
Simon Peyton Jones, Tim Sweeney
Lennart Augustsson, Koen Claessen, Ranjit Jhala, Olin Shivers

Epic Games

December 2022

Tim’s vision of the metaverse

 Social interaction in a shared real-time 3D simulation

 An open economy with rules but no corporate overlord

 A creation platform open to all programmers, artists, and
designers, not a walled garden

 Much more than a collection of separately compiled, statically-
linked apps: everyone’s code and content must interoperate
dynamically, with live updates of running code

 Pervasive open standards. Not just Unreal, but any other
game/simulation engine e.g. Unity.

Like the metaverse vision, Verse itself is open

 We will publish papers, specification for anyone to implement

 We will offer compiler, verifier, runtime under permissive
open-source license with no IP encumbrances.

Goal: engage in a rich dialogue with the community that will
make Verse better.

 Objectively: no. All languages are Turing-complete.

 But we think we can do better with a new language
 Scalable to running code, written by millions of programmers who do not

know each other, that supports billions of users
 Transactional from the get-go; the only plausible way to manage

concurrence across 1M+ programmers
 Strong interop guarantees over time: compile time guarantees that a

module subsumes the API of the previous version.

 And …
 Learnable as a first language (c.f. Javascript yes, C++ no)
 Extensible: mechanisms for the language to grow over time, without

breaking code.

❑ Verse 1: a familiar FP subset

❑ Verse 2: choice

❑ Verse 3: functional logic

 Verse is a functional logic language (like Curry or Mercury).

 Verse is a declarative language: a variable names a single
value, not a cell whose value changes over time.

 Verse is lenient but not strict:
 Like strict:, everything gets evaluated in the end
 Like lazy: functions can be called before the argument has a value

 Verse has an unusual static type system: types are first-
class values.

 Verse has an effect system, rather than using monads.

 A subset of Verse is a fairly ordinary functional language

 Integers

 Tuples/arrays

3 3+7

(3,4)

fst(3,4)

array{3,4} array{3}

((92,2),3, 4)

Singleton
tuple

“array{..}” is
long-form

syntax

a[7] Indexing

x:=3; x+x

x:=3; y:=x+1; x*y

y:=x+1; x:=3; x*y

Syntax: ":=” and “;”

Order does
not matter

For now, think
“letrec-binding”

f(x:int):int := x+1; f(3)

f:=(x:int=>x+1); f(3)

Verse uses infix “=>” for lambda

Arguments on
the LHS…

..or use lambda

fac(x:int):int :=

if (x=0) then 1 else n * fac(n-1)

Conditionals
Recursion

 A Haskell expression denotes one value

 A Verse expression denotes a sequence of zero or more values

3 | 4

false?

3 One value

Two values

Zero values
Choice

operator

1..10 Ten values

A quirky notation
for “fail”

 A bit like Haskell list comprehension

 Key point: a variable is always bound to a single value,
not to a sequence of values. I.e.
 We execute the (x+1) with x bound to 1, then with x bound to 7, then

with x bound to 2.

 Not with x bound to (1|7|2)

x:=(1|7|2); x+1
Denotes sequence of
three values: 2, 8, 3

[x+1 | x<-[1,7,2]]

 What sequence of values does this denote?

 Answer: (1,7), (1,8), (2,7), (2,8)

 Like Haskell list comprehension

 But more fundamentally built in

 Key point again: a variable is always bound to a single value,
not to a sequence of values

x:=(1|2); y:=(7|8); (x,y)

[(x,y) | x<-[1,2]; y<-[7,8]]

 You can also write
 This still produces the same sequence of pairs,

not a single pair containing two sequences!

 Same for all operations

x:=(1|2); y:=(7|8); (x,y)

((1|2), (7|8))

77 + (1|3) (77+1) | (77+3)means the same as

77 + false? false?means the same as

 What sequence of values does this denote?

 Answer: (7,7), (8,8), (2,7), (2,8)

 Order of results is still left-to-right

 But data dependencies can be “backwards”

 Haskell

x:=(y|2); y:=(7|8); (x,y)

[(x,y) | x<-[y,2]; y<-[7,8]] -- Rejected!

 No Booleans!

