Hashing Modulo Alpha-Equivalence

Krzysztof Maziarz
Microsoft Research
Cambridge, UK
krmaziar@microsoft.com

Tom Ellis
Microsoft Research
Cambridge, UK
toelli@microsoft.com

Alan Lawrence
Microsoft Research
Cambridge, UK
allawr@microsoft.com

Andrew Fitzgibbon
Microsoft Research
Cambridge, UK
awf@microsoft.com

Simon Peyton Jones
Microsoft Research
Cambridge, UK
simonpj@microsoft.com

Abstract

In many applications one wants to identify identical sub-trees of a program syntax tree. This identification should ideally be robust to alpha-renaming of the program, but no existing technique has been shown to achieve this with good efficiency (better than $O(n^2)$ in expression size). We present a new, asymptotically efficient way to hash modulo alpha-equivalence. A key insight of our method is to use a weak (commutative) hash combiner at exactly one point in the construction, which admits an algorithm with $O(n \log^2 n)$ time complexity. We prove that the use of the commutative combiner nevertheless yields a strong hash with low collision probability. Numerical benchmarks attest to the asymptotic behaviour of the method.

CCS Concepts • Theory of computation → Design and analysis of algorithms; • Software and its engineering;

Keywords hashing, abstract syntax tree, equivalence

ACM Reference Format:

1 Introduction

This paper addresses the problem of hashing abstract syntax trees while respecting alpha equivalence. This is a generic problem, with applications in many areas of programming language implementation, for example common subexpression elimination (CSE), hashing for structure sharing, or as part of pre-processing for machine learning.

Taking CSE as an example, consider the following program fragment

$$(a + (v+7)) \times (v+7)$$

A standard CSE transformation can rewrite this to

$$\text{let } w = v+7 \text{ in } (a + w) \times w$$

which can be computed more efficiently. However, CSE is not entirely straightforward. Consider

$$(a + (\text{let } x = \text{exp}(z) \text{ in } x+7)) \times (\text{let } y = \text{exp}(z) \text{ in } y+7)$$

We might hope that CSE would spot that the two let-bound terms are α-equivalent, and transform to

$$\text{let } w = (\text{let } x = \text{exp}(z) \text{ in } x+7) \text{ in } (a + w) \times w$$

We would like to similarly spot the equivalence of the two lambda terms in

$$\text{foo } (\lambda x. x+7) \ (\lambda y. y+7)$$

and transform to

$$\text{let } h = \lambda x. x+7 \text{ in } \text{foo } h \ h$$

So, we want to find all pairs, or more precisely all equivalence classes, of α-equivalent subexpressions of a given program. Since the program may be large, we would like to generate the α-equivalence classes in reasonable time. If there were a hash function invariant under α-renaming that could be computed for every node in a single pass over the tree, the equivalence classes could be generated in the cost of a single sort. Somewhat surprisingly, the CSE literature barely mentions the challenge of hashing modulo α-equivalence, nor does the wider literature on hashing of program fragments. (One might wonder whether switching to de Bruijn indexing would solve the problem, but it does not, as we show in Section 2.4.)

Another challenge is that in typical compilers the program is subjected to thousands of rewrites, each of which transforms the program locally. Ideally, we would like an incremental hashing algorithm, so that we can continuously monitor sharing, for example for register pressure sensitive optimization algorithms.

In this paper we address these challenges, making the following contributions:
• We present an algorithm that identifies all equivalence classes of subexpressions of an expression, respecting α-equivalence (Section 3). The algorithm is developed in two steps. The first defines an e-summary at each node; this step is invertible, allowing the original expression (modulo α) to be reconstructed (Section 4). In the second step we develop a more efficient representation for e-summaries, optimized for the task of producing a hash code for the e-summary (Section 5). This two-step approach makes the correctness argument easy (Section 3.2).

• We show that the algorithm runs in sub-quadratic time (Section 6.1), and is compositional, so that it can readily be made incremental (Section 6.3).

• A key step in making the algorithm efficient is to use a weak hash combiner (exclusive-or) when computing the hash of a finite map (Section 5.2). At first glance, that weak combiner threatens the good properties of hashing. However, we compute the theoretical collision probability for our hash function, showing it can be upper-bounded, with the bound decreasing exponentially with the size of the hashing space (Section 6.2).

• Our proof also lays down several lemmas about compositional hashing functions, which we believe will prove useful for analyses beyond the one done in this work.

We empirically evaluate the asymptotic behaviour of our approach in Section 7, and discuss related work in Section 8.

A Haskell implementation of our hashing algorithm together with all the benchmarks and baselines can be found at https://github.com/microsoft/hash-modulo-alpha.

2 The Problem We Address

Many algorithms were designed to analyse or transform programs. These applications range from classical tools such as compilers and static analysis methods, to understanding and generating code using deep learning [2–4]. The code being analysed or transformed is generally represented by an Abstract Syntax Tree (AST), which represents computational expressions using a tree structure. Subtrees of such an AST — referred to as subexpressions — are useful, because they often correspond to semantically meaningful parts of the program, such as functions.

Many applications need to quickly identify all equivalent subexpressions in an AST. Examples include common subexpression elimination (CSE), as mentioned above; structure sharing to save memory, by representing all occurrences of the same subexpression by a pointer to a single shared tree; or pre-processing for machine learning, where subexpression equivalence can be used as an additional feature, for example by turning an AST into a graph with equality links.

2.1 What Does “Equivalent” Mean?

Downstream tasks may differ in what subexpressions they consider “equivalent”. For example, here are four candidates:

• Syntactic equivalence means that two subexpressions are equivalent if they are identical trees; the same shape, with the same nodes, and the same variable names.

• α-equivalence is like syntactic equivalence but is insensitive to renaming of bound variables. For example, the expression $(\langle x. x+y \rangle)$ is equivalent to $(\langle y. p+y \rangle)$ (by α-renaming the lambda-bound variable), but not equivalent to $(\langle q. q+z \rangle)$, because the free variables differ.

• Graph equivalence goes beyond α-equivalence by treating a let expression as a mere textual description of a graph. So $(\langle \text{let } y=y1 \in \text{let } y=y2 \in x+y \rangle)$ is equivalent to $(\langle \text{let } y=y2 \in \text{let } x=e1 \in x+y \rangle)$, and to $(\langle e1+e2 \rangle)$, because all three describe the same underlying graph.

• Semantic equivalence says that two subexpressions are equivalent if they evaluate to the same value, regardless of the values of their free variables. For example $(3+x+4)$ is equivalent to $(x+7)$ and $(7+x)$ among many others.

The difficulty of deciding equivalence ranges from trivial (syntactic equivalence) to undecidable (semantic equivalence). In this paper we focus on α-equivalence. We specifically do not want to go as far as graph equivalence, because let-expressions express operational choices about object lifetimes and evaluation order, and so graph equivalence is too strong for the downstream tasks that we are interested in. Of course, graph equivalence might be just right for other applications, and it would be interesting to adapt the ideas presented here, but we leave exploring that to future work.

2.2 Baseline: Purely Syntactic Equivalence

Purely syntactic equivalence is easy, and perfect for structure sharing, but not for much else. For example, it is inadequate for CSE, and other tasks, via two primary failure modes: false negatives and false positives.

• False negatives: sensitivity to arbitrary variable names. Consider this expression:

 \[
 \text{map } (\langle y. y+1 \rangle) \ (\text{map } (\langle x. x+1 \rangle) \ \text{vs})
 \]

 The two lambda-expressions are not syntactically identical, but they are α-equivalent, and perform the same computation in the same way. Similarly, consider

 \[
 \text{foo } (\text{let } \text{bar } = x+1 \ \text{in } \text{bar} \cdot y)
 \]

 \[
 (\text{let } \text{pub } = x+1 \ \text{in } \text{pub} \cdot y)
 \]

 Here we would like to CSE the two arguments to foo, even though they use different binders internally.

