GAMES

BEYOND FUNCTIONAL PROGRAMMING: THE VERSE PROGRAMMING LANGUAGE

Simon Peyton Jones, Tim Sweeney
Lennart Augustsson, Koen Claessen, Ranjit Jhala, Olin Shivers
Epic Games

December 2022

Verse: a language for the metaverse

Tim's vision of the metaverse

- Social interaction in a shared real-time 3D simulation
- An open economy with rules but no corporate overlord
- A creation platform open to all programmers, artists, and designers, not a walled garden
- Much more than a collection of separately compiled, staticallylinked apps: everyone's code and content must interoperate dynamically, with live updates of running code
- Pervasive open standards. Not just Unreal, but any other game/simulation engine e.g. Unity.

Verse is open

Like the metaverse vision, Verse itself is open

- We will publish papers, specification for anyone to implement
- We will offer compiler, verifier, runtime under permissive open-source license with no IP encumbrances.

Goal: engage in a rich dialogue with the community that will make Verse better.

Do we really need a new language?

- Objectively: no. All languages are Turing-complete.
- But we think we can do better with a new language
- Scalable to running code, written by millions of programmers who do not know each other, that supports billions of users
- Transactional from the get-go; the only plausible way to manage concurrence across $1 \mathrm{M}+$ programmers
- Strong interop guarantees over time: compile time guarantees that a module subsumes the API of the previous version.
- And ...
- Learnable as a first language (c.f. Javascript yes, C++ no)
- Extensible: mechanisms for the language to grow over time, without breaking code.

A taste of Verse

- Verse 1: a familiar FP subset
- Verse 2: choice
- Verse 3: functional logic

View from 100,000 feet

- Verse is a functional logic language (like Curry or Mercury).
- Verse is a declarative language: a variable names a single value, not a cell whose value changes over time.
- Verse is lenient but not strict:
- Like strict:, everything gets evaluated in the end
- Like lazy: functions can be called before the argument has a value
- Verse has an unusual static type system: types are firstclass values.
- Verse has an effect system, rather than using monads.

A taste of Verse

- A subset of Verse is a fairly ordinary functional language
- Integers 3 3+7
- Tuples/arrays (3,4)

$$
((92,2), 3,4)
$$

fst $(3,4)$
a [7]
Indexing

```
"array{..}" is
long-form
syntax
```


Bindings

For now, think "letrec-binding"

$$
y:=x+1 ; \quad x:=3 ; \quad x^{\star} y
$$

Functions and lambda

$\mathrm{f}:=(\mathrm{x}: \mathrm{int}=>\mathrm{x}+1) ; \mathrm{f}(3)$

Verse uses infix "=>" for lambda

Conditionals and recursion

Verse 2: choice

Choice

- A Haskell expression denotes one value
- A Verse expression denotes a sequence of zero or more values

3
One value

3 | 4

false?

1. . 10

Zero values

Ten values

A quirky notation for "fail"

Choice operator

Binding and choices

$\mathrm{x}:=(1|7| 2) ; x+1$

- A bit like Haskell list comprehension [x+1 | $\mathbf{x < - [1 , 7 , 2]]}$
- Key point: a variable is always bound to a single value, not to a sequence of values. I.e.
- We execute the $(x+1)$ with \times bound to 1 , then with \times bound to 7 , then with x bound to 2 .
- Not with x bound to (1|7|2)

Nested choices

- What sequence of values does this denote?

$$
x:=(1 \mid 2) ; y:=(7 \mid 8) ;(x, y)
$$

- Answer: $(1,7),(1,8),(2,7),(2,8)$
- Like Haskell list comprehension [(x,y) | $\mathbf{x < - [1 , 2] ; ~ y < - [7 , 8]] ~}$
- But more fundamentally built in
- Key point again: a variable is always bound to a single value, not to a sequence of values

Nested choices

$$
x:=(1 \mid 2) ; y:=(7 \mid 8) ;(x, y)
$$

- You can also write ((1|2), (7|8))
- This still produces the same sequence of pairs, not a single pair containing two sequences!
- Same for all operations
$77+(1 \mid 3)$
means the same as
$(77+1) \quad \mid \quad(77+3)$
77 + false?
means the same as
false?

