
GADTs Meet Their Match:
Pattern-Matching Warnings That Account for GADTs, Guards, and Laziness

Georgios Karachalias
Ghent University, Belgium

georgios.karachalias@ugent.be

Tom Schrijvers
KU Leuven, Belgium

tom.schrijvers@cs.kuleuven.be

Dimitrios Vytiniotis
Simon Peyton Jones

Microsoft Research Cambridge, UK
{dimitris,simonpj}@microsoft.com

Abstract
For ML and Haskell, accurate warnings when a function defini-
tion has redundant or missing patterns are mission critical. But to-
day’s compilers generate bogus warnings when the programmer
uses guards (even simple ones), GADTs, pattern guards, or view
patterns. We give the first algorithm that handles all these cases in
a single, uniform framework, together with an implementation in
GHC, and evidence of its utility in practice.

Categories and Subject Descriptors D.3.2 [Language Classifica-
tions]: Applicative (functional) languages; D.3.3 [Language Con-
structs and Features]: Patterns

Keywords Haskell, pattern matching, Generalized Algebraic Data
Types, OUTSIDEIN(X)

1. Introduction
Is this function (in Haskell) fully defined?

zip :: [a] -> [b] -> [(a,b)]
zip [] [] = []
zip (a:as) (b:bs) = (a,b) : zip as bs

No, it is not: the call (zip [] [True]) will fail, because neither
equation matches the call. Good compilers will report missing pat-
terns, to warn the programmer that the function is only partially de-
fined. They will also warn about completely-overlapped, and hence
redundant, equations. Although technically optional for soundness,
these warnings are incredibly useful in practice, especially when
the program is refactored (i.e. throughout its active life), with con-
structors added and removed from the data type (Section 2).

But what about this function?

vzip :: Vect n a -> Vect n b -> Vect n (a,b)
vzip VN VN = VN
vzip (VC x xs) (VC y ys) = VC (x,y) (vzip xs ys)

where the type Vect n a represents lists of length n with element
type a. Vect is a Generalised Algebraic Data Type (GADT):

data Vect :: Nat -> * -> * where

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICFP’15, August 31 – September 2, 2015, Vancouver, BC, Canada.
Copyright c� 2015 ACM 978-1-4503-3669-7/15/08. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

VN :: Vect Zero a
VC :: a -> Vect n a -> Vect (Succ n) a

Unlike zip, function vzip is fully defined: a call with arguments
of unequal length, such as (vzip VN (VC True VN)), is simply
ill-typed. Comparing zip and vzip, it should be clear that only
a type-aware algorithm can correctly decide whether or not the
pattern-matches of a function definition are exhaustive.

Despite the runaway popularity of GADTs, and other pattern-
matching features such as view patterns and pattern guards, no pro-
duction compiler known to us gives accurate pattern-match overlap
and exhaustiveness warnings when these features are used. Cer-
tainly our own compiler, GHC, does not; and nor does OCaml. In
this paper we solve the problem. Our contributions are these:

• We characterise the challenges of generating accurate warn-
ings in Haskell (Section 2). The problem goes beyond GADTs!
There are subtle issues concerning nested patterns, view pat-
terns, guards, and laziness; the latter at least has never even been
noticed before.

• We give a type-aware algorithm for determining missing or re-
dundant patterns (Sections 3 and 4). The algorithm is parame-
terised over an oracle that can solve constraints: both type con-
straints and boolean constraints for guards. Extending the or-
acle allows us to accommodate type system extensions or im-
prove the precision of the reported warnings without affecting
the main algorithm at all.
The central abstraction in this algorithm is the compact sym-
bolic representation of a set of values by a triple (Γ � u � Δ)
consisting of an environment Γ, a syntactic value abstraction u
and a constraint Δ (Section 4.1). The key innovation is to in-
clude the constraints Δ to refine the set of values; for example
(x:Int � Just x � x>3) is the set of all applications of Just to
integers bigger than 3. This allows us to handle GADTs, guards
and laziness uniformly.

• We formalise the correctness of our algorithm (Section 5) with
respect to the Haskell semantics of pattern matching.

