Profile-guided automatic inline expansion for C programs. Software: Practice and

Experience 22, 5 (1992), 349–369. https://doi.org/10.1002/spe.4380220502

arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.4380220502

[31] Xuan Chen and Shun Long. 2009. Adaptive Multi-versioning for OpenMP Parallelization

via Machine Learning. In 2009 15th International Conference on Parallel and Distributed

Systems. 907–912. https://doi.org/10.1109/ICPADS.2009.77

[32] Yang Chen, Yuanjie Huang, Lieven Eeckhout, Grigori Fursin, Liang Peng, Olivier

Temam, and Chengyong Wu. 2010. Evaluating Iterative Optimization across 1000

Datasets. In Proceedings of the 31st ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation (Toronto, Ontario, Canada) (PLDI ’10). Association

for Computing Machinery, New York, NY, USA, 448–459. https://doi.org/10.

1145/1806596.1806647

[33] Peng-Fei Chuang, Howard Chen, Gerolf Hoflehner, Daniel Lavery, and Wei-Chung Hsu.

2008. Dynamic Profile Driven Code Version Selection.

[34] Koen Claessen and John Hughes. 2000. QuickCheck: A Lightweight Tool for Random

Testing of Haskell Programs. SIGPLAN Not. 35, 9 (Sept. 2000), 268–279. https:

//doi.org/10.1145/357766.351266

[35] John Cocke. 1970. Global common subexpression elimination. In Proceedings of a

Symposium on Compiler Optimization (Urbana-Champaign, Illinois). Association for

Computing Machinery, New York, NY, USA, 20–24. https://doi.org/10.1145/

800028.808480

[36] The Haskell Community. 2024. Hackage: The Haskell Package Repository. https:

https://hackage.haskell.org/ Accessed: 2024-17-06.

[37] Keith Cooper, Timothy Harvey, and Todd Waterman. 2008. An Adaptive Strategy

for Inline Substitution, Vol. 4959. 69–84. https://doi.org/10.1007/978-3-540-

78791-4_5

[38] Keith D. Cooper, Philip J. Schielke, and Devika Subramanian. 1999. Optimizing for

Reduced Code Space Using Genetic Algorithms. In Proceedings of the ACM SIGPLAN

1999 Workshop on Languages, Compilers, and Tools for Embedded Systems (Atlanta,

Georgia, USA) (LCTES ’99). Association for Computing Machinery, New York, NY, USA,

1–9. https://doi.org/10.1145/314403.314414

[39] International Business Machines Corporation. 1954. The IBM Mathematical Formula

Translating System, FORTRAN. (1954).

141

https://doi.org/10.1002/spe.4380220502
https://doi.org/10.1109/ICPADS.2009.77
https://doi.org/10.1145/1806596.1806647
https://doi.org/10.1145/1806596.1806647
https://doi.org/10.1145/357766.351266
https://doi.org/10.1145/357766.351266
https://doi.org/10.1145/800028.808480
https://doi.org/10.1145/800028.808480
https:https://hackage.haskell.org/
https:https://hackage.haskell.org/
https://doi.org/10.1007/978-3-540-78791-4_5
https://doi.org/10.1007/978-3-540-78791-4_5
https://doi.org/10.1145/314403.314414

Appendix 4: Syntax Features Collected for Graph Neural Networks of the Packages’
Functions

[40] Chris Cummins, Pavlos Petoumenos, Zheng Wang, and Hugh Leather. 2017. End-to-

End Deep Learning of Optimization Heuristics. In 2017 26th International Conference

on Parallel Architectures and Compilation Techniques (PACT). 219–232. https://

doi.org/10.1109/PACT.2017.24

[41] Olivier Danvy and Ulrik P. Schultz. 1998. Lambda-Dropping: Transforming Recursive

Equations into Programs with Block Structure. BRICS Report Series 5, 54 (Dec. 1998).

https://doi.org/10.7146/brics.v5i54.21959

[42] Dibyendu Das, Shahid Asghar Ahmad, and Venkataramanan Kumar. 2020. Deep

Learning-based Approximate Graph-Coloring Algorithm for Register Allocation. In 2020

IEEE/ACM 6th Workshop on the LLVM Compiler Infrastructure in HPC (LLVM-HPC)

and Workshop on Hierarchical Parallelism for Exascale Computing (HiPar). 23–32.

https://doi.org/10.1109/LLVMHPCHiPar51896.2020.00008

[43] Jack W. Davidson and Christopher W. Fraser. 1984. Automatic generation of peephole

optimizations. SIGPLAN Not. 19, 6 (jun 1984), 111–116. https://doi.org/10.

1145/502949.502885

[44] Jack W. Davidson and Anne M. Holler. 1988. A study of a C function inliner. Softw. Pract.

Exper. 18, 8 (aug 1988), 775–790. https://doi.org/10.1002/spe.4380180805

[45] Jack W. Davidson and Anne M. Holler. 1988. A study of a C function inliner. Software:

Practice and Experience 18, 8 (1988), 775–790. https://doi.org/10.1002/spe.

4380180805 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.4380180805

[46] Jeffrey Dean and Craig Chambers. 1994. Towards better inlining decisions using

inlining trials. In Proceedings of the 1994 ACM Conference on LISP and Functional

Programming (Orlando, Florida, USA) (LFP ’94). Association for Computing Machinery,

New York, NY, USA, 273–282. https://doi.org/10.1145/182409.182489

[47] Prasad Deshpande and Amit Somani. 1995. A Study and Analysis of Function Inlining.

(12 1995).

[48] Mehrdad Dianati, In-Soo Song, and Mark Treiber. 2002. An Introduction to Ge-

netic Algorithms and Evolution. https://api.semanticscholar.org/CorpusID:

10975919

[49] K. Driesen and U. Holzle. 1998. The cascaded predictor: economical and adaptive

branch target prediction. In Proceedings. 31st Annual ACM/IEEE International Sym-

posium on Microarchitecture. 249–258. https://doi.org/10.1109/MICRO.1998.

742786

142

https://doi.org/10.1109/PACT.2017.24
https://doi.org/10.1109/PACT.2017.24
https://doi.org/10.7146/brics.v5i54.21959
https://doi.org/10.1109/LLVMHPCHiPar51896.2020.00008
https://doi.org/10.1145/502949.502885
https://doi.org/10.1145/502949.502885
https://doi.org/10.1002/spe.4380180805
https://doi.org/10.1002/spe.4380180805
https://doi.org/10.1002/spe.4380180805
https://doi.org/10.1145/182409.182489
https://api.semanticscholar.org/CorpusID:10975919
https://api.semanticscholar.org/CorpusID:10975919
https://doi.org/10.1109/MICRO.1998.742786
https://doi.org/10.1109/MICRO.1998.742786

Appendix 4: Syntax Features Collected for Graph Neural Networks of the Packages’
Functions

[50] Christophe Dubach, John Cavazos, Björn Franke, Grigori Fursin, Michael F.P. O’Boyle,

and Olivier Temam. 2007. Fast compiler optimisation evaluation using code-feature

based performance prediction. In Proceedings of the 4th International Conference on

Computing Frontiers (Ischia, Italy) (CF ’07). Association for Computing Machinery, New

York, NY, USA, 131–142. https://doi.org/10.1145/1242531.1242553

[51] Richard Eisenberg. 2020. System FC, as implemented by GHC. (05 2020).

[52] J. Eliot, Eliot Moss, Paul Utgoff, John Cavazos, Doina Precup, Darko C, Carla Brodley,

and David Scheeff. 1997. Learning to Schedule Straight-Line Code. (10 1997).

[53] Wallace J. Fleming, P. 1986. How not to lie with statistics: the correct way to summarize

benchmark results.

[54] Robert W. Floyd. 1961. An algorithm for coding efficient arithmetic operations.

Commun. ACM 4 (1961), 42–51. https://api.semanticscholar.org/CorpusID:

7288583

[55] The Haskell Foundation. 2024. Stackage: Stable Haskell package sets. https://

www.stackage.org/ Accessed: 2024-17-06.

[56] Inc. Free Software Foundation. 2024. GCC, the GNU Compiler Collection. https://

gcc.gnu.org/onlinedocs/gcc-13.2.0/gcc/Instrumentation-Options.html

[57] Archana Ganapathi, Kaushik Datta, Armando Fox, and David Patterson. 2009. A case

for machine learning to optimize multicore performance. In Proceedings of the First

USENIX Conference on Hot Topics in Parallelism (Berkeley, California) (HotPar’09).