• False positives: name overloading. Consider the syntactically repeated subexpression $x+2$ in this example:

 \[
 \text{foo } (\text{let } x=\text{bar } \text{in } x+2) \ (\text{let } x=\text{pub } \text{in } x+2)
 \]

 The two subexpressions $x+2$ are unrelated, but they are syntactically identical. If the goal is structure sharing this is fine; indeed we might want to share the two
and we use %
tives:
remains vulnerable to both false positives and false nega-
equivalence challenge? Sadly, no: using de Bruijn indexing
hashing to determine equivalence, and thus solve the
index
i is represented in de Bruijn form by
(\x.\y.x+y*7)
(\y.y+1)

The second problem can readily be addressed, by prepro-
ssing the expression so that every binding site binds a
distinct variable name. This step takes time linear in the
expression size n; or, more precisely, if we take account of
the O(log n) time to look up a bound variable in the envi-
noment, O(n log n). We assume this preprocessing in all
algorithms below.

2.3 Hashing For Syntactic Equivalence
A standard approach to determining subexpression equiva-
ience is to use some form of hashing. We compute a fixed-size
hash code for each node in the tree, and use these hash codes
to insert every node into a hash table.

Hashing gives a simple, direct, and compositional imple-
mentation for syntactic equivalence: the hash for a node is
computed by hashing the node constructor with the hashes of
the children. When used for structure sharing (to save
memory), this is often called hash-consing. When you are
just about to allocate a new node, first compute its hash
code, and then look that up in the hash table to see if that
node already exists. If so, use it; if not, allocate it and add
it to the hash table. In effect, we simply memoise the node
constructor functions.

But this simple approach fails for α-equivalence, because
(\x.x+1) and (\y.y+1) have different hash codes. How can we
fix up the hashing approach to account for α-equivalence?

2.4 De Bruijn Indexing
One well-known way to become insensitive to α-renaming
is to use a nameless representation, typically de Bruijn in-
dexing. Lambdas have no binder; and each occurrence of
a bound variable is replaced by a number that counts how
many intervening lambdas separate that occurrence from its
binding lambda. For example, the expression (\x.\y.x+y*7)
is represented in de Bruijn form by (_.__._+__+_7), where
we use %i to represent a variable occurrence with de Bruijn
index i.

After switching to de Bruijn indexing, can we use vanilla
hashing to determine equivalence, and thus solve the α-
equivalence challenge? Sadly, no: using de Bruijn indexing
remains vulnerable to both false positives and false nega-
tives:

- **False negatives.** Consider
 \t. \x.\x+t (\y.\l.\x.x+t)

 The two subexpressions (\x.x+t) are certainly equiva-
 lent, and we could profitably transform the expression to

\t. \x.\x+t in foo h (\y.h)

But with de Bruijn indexing, the two expressions look
different:

\t. foo (_.__._+__+_2)

Notice how the two occurrences of t have become %1
and %2 respectively.

- **False positives.** Consider
 \t. foo (_.__._+__+_2) (\y.\l.\x.x+y*7)

With de Bruijn indexing this looks like

\t. foo (_.__._+__+_2) (\y.\l.__+_+_7)

This has two occurrences of (_.__._+__+_2), which might
be great for structure sharing, but is wrong for CSE.

Note that, unlike with simple syntactic equivalence,
these false positives cannot be eliminated by giving
every binder a unique name – with de Bruijn there are
no binders!

Moreover, using de Bruijn indexing as the internal represen-
tation of an expression in a compiler incurs serious costs
of its own, because terms need to be repeatedly traversed
as they are substituted under other binders, to adjust their
de Bruijn indices. We know of no systematic, quantita-
tive comparison of the engineering tradeoff between de Bruijn
and named representations in a substantial application (e.g.
a compiler), perhaps because the choice has such pervasive
effects that implementors are typically forced to make one
choice or the other, and stick to it. A decent attempt was
made in [14], with the conclusion that the costs of a de Bruijn
representation exceed the benefits.

2.5 Locally Nameless
The false negatives and false positives of de Bruijn indexing
are a serious problem for CSE-like purposes. However, they
can be avoided by using the "locally nameless" representa-
tion [5, 13, 21]. The idea is simple: the hash of an expression
is defined to be the hash of the de-Bruijn-ised representation
of the subexpression taken in isolation. For example, the hash
of (f x (\y.\x.x+y*7)) would be the hash of (f x (_.__._+__+_7)). In
this expression the free variables _ and _ remain unchanged,
but the locally-bound variable y has been de-Bruijn-ised. The
expression to be hashed has a mixture of de Bruijn indices
and named free variables.

The hash of an application (e1 e2) can be obtained by
combining the hash of e1 and e2; but the hash of (\x.e) cannot
be obtained from the hash of e. The hash of e incor-
porates the hash of each occurrence of x in e; but the hash of
(\x.e) must instead incorporate the hash of an appropriate
de Bruijn index at each of those occurrences. We cannot do
this compositionally; instead, we must first de-Bruijn-ise x
in e, and then take the hash of that.

This algorithm correctly does hashing modulo α-equiva-
ence, but it comes with a cost in asymptotic complexity: as
we pass each lambda, we must re-hash the entire body.
In practice, the locally-nameless scheme works sufficiently well that it is used in Epigram [13] and the LEAN theorem prover [6]. However, it suffers from the same complexity issues as de Bruijn. Other things being equal, we would prefer to avoid compiler technology that has asymptotic complexity holes fundamentally built in, as well as the other index-shuffling costs imposed by a de-Bruijn-based (including locally nameless) representation [14]. Our contribution is to show how to use a name-ful representation (avoiding index shuffling), and still get compositional hashing with asymptotically-good complexity.

3 The Key Ideas

In this section we describe the key ideas of our approach. Before doing so, it is helpful to articulate our goal more precisely.

Goal. Given an expression \(e \), in which every binding site binds a distinct variable name, identify all equivalence classes of subexpressions of \(e \), where two subexpressions are equivalent if and only if they are \(\alpha \)-equivalent. We wish to achieve this goal in a way that is:

- **Compositional.** If we have already done the computation for \(e_1 \) and \(e_2 \), computing the result for \((e_1 \ e_2) \) should be done by combining the results from children. In particular, context-dependent computation is not allowed.

- **Efficient.** We consider this to mean that finding all equivalent subexpressions should be sub-quadratic in the size of the expression.

Compositionality helps with efficiency, because combining two smaller expressions \(e_1 \) and \(e_2 \) into a bigger one involves only combining the results of processing these subexpressions. But, crucially for our applications, compositionality also allows hashing to be *incremental*: if we have already performed the equality-discovery task for a large expression, and we make a small rewrite in that expression, we can efficiently recompute the results by examining only parts of the expression that have changed. We give an analysis of incrementality in Section 6.3.

As to complexity, we consider an algorithm that is quadratic in expression size to be too expensive. Linear (constant work at each node) would be ideal; in this paper we achieve log-linear (generally \(O(n \log n)^k \), with here \(k = 2 \)), which we consider acceptable.

3.1 The Challenge of Compositionality

Given an application \((e_1 \ e_2) \), a compositional algorithm will somehow process \(e_1 \) and \(e_2 \) separately, and combine those results to get the result for \((e_1 \ e_2) \). Let us call "the result of processing an expression" the e-`summary` for that expression. You could imagine attaching the e-`summary` for \(e \) to the tree node for \(e \), and computing the e-`summary` for \((e_1 \ e_2) \) from the e-`summaries` for \(e_1 \) and \(e_2 \). The idea is that an e-`summary` precisely identifies the equivalence class: two subexpressions are \(\alpha \)-equivalent if and only if their e-`summaries` are equal.

The difficulty with this approach is that the expressions \((x+2) \) and \((y+2) \) are different, and must have different e-`summaries`, but \((\lambda x. x+2) \) and \((\lambda y. y+2) \) are \(\alpha \)-equivalent, and must have the same e-`summary`. So an e-`summary` cannot be a simple numeric hash code, because there is no way to get the hash-code for, say, \(30+2 \) from the hash-code of \(x+2 \).