• We have implemented our algorithm in GHC, a production
quality compiler for Haskell (Section 6). The new implemen-
tation is of similar code size as its predecessor although it is
much more capable. It reuses GHC’s existing type constraint
solver as an oracle.

• We demonstrate the effectiveness of the new checker on a set
of actual Haskell programs submitted by GHC users, for whom
inaccurate warnings were troublesome (Section 7).

There is quite a bit of related work, which we discuss in Section 8.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ICFP’15, August 31 – September 2, 2015, Vancouver, BC, Canada
ACM. 978-1-4503-3669-7/15/08...$15.00
http://dx.doi.org/10.1145/2784731.2784748

424

2. The Challenges That We Tackle
The question of determining exhaustiveness and redundancy of
pattern matching has been well studied (Section 8), but almost
exclusively in the context of purely structural matching. In this
section we identify three new challenges:

• The challenge of GADTs and, more generally, of patterns that
bind arbitrary existential type variables and constraints (Sec-
tion 2.2).

• The challenge of laziness (Section 2.3).
• The challenge of guards (Section 2.4).

These issues are all addressed individually in the literature but, to
our knowledge, we are the first to tackle all three in a single unified
framework, and implement the unified algorithm in a production
compiler.

2.1 Background
Given a function definition (or case expression) that uses pattern
matching, the task is to determine whether any clauses are missing
or redundant.

Missing clauses. Pattern matching of a sequence of clauses is ex-
haustive if every well-typed argument vector matches one of the
clauses. For example:

zip [] [] = []
zip (a:as) (b:bs) = (a,b) : zip as bs

zip is not exhaustive because there is a well-typed call that does
not match any of its clauses; for example zip [] [True]. So
the clause zip [] (b:bs) = e is missing.

Redundant clauses. If there is no well-typed value that matches
the left hand side of a clause, the right hand side of the clause
can never be accessed and the clause is redundant. For example,
this equation would be redundant:

vzip VN (VCons x xs) =

Since the application of a partial function to a value outside its
domain results in a runtime error, the presence of non-exhaustive
pattern matches often indicates a programmer error. Similarly, hav-
ing redundant clauses in a match is almost never intentional and
indicates a programmer error as well. Fortunately, this is a well-
studied problem[1, 14–16, 30, 33]: compilers can detect and warn
programmers about these anomalies. We discuss this related work
in Section 8.

However, Haskell has moved well beyond simple constructor
patterns: it has overloaded literal patterns, guards, view patterns,
pattern synonyms, and GADTs. In the rest of this section we de-
scribe these new challenges, while in subsequent sections we show
how to address them.

2.2 The Challenge of GADTs
In recent years, Generalized Algebraic Data Types (GADTs, also
known as guarded recursive data types [37], first-class phantom
types [4], etc.) have appeared in many programming languages,
including Haskell [23, 25], OCaml [10] and Ωmega [28]. Apart
from the well-studied difficulties they pose for type inference,
GADTs also introduce a qualitatively-new element to the task of
determining missing or redundant patterns. As we showed in the
Introduction, only a type-aware algorithm can generate accurate
warnings.

Indeed, although GADTs have been supported by the Glasgow
Haskell Compiler (GHC) since March 2006 [23], the pattern match
check was never extended to take account of GADTs, resulting

in many user bug reports. Although there have been attempts to
improve the algorithm (see tickets1 #366 and #2006), all of them
are essentially ad-hoc and handle only specific cases.

This matters. GHC warns (wrongly) about missing patterns
in the definition of vzip. Programmers often try to suppress the
warning by adding a third fall-through clause:

vzip _ _ = error "Inaccessible branch"

That suppresses the warning but at a terrible cost: if you modify
the data type (by adding a constructor, say), you would hope that
you would get warnings about missing cases in vzip. But no,
the fall-through clause covers the new constructors, so GHC stays
silent. At a stroke, that obliterates one of the primary benefits
warnings for missing and redundant clauses: namely, their support
during software maintenance and refactoring, perhaps years after
the original code was written.