USENIX Association, USA, 1.

[58] Stefan Ganser, Armin Grösslinger, Norbert Siegmund, Sven Apel, and Christian

Lengauer. 2017. Iterative Schedule Optimization for Parallelization in the Polyhedron

Model. ACM Trans. Archit. Code Optim. 14, 3, Article 23 (Aug. 2017), 26 pages.

https://doi.org/10.1145/3109482

[59] Unai Garciarena and Roberto Santana. 2016. Evolutionary Optimization of Compiler

Flag Selection by Learning and Exploiting Flags Interactions. In Proceedings of the

2016 on Genetic and Evolutionary Computation Conference Companion (Denver,

Colorado, USA) (GECCO ’16 Companion). Association for Computing Machinery, New

York, NY, USA, 1159–1166. https://doi.org/10.1145/2908961.2931696

[60] Eduardo C. Garrido-Merchán and Daniel Hernández-Lobato. 2020. Dealing with

categorical and integer-valued variables in Bayesian Optimization with Gaussian

processes. Neurocomputing 380 (2020), 20–35. https://doi.org/10.1016/j.

neucom.2019.11.004

143

https://doi.org/10.1145/1242531.1242553
https://api.semanticscholar.org/CorpusID:7288583
https://api.semanticscholar.org/CorpusID:7288583
https://www.stackage.org/
https://www.stackage.org/
https://gcc.gnu.org/onlinedocs/gcc-13.2.0/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc-13.2.0/gcc/Instrumentation-Options.html
https://doi.org/10.1145/3109482
https://doi.org/10.1145/2908961.2931696
https://doi.org/10.1016/j.neucom.2019.11.004
https://doi.org/10.1016/j.neucom.2019.11.004

Appendix 4: Syntax Features Collected for Graph Neural Networks of the Packages’
Functions

[61] Giorgis Georgakoudis, Konstantinos Parasyris, Chunhua Liao, David Beckingsale, Todd

Gamblin, and Bronis de Supinski. 2023. Machine Learning-Driven Adaptive OpenMP

For Portable Performance on Heterogeneous Systems. arXiv:2303.08873 [cs.PL]

https://arxiv.org/abs/2303.08873

[62] Perry Gibson and José Cano. 2023. Transfer-Tuning: Reusing Auto-Schedules for

Efficient Tensor Program Code Generation. In Proceedings of the International Con-

ference on Parallel Architectures and Compilation Techniques (Chicago, Illinois) (PACT

’22). Association for Computing Machinery, New York, NY, USA, 28–39. https:

//doi.org/10.1145/3559009.3569682

[63] Thomas Gilray, J. R. King, and Matthew Might. 2014. Partitioning 0-CFA for the GPU.

https://api.semanticscholar.org/CorpusID:10462195

[64] Dominik Grewe, Zheng Wang, and Michael F. P. O’Boyle. 2013. Portable mapping

of data parallel programs to OpenCL for heterogeneous systems. In Proceedings of

the 2013 IEEE/ACM International Symposium on Code Generation and Optimization

(CGO). 1–10. https://doi.org/10.1109/CGO.2013.6494993

[65] David Grove, Jeffrey Dean, Charles Garrett, and Craig Chambers. 1995. Profile-guided

receiver class prediction. SIGPLAN Not. 30, 10 (oct 1995), 108–123. https://doi.

org/10.1145/217839.217848

[66] Priya Gupta, Aditya Jha, Brinda Gupta, Kime Sumpi, Sabyasachi Sahoo, and

Mukkoti Maruthi Venkata Chalapathi. 2023. Techniques and Trade-Offs in Function

Inlining Optimization. EAI Endorsed Transactions on Scalable Information Systems 11,

4 (Nov. 2023). https://doi.org/10.4108/eetsis.4453

[67] Ameer Haj-Ali, Nesreen K. Ahmed, Ted Willke, Yakun Sophia Shao, Krste Asanovic, and

Ion Stoica. 2020. NeuroVectorizer: end-to-end vectorization with deep reinforcement

learning. In Proceedings of the 18th ACM/IEEE International Symposium on Code

Generation and Optimization (San Diego, CA, USA) (CGO 2020). Association for

Computing Machinery, New York, NY, USA, 242–255. https://doi.org/10.1145/

3368826.3377928

[68] Ameer Haj-Ali, Qijing (Jenny) Huang, John Xiang, William Moses, Krste Asanovic,

John Wawrzynek, and Ion Stoica. 2020. AutoPhase: Juggling HLS Phase Orderings

in Random Forests with Deep Reinforcement Learning. In Proceedings of Machine

Learning and Systems, I. Dhillon, D. Papailiopoulos, and V. Sze (Eds.), Vol. 2.

70–81. https://proceedings.mlsys.org/paper_files/paper/2020/file/

5b47430e24a5a1f9fe21f0e8eb814131-Paper.pdf

[69] William L. Hamilton. 2020. The Graph Neural Network Model. Springer International

Publishing, Cham, 51–70. https://doi.org/10.1007/978-3-031-01588-5_5

144

https://arxiv.org/abs/2303.08873
https://doi.org/10.1145/3559009.3569682
https://doi.org/10.1145/3559009.3569682
https://api.semanticscholar.org/CorpusID:10462195
https://doi.org/10.1109/CGO.2013.6494993
https://doi.org/10.1145/217839.217848
https://doi.org/10.1145/217839.217848
https://doi.org/10.4108/eetsis.4453
https://doi.org/10.1145/3368826.3377928
https://doi.org/10.1145/3368826.3377928
https://proceedings.mlsys.org/paper_files/paper/2020/file/5b47430e24a5a1f9fe21f0e8eb814131-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2020/file/5b47430e24a5a1f9fe21f0e8eb814131-Paper.pdf
https://doi.org/10.1007/978-3-031-01588-5_5

Appendix 4: Syntax Features Collected for Graph Neural Networks of the Packages’
Functions

[70] haskell.org. 2024. Haskell.org:Modules. https://www.haskell.org/

onlinereport/haskell2010/haskellch5.html

[71] HaskellWiki. 2017. Inlining and Specialisation — HaskellWiki,. https://wiki.

haskell.org/index.php?title=Inlining_and_Specialisation&oldid=61640

[Online; accessed 8-June-2024].

[72] K. Hazelwood and D. Grove. 2003. Adaptive online context-sensitive inlining. In

International Symposium on Code Generation and Optimization, 2003. CGO 2003.

253–264. https://doi.org/10.1109/CGO.2003.1191550

[73] Jeff Heaton. 2017. The Number of Hidden Layers. https://www.heatonresearch.

com/2017/06/01/hidden-layers.html

[74] Nevin Heintze and David McAllester. 1997. Linear-time subtransitive control flow

analysis. In Proceedings of the ACM SIGPLAN 1997 Conference on Programming Lan-

guage Design and Implementation (Las Vegas, Nevada, USA) (PLDI ’97). Association

for Computing Machinery, New York, NY, USA, 261–272. https://doi.org/10.

1145/258915.258939

[75] Erik Hellsten, Artur Souza, Johannes Lenfers, Rubens Lacouture, Olivia Hsu, Adel

Ejjeh, Fredrik Kjolstad, Michel Steuwer, Kunle Olukotun, and Luigi Nardi. 2022. BaCO:

A Fast and Portable Bayesian Compiler Optimization Framework. https://doi.org/

10.48550/arXiv.2212.11142

[76] Steven C.H. Hoi, Doyen Sahoo, Jing Lu, and Peilin Zhao. 2021. Online learning: A

comprehensive survey. Neurocomputing 459 (2021), 249–289. https://doi.org/

10.1016/j.neucom.2021.04.112

[77] Celeste Hollenbeck, Michael F. P. O’Boyle, and Michel Steuwer. 2022. Investigating

magic numbers: improving the inlining heuristic in the Glasgow Haskell Compiler. In

Proceedings of the 15th ACM SIGPLAN International Haskell Symposium (Ljubljana,

Slovenia) (Haskell 2022). Association for Computing Machinery, New York, NY, USA,

81–94. https://doi.org/10.1145/3546189.3549918

[78] Celeste Hollenbeck and Michael F. P. O’Boyle. 2024. Hot Call-Chain Inlining for the

Glasgow Haskell Compiler. In Proceedings of the 23rd ACM SIGPLAN International

Conference on Generative Programming: Concepts and Experiences (Pasadena, CA,

USA) (GPCE ’24). Association for Computing Machinery, New York, NY, USA, 66–79.

https://doi.org/10.1145/3689484.3690730

[79] Kenneth Hoste and Lieven Eeckhout. 2008. Cole: compiler optimization level explor-

ation. In Proceedings of the 6th Annual IEEE/ACM International Symposium on Code

Generation and Optimization (Boston, MA, USA) (CGO ’08). Association for Computing

Machinery, New York, NY, USA, 165–174. https://doi.org/10.1145/1356058.