Therefore, we need a richer e-`summary`. At one extreme, an expression could of course be its own e-`summary`! That would be fast to compute (a no-op), and compositional, but asking if two e-`summaries` are equal would require an \(\alpha \)-respecting equality comparison between the two summaries. The task of finding all equivalence classes would be absurdly expensive, requiring an \(\alpha \)-respecting equality comparison between every pair of expressions.

We seek something in between the two. We will define an e-`summary` that is not fixed-size (like a hash code), but from which we can rapidly compute a hash code.

3.2 Overview of Our Approach

A general overview of our approach is as follows.

Step 1 (Section 4). We define a particular e-`summary`, with the following properties:

- The e-`summary` for an expression can be computed in a compositional way (Section 4.6). The cost of computing it for all subexpressions is quadratic in expression size, a problem we fix later.

- The e-`summary` for \(e \) can be converted back to an expression \(e' \) which is \(\alpha \)-equivalent to \(e \) (Section 4.2). That is, e-`summaries` lose no information, except the names of the bound variables.

- Two e-`summaries` are equal if and only if the expressions from whence they came are \(\alpha \)-equivalent.

Step 2 (Section 5). At this stage, it may appear that not much has been gained. An expression \(e \) and its e-`summary` are inter-convertible, and comparing e-`summaries` is not much faster than comparing the corresponding expressions. But, e-`summaries` enjoy a crucial extra property: unlike expressions, we can easily represent an e-`summary` in a hashed form that is much more compact and enjoys \(O(1) \) comparison time.

The two-step approach makes the algorithm easier to reason about. Step 1 loses no information, and hence cannot give rise to false positives. Step 2 is just regular hashing and, like any hash, can suffer from collisions and hence false positives; but in Section 6.2 we show that the probability of collision remains inversely exponential in the number of bits in the hash code.

4 Step 1: A Compositional E-Summary

In this section we give the details of our e-`summary`. Although it does not yet give a way to efficiently find equal
subexpressions, it lays the groundwork for Step 2 discussed in Section 5. Splitting the development in two in this way allows much easier reasoning about correctness.

For the sake of concreteness, we use Haskell to express our algorithm, its data types and its functions.

4.1 Preliminaries
First, we need a datatype for representing the expression:

```haskell
type Name = String

data Expression = Var Name
  | Lam Name Expression
  | App Expression Expression
```

For simplicity, we use String for variable names and assume they can be compared in constant time; a practical implementation should replace the String names with unique identifiers that support constant-time comparison. As specified in Section 3, we assume that the variable names are all unique. This requirement is easy to satisfy by renaming the variables during preprocessing.

This language is very minimal, but it is enough to demonstrate the α-equivalence challenge, and it can readily be extended to handle richer binding constructs (let, case, etc.), as well as constants, infix function application, and so on.

4.2 The Basic E-Summary
Recall from Section 3.1 that adding a lambda at the root of an expression must transform distinct e-summaries (for, say, $x+2$ and $y+2$) into the same one (for $\lambda x. x+2$). To account for this, we define the e-summary of an expression e to be a pair of:

- The **structure**, or shape, of e (Section 4.3). The structure of e completely describes e apart from its free variables (imagine every free variable being replaced by <\text{hole}>), so $(\lambda x. y)$ has same structure as $(\lambda x. y)$.

- The **free-variable map** of e (Section 4.4). The variable map of e is a list of e’s free variables, each with a tree of positions in e where it occurs (we define positions in Section 4.5).

Therefore, an e-summary is a pair of a structure and a free-variable map:

```haskell
data ESummary = ESummary Structure VarMap
```

We will elaborate each of these types in the following sections. In Figure 1, we show how e-summaries are built up for an example expression. Our basic algorithm has the following signature:

```haskell
summariseExpr :: Expression -> ESummary
```

The function summariseExpr converts an Expression into its ESummary. A key correctness property is that we can reconstruct an Expression from an ESummary, up to the names of bound variables. That is, it is possible to implement

```haskell
rebuild :: ESummary -> Expression
```

so that rebuild (summariseExpr e) is α-equivalent to e; in other words, an ESummary loses no necessary information. Indeed, others have suggested using a representation in which a lambda contains a list of the occurrences of its bound variable as the primary representation of lambda terms [1, 12, 17].

4.3 Expression Structure
The structure of an expression e expresses the shape of e, ignoring the identity of its free variables.

```haskell
data Structure
  = SVar
  | SLam (Maybe PosTree) Structure
  | SApp Structure Structure
```

Variables are replaced by an anonymous SVar. A lambda does not name its bound variable; instead, it lists the positions at which that bound variable occurs in its body. Of course an actual list, of the form (L, LR, RRL) would be alarmingly inefficient, instead position trees (of type PosTree) are used, as described in Section 4.5.

We will build values of type Structure using "smart constructors".

![Figure 1](image-url)

Figure 1. (a) Input expression, with names at Lam and Var nodes. (b-e) E-Summaries for subexpressions, names only in the VarMap. This diagram depicts an $O(n^2)$ algorithm (Section 4.6); then the "smaller subtree" (Section 4.8) and "xor" (Section 5.2) modifications reduce complexity for hash computation to $O(n \log n)$.

...
mkSVar :: Structure
mkSLam :: Maybe PosTree -> Structure -> Structure
mkSApp :: Structure -> Structure -> Structure

You can think of these as simply renamings of the underlying data constructors (e.g. mkSVar = SVar), but in Section 5.1 we will exploit the flexibility of being able to redefine mkSVar.

4.4 Free Variables Map

The free-variable map of an expression maps each free variable of e to the positions at which that variable occurs. It supports the following operations:

- emptyVM :: VarMap
- singletonVM :: Name -> PosTree -> VarMap
- extendVM :: Name -> PosTree -> VarMap -> VarMap
- removeFromVM :: Name -> VarMap -> (VarMap, Maybe PosTree)

Removes one item from the map, returning what the variable mapped to, or Nothing if it was not in the map.

toListVM :: VarMap -> [(Name, PosTree)]

One possible implementation of VarMap is to use Haskell’s Data.Map library:

```
type VarMap = Map Name PosTree
```

We will introduce a few more operations on VarMap as we go along; all can be implemented straightforwardly using standard libraries.

4.5 Position Trees

A value of type PosTree identifies a set of one or more SVar nodes inside a Structure. A PosTree is a skeleton tree, with the same structure as the expression, reaching only the leaves of the expression that are occurrences of one particular variable:

```
data PosTree
    = PTHere
    | PTLeftOnly PosTree
    | PTRightOnly PosTree
    | PTBoth PosTree PosTree
```

So the occurrences of variable “x” in

App (App (Var “f”) (Var “x”)) (Var “x”)

are described by the position tree

PTBoth (PTRightOnly PTHere) PTHere

In a Structure, an SLam node contains a position tree that describes all the occurrences of that variable. A position tree always represents one or more occurrences, so an SLam node actually contains a (Maybe PosTree), with Nothing indicating that the bound variable does not occur at all in the body of the lambda.

As with Structure, we use “smart constructors” (mkPTHere, mkPTBoth, etc.) so that we can give these “constructors” extra behaviour in Section 5.1.