Moreover, GADTs are special case of something more general:
data constructors that bind arbitrary existential type variables and
constraints. For example:

data T a where
MkT :: (C a b, F a ~ G b) => a -> b -> T a

where C is a type class and F and G are type functions. Here the
constructor MkT captures an existential type variable b, and binds
the constraints (C a b, F a ~ G b). In the rest of the paper we
draw examples from GADTs, but our formalism and algorithm
handles the general case.

2.3 The Challenge of Laziness
Haskell is a lazy language, and it turns out that laziness interacts in
an unexpectedly subtle way with pattern matching checks. Here is
an example, involving two GADTs:

data F a where data G a where
F1 :: F Int G1 :: G Int
F2 :: F Bool G2 :: G Char

h :: F a -> G a -> Int
h F1 G1 = 1
h _ _ = 2

Given h’s type signature, its only well-typed non-bottom arguments
are F1 and G1 respectively. So, is the second clause for h redundant?
No! Consider the call (h F2⊥), where ⊥ is a diverging value,
or an error value such as (error "urk"). Pattern matching in
Haskell works top-to-bottom, and left-to-right. So we try the first
equation, and match the pattern F1 against the argument F2. The
match fails, so we fall through to the second equation, which
succeeds, returning 2.

Nor is this subtlety restricted to GADTs. Consider:

g :: Bool -> Bool -> Int
g _ False = 1
g True False = 2
g _ _ = 3

Is the second equation redundant? It certainly looks redundant: if
the second clause matches then the first clause would have matched
too, so g cannot possibly return 2. The right-hand side of the second
clause is certainly dead code.

Surprisingly, though, it is not correct to remove the second
equation. What does the call (g⊥ True) evaluate to, where ⊥ is a
looping value? Answer: the first clause fails to match, so we attempt
to match the second. That requires us to evaluate the first argument

1 Tickets are GHC bug reports, recorded through the project’s bug/issue
tracking system: ghc.haskell.org/trac/ghc.

425

of the call, ⊥, which will loop. But if we omitted the second clause,
(g⊥ True) would return 3.

In short, even though the right-hand side of the second equation
is dead code, the equation cannot be removed without (slightly)
changing the semantics of the program. So far as we know, this
observation has not been made before, although previous work [16]
would quite sensibly classify the second equation as non-redundant
(Section 8).

The same kind of thing happens with GADTs. With the same
definitions for F and G, consider

k :: F a -> G a -> Int
k F1 G1 = 1
k _ G1 = 2

Is the second equation redundant? After all, anything that matches
it would certainly have matched the first equation (or caused di-
vergence if the first argument was ⊥). So the RHS is definitely
dead code; k cannot possibly return 2. But removing the second
clause would make the definition of k inexhaustive: consider the
call (k F2⊥).

The bottom line is this: if we want to report accurate warnings,
we must take laziness into account. We address this challenge in
this paper.

2.4 The Challenge of Guards
Consider this function:

abs1 :: Int -> Int
abs1 x | x < 0 = -x

| otherwise = x

This function makes use of Haskell’s boolean-valued guards, intro-
duced by “|”. If the guard returns True, the clause succeeds and the
right-hand side is evaluated; otherwise pattern-matching continues
with the next clause.

It is clear to the reader that this function is exhaustive, but not
so clear to a compiler. Notably, otherwise is not a keyword; it
is simply a value defined by otherwise = True. The compiler
needs to know that fact to prove that the pattern-matching is ex-
haustive. What about this version:

abs2 :: Int -> Int
abs2 x | x < 0 = -x

| x >= 0 = x

Here the exhaustiveness of pattern-matching depends on knowl-
edge of the properties of < and >=. In general, the exhaustiveness
for pattern matches involving guards is clearly undecidable; for ex-
ample, it could depend on a deep theorem of arithmetic. But we
would like the compiler to do a good job in common cases such as
abs1, and perhaps abs2.