1356080

145

https://www.haskell.org/onlinereport/haskell2010/haskellch5.html
https://www.haskell.org/onlinereport/haskell2010/haskellch5.html
https://wiki.haskell.org/index.php?title=Inlining_and_Specialisation&oldid=61640
https://wiki.haskell.org/index.php?title=Inlining_and_Specialisation&oldid=61640
https://doi.org/10.1109/CGO.2003.1191550
https://www.heatonresearch.com/2017/06/01/hidden-layers.html
https://www.heatonresearch.com/2017/06/01/hidden-layers.html
https://doi.org/10.1145/258915.258939
https://doi.org/10.1145/258915.258939
https://doi.org/10.48550/arXiv.2212.11142
https://doi.org/10.48550/arXiv.2212.11142
https://doi.org/10.1016/j.neucom.2021.04.112
https://doi.org/10.1016/j.neucom.2021.04.112
https://doi.org/10.1145/3546189.3549918
https://doi.org/10.1145/3689484.3690730
https://doi.org/10.1145/1356058.1356080
https://doi.org/10.1145/1356058.1356080

Appendix 4: Syntax Features Collected for Graph Neural Networks of the Packages’
Functions

[80] Kenneth Hoste, Aashish Phansalkar, Lieven Eeckhout, Andy Georges, Lizy K. John,

and Koen De Bosschere. 2006. Performance prediction based on inherent program

similarity. In 2006 International Conference on Parallel Architectures and Compilation

Techniques (PACT). 114–122.

[81] Suresh Jagannathan and Andrew Wright. 1996. Flow-directed inlining. SIGPLAN Not.

31, 5 (may 1996), 193–205. https://doi.org/10.1145/249069.231417

[82] Shalini Jain, s Venkatakeerthy, Rohit Aggarwal, Tharun Dangeti, Dibyendu Das, and

Ramakrishna Upadrasta. 2022. Reinforcement Learning assisted Loop Distribution

for Locality and Vectorization. https://doi.org/10.1109/LLVM-HPC56686.2022.

00006

[83] Michael R. Jantz and Prasad A. Kulkarni. 2013. Exploring single and multilevel JIT

compilation policy for modern machines 1. ACM Trans. Archit. Code Optim. 10, 4,

Article 22 (dec 2013), 29 pages. https://doi.org/10.1145/2541228.2541229

[84] Yunlian Jiang, Eddy Z. Zhang, Kai Tian, Feng Mao, Malcom Gethers, Xipeng Shen, and

Yaoqing Gao. 2010. Exploiting statistical correlations for proactive prediction of program

behaviors. In Proceedings of the 8th Annual IEEE/ACM International Symposium on

Code Generation and Optimization (Toronto, Ontario, Canada) (CGO ’10). Association

for Computing Machinery, New York, NY, USA, 248–256. https://doi.org/10.

1145/1772954.1772989

[85] Thomas Johnsson. 1985. Lambda lifting: Transforming programs to recursive equa-

tions. In Functional Programming Languages and Computer Architecture, Jean-Pierre

Jouannaud (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 190–203.

[86] Neil D. Jones and Steven S. Muchnick. 1979. Flow analysis and optimization of

LISP-like structures. In Proceedings of the 6th ACM SIGACT-SIGPLAN Symposium on

Principles of Programming Languages (San Antonio, Texas) (POPL ’79). Association for

Computing Machinery, New York, NY, USA, 244–256. https://doi.org/10.1145/

567752.567776

[87] Owen Kaser and C.R. Ramakrishnan. 1998. Evaluating inlining techniques. Computer

Languages 24, 2 (1998), 55–72. https://doi.org/10.1016/S0096-0551(98)

00003-4

[88] Gary A. Kildall. 1973. A unified approach to global program optimization. In Proceedings

of the 1st Annual ACM SIGACT-SIGPLAN Symposium on Principles of Program-

ming Languages (Boston, Massachusetts) (POPL ’73). Association for Computing

Machinery, New York, NY, USA, 194–206. https://doi.org/10.1145/512927.

512945

146

https://doi.org/10.1145/249069.231417
https://doi.org/10.1109/LLVM-HPC56686.2022.00006
https://doi.org/10.1109/LLVM-HPC56686.2022.00006
https://doi.org/10.1145/2541228.2541229
https://doi.org/10.1145/1772954.1772989
https://doi.org/10.1145/1772954.1772989
https://doi.org/10.1145/567752.567776
https://doi.org/10.1145/567752.567776
https://doi.org/10.1016/S0096-0551(98)00003-4
https://doi.org/10.1016/S0096-0551(98)00003-4
https://doi.org/10.1145/512927.512945
https://doi.org/10.1145/512927.512945

Appendix 4: Syntax Features Collected for Graph Neural Networks of the Packages’
Functions

[89] Alexis King. [n. d.]. Making GHC Faster at Emitting Code. https://www.tweag.io/

blog/2022-12-22-making-ghc-faster-at-emitting-code/ Accessed: 2024-

04-30.

[90] T. Kisuki, P.M.W. Knijnenburg, and M.F.P. O’Boyle. 2000. Combined selection of tile

sizes and unroll factors using iterative compilation. In Proceedings 2000 International

Conference on Parallel Architectures and Compilation Techniques (Cat. No.PR00622).

237–246. https://doi.org/10.1109/PACT.2000.888348

[91] Edward Kmett. 2019. INLINE /= INLINABLE. https://www.reddit.

com/r/haskell/comments/cjkc3l/should_i_be_inlining_instance_

implementations/ Accessed: 2024-03-06.

[92] Sameer Kulkarni and John Cavazos. 2012. Mitigating the compiler optimization phase-

ordering problem using machine learning. In Proceedings of the ACM International

Conference on Object Oriented Programming Systems Languages and Applications

(Tucson, Arizona, USA) (OOPSLA ’12). Association for Computing Machinery, New

York, NY, USA, 147–162. https://doi.org/10.1145/2384616.2384628

[93] Sameer Kulkarni, John Cavazos, Christian Wimmer, and Douglas Simon. 2013.

Automatic construction of inlining heuristics using machine learning. In Proceedings

of the 2013 IEEE/ACM International Symposium on Code Generation and Optimization

(CGO). 1–12. https://doi.org/10.1109/CGO.2013.6495004

[94] Georgios Lappas. 2007. Estimating the Size of Neural Networks from the Number of

Available Training Data. In Artificial Neural Networks – ICANN 2007, Joaquim Marques

de Sá, Luís A. Alexandre, Włodzisław Duch, and Danilo Mandic (Eds.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 68–77.

[95] Samuel Larsen and Saman Amarasinghe. 2000. Exploiting superword level parallelism

with multimedia instruction sets. In Proceedings of the ACM SIGPLAN 2000 Conference

on Programming Language Design and Implementation (Vancouver, British Columbia,

Canada) (PLDI ’00). Association for Computing Machinery, New York, NY, USA,

145–156. https://doi.org/10.1145/349299.349320

[96] Jeremy Lau, Matthew Arnold, Michael Hind, and Brad Calder. 2006. Online perform-

ance auditing: using hot optimizations without getting burned. SIGPLAN Not. 41, 6

(June 2006), 239–251. https://doi.org/10.1145/1133255.1134010

[97] Hugh Leather, Edwin Bonilla, and Michael O’boyle. 2014. Automatic feature generation

for machine learning–based optimising compilation. ACM Trans. Archit. Code Optim.