4.6 Full Algorithm

After designing the auxiliary data structures, we may instantiate our algorithm as follows:

```
data ESummary = ESummary Structure VarMap

summariseExpr :: Expression -> ESummary
summariseExpr (Var v) = ESummary mkSVar (singletonVM v mkPTHere)
summariseExpr (Lam x e) = ESummary (mkSLam x_pos str_body) vm_e
    where ESummary str_body vm_body = summariseExpr e
         (vm_e, x_pos) = removeFromVM x vm_body
summariseExpr (App e1 e2) = ESummary (mkSApp str1 str2) (merge vm1 vm2)
    where ESummary str1 vm1 = summariseExpr e1
          ESummary str2 vm2 = summariseExpr e2
          merge = mergeVM mkPTLeftOnly mkPTRightOnly mkPTBoth

mergeVM :: (PosTree -> PosTree) -- Left only
        -> (PosTree -> PosTree) -- Right only
        -> (PosTree -> PosTree) -- Both
        -> VarMap -> VarMap -> VarMap
```

Most of the work is done in App nodes, where we need to combine variable maps from the node’s children. To that end, we use a new function mergeVM, which combines the position trees from the children’s maps. The three argument functions to mergeVM say what to do if only the left map has the variable in its domain, only the right map does, or both. In the call to mergeVM we simply use the constructors from PosTree for these three cases.

The time complexity of this version of our algorithm is quadratic, because at each App node the mergeVM operator must touch every element of the domain of the mapping, taking time proportional to the number of free variables of the expression. In Section 4.8, we discuss the key optimization needed to bring the complexity down to log-linear. However, we first prove that the conversion to ESummary is reversible by designing the rebuild function.

4.7 Rebuilding

The rebuild function (Section 4.2) is easy to write

```
rebuild :: ESummary -> Expression
rebuild (ESummary SVar vm) = Var (findSingletonVM vm)
rebuild (ESummary (SLam p s) vm) =
    Lam x (rebuild (ESummary s (extendVM x p vm)))
    where x = ... -- fresh variable name
rebuild (ESummary (SApp s1 s2) vm) =
    App (rebuild (ESummary s1 vm))
        (rebuild (ESummary s2 vm))
    where m1 = mapMaybeVM pickL vm
          m2 = mapMaybeVM pickR vm
```

4.7 Using the Smaller Subtree

When processing an `App` node, the algorithm from Section 4.6 uses `mergeVM` which transforms every element of its range, thereby taking time proportional to the number of free variables of the expression. For very unbalanced trees this might be quadratically expensive. In this section we modify the algorithm so that it only transforms the smaller map, leaving the other unchanged. The more unbalanced the tree, the less traversal we do; the worst case becomes a balanced tree, and the other unchanged. The more unbalanced the tree, the less

As you can see from the definition of `vm`, we convert the smaller map to a list of key-value pairs using `toListVM`, and add them one at a time to the larger map using `add_kv`. The new function `alterVM` alters the mapping at one key; the argument function allows the caller to behave differently depending on whether or not the key was in the map beforehand. But what is this mysterious tag and the new `mkPTJoin` operation on position trees?

First, `structureTag` extracts from a `Structure` some kind of "tag" (an integer, say)

As you can see from the definition of `vm`, we convert the smaller map to a list of key-value pairs using `toListVM`, and add them one at a time to the larger map using `add_kv`. The new function `alterVM` alters the mapping at one key; the argument function allows the caller to behave differently depending on whether or not the key was in the map beforehand. But what is this mysterious tag and the new `mkPTJoin` operation on position trees?

First, `structureTag` extracts from a `Structure` some kind of "tag" (an integer, say)

As you can see from `add_kv`, we make a tagged `PTJoin` for every variable in the smaller map, but variables that appear
only in the larger map are left untouched. The tag allows rebuild to invert this combining operation, in a unique way, determined by whether or not each item is tagged with the tag for this structure:

```haskell
rebuild (ESummary str@SApp left_bigger s1 s2) vm
  = App (rebuild (ESummary s1 vm1))
    (rebuild (ESummary s2 vm2))
  where
tag = structureTag str
small_m = mapMaybeVM upd_small vm
big_m  = mapMaybeVM upd_big  vm
  (vm1, vm2) = if left_bigger
    then (big_m, small_m)
    else (small_m, big_m)

 upd_small :: PosTree -> Maybe PosTree
 upd_small (PTJoin ptag mpt pt) | ptag == tag = Just pt
                                |               = Nothing

 upd_big :: PosTree -> Maybe PosTree
 upd_big (PTJoin ptag mpt pt) | ptag == tag = Just mpt
                             |               = Nothing
```

The `left_bigger` flag in `SApp` tells whether the bigger map came from the left or right argument. The tag in `PTJoin` tells whether it belongs to the `SApp` under consideration, or belongs to one deeper in the structure.

Note that in this version of `summariseExpr`, the amount of work done in an `App` node is proportional to the size of the smaller variable map from the node’s children.

5 Step 2: Hashing an E-Summary

To obtain an integer hash value that can be used for downstream tasks, we will use the following functions

```haskell
hashStructure :: Structure -> HashCode
hashVM     :: VarMap    -> HashCode
hashESummary :: ESummary  -> HashCode
```

Our aim is for all of these functions to work in $O(1)$ time. Conversion from an e-summary to `HashCode` is information-losing, and non-invertible.

To implement `hashESummary`, we may simply do

```haskell
hashESummary (ESummary str map) =
  hash (hashStructure str, hashVM map)
```

We deal with `hashStructure` in Section 5.1, and `hashVM` in Section 5.2.

5.1 Hashing Structures

`hashStructure` can easily be implemented by computing the hash at construction time, and storing it in the `Structure` object itself. That would be enough to achieve the complexity bound we desire. But there is an even more attractive possibility: since `hashStructure` is the only function we will need for structures, we can represent a structure simply by its hash code, dispensing entirely with the tree, thus

```haskell

type Structure = HashCode

-- 'Constructors' combine hash values
mkSV :: Structure
mkSL :: Maybe PosTree -> Structure -> Structure
mkSApp :: Structure -> Structure -> Structure

hashStructure :: Structure -> HashCode
hashStructure s = s
```

The “constructors” of the tree are implemented by $O(1)$ hash combinators, and `hashStructure` becomes the identity function. We can apply precisely the same reasoning to `PosTree`, and represent a value of type `PosTree` by its `HashCode`.

Of course, identifying each `Structure` and `PosTree` with its `HashCode` has a much lower constant factor than representing structures and positions as trees: instead, we only manipulate hash codes. In exchange, we will no longer be able to write `rebuild`. However, recall that `rebuild` is not used in the final implementation; its only purpose is that its existence shows the correctness of the algorithm. By thinking first in terms of the non-information-losing data structure, and then thinking of efficient representations of those structures, we can get both an easy correctness argument and an efficient implementation.

5.2 Hashing Variable Maps

Hashing variable maps is a little more tricky. It would be prohibitively (indeed asymptotically) slow to compute the hash of the variable map afresh at each node. Instead, as for structures, we would like to compute the hash of a node’s variable map using the hashes of its children. Doing so is far from trivial. We might try to pair a map with its hash, thus:

```haskell
data VarMap = VM (Map Name PosTree) HashCode
```

and try to compute the hash for $(f \text{ } vm \text{ } args)$, where f is a function that returns a new `VarMap`, from the hash of `vm` and f’s other arguments `args`. But consider `removeVM`: how can we start with the hash of a map, and compute the hash of a map from which a particular entry has been removed?

Our key idea is this: we define the hash of a variable map as the `xor`, \oplus, of the hashes of its entries, where an entry is a (variable, position-tree) pair (v, p). This definition has big advantages:

- Since \oplus is commutative and associative, it does not matter in which order we consider the entries.
- We can compute the hash of removing (v, p) from a map m by simply XORing m’s hash with the hash of (v, p), since $(a \oplus b) \oplus a = b$

More generally, we could use any operator \oplus that is associative, commutative, and invertible. The trouble is that `XOR` is a cryptographically weak hash combiner, so using it to combine hashes in this way looks suspicious—won’t we get lots of unwanted collisions? Fortunately, these fears are unfounded: we prove in Section 6.2 that in our algorithm the use of `XOR` does not lead to excess hash collisions.
We start by bounding the amount of work done in works. Let us define
\[
\text{summariseExpr :=} \text{alterVM}
\]
and then derive the time complexity for the entire algorithm.

