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Tim’s vision of the metaverse

 Social interaction in a shared real-time 3D simulation

 An open economy with rules but no corporate overlord

 A creation platform open to all programmers, artists, and 
designers, not a walled garden

 Much more than a collection of separately compiled, statically-
linked apps: everyone’s code and content must interoperate 
dynamically, with live updates of running code

 Pervasive open standards.  Not just Unreal, but any other 
game/simulation engine e.g. Unity.



Like the metaverse vision, Verse itself is open

 We will publish papers, specification for anyone to implement

 We will offer compiler, verifier, runtime under permissive 
open-source license with no IP encumbrances.

Goal: engage in a rich dialogue with the community that will 
make Verse better.



 Objectively: no.  All languages are Turing-complete.

 But we think we can do better with a new language
 Scalable to running code, written by millions of programmers who do not 

know each other, that supports billions of users 
 Transactional from the get-go; the only plausible way to manage 

concurrence across 1M+ programmers
 Strong interop guarantees over time: compile time guarantees that a 

module subsumes the API of the previous version.

 And …
 Learnable as a first language (c.f. Javascript yes, C++ no)
 Extensible: mechanisms for the language to grow over time, without 

breaking code.



❑ Verse 1: a familiar FP subset

❑ Verse 2: choice

❑ Verse 3: functional logic



 Verse is a functional logic language (like Curry or Mercury).

 Verse is a declarative language: a variable names a single 
value, not a cell whose value changes over time.

 Verse is lenient but not strict: 
 Like strict:, everything gets evaluated in the end 
 Like lazy: functions can be called before the argument has a value

 Verse has an unusual static type system: types are first-
class values.

 Verse has an effect system, rather than using monads.



 A subset of Verse is a fairly ordinary functional language

 Integers

 Tuples/arrays

3 3+7

(3,4)

fst(3,4)

array{3,4} array{3}

((92,2),3, 4)

Singleton 
tuple

“array{..}” is 
long-form 

syntax

a[7] Indexing



x:=3; x+x

x:=3; y:=x+1; x*y

y:=x+1; x:=3; x*y

Syntax: ":=” and “;”

Order does 
not matter

For now, think 
“letrec-binding”



f(x:int):int := x+1;  f(3)

f:=(x:int=>x+1); f(3)

Verse uses infix  “=>” for lambda

Arguments on 
the LHS…

..or use lambda



fac(x:int):int :=

if (x=0) then 1 else n * fac(n-1)

Conditionals
Recursion





 A Haskell expression denotes one value

 A Verse expression denotes a sequence of zero or more values

3 | 4

false?

3 One value

Two values

Zero values
Choice 

operator

1..10 Ten values

A quirky notation 
for “fail”



 A bit like Haskell list comprehension 

 Key point: a variable is always bound to a single value, 
not to a sequence of values.  I.e.
 We execute the (x+1) with x bound to 1, then with x bound to 7, then 

with x bound to 2.

 Not with x bound to (1|7|2)

x:=(1|7|2); x+1
Denotes sequence of 
three values: 2, 8, 3

[x+1 | x<-[1,7,2]]



 What sequence of values does this denote?

 Answer: (1,7), (1,8), (2,7), (2,8)

 Like Haskell list comprehension

 But more fundamentally built in

 Key point again: a variable is always bound to a single value, 
not to a sequence of values

x:=(1|2); y:=(7|8); (x,y)

[(x,y) | x<-[1,2]; y<-[7,8]]



 You can also write
 This still produces the same sequence of pairs, 

not a single pair containing two sequences!

 Same for all operations

x:=(1|2); y:=(7|8); (x,y)

((1|2), (7|8))

77 + (1|3) (77+1) | (77+3)means the same as

77 + false? false?means the same as



 What sequence of values does this denote?

 Answer: (7,7), (8,8), (2,7), (2,8)

 Order of results is still left-to-right

 But data dependencies can be “backwards”

 Haskell

x:=(y|2); y:=(7|8); (x,y)

[(x,y) | x<-[y,2]; y<-[7,8]]  -- Rejected!



 No Booleans!