GHC extends guards further with pattern guards. For example:

append xs ys
| [] <- xs = ys
| (p:ps) <- xs = p : append ps ys

The pattern guard matches a specified expression (here xs in both
cases) against a pattern; if matching succeeds, the guard succeeds,
otherwise pattern matching drops through to the next clause. Other
related extensions to basic pattern matching include literal patterns
and view patterns [9, 32].

All these guard-like extensions pose a challenge to determining
the exhaustiveness and redundancy of pattern-matching, because
pattern matching is no longer purely structural. Every real com-
piler must grapple with this issue, but no published work gives a
systematic account of how to do so. We do so here.

p11..p1n

p21..p2n

pm1..pmn

patVectProc

patVectProc

patVectProc

U0

U1

Un

...

C1

D1

Symbolic representation
of all possible values

Symbolic representation
of all uncovered values

... ...

C2

D2

Cm

Dm

Figure 1: Algorithm Outline

3. Overview of Our Approach
In this section we describe our approach in intuitive terms, showing
how it addresses each of the three challenges of Section 2. We
subsequently formalise the algorithm in Section 4.

3.1 Algorithm Outline
The most common use of pattern matching in Haskell is when a
function is defined using multiple clauses:

f p11 . . .p1n = e1 Clause 1
. . .

f pm1. . .pmn = em Clause m

From the point of view of pattern matching, the function name “f”
is incidental: all pattern matching in Haskell can be regarded as a
sequence of clauses, each clause comprising a pattern vector and a
right hand side. For example, a case expression also has multiple
clauses (each with only one pattern); a Haskell pattern matching
lambda has a single clause (perhaps with multiple patterns); and so
on.

In Haskell, pattern matching on a sequence of clauses is car-
ried out top-to-bottom, and left-to-right. In our function f above,
Haskell matches the first argument against p11, the second against
p12 and so on. If all n patterns in the first clause match, the right
hand side is chosen; if not, matching resumes with the next clause.
Our algorithm, illustrated in Figure 1, works in the same way: it
analyses the clauses one by one, from top to bottom. The analy-
sis patVectProc of an individual clause takes a compact symbolic
representation of the vector of argument values that are possibly
submitted to the clause, and partitions these values into three dif-
ferent groups:

C The values that are covered by the clause; that is, values that
match the clause without divergence, so that the right-hand side
is evaluated.

D The values that diverge when matched against the clause, so
that the right-hand side is not evaluated, but neither are any
subsequent clauses matched.

U The remaining uncovered values; that is, the values that fail to
match the clause, without divergence.

As illustrated in Figure 1, the input to the first clause represents all
possible values, and each subsequent clause is fed the uncovered

426

values of the preceding clause. For example, consider the function
zip from the Introduction:

zip [] [] = []
zip (a:as) (b:bs) = (a,b) : zip as bs

We start the algorithm with C0 = {_ _}, where we use “_” to
stand for “all values”. Processing the first clause gives:

C1 = {[] []}
D1 = {⊥ _, []⊥}
U1 = {[] (_:_), (_:_) _}

The values that fail to match the first clause, and do so without
divergence, are U1, and these values are fed to the second clause.
Again we divide the values into three groups:

C2 = {(_:_) (_:_)}
D2 = {(_:_)⊥}
U2 = {[] (_:_), (_:_) []}

Now, U2 describes the values that fail to match either clause. Since
it is non-empty, the clauses are not exhaustive, and a warning
should be generated. In general we generate three kinds of warn-
ings:

1. If the function is defined by m clauses, and Um is non-empty,
then the clauses are non-exhaustive, and a warning should be
reported. It is usually helpful to include the set Um in the error
message, so that the user can see which patterns are not covered.

2. Any clause i for which Ci and Di are both empty is redundant,
and can be removed altogether.

3. Any clause i for which Ci is empty, but Di is not, has an
inaccessible right hand side even though the equation cannot
be removed. This is unusual, and deserves its own special kind
of warning; again, including Di in the error message is likely
to be helpful.

Each of C,U, and D is a set of value abstractions, a compact rep-
resentation of a set of value vectors that are covered, uncovered, or
diverge respectively. For example, the value abstraction (_:_) []
stands for value vectors such as

(True:[]) []
(False : (True : [])) []

and so on. Notice in D1, D2 that our value abstractions must
include ⊥, so that we can describe values that cause matching to
diverge.