 Returns e1 if e succeeds
 “Succeeds” = returns one or more values

 Returns e2 if e fails
 “Fails” = returns zero values

if (e) then e1 else e2

 (x<20)
 fails if x >= 20
 succeeds if x < 20, returning the left operand

 Example: (3 + (x<20))
 Succeeds if x=7, returning 10
 Fails if x=25

 Example: (0 < x < 20)
 Succeeds if x is between 0 and 20, returning 0
 Fails if x is out of range
 (<) is right-associative

if (x<20) then e1 else e2

if (0<x<20) then e1 else e2

if (0<x && x<20) then … else …c.f. Haskell

 The tuple expression (x<20,y>0) fails
if either (x<20) or (y>0) fails

 Choice succeeds if either branch succeeds

if (x<20, y>0) then e1 else e2

if (x<20 | y>0) then e1 else e2

 (x=0)
 fails if x is not zero

 succeeds if x is zero, returning x

 “If x is 2 or 3 then…”

if (x=0) then e1 else e2

As we will see, “=” is a
super-important operator

if (x=(2|3)) then e1 else e2

if (x==2 || x==3) then … else…c.f. Haskell

 for turns a choice into a tuple/array

for{ 3 | 4 }

for{ false? }

for{ 3 } The singleton tuple, array(3)

The tuple (3,4)

The empty tuple ()

for{ 1..10 } The tuple (1,2,…, 10)

 for turns a choice into a tuple/array

 That’s why we say that an expression denotes a sequence of
values, not a bag of values, and definitely not a set.

 So “|” is associative but not commutative

for{ 3 | 4 }

The tuple (4,3)for{ 4 | 3 }

The tuple (3,4)

for (i:=1..3) do i*i ((1*1), (2*2), (3*3))=

for e1 do e2

Iterate over the N (non-failing)
choices in the domain e1

Form the N-tuple from the
value(s) of range e2

(variables bound in e1 scope over e2)

(1,4,9)=

for e1 do e2

Iterate over the N (non-failing)
choices in the domain e1

Form the N-tuple from the
value(s) of range e2

(variables bound in e1 scope over e2)

for (i:=1..3) do (i|i+7) ((1|8), (2|9), (3|10))=

xs := for(1..5) do (0|1|2); ...xs...
xs is successively bound to all
5-digit numbers in base 3

And we can use that
choice to iterate:

 Range expression can yield multiple values

(1,2,3) | (1,2,10) |

(1,9,3) | (1,9,10) |

..

=

for e1 do e2

Iterate over the N (non-failing)
choices in the domain e1

Form the N-tuple from the
value(s) of range e2

(variables bound in e1 scope over e2)

for (i:=1..4) do (i<3)

(1, 2, false?, false?)

=

 Range expression can fail

false?

=

(1<3, 2<3, 3<3, 4<3)

=

for e1 do e2

Iterate over the N (non-failing)
choices in the domain e1

Form the N-tuple from the
value(s) of range e2

(variables bound in e1 scope over e2)

for (i:=1..4, isEven(i)) do (i*i)

(4,16)

=

 Domain expression can fail

=

(2*2, 4*4)

 Indexing an array/tuple, as[i], fails on bad indices

as:=(3,7,4) as[0] Denotes one value, 3

as[2] Denotes one value, 4

as[7] Fails: denotes zero values

for{i:=1..Length(as); as[i]+1} Returns (4,8,5)

if (x:=as[i]) then x+1 else 0 Returns 0 if i is out of range

1..n is (1 | 2 | ... | n)

 What values can i take? Clearly just 0,1,2!

 So expand as[i] to those three choices

 This is called “narrowing” in the functional logic literature

as:=(3,7,4);

for{i:int; as[i]+1}

as:=(3,7,4);

for{i:int; as[i] + 1}

as:=(3,7,4);

for{i:int; ((i=0; 3+1) |

(i=1; 7+1) |

(i=2; 4+1)) }

=

array (bounds a) [(i,a!i + 1) | i<-indices a] Haskell

New: i:int brings i into scope
without giving it a value

head(xs) := xs[0]

tail(xs) := for{i:int; i>0; xs[i]}

cons(x,xs) := for{x | xs[i:int]}

snoc(xs,x) := for{xs[i:int] | x}

append(xs,ys) := for{xs[i:int] | ys[j:int]}

map(f,xs) := for{f(xs[i:int])}

Fails on empty tuple

x:=7; x+1>3; y=x*2

x:int; x=7; x+1>3; y=x*2

means the same as

Bring x into
scope.