 Returns e1 if e succeeds
 “Succeeds” = returns one or more values

 Returns e2 if e fails
 “Fails” = returns zero values

if (e) then e1 else e2



 (x<20)
 fails if x >= 20
 succeeds if x < 20, returning the left operand

 Example: (3 + (x<20))
 Succeeds if x=7, returning 10
 Fails if x=25

 Example: (0 < x < 20)
 Succeeds if x is between 0 and 20, returning 0
 Fails if x is out of range
 (<) is right-associative

if (x<20) then e1 else e2

if (0<x<20) then e1 else e2

if (0<x && x<20) then … else …c.f. Haskell



 The tuple expression (x<20,y>0) fails 
if either (x<20) or (y>0) fails

 Choice succeeds if either branch succeeds

if (x<20, y>0) then e1 else e2

if (x<20 | y>0) then e1 else e2



 (x=0)
 fails if x is not zero

 succeeds if x is zero, returning x

 “If x is 2 or 3 then…”

if (x=0) then e1 else e2

As we will see, “=” is a 
super-important operator

if (x=(2|3)) then e1 else e2

if (x==2 || x==3) then … else…c.f. Haskell



 for turns a choice into a tuple/array

for{ 3 | 4 }

for{ false? }

for{ 3 } The singleton tuple, array(3)

The tuple (3,4)

The empty tuple ()

for{ 1..10 } The tuple (1,2,…, 10)



 for turns a choice into a tuple/array

 That’s why we say that an expression denotes a sequence of 
values, not a bag of values, and definitely not a set.

 So “|” is associative but not commutative

for{ 3 | 4 }

The tuple (4,3)for{ 4 | 3 }

The tuple (3,4)



for (i:=1..3) do i*i ( (1*1), (2*2), (3*3))=

for e1 do e2

Iterate over the N (non-failing) 
choices in the domain e1

Form the N-tuple from the 
value(s) of range e2

(variables bound in e1 scope over e2) 

(1,4,9)=



for e1 do e2

Iterate over the N (non-failing) 
choices in the domain e1

Form the N-tuple from the 
value(s) of range e2

(variables bound in e1 scope over e2) 

for (i:=1..3) do (i|i+7) ( (1|8), (2|9), (3|10) )=

xs := for(1..5) do (0|1|2); ...xs...
xs is successively bound to all 
5-digit numbers in base 3

And we can use that 
choice to iterate:

 Range expression can yield multiple values

(1,2,3) | (1,2,10) |

(1,9,3) | (1,9,10) |

..

=



for e1 do e2

Iterate over the N (non-failing) 
choices in the domain e1

Form the N-tuple from the 
value(s) of range e2

(variables bound in e1 scope over e2) 

for (i:=1..4) do (i<3)

(1, 2, false?, false?)

=

 Range expression can fail

false?

=

(1<3, 2<3, 3<3, 4<3) 

=



for e1 do e2

Iterate over the N (non-failing) 
choices in the domain e1

Form the N-tuple from the 
value(s) of range e2

(variables bound in e1 scope over e2) 

for (i:=1..4, isEven(i)) do (i*i)

(4,16)

=

 Domain expression can fail

=

(2*2, 4*4) 



 Indexing an array/tuple, as[i], fails on bad indices

as:=(3,7,4) as[0] Denotes one value, 3

as[2] Denotes one value, 4

as[7] Fails: denotes zero values

for{i:=1..Length(as); as[i]+1} Returns (4,8,5)

if (x:=as[i]) then x+1 else 0 Returns 0 if i is out of range

1..n is (1 | 2 | ... | n)



 What values can i take?  Clearly just 0,1,2!

 So expand as[i] to those three choices

 This is called “narrowing” in the functional logic literature

as:=(3,7,4);

for{i:int; as[i]+1}

as:=(3,7,4);

for{i:int; as[i] + 1}

as:=(3,7,4);

for{i:int; ((i=0; 3+1) |

(i=1; 7+1) |

(i=2; 4+1)) }

=

array (bounds a) [ (i,a!i + 1) | i<-indices a ] Haskell

New: i:int brings i into scope 
without giving it a value



head(xs) := xs[0]

tail(xs) := for{i:int; i>0; xs[i]}

cons(x,xs) := for{x | xs[i:int]}

snoc(xs,x) := for{xs[i:int] | x}

append(xs,ys) := for{xs[i:int] | ys[j:int]}

map(f,xs) := for{f(xs[i:int])}

Fails on empty tuple





x:=7; x+1>3; y=x*2

x:int; x=7; x+1>3; y=x*2

means the same as

Bring x into 
scope.