11, 1, Article 14 (Feb. 2014), 32 pages. https://doi.org/10.1145/2536688

147

https://www.tweag.io/blog/2022-12-22-making-ghc-faster-at-emitting-code/
https://www.tweag.io/blog/2022-12-22-making-ghc-faster-at-emitting-code/
https://doi.org/10.1109/PACT.2000.888348
https://www.reddit.com/r/haskell/comments/cjkc3l/should_i_be_inlining_instance_implementations/
https://www.reddit.com/r/haskell/comments/cjkc3l/should_i_be_inlining_instance_implementations/
https://www.reddit.com/r/haskell/comments/cjkc3l/should_i_be_inlining_instance_implementations/
https://doi.org/10.1145/2384616.2384628
https://doi.org/10.1109/CGO.2013.6495004
https://doi.org/10.1145/349299.349320
https://doi.org/10.1145/1133255.1134010
https://doi.org/10.1145/2536688

Appendix 4: Syntax Features Collected for Graph Neural Networks of the Packages’
Functions

[98] R. Leupers and P. Marwedel. 1999. Function inlining under code size constraints

for embedded processors. In 1999 IEEE/ACM International Conference on Computer-

Aided Design. Digest of Technical Papers (Cat. No.99CH37051). 253–256. https:

//doi.org/10.1109/ICCAD.1999.810657

[99] Yang Liu, Wissam M. Sid-Lakhdar, Osni Marques, Xinran Zhu, Chang Meng, James W.

Demmel, and Xiaoye S. Li. 2021. GPTune: multitask learning for autotuning exascale

applications. In Proceedings of the 26th ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming (Virtual Event, Republic of Korea) (PPoPP ’21).

Association for Computing Machinery, New York, NY, USA, 234–246. https://doi.

org/10.1145/3437801.3441621

[100] Yixun Liu, Eddy Z. Zhang, and Xipeng Shen. 2009. A cross-input adaptive framework

for GPU program optimizations. In 2009 IEEE International Symposium on Parallel

Distributed Processing. 1–10. https://doi.org/10.1109/IPDPS.2009.5160988

[101] Paul Lokuciejewski, Fatih Gedikli, Peter Marwedel, and Katharina Morik. 2012. K.:

Automatic WCET Reduction by Machine Learning Based Heuristics for Function

Inlining. (05 2012).

[102] Yulong Luo, Guangming Tan, Zeyao Mo, and Ninghui Sun. 2015. FAST: A Fast Stencil

Autotuning Framework Based On An Optimal-solution Space Model. In Proceedings

of the 29th ACM on International Conference on Supercomputing (Newport Beach,

California, USA) (ICS ’15). Association for Computing Machinery, New York, NY, USA,

187–196. https://doi.org/10.1145/2751205.2751214

[103] Alberto Magni, Christophe Dubach, and Michael O’Boyle. 2014. Automatic optimization

of thread-coarsening for graphics processors. In Proceedings of the 23rd International

Conference on Parallel Architectures and Compilation (Edmonton, AB, Canada) (PACT

’14). Association for Computing Machinery, New York, NY, USA, 455–466. https:

//doi.org/10.1145/2628071.2628087

[104] Zoltan Majo, Tobias Hartmann, Marcel Mohler, and Thomas R. Gross. 2017. Integrating

Profile Caching into the HotSpot Multi-Tier Compilation System. In Proceedings of the

14th International Conference on Managed Languages and Runtimes (Prague, Czech

Republic) (ManLang 2017). Association for Computing Machinery, New York, NY, USA,

105–118. https://doi.org/10.1145/3132190.3132210

[105] Simon Marlow. 2005. Haskell Cafe post by Simon Marlow. https://haskell-

cafe.haskell.narkive.com/jJTv7WgN/proposal-habench-a-haskell-

benchmark-suite#post3 Accessed: 2021-04-06.

[106] W. M. McKeeman. 1965. Peephole optimization. Commun. ACM 8, 7 (jul 1965),

443–444. https://doi.org/10.1145/364995.365000

148

https://doi.org/10.1109/ICCAD.1999.810657
https://doi.org/10.1109/ICCAD.1999.810657
https://doi.org/10.1145/3437801.3441621
https://doi.org/10.1145/3437801.3441621
https://doi.org/10.1109/IPDPS.2009.5160988
https://doi.org/10.1145/2751205.2751214
https://doi.org/10.1145/2628071.2628087
https://doi.org/10.1145/2628071.2628087
https://doi.org/10.1145/3132190.3132210
https://haskell-cafe.haskell.narkive.com/jJTv7WgN/proposal-habench-a-haskell-benchmark-suite#post3
https://haskell-cafe.haskell.narkive.com/jJTv7WgN/proposal-habench-a-haskell-benchmark-suite#post3
https://haskell-cafe.haskell.narkive.com/jJTv7WgN/proposal-habench-a-haskell-benchmark-suite#post3
https://doi.org/10.1145/364995.365000

Appendix 4: Syntax Features Collected for Graph Neural Networks of the Packages’
Functions

[107] Charith Mendis, Cambridge Yang, Yewen Pu, Saman Amarasinghe, and Michael

Carbin. 2019. Compiler auto-vectorization with imitation learning. Curran Associates

Inc., Red Hook, NY, USA.

[108] Jan Midtgaard. 2012. Control-flow analysis of functional programs. ACM Comput.

Surv. 44, 3, Article 10 (jun 2012), 33 pages. https://doi.org/10.1145/2187671.

2187672

[109] Frederic P. Miller, Agnes F. Vandome, and John McBrewster. 2009. Magic Number

(Programming): Computer Programming, File Format, Software Documentation, Glob-

ally Unique Identifier, Enumerated Type, Hexspeak, NaN, Version ... OSCAR Protocol,

AOL Instant Messenger. Alpha Press.

[110] R.C. Miller and B.J. Oldfield. 1956. Producing Computer Instructions for the PACT I

Compiler. (1956).

[111] Yaron Minsky. 2016. A better inliner for OCaml, and why it matters. https://blog.

janestreet.com/flambda/

[112] Antoine Monsifrot, François Bodin, and René Quiniou. 2002. A Machine Learning

Approach to Automatic Production of Compiler Heuristics. In Artificial Intelligence:

Methodology, Systems, and Applications, Donia Scott (Ed.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 41–50.

[113] Raphael Mosaner, David Leopoldseder, Wolfgang Kisling, Lukas Stadler, and Hans-

peter Mössenböck. 2022. Compilation Forking: A Fast and Flexible Way of Generating

Data for Compiler-Internal Machine Learning Tasks. Art Sci. Eng. Program. 7 (2022),

3. https://api.semanticscholar.org/CorpusID:250089423

[114] Raphael Mosaner, David Leopoldseder, Wolfgang Kisling, Lukas Stadler, and Hans-

peter Mössenböck. 2022. Machine-Learning-Based Self-Optimizing Compiler Heurist-

ics. In Proceedings of the 19th International Conference on Managed Programming

Languages and Runtimes (Brussels, Belgium) (MPLR ’22). Association for Computing

Machinery, New York, NY, USA, 98–111. https://doi.org/10.1145/3546918.

3546921

[115] Raphael Mosaner, David Leopoldseder, Lukas Stadler, and Hanspeter Mössenböck.

2021. Using Machine Learning to Predict the Code Size Impact of Duplication Heuristics

in a Dynamic Compiler. In Proceedings of the 18th ACM SIGPLAN International

Conference on Managed Programming Languages and Runtimes (Münster, Germany)

(MPLR 2021). Association for Computing Machinery, New York, NY, USA, 127–135.

https://doi.org/10.1145/3475738.3480943

149

https://doi.org/10.1145/2187671.2187672
https://doi.org/10.1145/2187671.2187672
https://blog.janestreet.com/flambda/
https://blog.janestreet.com/flambda/
https://api.semanticscholar.org/CorpusID:250089423
https://doi.org/10.1145/3546918.3546921
https://doi.org/10.1145/3546918.3546921
https://doi.org/10.1145/3475738.3480943

Appendix 4: Syntax Features Collected for Graph Neural Networks of the Packages’
Functions

[116] Jacob Murel and Eda Kavlakoglu. 2024. What is reinforcement learning? https:

//https://www.ibm.com/topics/reinforcement-learning

[117] Muhammad Nadeem, Polychronis Xekalakis, John Cavazos, and Marcelo Cintra. 2007.

Using PredictiveModeling for Cross-Program Design Space Exploration in Multicore

Systems. 327–338. https://doi.org/10.1109/PACT.2007.4336223

[118] Ikuo Nakata. 1967. On compiling algorithms for arithmetic expressions. Commun. ACM

10, 8 (aug 1967), 492–494. https://doi.org/10.1145/363534.363549

[119] Mircea Namolaru, Albert Cohen, Grigori Fursin, Ayal Zaks, and Ari Freund. 2010.