Nested choices and funky order

- What sequence of values does this denote?

$$
\mathrm{x}:=(\mathrm{y} \mid 2) ; \mathrm{y}:=(7 \mid 8) ;(\mathrm{x}, \mathrm{y})
$$

- Answer: $(7,7),(8,8),(2,7),(2,8)$
- Order of results is still left-to-right
- But data dependencies can be "backwards"
- Haskell [(x,y) | x<-[y,2]; $\mathbf{y}<-[7,8]]$-- Rejected!

Conditionals

- No Booleans!

if (e) then e1 else e2

- Returns e1 if e succeeds
- "Succeeds" = returns one or more values
- Returns e2 if e fails
- "Fails" = returns zero values

Comparisons

if $(x<20)$ then e1 else e2

- ($x<20$)
- fails if $x>=20$
- succeeds if $x<20$, returning the left operand
- Example: $(3+(x<20))$
- Succeeds if $x=7$, returning 10
- Fails if $x=25$
- Example: $(0<x<20)$
- Succeeds if x is between 0 and 20, returning 0
- Fails if x is out of range
- (く) is right-associative
if $(0<x<20)$ then e1 else e2
c.f. Haskell if $(0<\mathbf{x} \& \& \times 20)$ then ... else ...

Conjunction and disjunction

if ($x<20, y>0$) then e1 else e2

- The tuple expression ($x \times 20, y>0$) fails if either ($x<20$) or ($y>0$) fails

if $(x<20 \mid y>0)$ then e1 else e2

- Choice succeeds if either branch succeeds

Equality

if $(x=0)$ then e1 else e2

- ($x=0$)
- fails if x is not zero
- succeeds if x is zero, returning x

As we will see, "=" is a super-important operator

- "If x is 2 or 3 then..."
if $(x=(2 \mid 3))$ then e1 else e2
c.f. Haskell if $(x==2| | x==3)$ then ... else...

From choice to tuples

- for turns a choice into a tuple/array
for $\{3$ \} The singleton tuple, array(3)
for\{ 3 | 4 \} The tuple $(3,4)$
for \{ false? \} The empty tuple ()
for\{ 1.. 10 \} The tuple $(1,2, \ldots, 10)$

Order is important

- for turns a choice into a tuple/array

for $\left\{\begin{array}{llll}3 & \mid & 4\end{array}\right\} \quad$ The tuple $(3,4)$

for $\left\{\begin{array}{llll}4 & \mid & 3\end{array}\right\} \quad$ The tuple $(4,3)$

- That's why we say that an expression denotes a sequence of values, not a bag of values, and definitely not a set.
- So "|" is associative but not commutative

Generalising for

Iterate over the N (non-failing) choices in the domain e1

Form the N -tuple from the value(s) of range e2
(variables bound in e1 scope over e2)

$$
\begin{aligned}
\text { for }(i:=1 \ldots 3) \text { do } i * i & =((1 * 1),(2 * 2),(3 * 3)) \\
& =(1,4,9)
\end{aligned}
$$

Generalising for

Iterate over the N (non-failing) choices in the domain e1

> Form the N-tuple from the value(s) of range e2
> (variables bound in e1 scope over e2)

- Range expression can yield multiple values

$$
\text { for }(i:=1 . .3) \text { do }(i \mid i+7)=((1 \mid 8),(2 \mid 9),(3 \mid 10))
$$

$$
=\begin{array}{llll}
(1,2,3) & (1,2,10) \\
(1,9,3) & \mid & (1,9,10)
\end{array}
$$

And we can use that choice to iterate:

```
xs := for(1..5) do (0|1|2); ...xs...
```

xs is successively bound to all 5-digit numbers in base 3

Generalising for

for e1 do e2

Iterate over the N (non-failing) choices in the domain e1

Form the N -tuple from the value(s) of range e2
(variables bound in e1 scope over e2)

- Range expression can fail

```
for (i:=1..4) do (i<3) = (1<3, 2<3, 3<3, 4<3)
= (1, 2, false?, false?)
= false?
```