In this section, we formally analyze the time complexity of our final algorithm, and then upper-bound the probability of obtaining incorrect results due to hash collisions. Throughout this section we use \(|e|\) to denote the number of nodes in expression \(e\).

6.1 Time Complexity

We start by bounding the amount of work done in \(\mathit{App}\) nodes, and then derive the time complexity for the entire algorithm. We present first a formal proof, and then an intuitive argument which may help the reader to see why the formal proof works.

Lemma 6.1. Let \(e\) be an expression. The total number of \(\text{alterVM}\) and \(\text{removeFromVM}\) operations performed in \(\mathit{App}\) nodes by \(\text{summariseExpr}\) ran on \(e\) is \(O(|e| \log |e|)\).

Proof. Denote the number of operations in question as \(O_{\mathit{App}}(e)\). Let us define
\[
T(n) = \max_{e: |e| \leq n} O_{\mathit{App}}(e).
\]

We will prove that \(T(n)\) is \(O(n \log n)\), which will conclude the proof of the lemma.

First, consider a single \(\mathit{App}\) node \(v\) in \(e\) with children \(v_1, v_2\). The number of map operations performed when processing \(v\) is \(O(\min(m_1, m_2))\), where \(m_1 = |\text{map}|\) is the size of the free variables map from \(v_1\). Since a free variables map only contains variables that are used in a given subtree, its size is bounded by the number of free variables in the subtree - i.e. \(m_1 \leq |v_1|\), and therefore \(\min(m_1, m_2) \leq \min(|v_1|, |v_2|)\).

From the analysis above we get that for \(n > 1\)
\[
T(n) \leq \max_{1 \leq a \leq \frac{n-1}{2}} (T(a) + T(n - 1 - a) + C \cdot \min(a, n - 1 - a)),
\]
where \(a\) and \(n - 1 - a\) correspond to \(|v_1|\) and \(|v_2|\), respectively, and \(C\) is a constant resulting from the use of \(O\) notation. Due to symmetry, we can rewrite Equation 1 as
\[
T(n) \leq \max_{1 \leq a \leq \frac{n-1}{2}} (T(a) + T(n - 1 - a) + Ca).
\]

Now, we will prove inductively that \(T(n) \leq Cn \log_2 n\). The base case of \(n = 1\) holds, since \(T(1) = 0\) as an expression consisting of a single node cannot have any \(\mathit{App}\) nodes. Then
\[
T(n) \leq \max_{1 \leq a \leq \frac{n-1}{2}} (T(a) + Ca + T(n - 1 - a))
\]

Using \(T(n - 1 - a) \leq T(n - a)\):
\[
\leq \max_{1 \leq a \leq \frac{n-1}{2}} (T(a) + Ca + T(n - a))
\]

By inductive hypothesis on \(T(a)\) and \(T(n - a)\):
\[
\leq \max_{1 \leq a \leq \frac{n-1}{2}} (Ca \log_2 a + Ca + C(n - a) \log_2 (n - a))
\]

Regrouping terms:
\[
= C \max_{1 \leq a \leq \frac{n-1}{2}} (a \log_2 a + (n - a) \log_2 (n - a))
\]

Using \(\log_2 a + 1 = \log_2 a + \log_2 2 = \log_2 2a\):
\[
= C \max_{1 \leq a \leq \frac{n-1}{2}} (a \log_2 2a + (n - a) \log_2 (n - a))
\]

Using \(2a < n\):
\[
< C \max_{1 \leq a \leq \frac{n-1}{2}} (a \log_2 n + (n - a) \log_2 n)
\]

Expression under max does not depend on \(a\):
\[
= C n \log_2 n
\]

An intuitive alternative to the above derivation may prove illuminating: in an \(\mathit{App}\) node, we do work proportional to the smaller subtree. Let’s imagine that we are touching every node in that subtree to mark the amount of work done; we need to compute the total number of touches. Now flip this around: how many times could a fixed node \(v\) be touched? If we follow a path \(v = u_1, u_2, \ldots, u_k\) from \(v\) to the root, any \(\mathit{App}\) node \(u_i\) on such path could "trigger" \(v\) being touched, but only if \(u_{i-1}\) was the smaller child of \(u_i\). Therefore, if we follow the path \(u_1, \ldots, u_k\), any time we see a node that triggered touching \(v\) the current subtree size at least doubles, so \(v\) could only have been touched \(\log n\) times. There are \(n\) nodes \(v\), so total touches can’t exceed \(n \log n\).
Lemma 6.2. Let e be an expression. The total number of map operations (i.e. singletonVM, alterVM and removeFromVM) performed by summariseExpr ran on e is $O(|e| \log |e|)$.

Proof. We perform exactly one map operation per every Var and Lam node, while the total number of map operations performed in App nodes is bounded due to Lemma 6.1. □

Theorem 6.3. Let e be an expression. The total running time of the summariseExpr algorithm ran on e is $O(|e| \log^2 |e|)$.

Proof. The singletonVM, alterVM and removeFromVM operations are dominant, so it is sufficient to bound the time spent in these operations.

From Lemma 6.2, we get that the total number of these operations is $O(|e| \log |e|)$. Since we implement the map as a balanced binary search tree, addition and removal take time logarithmic in terms of the size of the map (which never exceeds $|e|$), while singletonVM takes constant time. □

6.2 Proof That Our Hashing Function Is Strong

In this section, we show that summariseExpr composed with hashESummary is a strong hashing function. We assume that we have access to a source of true randomness (e.g. a stream of random bits), which can be used to instantiate randomly chosen hash combiners. Under this assumption, we prove that it is possible to choose all hashing functions and hash combiners in a randomized way, such that the probability of hash collisions is low.

Definition 6.4. We will call a function $f : A \rightarrow B$ random if every value of $f(a)$ for $a \in A$ was chosen uniformly over B, and independently from all the other values $f(a')$ for $a' \neq a$.

Note that a random function f according to Definition 6.4 is one that was chosen randomly, but when f is called for a fixed argument, its value is deterministic.

In practice, it may not be possible to obtain true randomness, or one may prefer to fix the seed and make the hashing algorithm deterministic; nevertheless, our theoretical results indicate that there is no more reason to expect hash collisions than if we had used a strong combiner in Section 5.2.

Throughout this section we denote the hash width as $b \in \mathbb{Z}_+$, and $\mathbb{H} = \{0, 1\}^b$. By hash we denote calls to a generic hash function for primitive objects.

Lemma 6.5 (XOR hash combiner for sets). Given a random function $f : A \rightarrow \mathbb{H}$, define the set hash $h : 2^A \rightarrow \mathbb{H}$ by

$$h(S) = \bigoplus_{s \in S} f(s)$$

where \bigoplus denotes XOR-aggregation. Then

$$\forall S_1, S_2 \subseteq A : S_1 \neq S_2 \quad p(h(S_1) = h(S_2)) = \frac{1}{2^b}$$

Proof. Fix S_1 and S_2; from the properties of XOR, we have

$$\bigoplus_{s \in S_1} f(s) = \bigoplus_{s \in S_2} f(s) \iff \bigoplus_{s \in S_1 \cap S_2} f(s) = 0$$

where $S_1 \cap S_2$ is the symmetric difference of S_1 and S_2. As $S_1 \cap S_2 \neq \emptyset$, we can take any $x \in S_1 \cap S_2$, and obtain

$$\bigoplus_{s \in S_1 \cap S_2} f(s) = 0$$

Since the values of f are chosen independently, we may assume the value for x is drawn last, at which point the right side of Equation 3 is a constant. As $f(x)$ is chosen uniformly, the probability of $f(x)$ being equal to any constant is $\frac{1}{|\mathbb{H}|}$. □

Lemma 6.6. Let D be a datatype defined recursively (such as Structure or PosTree). It is possible to construct in a randomized way a compositional hashing scheme $h : D \rightarrow \mathbb{H}$ (that is, compute the hash for $d \in D$ in the constructor by calling a hash combiner on the hashes of children), so that

$$\forall a, b \in D : a \neq b \quad p(h(a) = h(b)) \leq \frac{|a| + |b|}{2^b}$$

where $|d|$ is the number of constructor calls when building d (i.e. both those for "leaf" objects and "branch" combiners).