Practical aggregation of semantical program properties for machine learning based

optimization. In Proceedings of the 2010 International Conference on Compilers, Ar-

chitectures and Synthesis for Embedded Systems (Scottsdale, Arizona, USA) (CASES

’10). Association for Computing Machinery, New York, NY, USA, 197–206. https:

//doi.org/10.1145/1878921.1878951

[120] Erick Ochoa, Cijie Xia, Karim Ali, Andrew Craik, and José Nelson Amaral. 2021. U

Can’t Inline This! IBM Corp., USA, 173–182.

[121] Iaroslav Omelianenko. 2019. Hands-On Neuroevolution with Python. Packt Publishing.

[122] Eunjung Park, John Cavazos, and Marco A. Alvarez. 2012. Using graph-based program

characterization for predictive modeling. In Proceedings of the Tenth International

Symposium on Code Generation and Optimization (San Jose, California) (CGO ’12).

Association for Computing Machinery, New York, NY, USA, 196–206. https://doi.

org/10.1145/2259016.2259042

[123] Will Partain. 1993. The nofib Benchmark Suite of Haskell Programs. In Functional

Programming, Glasgow 1992, John Launchbury and Patrick Sansom (Eds.). Springer

London, London, 195–202.

[124] WD Partain, A Santos, and Simon Peyton Jones. 1996. Let-floating: moving bindings

to give faster programs. https://www.microsoft.com/en-us/research/

publication/let-floating-moving-bindings-to-give-faster-programs/

ACM SIGPLAN International Conference on Functional Programming (ICFP’96).

[125] Alain Petrowski and Sana Ben-Hamida. 2017. A Generic Evolutionary Algorithm. Wiley,

Hoboken, NJ.

[126] Simon Peyton Jones and Simon Marlow. 2002. Secrets of the Glasgow Haskell

Compiler inliner. Journal of Functional Programming 12 (July 2002), 393–

434. https://www.microsoft.com/en-us/research/publication/secrets-

of-the-glasgow-haskell-compiler-inliner/

150

https://https://www.ibm.com/topics/reinforcement-learning
https://https://www.ibm.com/topics/reinforcement-learning
https://doi.org/10.1109/PACT.2007.4336223
https://doi.org/10.1145/363534.363549
https://doi.org/10.1145/1878921.1878951
https://doi.org/10.1145/1878921.1878951
https://doi.org/10.1145/2259016.2259042
https://doi.org/10.1145/2259016.2259042
https://www.microsoft.com/en-us/research/publication/let-floating-moving-bindings-to-give-faster-programs/
https://www.microsoft.com/en-us/research/publication/let-floating-moving-bindings-to-give-faster-programs/
https://www.microsoft.com/en-us/research/publication/secrets-of-the-glasgow-haskell-compiler-inliner/
https://www.microsoft.com/en-us/research/publication/secrets-of-the-glasgow-haskell-compiler-inliner/

Appendix 4: Syntax Features Collected for Graph Neural Networks of the Packages’
Functions

[127] Simon L. Peyton Jones and AndréL.M. Santos. 1998. A transformation-based optimiser

for Haskell. Science of Computer Programming 32, 1 (1998), 3–47. https://doi.

org/10.1016/S0167-6423(97)00029-4 6th European Symposium on Program-

ming.

[128] M.T. Pickering. 2021. Understanding the Interaction Between Elaboration and

Quotation. University of Bristol. https://books.google.co.uk/books?id=

WzrGzgEACAAJ

[129] C.R. Pirnat, J.C.C. Han, K. Maruyama, R.M. Lefler, T. Nakagawa, and H.C. Lai. 1971.

Tree Height Reduction for Parallel Processing of Blocks of Fortran Assignment State-

ments. Number nos. 488-494 in A Problem in Form Perception: Odd Shape Detection.

Department of Computer Science, University of Illinois at Urbana-Champaign. https:

//books.google.co.uk/books?id=iao_xQEACAAJ

[130] Aleksandar Prokopec, Gilles Duboscq, David Leopoldseder, and Thomas Wïrthinger.

2019. An Optimization-Driven Incremental Inline Substitution Algorithm for Just-in-

Time Compilers. In 2019 IEEE/ACM International Symposium on Code Generation and

Optimization (CGO). 164–179. https://doi.org/10.1109/CGO.2019.8661171

[131] C.V. Ramamoorthy and M.J. Gonzalez. 1971. Subexpression Ordering in the Execution

of Arithmetic Expressions. In Communications of the ACM.

[132] Miha Ravber, Shih-Hsi Liu, Marjan Mernik, and Matej Črepinšek. 2022. Maximum num-

ber of generations as a stopping criterion considered harmful. Applied Soft Computing

128 (2022), 109478. https://doi.org/10.1016/j.asoc.2022.109478

[133] Gregor Richards, Andreas Gal, Brendan Eich, and Jan Vitek. 2011. Automated

Construction of JavaScript Benchmarks. In Proceedings of the 2011 ACM International

Conference on Object Oriented Programming Systems Languages and Applications

(Portland, Oregon, USA) (OOPSLA ’11). Association for Computing Machinery, New

York, NY, USA, 677–694. https://doi.org/10.1145/2048066.2048119

[134] Stéphane Ross, Geoffrey J. Gordon, and J. Andrew Bagnell. 2010. A Reduction

of Imitation Learning and Structured Prediction to No-Regret Online Learning. In

International Conference on Artificial Intelligence and Statistics. https://api.

semanticscholar.org/CorpusID:103456

[135] Jaehun Ryu, Eunhyeok Park, and Hyojin Sung. 2022. One-shot tuner for deep learning

compilers. In Proceedings of the 31st ACM SIGPLAN International Conference on

Compiler Construction (Seoul, South Korea) (CC 2022). Association for Computing

Machinery, New York, NY, USA, 89–103. https://doi.org/10.1145/3497776.

3517774

151

https://doi.org/10.1016/S0167-6423(97)00029-4
https://doi.org/10.1016/S0167-6423(97)00029-4
https://books.google.co.uk/books?id=WzrGzgEACAAJ
https://books.google.co.uk/books?id=WzrGzgEACAAJ
https://books.google.co.uk/books?id=iao_xQEACAAJ
https://books.google.co.uk/books?id=iao_xQEACAAJ
https://doi.org/10.1109/CGO.2019.8661171
https://doi.org/10.1016/j.asoc.2022.109478
https://doi.org/10.1145/2048066.2048119
https://api.semanticscholar.org/CorpusID:103456
https://api.semanticscholar.org/CorpusID:103456
https://doi.org/10.1145/3497776.3517774
https://doi.org/10.1145/3497776.3517774

Appendix 4: Syntax Features Collected for Graph Neural Networks of the Packages’
Functions

[136] Issa Saba, Eishi Arima, Dai Liu, and Martin Schulz. 2022. Orchestrated Co-scheduling,

Resource Partitioning, and Power Capping on CPU-GPU Heterogeneous Systems via

Machine Learning. In Architecture of Computing Systems, Martin Schulz, Carsten Trin-

itis, Nikela Papadopoulou, and Thilo Pionteck (Eds.). Springer International Publishing,

Cham, 51–67.

[137] Harpreet Singh Sachdev. 2020. Choosing number of Hidden Layers and number

of hidden neurons in Neural Networks. https://www.linkedin.com/pulse/

choosing-number-hidden-layers-neurons-neural-networks-sachdev/

[138] Biplab Kumar Saha, Tiffany A. Connors, Saami Rahman, and Apan Qasem. 2017. A

Machine Learning Approach to Automatic Creation of Architecture-Sensitive Perform-

ance Heuristics. In 2017 IEEE 19th International Conference on High Performance

Computing and Communications; IEEE 15th International Conference on Smart City;

IEEE 3rd International Conference on Data Science and Systems (HPCC/Smart-

City/DSS). 18–25. https://doi.org/10.1109/HPCC-SmartCity-DSS.2017.3

[139] Andre Santos and Simon Peyton Jones. 1995. Compilation by transformation for non-

strict functional languages. Ph. D. Dissertation. https://www.microsoft.com/en-

us/research/publication/compilation-transformation-non-strict-

functional-languages/

[140] Urvij Saroliya, Eishi Arima, Dai Liu, and Martin Schulz. 2023. Hierarchical Resource

Partitioning on Modern GPUs: A Reinforcement Learning Approach. In 2023 IEEE

International Conference on Cluster Computing (CLUSTER). 185–196. https://doi.

org/10.1109/CLUSTER52292.2023.00023

[141] Robert W. Scheifler. 1977. An analysis of inline substitution for a structured program-

ming language. Commun. ACM 20, 9 (sep 1977), 647–654. https://doi.org/10.