I’m not telling
you what its
value is yet

By the way,
x must be 7
(or else fail) The very same

“=” as before

x:=7; x+1>3; y=x*2

x:int; x=7; x+1>3; y=x*2

means the same as

x=7; x+1>3; y=(x:int)*2

means the same as

Think:
• “:” brings the variable

into scope.
• Scope extends to the

left as well as right

x+1>3; y=(x:=7)*2

 Haskell

 Verse

let (y,z) = if (x=0) then (3,4)

else (232, 913)

in y+z

y:int; z:int;

if (x=0) then { y=3; z=4 }

else { y=232; z=913 };

y+z

Bring y,z into scope

Give them values

 Partial values

x:tuple(int,int);

x = (2,y:int);

x = (z:int,3);

x

x’s first component is 2
y is a fresh unbound variable

x’s second component is 3
z is a fresh unbound variable

 You can even pass those in-scope-but-unbound variables to a
function

f(p:int,q:int):int

:= if (x=0) then { p=3; q=4 }

else { p=232; q=913 };

y:int; z:int;

f(y,z);

y+z

Pass y,z to f, which binds
each of them to a value

…and add up the
results

 y,z look very like logical variables in Prolog,
aka “unification variables”.

 And “=” looks very like unification.

f(p:int,q:int):int :=

if (x=0) then { p=3; q=4 }

else { p=232; q=913 };

y:int; z:int;

f(y,z);

y+z

 We can do the usual “run functions backwards” thing

swap(x:int, y:int) := (y,x)

w:tuple(int,int);

swap(w) = (3,4);

w

swap(3,4) Run swap “forward”: returns (4,3)

Run swap “backward”: Also returns (4,3)

 What does this do?

 One plan (Curry): two different equality operators

 Verse plan:
 inside a conditional scrutinee, variables bound outside (e.g. x) are

“rigid” and can only be read, not unified

 outside, x is “flexible” and can be unified

x:int; y:int;

if (x=0) then y=1 else y=2;

x=7;

y

Sets the
value of y

Reads the
value of x

Sets the value
of x

 Clearly Verse cannot be strict
 call-by-value
 with a defined evaluation order
because earlier bindings may refer to later ones;
and functions can take as-yet-unbound logical variables as arguments

 And it cannot be lazy, because all those “=“ unifications must
happen, to give values to variables.

 So Verse is lenient
 Everything is eventually evaluated
 But only when it is “ready”
 Like dataflow

x:int;

if (x=0) …;

f(x);

…

‘if’ is stuck until x
gets a value

Let’s hope f
gives x its value

“Residuation”

 MaxVerse: the glorious vision.
A significant research project in its own right.

 ShipVerse: a conservative subset we will ship to users in
2023.

 MaxVerse is a big language

 To give it precise semantics, we use a small Core Verse
language:
 Desugar MaxVerse into CoreVerse

 Give precise semantics to CoreVerse

 CoreVerse might well be a good compiler intermediate language

 Analogy:
 MaxVerse = Haskell

 CoreVerse = Lambda calculus

MaxVerse code

CoreVerse code

 “=” is a language construct, not a primop (like gt)

 <v1,..,vn> for tuples to avoid ambiguity with (x)

 “x” is what we previously wrote “x:ty” (except I’m not telling you about types)

 fail is a language construct, alongside “|”

 Core Verse is untyped (like lambda calculus)

x. x = (y. <2,y>);

x = (z. <z,3>);

x

x:tuple(int,int);

x = (2,y:int);

x = (z:int,3);

x

Desugar

 Main constructs
 exists brings a variable into scope

 unification = says that two expressions have the same value

 sequencing ; sequences unifications

 choice |, fail

 conditional one return first success

 for-loops all return all successes

 Execution = “solve the equations”
 Find values for the exists variables that make all the equations true.

 In this example:
 x=<2,3>, z=2, y=3

 Operationally: unification.

 But unification is hard for programmers
 backtracking, choice points, undoing, rigid variables, …

x. x = (y. <2,y>);

x = (z. <z,3>);

x

foo x = x*x + 1

foo (3+2)

foo 5

5*5 + 1

25 + 1

26

let x=3+2 in x*x + 1

(3+2)*(3+2) + 1

5*(3+2) + 1

5*5 + 1

(3+2)*5 + 1

let x=5

in x*x + 1

 To answer "what does this program do, or what does it mean?“
just apply the rewrite rules

 Rewrite rules are things like
 Add/multiply constants

 Replace a function call with a copy of the function's RHS, making substitutions

 Substitute for a let-binding

 You can apply any rewrite rule, anywhere, anytime
 They should all lead to the same answer (“confluence”)