Proof. See Appendix A. □

Theorem 6.7. Let E be the set of all Expression objects. It is possible to instantiate summariseExpr with hashing functions and combiners into \mathbb{H} chosen in a randomized way, so that

$$\forall e_1, e_2 \in E : e_1 \neq e_2 \quad p(h(e_1) = h(e_2)) \leq \frac{5|e_1| + |e_2|}{2^b}$$

where $h(e) = hashESummary(summariseExpr(e))$ and $e_1 \neq e_2$ means e_1 and e_2 are not α-equivalent.

Proof. Since a full (hash-free) e-summary preserves all information relevant to α-equivalence, the only way a collision can happen is when we convert pieces of an e-summary into hash values. We now consider all such places one by one.

First, we may get a collision when either hashing variable names, or auxiliary compositional objects (structures, position trees, and variable map entries that combine the position tree with the variable name). As the total number of calls to hash combiners in each of the four categories does not exceed $|e_1| + |e_2|$, from Lemma 6.6, the probability of collision in any of the four cases is bounded by $\frac{5|e_1| + |e_2|}{2^b}$.

Moreover, collisions may arise due to XOR-aggregation of hashes when hashing variable maps. From Lemma 6.5, the probability of this event is bounded by $\frac{1}{2^b}$.

Finally, the top-level call to a hash combiner (to combine hashes of structure and variable map) may produce a collision. As we assume that combiner to be random, the probability of this event is simply bounded by $\frac{1}{2^b}$.

Summing up, we get

$$p(h(e_1) = h(e_2)) \leq \frac{4(|e_1| + |e_2|) + 2}{2^b} \leq \frac{5|e_1| + |e_2|}{2^b}$$

□
Theorem 6.8. Let \(E \) be the set of all Expression objects. It is possible to instantiate summariseExpr with hashing functions and combinators into \(\mathbb{H} \) chosen in a randomized way, so that for any \(e \in E \), summariseExpr recovers the correct set of equivalence classes of subexpressions with probability at least \(1 - 5|e|^3 \cdot 2^{-b} \).

Proof. There are \(\binom{|e|}{2} < \frac{1}{2}|e|^2 \) pairs of subexpressions; any single pair can cause a collision leading to summariseExpr returning an incorrect set of equivalence classes. Probability of a collision for a fixed pair of subexpressions is bounded by Theorem 6.7. \(\Box \)

One practical consequence of Theorem 6.8 is that 128-bit hashes are enough even for very large-scale applications. Specifically, if \(b = 128 \) and we consider expressions up to a billion nodes, \(|e| \leq 10^9\), then the probability of having at least one collision is bounded by approximately \(5 \cdot 10^{27} \cdot 2^{-128} < 10^{-10} \). In Appendix B, we empirically verify that the observed collision rate is indeed consistent with theory.

6.3 Incrementality

One crucial property of our algorithm is compositionality: computing the hash of a subtree only requires the results from children, and there is no need to orchestrate anything across the entire expression, with the exception of ensuring all variable names are unique, which is an invariant that is easy to maintain. Therefore, the algorithm can be made incremental: if a subtree of node \(v \) in an expression \(e \) is modified, e-summaries (and therefore hashes) of most nodes will often stay unchanged.

More specifically, let us say that we have already computed all subtree hashes for an expression \(e \), and we modify a subtree under node \(v \). The only affected nodes are those lying on the path from \(v \) to the root, and also those in the rewritten subtree (in particular, modifying a subtree might have required creating some fresh nodes). Recomputing e-summaries for the latter is unavoidable, and the cost of that depends on the specifics of a rewrite – for example, if the subtree of \(v \) has constant size, then the work done for the nodes in that subtree will also be constant. In this section, we will focus on the former, and try to bound the amount of work needed to recompute e-summaries for all nodes on the path from \(v \) to the root.

Let \(v = u_h, u_{h-1}, \ldots, u_0 \) be the path in question, where \(h \) is the depth of \(v \). Work done when recomputing the e-summary for \(u_i \) is in the worst case proportional to the size of the free variable map for \(u_i \). Note that any free variable that is used in the subtree of \(u_i \) is either bound in one of the nodes \(u_j \) for \(j < i \), or it is never bound in the entire expression \(e \). If we denote the number of variables that are nowhere bound as \(f \), then the work done in \(u_i \) is \(O(i + f) \); summing over all \(i \), we get a bound of \(O(h^2 + hf) \). Of course, the upper-bound of \(O(|e| (\log |e|)^2) \) still holds.

In summary, if a subtree of a node at depth \(h \) is rewritten, then updating all subtree hashes takes time \(O(\min(h^2 + hf, |e| (\log |e|)^2)) \). While in the worst case this is of the same order of magnitude as recomputing all hashes from scratch, if all variables are bound (\(f = 0 \)), and the tree is reasonably balanced, we obtain something much faster; in particular, if the tree is balanced (i.e. has height \(O(\log |e|) \)), then recomputing after a rewrite takes time \(O((\log |e|)^2) \).

7 Empirical Evaluation

In this section we empirically evaluate the running time of our final algorithm. We consider two settings: synthetic, automatically generated lambda terms (Section 7.1), and several hand-picked realistic examples corresponding to commonly used machine learning models (Section 7.2).

In Table 1, we list the hashing algorithms that we compare in this section. The first two, Structural and De Bruijn, are incorrect: they do not meet the specification outlined in Section 3. Specifically, they may equate distinct expressions (false positives), or fail to equate \(\alpha \)-equivalent ones (false negatives). We present these algorithms here to give a sense of the extra performance cost of hashing modulo \(\alpha \)-equivalence.

The Locally Nameless algorithm is the fastest one we know that meets the specification, while Ours is the algorithm presented in this paper.

We implemented all four in Haskell, over the following expression type

```haskell
data Expression h = Var h Name
                   | Lam h Name Expression
                   | App h Expression Expression
```

In each case, the hashing algorithm simply annotates each node with a hash-value, yielding a result of type Expression HashCode. We did not model the cost of putting these hashcodes into a hash table and identifying equivalence classes, since this cost is the same in all cases. The implementation of our algorithm is optimized over the source code listed in this paper by the addition of strictness annotations and replacing two map operations with a single fused map operation in a couple of places; similar optimizations were applied to the baseline algorithms. The garbage collector was disabled during timing. Constant factors may of course vary in other

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Time complexity</th>
<th>True pos.</th>
<th>True neg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structural (§2.3)</td>
<td>(O(n))</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>De Bruijn (§2.4)</td>
<td>(O(n \log n))</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Locally Nameless (§2.5)</td>
<td>(O(n^2 \log n))</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Ours (§3 - §5)</td>
<td>(O(n (\log n)^2))</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

In Table 1, we list the hashing algorithms that we consider in our evaluation. Note that some of them do not produce the correct set of equivalence classes, and are only given to define complexity minima.
implementations, but we are mainly interested in how the algorithms behave relative to each other.

7.1 Random Expressions

In Figure 2, we show time taken by the four algorithms to hash all subexpressions of randomly generated expressions of varying size. We generated two different families of random expressions:

- **Balanced trees.** Here we generated expressions that are roughly balanced trees, at each point generating a \(\text{Lam} \) or \(\text{App} \) node with equal probability. Each \(\text{Lam} \) node has a fresh binder, and at variable occurrences we choose one of the in-scope bound variables.

- **Wildly unbalanced trees** with very deeply nested lambdas. This case is not as unrealistic as it sounds: a realistic language will include let bindings, and deeply-nested stacks of let expressions are very common in practice, especially in machine-generated code.

The results reassure us that our algorithm meets the claimed complexity bounds – note the quadratic behaviour of Locally Nameless for unbalanced trees. Moreover, although there is a constant-factor cost compared to the non-\(\alpha \)-respecting algorithms, the slowdown is much smaller than Locally Nameless.