1145/359810.359830

[142] Paul B. Schneck. 1973. A survey of compiler optimization techniques. In ACM Annual

Conference. https://api.semanticscholar.org/CorpusID:8725221

[143] Manuel Serrano. 1997. Inline Expansion: When and How?. In PLILP.

[144] Andreas Sewe, Jannik Jochem, and Mira Mezini. 2011. Next in Line, Please! Exploiting

the Indirect Benefits of Inlining by Accurately Predicting Further Inlining. In Proceedings

of the Compilation of the Co-Located Workshops on DSM’11, TMC’11, AGERE! 2011,

AOOPES’11, NEAT’11, & VMIL’11 (Portland, Oregon, USA) (SPLASH ’11 Workshops).

Association for Computing Machinery, New York, NY, USA, 317–328. https://doi.

org/10.1145/2095050.2095102

152

https://www.linkedin.com/pulse/choosing-number-hidden-layers-neurons-neural-networks-sachdev/
https://www.linkedin.com/pulse/choosing-number-hidden-layers-neurons-neural-networks-sachdev/
https://doi.org/10.1109/HPCC-SmartCity-DSS.2017.3
https://www.microsoft.com/en-us/research/publication/compilation-transformation-non-strict-functional-languages/
https://www.microsoft.com/en-us/research/publication/compilation-transformation-non-strict-functional-languages/
https://www.microsoft.com/en-us/research/publication/compilation-transformation-non-strict-functional-languages/
https://doi.org/10.1109/CLUSTER52292.2023.00023
https://doi.org/10.1109/CLUSTER52292.2023.00023
https://doi.org/10.1145/359810.359830
https://doi.org/10.1145/359810.359830
https://api.semanticscholar.org/CorpusID:8725221
https://doi.org/10.1145/2095050.2095102
https://doi.org/10.1145/2095050.2095102

Appendix 4: Syntax Features Collected for Graph Neural Networks of the Packages’
Functions

[145] Hafsah Shahzad, Ahmed Sanaullah, Sanjay Arora, Robert Munafo, Xiteng Yao, Ulrich

Drepper, and Martin Herbordt. 2022. Reinforcement Learning Strategies for Compiler

Optimization in High level Synthesis. In 2022 IEEE/ACM Eighth Workshop on the LLVM

Compiler Infrastructure in HPC (LLVM-HPC). 13–22. https://doi.org/10.1109/

LLVM-HPC56686.2022.00007

[146] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder. 2002. Automat-

ically characterizing large scale program behavior. In Proceedings of the 10th Interna-

tional Conference on Architectural Support for Programming Languages and Operating

Systems (San Jose, California) (ASPLOS X). Association for Computing Machinery,

New York, NY, USA, 45–57. https://doi.org/10.1145/605397.605403

[147] Bhargav Shivkumar, Jeffrey C. Murphy, and Lukasz Ziarek. 2021. Real-time MLton: A

Standard ML runtime for real-time functional programs. J. Funct. Program. 31 (2021),

e19. https://doi.org/10.1017/S0956796821000174

[148] Karan Singh, Matthew Curtis-Maury, Sally McKee, Filip Blagojevic, Dimitrios Nikolo-

poulos, Bronis Supinski, and Martin Schulz. 2010. Comparing Scalability Prediction

Strategies on an SMP of CMPs, Vol. 6271. 143–155. https://doi.org/10.1007/

978-3-642-15277-1_14

[149] Cesar Soares. 2023. How Tiered Compilation works in OpenJDK. https:

//devblogs.microsoft.com/java/how-tiered-compilation-works-in-

openjdk/

[150] K.O. Stanley and R. Miikkulainen. 2002. Efficient evolution of neural network topologies.

In Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat.

No.02TH8600), Vol. 2. 1757–1762 vol.2. https://doi.org/10.1109/CEC.2002.

1004508

[151] Kenneth O. Stanley and Risto Miikkulainen. 2002. Evolving Neural Networks through

Augmenting Topologies. Evolutionary Computation 10, 2 (2002), 99–127. https:

//doi.org/10.1162/106365602320169811

[152] M. Stephenson and Saman Amarasinghe. 2005. Predicting Unroll Factors Using

Supervised Classification, Vol. 2005. 123– 134. https://doi.org/10.1109/CGO.

2005.29

[153] Mark Stephenson, Saman Amarasinghe, Martin Martin, and Una-May O’Reilly. 2003.

Meta Optimization: Improving Compiler Heuristics with Machine Learning. In Proceed-

ings of the ACM SIGPLAN 2003 Conference on Programming Language Design and

Implementation (San Diego, California, USA) (PLDI ’03). Association for Computing

Machinery, New York, NY, USA, 77–90. https://doi.org/10.1145/781131.

781141

153

https://doi.org/10.1109/LLVM-HPC56686.2022.00007
https://doi.org/10.1109/LLVM-HPC56686.2022.00007
https://doi.org/10.1145/605397.605403
https://doi.org/10.1017/S0956796821000174
https://doi.org/10.1007/978-3-642-15277-1_14
https://doi.org/10.1007/978-3-642-15277-1_14
https://devblogs.microsoft.com/java/how-tiered-compilation-works-in-openjdk/
https://devblogs.microsoft.com/java/how-tiered-compilation-works-in-openjdk/
https://devblogs.microsoft.com/java/how-tiered-compilation-works-in-openjdk/
https://doi.org/10.1109/CEC.2002.1004508
https://doi.org/10.1109/CEC.2002.1004508
https://doi.org/10.1162/106365602320169811
https://doi.org/10.1162/106365602320169811
https://doi.org/10.1109/CGO.2005.29
https://doi.org/10.1109/CGO.2005.29
https://doi.org/10.1145/781131.781141
https://doi.org/10.1145/781131.781141

Appendix 4: Syntax Features Collected for Graph Neural Networks of the Packages’
Functions

[154] Harold S. Stone. 1967. One-Pass compilation of arithmetic expressions for a parallel

processor. Commun. ACM 10, 4 (apr 1967), 220–223. https://doi.org/10.1145/

363242.363256

[155] Felipe Petroski Such, Vashisht Madhavan, Edoardo Conti, Joel Lehman, Kenneth O.

Stanley, and Jeff Clune. 2018. Deep Neuroevolution: Genetic Algorithms Are a

Competitive Alternative for Training Deep Neural Networks for Reinforcement Learning.

arXiv:1712.06567 [cs.NE]

[156] Toshio Suganuma, Toshiaki Yasue, and Toshio Nakatani. 2002. An Empirical Study of

Method In-lining for a Java Just-in-Time Compiler. 91–104.

[157] Ben Taylor, Vicent Sanz Marco, and Zheng Wang. 2017. Adaptive optimization for

OpenCL programs on embedded heterogeneous systems. In Proceedings of the 18th

ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for Embed-

ded Systems (Barcelona, Spain) (LCTES 2017). Association for Computing Machinery,

New York, NY, USA, 11–20. https://doi.org/10.1145/3078633.3081040

[158] Cabal Team. 2024. Cabal: A framework for packaging Haskell software. Distribu-

tion.Package. https://hackage.haskell.org/package/Cabal-1.8.0.6/docs/

Distribution-Package.html

[159] Cabal Team. 2024. Cabal reference. https://cabal.readthedocs.io/en/3.4/

index.html

[160] Cabal Team. 2024. Cabal reference: 5.9 Packages. https://downloads.haskell.

org/ghc/9.10-latest/docs/users_guide/packages.html

[161] GHC Team. 2024. Glasgow Haskell Compiler User’s Guide: 6.19.1. Rewrite

rules. https://downloads.haskell.org/ghc/latest/docs/users_guide/

exts/rewrite_rules.html#pragma-RULES

[162] GHC Team. 2024. Glasgow Haskell Compiler User’s Guide: Profiling. https:

//downloads.haskell.org/ghc/latest/docs/users_guide/profiling.html

[163] GHC Team. 2024. Glasgow Haskell Compiler Users Guide: Using Optimisa-

tion. https://downloads.haskell.org/ghc/9.10-latest/docs/users_

guide/using-optimisation.html

[164] PyG Team. 2024. "torch_geometric.nn/conv.MessagePassing". "https://pytorch-

geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.

conv.MessagePassing.html#torch_geometric.nn.conv.MessagePassing"

[Online; accessed 12-September-2024].