Generalising for

Iterate over the N (non-failing) choices in the domain e1

Form the N -tuple from the value(s) of range e2
(variables bound in e1 scope over e2)

- Domain expression can fail
for (i:=1..4, isEven(i)) do (i*i)

$$
\begin{aligned}
& =\quad(2 * 2,4 * 4) \\
& =\quad(4,16)
\end{aligned}
$$

Indexing arrays as[i]

for $\{i:=1$..Length(as); as[i]+1\}

- Indexing an array/tuple, as[i], fails on bad indices

$$
\text { as }:=(3,7,4)
$$

as [0]

Denotes one value, 3
as [2] Denotes one value, 4

```
as [7]
```

Fails: denotes zero values
if (x:=as[i]) then $x+1$ else 0 Returns 0 if is out of range
as:=(3,7,4);
Narrowing
for\{i:int; as[i]+1\}

- What values can i take? Clearly just 0,1,2!
- So expand as[i] to those three choices
- This is called "narrowing" in the functional logic literature
as: $=(3,7,4)$;
for\{i:int; as $[i]+1\}$
as: $=(3,7,4)$;
$=$ for\{i:int; ((i=0; 3+1) | (i=1; 7+1) | (i=2; 4+1)) \}

Haskell array (bounds a) [(i,a!i + 1) | i<-indices a]

Some functions

Fails on empty tuple

```
```

```
head (xs)
```

```
head (xs)
:= xs[0]
:= xs[0]
tail(xs) := for{i:int; i>0; xs[i]}
tail(xs) := for{i:int; i>0; xs[i]}
cons(x,xs) := for{x | xs[i:int]}
cons(x,xs) := for{x | xs[i:int]}
snoc(xs,x) := for{xs[i:int] | x}
snoc(xs,x) := for{xs[i:int] | x}
append(xs,ys) := for{xs[i:int] | ys[j:int]}
append(xs,ys) := for{xs[i:int] | ys[j:int]}
map (f,xs)
map (f,xs)
```

 := for{f(xs[i:int])}
    ```
```

 := for{f(xs[i:int])}
    ```

\section*{Verse 3: functional logic}

\section*{Separating "bring into scope" from "give value"}
\[
x:=7 ; x+1>3 ; y=x * 2
\]
means the same as
\(x:\) int; \(x=7 ; x+1>3 ; y=x * 2\)

Bring \(\times\) into scope.
I'm not telling you what its By the way, \(\times\) must be 7 (or else fail)

The very same "=" as before value is yet

\section*{Separating "bring into scope" from "give value"}
\[
x:=7 ; x+1>3 ; y=x * 2
\]

Think:
- ":" brings the variable into scope.
- Scope extends to the left as well as right
means the same as
\(x\) :int; \(x=7 ; x+1>3 ; y=x * 2\)
means the same as
\[
x=7 ; x+1>3 ; y=(x: \text { int }) * 2
\]
\(x+1>3 ; y=(x:=7) * 2\)

\section*{Towards functional logic programming}
- Haskell
\[
\begin{aligned}
& \text { let }(y, z)=\text { if }(x=0) \text { then }(3,4) \\
& \\
& \text { else }(232,913) \\
& \text { in } y+z
\end{aligned}
\]
- Verse

Bring y,z into scope
```

y:int; z:int;
if (x=0) then { y=3; z=4 }
else { y=232; z=913 };

```
\(\mathrm{Y}+\mathrm{z}\)

\section*{Towards functional logic programming}
- Partial values
\(x^{\prime}\) first component is 2
x:tuple(int,int); \(y\) is a fresh unbound variable
\(\mathbf{x}=(2, y: i n t)\);
\(\mathbf{x}=(z: i n t, 3)\);
\(\mathbf{x}\) x's second component is 3 \(z\) is a fresh unbound variable

\section*{Towards functional logic programming}
- You can even pass those in-scope-but-unbound variables to a function
\[
\left.\begin{array}{l}
\mathrm{f}(\mathrm{p}: \text { int, } \mathrm{q}: \text { int }) \text { :int } \\
\quad:=\text { if }(\mathrm{x}=0) \text { then }\{\mathrm{p}=3 ; \quad \mathrm{q}=4\} \\
\mathrm{else}\{\mathrm{p}=232 ; \mathrm{q}=913
\end{array}\right\} ;
\]
.. and add up the results

\section*{Towards functional logic programming}
```