7.2 Real-Life Examples

Our interest in the problem of hashing modulo \(\alpha \)-equivalence was directly motivated by our parallel work on a prototype compiler for machine learning models, and the discovery that a significant amount of time was being spent on pre-processing the AST to find equivalent subtrees. In that context, in Table 2 we show a different empirical evaluation, using real expressions found in machine learning workflows: "MNIST CNN" [11] is a convolution kernel from a deep neural network used in computer vision; "GMM" [16] is the Gaussian Mixture Model benchmark from the ADBench suite [19]; and "BERT" [7] is a model from natural language processing, implemented using the PyTorch library [15]. Conveniently for our benchmarks, BERT also has a parameter controlling the number of "layers", which linearly scales the expression size due to loop unrolling. We see that on practical examples, our algorithm is only up to 4\(\times \) slower than running de Bruijn on the expression once, and much faster than the locally nameless baseline, while enjoying a better bound on the worst-case time complexity. In Figure 3 we show performance on BERT as the number of layers is varied.

8 Related Work

We found surprisingly few papers about the problem of finding common subexpressions modulo \(\alpha \)-equivalence. Shao...
et al. describe the impressive FLINT compiler, which uses de Bruijn representation and aggressive hash-consing to achieve very compact type representations and constant-time equality comparison [18]. It is not clear how they deal with the false positives and false negatives we mention in Section 2.4. Murphy takes a similar approach in the TILT compiler [14]. Again, the goal is structure sharing and the mechanism is de Bruijn indexing, but he seeks to conceal the tiresome de Bruijn index-shuffling (which is somewhat exposed in FLINT) behind an abstraction “curtain” that allows the client to use a simpler named interface. He mentions the problem of false negatives, and concludes that the overheads of his abstractions are too high.

Filliatre and Conchon describe a hash-consing library in OCaml, again with the goal of structure sharing [9]. But their focus is very different to ours: they are concerned about the API design for a hash-consing library, including issues such as when to clear out the hash table. Concerning α-equivalence, they use de Bruijn indexing from the outset, without discussion.

The “locally nameless” representation [5, 13] has a long history, indeed Weirich et al. [21] observe that it “is mentioned in the conclusion of de Bruijn’s paper”. They further note that “If we remove names from bound patterns (which are preserved only for error messages) the locally nameless representation interacts nicely with hash-consing, as all α-equivalent terms have the same representation”.

The idea of representing a lambda with a “map” of the occurrences of its bound variable, which we adopt for our e-summaries in Section 4, has been studied before [1, 17]. Kennaway and Sleep describe another representation, director strings, in which information about occurrences is stored in the application nodes, rather than the lambdas [10]. McBride gives a very helpful overview of these approaches [12], but none of them addresses the question of compositional hashing.

Dietrich et al. [8] discuss hashing source code abstract syntax trees (ASTs), with the goal of minimising rebuilds in a build system. If, for example, one changes the white-space layout, the timestamp of the file will change, but the AST (and its hash) will not. They do not consider α-equivalence at all, and it seems likely that an α-renamed program would indeed be considered different by their system.

There is literature [20, 22] on detecting code clones, or plagiarisms, which does typically hash ASTs, but there the goal is usually to generate many pairs of candidates (i.e. false positives are welcomed), so does not apply to our use cases.

Acknowledgements We warmly thank these colleagues for their feedback on earlier drafts of this paper: Conor McBride, David Collier, Leonardo de Moura, Max Willsey, Stephanie Weirich and Tom Minka.

References

A Proof of Lemma 6.6

For convenience, we first restate Lemma 6.6 below, and then outline the proof.

Lemma 6.6. Let \mathcal{D} be a datatype defined recursively (such as Structure or PosTree). It is possible to construct in a randomized way a compositional hashing scheme $h : \mathcal{D} \to \mathbb{H}$ (that is, compute the hash for $d \in \mathcal{D}$ in the constructor by calling a hash combiner on the hashes of children), so that

$$\forall_{a,b \in \mathcal{D}, a \neq b} p(h(a) = h(b)) \leq \frac{|a| + |b|}{2^b}$$

where $|d|$ is the number of constructor calls when building d (i.e. both those for "leaf" objects and "branch" combiners).

Proof. Given $d = \text{Con}(d_1, \cdots, d_k) \in \mathcal{D}$, we define

$$h(d) = f(|d|, \text{hash}(\text{Con}(h(d_1), \cdots, h(d_k))))$$

where f is a random hash combiner. That is, we combine the hashes of children and the constructor, and salt it with the size $|d|$ of the object d. As f only accepts elements of \mathbb{H} as arguments, here we silently assume $|d| < 2^b$; if that is not the case, then the bound to be proven is vacuous, and hence there is nothing to do.

We will now bound the probability of $h(a) = h(b)$ by induction on $\max(|a|, |b|)$.

It is easy to check that for $|a| = |b| = 1$ (i.e. both a and b are leaves) the inequality holds. Now, assume $\max(|a|, |b|) \geq 2$; without loss of generality $|a| \geq |b|$.

Denote $a = \text{Con}_a(a_1, \cdots), b = \text{Con}_b(b_1, \cdots)$. We now distinguish three cases.

Case 1: $|a| > |b|$ We can see that computing $h(a)$ and $h(b)$ involves exactly one call to f of the form $f(|a|, \ast)$, while all the other calls are for $f(x, \ast)$ for $x < |a|$. Since the values for f are drawn uniformly and independently, we can assume they are drawn in the order of increasing first argument to f (breaking ties arbitrarily). When the value for $f(|a|, \ast)$ is being drawn, all other values can be considered constant, and so $p(h(a) = h(b)) = \frac{1}{2^{|a|}}$.

Case 2: $|a| = |b|, \text{Con}_a \neq \text{Con}_b$ Here $h(a) = h(b)$ requires that either $\text{hash}(\text{Con}_a) = \text{hash}(\text{Con}_b)$, or the top level calls to f produce a collision. Similarly to the previous case, the probability of either of these events can be bounded by $\frac{1}{2^{|a|}}$, and we get $p(h(a) = h(b)) \leq \frac{2}{2^{|a|}}$.

Case 3: $|a| = |b|, \text{Con}_a = \text{Con}_b$ In this final case, the first two arguments to f are the same, which means that a hash collision on children of a and b can possibly propagate upwards and imply a collision at the top level. Therefore, we will need to use the inductive hypothesis.

More specifically, $h(a) = h(b)$ can arise in two ways: either $h(a_i) = h(b_i)$ for all i, of which of course implies $h(a) = h(b)$, or the two tuples of arguments to f do not match, and the collision is produced with the two top-level calls to f.

For the former case, recall that $a \neq b$, and therefore $a_i \neq b_j$ for some i. Combining that with $h(a_i) = h(b_i)$, we can apply the inductive hypothesis; this is legal, since $\max(|a|, |b|) < \max(|a_i|, |b_j|)$. The probability of $h(a_i) = h(b_j)$ is therefore bounded by $\frac{|a_i| + |b_j|}{2^{|a_i|}}$. The case when the top level calls to f produce a collision can be analyzed as before, yielding probability of collision equal to $\frac{1}{2^{|a|}}$.

Summing up the probabilities from the two subcases, we get

$$p(h(a) = h(b)) \leq \frac{|a| + |b| + 1}{2^{|a|}} < \frac{|a| + |b|}{2^{|a|}}$$

\square

B Empirical Frequency of Hash Collisions

To experimentally verify the bound from Theorem 6.7, in this section we evaluate the empirical frequency of hash collisions. To do this, we first modified our algorithm to use 16-bit integers, as for 32-bit and above one needs an enormous number of trials to find a collision.