I’m not telling 
you what its 
value is yet

By the way, 
x must be 7
(or else fail) The very same 

“=” as before



x:=7; x+1>3; y=x*2

x:int; x=7; x+1>3; y=x*2

means the same as

x=7; x+1>3; y=(x:int)*2

means the same as

Think:
• “:” brings the variable 

into scope.
• Scope extends to the 

left as well as right

x+1>3; y=(x:=7)*2



 Haskell

 Verse

let (y,z) = if (x=0) then (3,4)

else (232, 913)

in y+z

y:int; z:int;

if (x=0) then { y=3;   z=4 }

else { y=232; z=913 };

y+z

Bring y,z into scope

Give them values



 Partial values

x:tuple(int,int);

x = (2,y:int);

x = (z:int,3);

x

x’s first component is 2
y is a fresh unbound variable

x’s second component is 3
z is a fresh unbound variable



 You can even pass those in-scope-but-unbound variables to a 
function

f(p:int,q:int):int

:= if (x=0) then { p=3;   q=4 }

else { p=232; q=913 };

y:int; z:int;

f(y,z);

y+z

Pass y,z to f, which binds 
each of them to a value

…and add up the 
results



 y,z look very like logical variables in Prolog, 
aka “unification variables”.

 And “=” looks very like unification.

f(p:int,q:int):int :=

if (x=0) then { p=3;   q=4 }

else { p=232; q=913 };

y:int; z:int;

f(y,z);

y+z



 We can do the usual “run functions backwards” thing

swap(x:int, y:int) := (y,x)

w:tuple(int,int);

swap(w) = (3,4);

w

swap(3,4) Run swap “forward”: returns (4,3)

Run swap “backward”: Also returns (4,3)



 What does this do?

 One plan (Curry): two different equality operators

 Verse plan: 
 inside a conditional scrutinee, variables bound outside (e.g. x) are 

“rigid” and can only be read, not unified

 outside, x is “flexible” and can be unified

x:int; y:int;

if (x=0) then y=1 else y=2;

x=7;

y

Sets the 
value of y

Reads the 
value of x

Sets the value 
of x



 Clearly Verse cannot be strict
 call-by-value
 with a defined evaluation order
because earlier bindings may refer to later ones; 
and functions can take as-yet-unbound logical variables as arguments

 And it cannot be lazy, because all those “=“ unifications must 
happen, to give values to variables.

 So Verse is lenient
 Everything is eventually evaluated
 But only when it is “ready”
 Like dataflow

x:int;

if (x=0) …;

f(x);

…

‘if’ is stuck until x 
gets a value

Let’s hope f 
gives x its value

“Residuation”





 MaxVerse: the glorious vision. 
A significant research project in its own right.

 ShipVerse: a conservative subset we will ship to users in 
2023.



 MaxVerse is a big language

 To give it precise semantics, we use a small Core Verse 
language:
 Desugar MaxVerse into CoreVerse

 Give precise semantics to CoreVerse

 CoreVerse might well be a good compiler intermediate language

 Analogy: 
 MaxVerse = Haskell

 CoreVerse = Lambda calculus

MaxVerse code

CoreVerse code



 “=” is a language construct, not a primop (like gt)

 <v1,..,vn> for tuples to avoid ambiguity with (x)

 “x” is what we previously wrote “x:ty” (except I’m not telling you about types)

 fail is a language construct, alongside “|”

 Core Verse is untyped (like lambda calculus)



x. x = (y. <2,y>);

x = (z. <z,3>);

x

x:tuple(int,int);

x = (2,y:int);

x = (z:int,3);

x

Desugar

 Main constructs
 exists  brings a variable into scope

 unification = says that two expressions have the same value

 sequencing ; sequences unifications

 choice |, fail

 conditional one return first success

 for-loops all return all successes



 Execution = “solve the equations”
 Find values for the exists variables that make all the equations true.  

 In this example:
 x=<2,3>, z=2, y=3

 Operationally: unification.

 But unification is hard for programmers
 backtracking, choice points, undoing, rigid variables, …

x. x = (y. <2,y>);

x = (z. <z,3>);

x



foo x = x*x + 1

foo (3+2)

foo 5

5*5 + 1

25 + 1

26

let x=3+2 in x*x + 1

(3+2)*(3+2) + 1

5*(3+2) + 1

5*5 + 1

(3+2)*5 + 1

let x=5 

in x*x + 1



 To answer "what does this program do, or what does it mean?“
just apply the rewrite rules

 Rewrite rules are things like
 Add/multiply constants

 Replace a function call with a copy of the function's RHS, making substitutions

 Substitute for a let-binding

 You can apply any rewrite rule, anywhere, anytime
 They should all lead to the same answer (“confluence”)