f(p:int,q:int) :int :=
if (x=0) then { p=3; q=4 }
else { p=232; q=913 };
y:int; z:int;
f(y,z);
y+z

```
- y,z look very like logical variables in Prolog, aka "unification variables".
- And "=" looks very like unification.

\section*{Towards functional logic programming}
- We can do the usual "run functions backwards" thing
```

swap(x:int, y:int) := (y,x)

```
```

swap (3,4)

```
```

w:tuple(int,int);
swap(w) = (3,4);
W

```

Run swap "forward": returns \((4,3)\)

Run swap "backward": Also returns \((4,3)\)

\section*{Flexible and rigid variables}
- What does this do?
```

x:int; y:int;
if (x=0) then y=1 else y=2;

```
Sets the value
    of \(x\)

Reads the value of \(x\)

Sets the value of \(y\)
- One plan (Curry): two different equality operators
- Verse plan:
- inside a conditional scrutinee, variables bound outside (e.g. \(x\) ) are "rigid" and can only be read, not unified
- outside, \(x\) is "flexible" and can be unified

\section*{Lenience}
- Clearly Verse cannot be strict
- call-by-value
- with a defined evaluation order because earlier bindings may refer to later ones; and functions can take as-yet-unbound logical variables as arguments
- And it cannot be lazy, because all those "=" unifications must happen, to give values to variables.
- So Verse is lenient
- Everything is eventually evaluated
- But only when it is "ready"
- Like dataflow

\section*{Making it all precise}

\section*{Designing the aeroplane during take-off}
- MaxVerse: the glorious vision. A significant research project in its own right.
- ShipVerse: a conservative subset we will ship to users in 2023.

\section*{Core Verse}
- MaxVerse is a big language
- To give it precise semantics, we use a small Core Verse language:
- Desugar MaxVerse into CoreVerse
```

CoreVerse code

```
- Give precise semantics to CoreVerse
- CoreVerse might well be a good compiler intermediate language
- Analogy:
- MaxVerse = Haskell
- CoreVerse = Lambda calculus

\section*{Core Verse}
```

Integers $\quad k$
Variables $\quad x, y, z, f, g$
Primops op $::=$ gt | add
Values $\quad v::=x|k|$ op $\left|\left\langle s_{1}, \cdots, s_{n}\right\rangle\right| \lambda x . e$
Expressions $\quad e::=v|e u ; e| \exists x . e \mid$ fail $\left|e_{1}\right| e_{2}\left|v_{1} v_{2}\right|$ one $\{e\} \mid$ all $\{e\}$
$e u::=e \mid v=e$

```
- "=" is a language construct, not a primop (like gt)
- <v1,..,vn> for tuples to avoid ambiguity with ( \(x\) )
- " \(\exists x\) " is what we previously wrote " \(x: t y\) " (except I'm not telling you about types)
- fail is a language construct, alongside "|"
- Core Verse is untyped (like lambda calculus)
```

x:tuple(int,int);
x = (2,y:int);
x = (z:int,3);
x

```

- Main constructs
- exists
\(\exists\)
- unification =
- sequencing
- choice
- conditiona
- for-loops
brings a variable into scope
says that two expressions have the same value
sequences unifications
return first success
return all successes

\section*{What is execution?}
```