However, measuring the amount of collisions in a meaningful way is non-trivial: while we can check how often hashes of two random expressions collide, it might be that more collisions arise in real applications; what is worse, there may be adversarial pairs of expressions specially crafted to make our hashes collide. Of course, if the hash function is fixed, there exist pairs of expressions that produce a hash collision. However, note that Theorem 6.7 assumes our hash function is not fixed: instead, the hash combiners that are used should be chosen randomly. In practical terms, our theorem states the following: if we instantiate our algorithm, and seed its hash combiners with a randomly chosen seed, then there is no way to consistently break it - while for a fixed seed one can laboriously find a collision, there is no pair of expressions that would collide reliably across many seeds. This is a much stronger claim than just stating that two random expressions rarely collide, and to verify it, one needs to play a malicious user, and try to construct adversarial examples that are more likely to collide than random ones.

Therefore, in this section we consider two ways to create a pair of expressions:

- **Random expressions.** Here we generate two random balanced expressions as in Section 7.1, and discard pairs that turn out to be alpha-equivalent.
- **Adversarial expressions.** As discussed above, we acted as an adversary, and designed a way to generate pairs of expressions that are more likely to produce collisions.

We describe this in detail in Appendix B.1.

For both ways of generating pairs of expressions we varied the expression size between 128 and 4096, for each size drawing $10 \cdot 2^{16}$ pairs and hashing them looking for collisions. We then divided the resulting number of collisions by 10 to get an estimated number of collisions per 2^{16} samples. Note that the resulting value for a perfect hash function would be 1 (in
Figure 4. Empirical number of collisions for both random and adversarial pairs of expressions with varying size.

expectation). On the other hand, Theorem 6.7 upper-bounds the collision probability by \(\frac{5}{8} \cdot \frac{|e_1| + |e_2|}{2^n} \), and since we are comparing pairs of expressions of the same size \(|e_1| = |e_2| = n\), we get an upper-bound of \(10n \) collisions per \(2^{16} \) samples.

In Figure 4, we plot the resulting number of collisions for the two ways of generating expression pairs, as well as a lower-bound (perfect hash function) and upper-bound (Theorem 6.7). For random expressions, our hash achieves a close-to-perfect number of collisions, which does not appear to grow with \(n \). On the other hand, adversarial expression pairs generate more collisions as \(n \) grows, but still two orders of magnitude less than the theoretical upper-bound. Note that we do not consider \(n > 4096 \), as for \(n = 2^{16} / 10 \approx 6500 \) our upper-bound becomes vacuous: \(n \) is too close to \(2^b \) to provide any guarantees on the frequency of collisions.

B.1 Generating Adversarial Expression Pairs

Here we describe the procedure to generate adversarial pairs of expressions. This process is not specialized to our specific algorithm, and hence may work for other compositional hashing algorithms that act on tree-like objects.

The idea is as follows: we start with two small non-alpha-equivalent expressions with no free variables. Concretely, we choose

\[
e_1 = \lambda x. \text{App} (\text{Var} x) (\text{App} (\text{Var} x) (\text{Var} x))
\]

\[
e_2 = \lambda x. \text{App} (\text{App} (\text{Var} x) (\text{Var} x)) (\text{Var} x)
\]

Then, until the right expression size is reached, we transform the expressions by wrapping both of them in either a \text{Lam} or an \text{App} node. In other words, we create a pair of highly unbalanced expressions (similarly to Section 7.1) which differ only at the very bottom. Intuitively, when hashing the resulting expressions, the (likely different) hashes of \(e_1 \) and \(e_2 \) will get repeatedly transformed in the same way when the algorithm computes the hashes for larger subtrees. Crucially, if the hashes collide at some point, they will stay the same indefinitely, as the way \(e_1 \) and \(e_2 \) are extended upwards is the same. Hence, a collision at the lower level will propagate to cause a collision at the top level, causing the collision probability to grow with expression size.

C An Alternative to StructureTag

Our initial algorithm of Section 4.6 transforms PosTrees from both subtrees of an \text{App} node. Since this is prohibitively expensive, in Section 4.8 we show that it is enough to transform only one of the subtrees, as long as we introduce an appropriately chosen StructureTag. In this section, we discuss an alternative to the StructureTag approach, which yields an algorithm with the same final time complexity.

Since this alternative is more complex, we refrain from mentioning it in the main body of the paper. Here we describe the key ideas involved, which the reader may find interesting.

To arrive at the alternative formulation, consider the following question: can we transform PosTrees from both children, and still get good time complexity due to laziness? In other words, can we avoid actually tagging PosTrees in a given map, and instead lazily store the transformation to be applied?

Formally, consider a variable map after the optimizations of Section 5.1, i.e. with PosTrees simply being represented by hash-codes (elements of \(\mathbb{H} \)). Extending a PosTree with one of the markers (\text{PTLeftOnly}, \text{PTRightOnly} and \text{PTBoth}) corresponds to transforming the hash-code in a fixed way (although dependent on the particular hash combiner): denote these transformations as \(f_L, f_R : \mathbb{H} \rightarrow \mathbb{H} \) and \(f_{both} : \mathbb{H}^2 \rightarrow \mathbb{H} \). To simplify the following analysis, we will now focus on \(f_L \) and \(f_R \); extending it to handle \(f_{both} \) is easy, as in a given node it only needs to be called at most as many times as the size of the smaller of the children’s variable maps.

If we focus on the set of values in the variable map, the problem is the following: we want to maintain a set of hash-codes, with the possibility of quickly applying either \(f_L \) or \(f_R \) on all the values. This hints at a lazy solution: maintain a transformation \(f : \mathbb{H} \rightarrow \mathbb{H} \) together with the set of hash-codes, with the meaning that \(f \) should be applied on all elements of the set. Applying \(f_L \) on all elements of such a lazy-transformation-augmented set is just a matter of setting \(f’ = f_L \circ f \).

However, this is not so easy: when we look up an entry in the variable map, we need to pass the obtained value through the lazy transformation \(f \). Therefore, \(f \) has to be represented in a way such that it is possible to evaluate it in constant time, even though \(f \) may have been created out of a very long sequence of function compositions. Moreover, adding a new entry to the variable map requires passing the newly added value \(x \) through \(f^{-1} \), so that when the value is read out later and passed through \(f \) we recover \(f(f^{-1}(x)) = x \).

It remains to show an efficient representation of functions \(f : \mathbb{H} \rightarrow \mathbb{H} \), such that composing, evaluating, and inverting takes constant time.

To simplify this, we can notice that fast inversion is not strictly necessary if we always manipulate pairs of a function
and its inverse i.e. \((f,f^{-1})\); note that composing \((f,f^{-1})\) with \((g,g^{-1})\) can be computed as \((f \circ g, g^{-1} \circ f^{-1})\). We still need to be able to invert our fundamental building blocks \((f_L, f_R)\), but since that happens only once before the algorithm commences, it does not have to be done in constant time.

While many possible representations that satisfy the aforementioned requirements exist, one natural choice are linear functions, i.e. functions of the form \(f(x) = ax + b\), where \(a, b \in \mathbb{H}\), and all operations are carried out modulo \(|\mathbb{H}|\). Indeed, a linear \(f\) can be represented with just a pair of \((a, b)\), evaluating it on \(x \in \mathbb{H}\) takes constant time, and a composition of two linear functions represented by \((a_f, b_f)\) and \((a_g, b_g)\) is \((a_f \cdot a_g, a_f \cdot b_g + b_f)\). Invertibility can be guaranteed by requiring that \(a\) is coprime with \(|\mathbb{H}|\); for the case of \(\mathbb{H} = \{0, 1\}\), this simply means that \(a\) is odd.

Using linear transformations on hash-codes poses a potential risk, as it could lead to collisions, especially if the choice of \(f_L\) and \(f_R\) is particularly unfortunate; because of that, using a StructureTag-based variant is preferable. However, we have also implemented the variant described in this section, and found that it in practice it also produces strong hashes. We believe that, with careful analysis, one could likely derive guarantees similar to the one of Theorem 6.7.