 Good as a way to explain to a programmer: just source-to-source rewrites

 Good for compilers, when optimising/transforming the program

 Not good as a final execution mechanism



x. x = (y. ⟨2,y〉);
x = (z. ⟨z,3〉);
x

Desugar

x:tuple(int,int);

x = (2,y:int);

x = (z:int,3);

x



x. x = (y. ⟨2,y〉);
x = (z. ⟨z,3〉);
x

x. y. z. x = ⟨2,y〉;
x = ⟨z,3〉;
x

Desugar

x:tuple(int,int);

x = (2,y:int);

x = (z:int,3);

x



x. x = (y. ⟨2,y〉);
x = (z. ⟨z,3〉);
x

x. y. z. x = ⟨2,y〉;
x = ⟨z,3〉;
x

xyz. x = ⟨2,y〉; ⟨2,y〉= ⟨z,3〉; x

Desugar

x:tuple(int,int);

x = (2,y:int);

x = (z:int,3);

x

Substitute for 
(one occurrence of) x



x. x = (y. ⟨2,y⟩);
x = (z. ⟨z,3⟩);
x

x. y. z. x = ⟨2,y〉;
x = ⟨z,3〉;
x

xyz. x = ⟨2,y〉; ⟨2,y〉= ⟨z,3〉; x

xyz. x = ⟨2,y〉; z=2; y=3; x

Desugar

x:tuple(int,int);

x = (2,y:int);

x = (z:int,3);

x

Decompose equality 
of pairs (unification)



x. x = (y. ⟨2,y〉);
x = (z. ⟨z,3〉);
x

x. y. z. x = ⟨2,y〉;
x = ⟨z,3〉;
x

xyz. x = ⟨2,y⟩; ⟨2,y⟩= ⟨z,3⟩; x

xyz. x = ⟨2,y〉; y=3; z=2; xxyz. x = ⟨2,y〉; y=3; z=2; ⟨2,y〉

xyz. x = ⟨2,y〉; y=3; z=2; ⟨2,3〉 ⟨2,3〉

Desugar

x:tuple(int,int);

x = (2,y:int);

x = (z:int,3);

x

Substitute for 
another 

occurrence of x

Substitute for y

Garbage collect



x. x = (y. ⟨2,y〉);
x = (z. ⟨z,3〉);
x

x. y. z. x = ⟨2,y〉;
x = ⟨z,3〉;
x

xyz. x = ⟨2,y〉; ⟨2,y〉= ⟨z,3〉; ⟨z,3〉

xyz. x = ⟨2,y〉; z=2; y=3; ⟨z,3〉

xyz. x = ⟨2,y〉; z=2; y=3; ⟨2,3〉 ⟨2,3〉

Desugar

x. y. z. x = ⟨2,y〉;
x = ⟨z,3〉;
⟨z,3〉

x:tuple(int,int);

x = (2,y:int);

x = (z:int,3);

x









 Desugar conditionals like this:

 Rewrite rules for one

one: a new, simpler construct

Variables bound in e1 can scope over e2



 Desugar for-loops like this:

 Rewrite rules for ‘all’

Variables bound in e1 can 
scope over e2



 How to rewrite (e1 | e2)?

Duplicate surrounding context

E.g.  (x + (y | z) *2)   → (x + y*2)  |  (x + z*2) 



 First attempt to give a deterministic rewrite semantics to a 
functional logic language.

 Much more detail, lots of examples

 Sad lack of a confluence proof.  It’s tricky.  Details may 
change.



 Mutable state, I/O, and other effects.
 An effect system, not a monadic setup

 Pervasive transactional memory

 Structs, classes, inheritance

 The type system and the verifier – lots of cool stuff here



 In Verse, a “type” is simply a function
 that fails on values outside the type
 and succeeds on values inside the type

 So int is the identity function on integers, and fails otherwise

 isEven (which succeeds on even numbers and fails otherwise) is a type

 array int succeeds on arrays, all of whose elements are integers...  
hmm, scratch head...  ‘array’ is simply ‘map’!

 𝜆𝑥. ∃𝑝, 𝑞. 𝑥 = 𝑝, 𝑞 ; 𝑝 < 𝑞 is the type of pairs whose first component is 
smaller than the second

 The Verifier rejects programs that might go wrong.  This is wildly 
undecidable in general, but the Verifier does its best.



 Verse is extremely ambitious
 Kick functional logic programming out the lab and into the mainstream

 Stretches from end users to professional developers

 Transactional memory at scale

 Very strong stability guarantees

 A radical new approach to types 

 Verse is open
 Open spec, open-source compiler, published papers (I hope!)

Before long: a conversation to which you can contribute