\existsx. x = (\existsy. <2,y>);
x = (\existsz. <z,3>);
x

```
- Execution = "solve the equations"
- Find values for the exists variables that make all the equations true.
- In this example:
- \(\mathrm{x}=<2,3>, \mathrm{z}=2\), \(\mathrm{y}=3\)
- Operationally: unification.
- But unification is hard for programmers
- backtracking, choice points, undoing, rigid variables, ...

Idea! Use rewriting
\[
\text { foo } x=x^{*} x+1
\]


\section*{Rewriting: key ideas}
- To answer "what does this program do, or what does it mean?" just apply the rewrite rules
- Rewrite rules are things like
- Add/multiply constants
- Replace a function call with a copy of the function's RHS, making substitutions
- Substitute for a let-binding
- You can apply any rewrite rule, anywhere, anytime
- They should all lead to the same answer ("confluence")
- Good as a way to explain to a programmer: just source-to-source rewrites
- Good for compilers, when optimising/transforming the program
- Not good as a final execution mechanism
```

x:tuple(int,int);
x = (2,y:int);
x = (z:int,3);
x

```

\section*{Execution = rewriting}
```

x:tuple(int,int);
x = (2,y:int);
x = (z:int,3);
x

```

\section*{Execution = rewriting}

\(\exists \mathrm{x} . \exists \mathrm{y} \cdot \exists \mathrm{z} . \mathrm{x}=\langle 2, \mathrm{y}\rangle\); \(x=\langle z, 3\rangle\);
```

x:tuple(int,int);
x = (2,y:int);
x = (z:int,3);
x

```

\section*{Execution = rewriting}

```

x:tuple(int,int);
x = (2,y:int);
x = (z:int,3);
x

```

\section*{Execution = rewriting}

\[
\exists x y z . x=\langle 2, y\rangle ; \quad z=2 ; y=3 ; x
\]

Decompose equality of pairs (unification)
x:tuple(int,int);
\(\mathbf{x}=(2, y: i n t)\);
x = (z:int, 3 );
\(\mathbf{x}\)
Substitute for
another
occurrence of \(x\) \begin{tabular}{c}
\(\langle 2, y\rangle ;\) \\
\(\langle z, 3\rangle ;\)
\end{tabular}


\section*{Execution = rewriting}

\(\exists x y z . x=\langle 2, y\rangle ; y=3 ; z=2 ;\langle 2, y\rangle\)

\(\exists x y z . x=\langle 2, y\rangle ; y=3 ; \quad z=2 ;\langle 2,3\rangle\)
\(\langle 2,3\rangle\)
```

x:tuple(int,int);
$x=(2, y: i n t) ;$
$x=(z: i n t, 3)$;
X

```

\section*{An alternative sequence}
\(\exists \mathrm{x} . \exists \mathrm{y} \cdot \exists \mathrm{z} . \mathrm{x}=\langle 2, \mathrm{y}\rangle\);
\(\mathbf{x}=\langle z, 3\rangle ;\)
x
\(\begin{aligned} \exists \mathrm{x} . \exists \mathrm{y} . \exists \mathrm{z} . & \mathrm{x}=\langle 2, \mathrm{y}\rangle ; \\ & \mathrm{x}=\langle\mathrm{z}, 3\rangle ; \\ & \langle\mathrm{z}, 3\rangle\end{aligned}\)
Desugar
\(\exists \mathrm{x} . \mathrm{x}=(\exists \mathrm{y} .\langle 2, \mathrm{y}\rangle)\); \(x=(\exists z .\langle z, 3\rangle)\); x
\(\exists x y z . \quad x=\langle 2, y\rangle ;\langle 2, y\rangle=\langle z, 3\rangle ;\langle z, 3\rangle\)

\(\exists x y z . x=\langle 2, y\rangle ; \quad z=2 ; \quad y=3 ;\langle 2,3\rangle\)
\(\langle 2,3\rangle\)

\section*{Unification rewrite rules}
```