 Good as a way to explain to a programmer: just source-to-source rewrites

 Good for compilers, when optimising/transforming the program

 Not good as a final execution mechanism

x. x = (y. ⟨2,y〉);
x = (z. ⟨z,3〉);
x

Desugar

x:tuple(int,int);

x = (2,y:int);

x = (z:int,3);

x

x. x = (y. ⟨2,y〉);
x = (z. ⟨z,3〉);
x

x. y. z. x = ⟨2,y〉;
x = ⟨z,3〉;
x

Desugar

x:tuple(int,int);

x = (2,y:int);

x = (z:int,3);

x

x. x = (y. ⟨2,y〉);
x = (z. ⟨z,3〉);
x

x. y. z. x = ⟨2,y〉;
x = ⟨z,3〉;
x

xyz. x = ⟨2,y〉; ⟨2,y〉= ⟨z,3〉; x

Desugar

x:tuple(int,int);

x = (2,y:int);

x = (z:int,3);

x

Substitute for
(one occurrence of) x

x. x = (y. ⟨2,y⟩);
x = (z. ⟨z,3⟩);
x

x. y. z. x = ⟨2,y〉;
x = ⟨z,3〉;
x

xyz. x = ⟨2,y〉; ⟨2,y〉= ⟨z,3〉; x

xyz. x = ⟨2,y〉; z=2; y=3; x

Desugar

x:tuple(int,int);

x = (2,y:int);

x = (z:int,3);

x

Decompose equality
of pairs (unification)

x. x = (y. ⟨2,y〉);
x = (z. ⟨z,3〉);
x

x. y. z. x = ⟨2,y〉;
x = ⟨z,3〉;
x

xyz. x = ⟨2,y⟩; ⟨2,y⟩= ⟨z,3⟩; x

xyz. x = ⟨2,y〉; y=3; z=2; xxyz. x = ⟨2,y〉; y=3; z=2; ⟨2,y〉

xyz. x = ⟨2,y〉; y=3; z=2; ⟨2,3〉 ⟨2,3〉

Desugar

x:tuple(int,int);

x = (2,y:int);

x = (z:int,3);

x

Substitute for
another

occurrence of x

Substitute for y

Garbage collect

x. x = (y. ⟨2,y〉);
x = (z. ⟨z,3〉);
x

x. y. z. x = ⟨2,y〉;
x = ⟨z,3〉;
x

xyz. x = ⟨2,y〉; ⟨2,y〉= ⟨z,3〉; ⟨z,3〉

xyz. x = ⟨2,y〉; z=2; y=3; ⟨z,3〉

xyz. x = ⟨2,y〉; z=2; y=3; ⟨2,3〉 ⟨2,3〉

Desugar

x. y. z. x = ⟨2,y〉;
x = ⟨z,3〉;
⟨z,3〉

x:tuple(int,int);

x = (2,y:int);

x = (z:int,3);

x

 Desugar conditionals like this:

 Rewrite rules for one

one: a new, simpler construct

Variables bound in e1 can scope over e2

 Desugar for-loops like this:

 Rewrite rules for ‘all’

Variables bound in e1 can
scope over e2

 How to rewrite (e1 | e2)?

Duplicate surrounding context

E.g. (x + (y | z) *2) → (x + y*2) | (x + z*2)

 First attempt to give a deterministic rewrite semantics to a
functional logic language.

 Much more detail, lots of examples

 Sad lack of a confluence proof. It’s tricky. Details may
change.

 Mutable state, I/O, and other effects.
 An effect system, not a monadic setup

 Pervasive transactional memory

 Structs, classes, inheritance

 The type system and the verifier – lots of cool stuff here

 In Verse, a “type” is simply a function
 that fails on values outside the type
 and succeeds on values inside the type

 So int is the identity function on integers, and fails otherwise

 isEven (which succeeds on even numbers and fails otherwise) is a type

 array int succeeds on arrays, all of whose elements are integers...
hmm, scratch head... ‘array’ is simply ‘map’!

 𝜆𝑥. ∃𝑝, 𝑞. 𝑥 = 𝑝, 𝑞 ; 𝑝 < 𝑞 is the type of pairs whose first component is
smaller than the second

 The Verifier rejects programs that might go wrong. This is wildly
undecidable in general, but the Verifier does its best.

 Verse is extremely ambitious
 Kick functional logic programming out the lab and into the mainstream

 Stretches from end users to professional developers

 Transactional memory at scale

 Very strong stability guarantees

 A radical new approach to types

 Verse is open
 Open spec, open-source compiler, published papers (I hope!)

Before long: a conversation to which you can contribute