154

https://doi.org/10.1145/363242.363256
https://doi.org/10.1145/363242.363256
https://doi.org/10.1145/3078633.3081040
https://hackage.haskell.org/package/Cabal-1.8.0.6/docs/Distribution-Package.html
https://hackage.haskell.org/package/Cabal-1.8.0.6/docs/Distribution-Package.html
https://cabal.readthedocs.io/en/3.4/index.html
https://cabal.readthedocs.io/en/3.4/index.html
https://downloads.haskell.org/ghc/9.10-latest/docs/users_guide/packages.html
https://downloads.haskell.org/ghc/9.10-latest/docs/users_guide/packages.html
https://downloads.haskell.org/ghc/latest/docs/users_guide/exts/rewrite_rules.html#pragma-RULES
https://downloads.haskell.org/ghc/latest/docs/users_guide/exts/rewrite_rules.html#pragma-RULES
https://downloads.haskell.org/ghc/latest/docs/users_guide/profiling.html
https://downloads.haskell.org/ghc/latest/docs/users_guide/profiling.html
https://downloads.haskell.org/ghc/9.10-latest/docs/users_guide/using-optimisation.html
https://downloads.haskell.org/ghc/9.10-latest/docs/users_guide/using-optimisation.html
"https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.MessagePassing.html#torch_geometric.nn.conv.MessagePassing"
"https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.MessagePassing.html#torch_geometric.nn.conv.MessagePassing"
"https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.MessagePassing.html#torch_geometric.nn.conv.MessagePassing"

Appendix 4: Syntax Features Collected for Graph Neural Networks of the Packages’
Functions

[165] The GHC Team. [n. d.]. The Glorious Glasgow Haskell Compilation System User’s

Guide.

[166] Theodoros Theodoridis, Tobias Grosser, and Zhendong Su. 2022. Understanding and

exploiting optimal function inlining. In Proceedings of the 27th ACM International Con-

ference on Architectural Support for Programming Languages and Operating Systems

(Lausanne, Switzerland) (ASPLOS ’22). Association for Computing Machinery, New

York, NY, USA, 977–989. https://doi.org/10.1145/3503222.3507744

[167] J. F. Thorlin. 1967. Code generation for PIE (Parallel Instruction Execution) computers.

In Proceedings of the April 18-20, 1967, Spring Joint Computer Conference (Atlantic

City, New Jersey) (AFIPS ’67 (Spring)). Association for Computing Machinery, New

York, NY, USA, 641–643. https://doi.org/10.1145/1465482.1465585

[168] Nicolas Tollenaere, Guillaume Iooss, Stéphane Pouget, Hugo Brunie, Christophe Guil-

lon, Albert Cohen, P. Sadayappan, and Fabrice Rastello. 2023. Autotuning Convolutions

Is Easier Than You Think. ACM Trans. Archit. Code Optim. 20, 2, Article 20 (mar 2023),

24 pages. https://doi.org/10.1145/3570641

[169] Stephen Toub. 2021. Performance Improvements in .NET 6. https://devblogs.

microsoft.com/dotnet/performance-improvements-in-net-6/#jit

[170] Mircea Trofin, Yundi Qian, Eugene Brevdo, Zinan Lin, Krzysztof Choromanski, and

David Li. 2021. MLGO: a Machine Learning Guided Compiler Optimizations Frame-

work.

[171] David Van Horn and Harry G. Mairson. 2008. Deciding kCFA is complete for EXPTIME.

In Proceedings of the 13th ACM SIGPLAN International Conference on Functional

Programming (Victoria, BC, Canada) (ICFP ’08). Association for Computing Machinery,

New York, NY, USA, 275–282. https://doi.org/10.1145/1411204.1411243

[172] Martijn van Otterlo and Marco Wiering. 2012. Reinforcement Learning and Markov

Decision Processes. Springer Berlin Heidelberg, Berlin, Heidelberg, 3–42. https:

//doi.org/10.1007/978-3-642-27645-3_1

[173] Kapil Vaswani, Matthew J. Thazhuthaveetil, Y. N. Srikant, and P. J. Joseph. 2007.

Microarchitecture Sensitive Empirical Models for Compiler Optimizations. In Interna-

tional Symposium on Code Generation and Optimization (CGO’07). 131–143. https:

//doi.org/10.1109/CGO.2007.25

[174] S. VenkataKeerthy, Siddharth Jain, Anilava Kundu, Rohit Aggarwal, Albert Cohen,

and Ramakrishna Upadrasta. 2023. RL4ReAl: Reinforcement Learning for Register

Allocation. In Proceedings of the 32nd ACM SIGPLAN International Conference on

Compiler Construction (, Montréal, QC, Canada,) (CC 2023). Association for Computing

Machinery, New York, NY, USA, 133–144. https://doi.org/10.1145/3578360.

3580273

155

https://doi.org/10.1145/3503222.3507744
https://doi.org/10.1145/1465482.1465585
https://doi.org/10.1145/3570641
https://devblogs.microsoft.com/dotnet/performance-improvements-in-net-6/#jit
https://devblogs.microsoft.com/dotnet/performance-improvements-in-net-6/#jit
https://doi.org/10.1145/1411204.1411243
https://doi.org/10.1007/978-3-642-27645-3_1
https://doi.org/10.1007/978-3-642-27645-3_1
https://doi.org/10.1109/CGO.2007.25
https://doi.org/10.1109/CGO.2007.25
https://doi.org/10.1145/3578360.3580273
https://doi.org/10.1145/3578360.3580273

Appendix 4: Syntax Features Collected for Graph Neural Networks of the Packages’
Functions

[175] Bill Vorhies. 2017. "Have You Heard About Unsupervised Decision Trees". https:

//www.datasciencecentral.com/have-you-heard-about-unsupervised-

decision-trees/ [Online; accessed 7-October-2024].

[176] Zheng Wang and Michael F.P. O’Boyle. 2009. Mapping parallelism to multi-cores:

a machine learning based approach. In Proceedings of the 14th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming (Raleigh, NC, USA)

(PPoPP ’09). Association for Computing Machinery, New York, NY, USA, 75–84.

https://doi.org/10.1145/1504176.1504189

[177] Zheng Wang and Michael F.P. O’Boyle. 2010. Partitioning streaming parallelism for

multi-cores: a machine learning based approach. In Proceedings of the 19th Inter-

national Conference on Parallel Architectures and Compilation Techniques (Vienna,

Austria) (PACT ’10). Association for Computing Machinery, New York, NY, USA,

307–318. https://doi.org/10.1145/1854273.1854313

[178] Zheng Wang, Georgios Tournavitis, Björn Franke, and Michael F. P. O’boyle. 2014.

Integrating profile-driven parallelism detection and machine-learning-based mapping.

ACM Trans. Archit. Code Optim. 11, 1, Article 2 (Feb. 2014), 26 pages. https:

//doi.org/10.1145/2579561

[179] Ben Wegbreit. 1975. Property extraction in well-founded property sets. IEEE

Transactions on Software Engineering SE-1, 3 (1975), 270–285. https://doi.org/

10.1109/TSE.1975.6312852

[180] Mark N. Wegman and F. Kenneth Zadeck. 1991. Constant propagation with conditional

branches. ACM Trans. Program. Lang. Syst. 13, 2 (apr 1991), 181–210. https:

//doi.org/10.1145/103135.103136

[181] Yuan Wen, Zheng Wang, and Michael F. P. O’Boyle. 2014. Smart multi-task scheduling

for OpenCL programs on CPU/GPU heterogeneous platforms. In 2014 21st Interna-

tional Conference on High Performance Computing (HiPC). 1–10. https://doi.

org/10.1109/HiPC.2014.7116910

[182] Tomofumi Yuki, Lakshminarayanan Renganarayanan, Sanjay Rajopadhye, Charles

Anderson, Alexandre E. Eichenberger, and Kevin O’Brien. 2010. Automatic creation

of tile size selection models. In Proceedings of the 8th Annual IEEE/ACM International

Symposium on Code Generation and Optimization (Toronto, Ontario, Canada) (CGO

’10). Association for Computing Machinery, New York, NY, USA, 190–199. https:

//doi.org/10.1145/1772954.1772982

[183] Vladislav Zavialov. 2020. 10 Reasons to Use Haskell. https://serokell.io/blog/