U-SCALAR }s=s;e\longrightarrow\textrm{e
U-TUP}\langle\mp@subsup{v}{1}{},\cdots,\mp@subsup{v}{n}{}\rangle=\langle\mp@subsup{v}{1}{\prime},\cdots,\mp@subsup{v}{n}{\prime}\rangle;e\quad\longrightarrow\quad\mp@subsup{v}{1}{}=\mp@subsup{v}{1}{\prime};\cdots;\mp@subsup{v}{n}{}=\mp@subsup{v}{n}{\prime};
U-FAIL }\quad|n\mp@subsup{f}{1}{}=hn\mp@subsup{f}{2}{}\longrightarrow\mathrm{ fail if neither U-SCALAR nor U-TUP match

```
\begin{tabular}{lrl} 
Scalar Values & \(s\) & \(::=x|k| o p\) \\
Heap Values & \(h\) & \(::=\left\langle v_{1}, \cdots, v_{n}\right\rangle \mid \lambda x . e\) \\
Head Values & \(h n f\) & \(::=h \mid k\) \\
Values & \(v\) & \(::=s \mid h\) \\
Expressions & \(e\) & \(::=v|e u ; e| \exists x . e \mid\) fail \(\left|e_{1} \mathbf{I} e_{2}\right| v_{1} v_{2} \mid\) one \(\{e\} \mid\) all \(\{e\}\) \\
& \(e u\) & \(::=e \mid v=e\)
\end{tabular}

\section*{Primitive operations}

\section*{Application: \(\mathcal{A}\)}

APP-BETA
APP-TUP0
APP-TUP
APP-ADD
APP-GT
APP-GT-FAIL
\[
\begin{array}{rll}
(\lambda x . e) v & \longrightarrow \exists x \cdot x=v ; e & \text { if } x \notin \mathrm{fvs}(v) \\
\rangle v & \longrightarrow \mathbf{f a i l} & \\
\left\langle v_{0} \cdots v_{n}\right\rangle v & \longrightarrow \exists \cdot x=v ;\left(x=0 ; v_{0} \mathbf{I} \cdots \mathbf{|} x=n ; v_{n}\right) & \text { if } x \notin \mathrm{fvs}(v), n \geqslant 0 \\
\mathbf{a d d}\left\langle k_{1}, k_{2}\right\rangle & \longrightarrow k_{1}+k_{2} & \\
\mathbf{g t}\left\langle k_{1}, k_{2}\right\rangle & \longrightarrow k_{1} & \text { if } k_{1}>k_{2} \\
\mathbf{g t}\left\langle k_{1}, k_{2}\right\rangle & \longrightarrow \text { fail } & \text { if } k_{1} \leqslant k_{2}
\end{array}
\]

\section*{Normalisation rewrite rules} getting stuff "out of the way"

Normalization: \(\mathcal{N}\)
\begin{tabular}{lrll} 
NORM-VAL & \(v ; e\) & \(\longrightarrow e\) \\
NORM-SEQ-ASSOC & \(\left(e u ; e_{1}\right) ; e_{2}\) & \(\longrightarrow e u ;\left(e_{1} ; e_{2}\right)\) & \\
NORM-SEQ-SWAP1 & \(e u ;(x=v ; e)\) & \(\longrightarrow x=v ;(e u ; e)\) & if \(e u\) not of form \(x^{\prime}=v^{\prime}\) \\
NORM-SEQ-SWAP2 & \(e u ;(x=s ; e)\) & \(\longrightarrow x=s ;(e u ; e)\) & if \(e u\) not of form \(x^{\prime}=s^{\prime}\) \\
NORM-EQ-SWAP & \(h n f=x\) & \(\longrightarrow x=h n f\) & \\
NORM-SEQ-DEFR & \(\left(\exists x . e_{1}\right) ; e_{2}\) & \(\longrightarrow \exists x .\left(e_{1} ; e_{2}\right)\) & if \(x \notin \operatorname{fvs}\left(e_{2}\right)\) \\
NORM-SEQ-DEFL & \(e u ;(\exists x . e)\) & \(\longrightarrow \exists x . e u ; e\) & if \(x \notin \operatorname{fvs}(e u)\) \\
NORM-DEFR & \(v=\left(\exists y \cdot e_{1}\right) ; e_{2}\) & \(\longrightarrow \exists y \cdot v=e_{1} ; e_{2}\) & if \(y \notin f v s\left(v, e_{2}\right)\) \\
NORM-SEQR & \(v=\left(e u ; e_{1}\right) ; e_{2}\) & \(\longrightarrow e u ; v=e_{1} ; e_{2}\) &
\end{tabular}
```

Scalar Values s ::= x | k| op

```
Heap Values }\quadh::=\langle\mp@subsup{v}{1}{},\cdots,\mp@subsup{v}{n}{}\rangle|\lambdax.
```

Heap Values }\quadh::=\langle\mp@subsup{v}{1}{},\cdots,\mp@subsup{v}{n}{}\rangle|\lambdax.
Head Values hnf ::= h|k
Head Values hnf ::= h|k
Values v}::=s|

```
```

Values v}::=s|

```
```



```
```

eu ::= e|v=e

```
```

```
```

eu ::= e|v=e

```
```


Conditionals

- Desugar conditionals like this:

```
one: a new, simpler construct
```

if e_{1} then e_{2} else e_{3} means $\exists y . y=$ one $\left\{\left(e_{1} ; \lambda x . e_{2}\right) \mathbf{I}\left(\lambda x . e_{3}\right)\right\} ; y\langle \rangle$

Variables bound in e1 can scope over e2

- Rewrite rules for one

ONE-FAIL	one $\{$ fail $\}$	\longrightarrow	fail
ONE-CHOICE	one $\left\{v_{1} \mid e_{2}\right\}$	\longrightarrow	v_{1}
ONE-VALUE	one $\{v\}$	\longrightarrow	v

```
Scalar Values }\quads::=x|k|o
Heap Values }\quadh::=\langle\mp@subsup{v}{1}{},\cdots,\mp@subsup{v}{n}{}\rangle|\lambdax.
Head Values hnf ::= h|k
Values v}::=s|
```



```
    eu ::= e|v=e
```

- Desugar for-loops like this:

for e	means	$\operatorname{all}\{e\}$
for $\left(e_{1}\right)$ do e_{2}	means	$\exists y . y=\operatorname{all}\left\{e_{1} ; \lambda x . e_{2}\right\} ; \operatorname{map}\langle\lambda z . z\langle \rangle, y\rangle$

Variables bound in e1 can scope over e2

- Rewrite rules for 'all'

ALL-FAIL	for $\{\mathbf{f a i l}\}$	\longrightarrow	$\longrightarrow\rangle$
ALL-CHOICE	for $\left\{v_{1}\|\cdots\| v_{n}\right\}$	\longrightarrow	$\left\langle v_{1}, \cdots, v_{n}\right\rangle$

Choice

- How to rewrite (e1 | e2)?

| Choice context | $C X::=\square\|v=C X\| C X ; e\|c e ; C X\| \exists x . C X$ |
| :--- | ---: | :--- |
| Choice-free expr | $c e::=v\|v=c e\| c e_{1} ; c e_{2} \mid$ one $\{e\}\|\operatorname{all}\{e\}\| o p(v) \mid \exists x . c e$ |

More in the paper...

https://simon.peytonjones.org/verse-calculus

- First attempt to give a deterministic rewrite semantics to a functional logic language.
- Much more detail, lots of examples
- Sad lack of a confluence proof. It's tricky. Details may change.

There is more. A lot more.

- Mutable state, I/O, and other effects.
- An effect system, not a monadic setup
- Pervasive transactional memory
- Structs, classes, inheritance
- The type system and the verifier - lots of cool stuff here

Types

- In Verse, a "type" is simply a function
- that fails on values outside the type
- and succeeds on values inside the type
- So int is the identity function on integers, and fails otherwise
- isEven (which succeeds on even numbers and fails otherwise) is a type
- array int succeeds on arrays, all of whose elements are integers... hmm, scratch head... 'array' is simply 'map'!
- ($\lambda x . \exists p, q \cdot x=\langle p, q\rangle ; p<q)$ is the type of pairs whose first component is smaller than the second
- The Verifier rejects programs that might go wrong. This is wildly undecidable in general, but the Verifier does its best.

Take-aways

- Verse is extremely ambitious
- Kick functional logic programming out the lab and into the mainstream
- Stretches from end users to professional developers
- Transactional memory at scale
- Very strong stability guarantees
- A radical new approach to types
- Verse is open
- Open spec, open-source compiler, published papers (I hope!)

Before long: a conversation to which you can contribute