10-reasons-to-use-haskell

156

https://www.datasciencecentral.com/have-you-heard-about-unsupervised-decision-trees/
https://www.datasciencecentral.com/have-you-heard-about-unsupervised-decision-trees/
https://www.datasciencecentral.com/have-you-heard-about-unsupervised-decision-trees/
https://doi.org/10.1145/1504176.1504189
https://doi.org/10.1145/1854273.1854313
https://doi.org/10.1145/2579561
https://doi.org/10.1145/2579561
https://doi.org/10.1109/TSE.1975.6312852
https://doi.org/10.1109/TSE.1975.6312852
https://doi.org/10.1145/103135.103136
https://doi.org/10.1145/103135.103136
https://doi.org/10.1109/HiPC.2014.7116910
https://doi.org/10.1109/HiPC.2014.7116910
https://doi.org/10.1145/1772954.1772982
https://doi.org/10.1145/1772954.1772982
https://serokell.io/blog/10-reasons-to-use-haskell
https://serokell.io/blog/10-reasons-to-use-haskell

Appendix 4: Syntax Features Collected for Graph Neural Networks of the Packages’
Functions

[184] Minjia Zhang, Menghao Li, Chi Wang, and Mingqin Li. 2021. DynaTune: Dynamic

Tensor Program Optimization in Deep Neural Network Compilation. In International

Conference on Learning Representations. https://openreview.net/forum?id=

GTGb3M_KcUl

[185] Peng Zhang, Jianbin Fang, Tao Tang, Canqun Yang, and Zheng Wang. 2018. Auto-

tuning Streamed Applications on Intel Xeon Phi. In 2018 IEEE International Parallel

and Distributed Processing Symposium (IPDPS). 515–525. https://doi.org/10.

1109/IPDPS.2018.00061

[186] Peng Zhao and José Amaral. 2003. To Inline or Not to Inline? Enhanced Inlining

Decisions, Vol. 2958. 405–419. https://doi.org/10.1007/978-3-540-24644-

2_26

[187] Shengtong Zhong, Yang Shen, and Fei Hao. 2009. Tuning Compiler Optimization

Options via Simulated Annealing. In 2009 Second International Conference on Future

Information Technology and Management Engineering. 305–308. https://doi.org/

10.1109/FITME.2009.81

[188] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu,

Lifeng Wang, Changcheng Li, and Maosong Sun. 2020. Graph neural networks: A

review of methods and applications. AI Open 1 (2020), 57–81. https://doi.org/

10.1016/j.aiopen.2021.01.001

[189] Mingzhou Zhou, Xipeng Shen, Yaoqing Gao, and Graham Yiu. 2014. Space-efficient

multi-versioning for input-adaptive feedback-driven program optimizations. ACM

SIGPLAN Notices 49 (2014), 763 – 776. https://api.semanticscholar.org/

CorpusID:1961378

[190] Eckart Zitzler, Marco Laumanns, and Lothar Thiele. 2001. SPEA2: Improving the

strength pareto evolutionary algorithm. https://api.semanticscholar.org/

CorpusID:16584254

[191] E. Zitzler and L. Thiele. 1999. Multiobjective evolutionary algorithms: a comparative

case study and the strength Pareto approach. IEEE Transactions on Evolutionary

Computation 3, 4 (1999), 257–271. https://doi.org/10.1109/4235.797969

157

https://openreview.net/forum?id=GTGb3M_KcUl
https://openreview.net/forum?id=GTGb3M_KcUl
https://doi.org/10.1109/IPDPS.2018.00061
https://doi.org/10.1109/IPDPS.2018.00061
https://doi.org/10.1007/978-3-540-24644-2_26
https://doi.org/10.1007/978-3-540-24644-2_26
https://doi.org/10.1109/FITME.2009.81
https://doi.org/10.1109/FITME.2009.81
https://doi.org/10.1016/j.aiopen.2021.01.001
https://doi.org/10.1016/j.aiopen.2021.01.001
https://api.semanticscholar.org/CorpusID:1961378
https://api.semanticscholar.org/CorpusID:1961378
https://api.semanticscholar.org/CorpusID:16584254
https://api.semanticscholar.org/CorpusID:16584254
https://doi.org/10.1109/4235.797969

	Abstract
	Lay Summary
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Inlining in the Glasgow Haskell Compiler
	Contributions
	Contributions of Chapter 4
	Contributions of Chapter 5
	Contributions of Chapter 6

	Structure

	Technical Background
	Compilers
	Compiler Architecture
	Compiler Pragmas
	Inlining

	Haskell
	The Haskell Programming Language
	Hackage and Stackage
	The Haskell Cabal
	The Glasgow Haskell Compiler
	Inlining Pragmas in the Glasgow Haskell Compiler

	Benchmarking
	Overview
	Benchmarking in the Glasgow Haskell Compiler

	Profiling
	Sampling
	Instrumentation
	Profiling in Haskell with Cabal

	Machine Learning
	Terminology
	Supervised Learning
	Reinforcement Learning
	Unsupervised Learning
	Feature Selection
	Genetic Algorithms
	Convolutional Neural Networks
	Graph Neural Networks

	Evaluation Methodology
	Metrics

	Summary

	Related Work
	Compiler Optimization
	Traditional Approaches to Compiler Optimization
	Use of Profiling in Compiler Optimization

	Inlining
	Inlining in Imperative and Object-Oriented Languages
	Optimization of Inlining in Functional Languages

	Machine Learning in Compilation
	Search-based Approaches
	Predictive Modeling Approaches
	Objectives

	Summary

	Investigating Magic Numbers: Improving the Inlining Heuristic in the Glasgow Haskell Compiler
	Introduction
	Overview of the GHC Inlining Heuristic
	Magic Numbers in the Inliner

	Approach
	Optimization Space Exploration
	Characterization of the Parameters
	Benchmark Construction
	Benchmark Selection
	Pragma Example

	Experimental Setup
	Experimental Results
	Performance Improvement

	Analysis
	The Single Best Configurations
	Cross-Architecture Transference

	A Simple Machine Learning Predictive Model
	Results Summary
	Summary

	Investigatory Work Towards Improving the Inlining Heuristic in the Glasgow Haskell Compiler
	Introduction
	Training an Inliner from a Genetic Algorithm
	Motivation
	Formulating the Problem
	Method
	Design
	The Inlining Decision Features
	Training the Genetic Algorithm
	Performance of the Genetic Algorithm

	Training ANNs to Predict Inlining from Best-Case Magic Numbers Training Data
	Motivation
	Overview
	Production of the Labeled Training Data
	Model Construction
	Training Accuracy and Performance

	Using Graph Neural Networks to Predict Pragma Placement in Haskell Source Code
	Motivation
	Overview
	Setup: Graph And Model Construction
	Training a Model Over Pragmas with Verified Performance Benefit
	Model Training
	A Naive Approach: Train by the Measured Benefit of Individual Inlining Decisions
	Why Is Inlining So Hard To Predict? A Case Study
	An Observation: Trying to Predict Where Developers Would Place Pragmas

	Conclusions

	Hot Call-Chain Inlining for the Glasgow Haskell Compiler
	Overview
	Introduction
	An Example of a Case to Inline Call Chains
	Challenges

	Method
	Profile Information
	Call Graph
	Pragma Placement

	Implementation
	Collection of Profiling Information
	Coerced Inlining of Hot Call Chains and All Related Functions in GHC

	Experimental Setup
	Data Collection
	Measurement of Performance Change
	Inlining Policies

	Results
	The Naive Approach
	Hot Call Chains Without Developer Pragmas
	Inlining Hot Call Chains with Developer Pragmas
	Comparing the Number of Pragmas: Hot Call Chains Versus Developers'
	Adjusting the Threshold of Hot Call Chain Inlining
	Effect On Binary Size and Compilation Time
	Comparison Against Magic Numbers Alteration
	Changing Input Data

	Conclusions
	Summary

	Conclusions
	Summary of Contributions
	A Benchmark Framework for GHC
	An Empirical Investigation of GHC's Inlining Decisions
	A Simple Cluster-Based Predictive Model for Performance Improvement

	Observations from Experiments to Improve GHC's Inlining with Machine Learning
	A Simple Approximate Hot Call-Chain Algorithm for Inlining Decisions in GHC

	Critical Analysis
	Selection Bias
	Exclusion of Local Functions from Hot Call-Chains
	The Use of More Compute Power
	More Aggressive Inlining in GHC

	Future Work

	Bibliography