3.2 Handling Constraints
Next we discuss how these value abstractions may be extended to
handle GADTs. Recall vzip from the Introduction

vzip :: Vect n a -> Vect n b -> Vect n (a,b)
vzip VN VN = VN
vzip (VC x xs) (VC y ys) = VC (x,y) (vzip xs ys)

What do the uncovered sets Ui look like? Naively they would look
like that for zip:

U1 = {VN (VC _ _), (VC _ _) _}
U2 = {VN (VC _ _), (VC _ _) VN}

To account for GADTs we add type constraints to our value ab-
stractions, to give this:

U1 = {VN (VC _ _) � (n ∼ Zero, n ∼ Succ n2)
, (VC _ _) _ � (n ∼ Succ n2)}

Each value tuple abstraction in the set now comes with a type
equality constraint (e.g. n ∼ Succ n2), and represents values of
the specified syntactic shape, for which the equality constraint is

satisfiable at least for some substitution of its free variables. The
first abstraction in U1 has a constraint that is unsatisfiable, because
n cannot simultaneously be equal to both Zero and Succ n2.
Hence the first abstraction in U1 represents the empty set of values
and can be discarded. Discarding it, and processing the second
clause gives

U2 = {(VC _ _) VN � (a ∼ Succ n, a ∼ Zero)}

Again the constraint is unsatisfiable, so U2 is empty, which says
that the function is exhaustive.

We have been a bit sloppy with binders (e.g. where is n2
bound?), but we will tighten that up in the next section. The key
intuition is this: the abstraction u � Δ represents the set of val-
ues whose syntactic shape is given by u, and for which the type
constraint Δ is satisfied.

3.3 Guards and Oracles
In the previous section we extended value abstractions with a con-
junction of type-equality constraints. It is straightforward to take
the idea further, and add term-equality constraints. Then the final
uncovered set for function abs2 (Section 2.4) might look like this:

U2 = {x � (False = x<0, False = x>=0)}

We give the details of how we generate this set in Section 4, but
intuitively the reasoning goes like this: if neither clause for abs2
matches, then both boolean guards must evaluate to False. Now,
if the compiler knows enough about arithmetic, it may be able to
determine that the constraint is unsatisfiable, and hence that U2 is
empty, and hence that abs2 is exhaustive.

For both GADTs and guards, the question becomes this: is the
constraint Δ unsatisfiable? And that is a question that has been
extremely well studied, for many particular domains. For the pur-
poses of this paper, therefore, we treat satisfiability as a black box,
or oracle: the algorithm is parameterised over the choice of oracle.
For type-equality constraints we have a very good oracle, namely
GHC’s own type-constraint solver. For term-level constraints we
can plug in a variety of solvers. This modular separation of con-
cerns is extremely helpful, and is a key contribution of our ap-
proach.

3.4 Complexity
Every pattern-checking algorithm has terrible worst-case complex-
ity, and ours is no exception. For example, consider

data T = A | B | C
f A A = True
f B B = True
f C C = True

What values U3 are not covered by f? Answer

{ A B, A C, B A, B C, C A, C B }

The size of the uncovered set is the square of the number of
constructors in T. It gets worse: Sekar et al. [26] show that the
problem of finding redundant clauses is NP-complete, by encoding
the boolean satisfiability (SAT) problem into it. So the worst-case
running time is necessarily exponential. But so is Hindley-Milner
type inference! As with type inference, we hope that worst case
behaviour is rare in practice. Moreover, GHC’s current redundancy
checker suffers from the same problem without obvious problems
in practice. We have gathered quantitative data about set sizes to
better characterise the problem, which we discuss in Appendix A.

427

Types
τ ::= a | τ1 → τ2 | T τ | . . . Monotypes
a, b, a�, b�, . . . Type variables
T Type constructors
Γ ::= � | Γ, a | Γ, x : τ Typing environment

Terms and clauses
f, g, x, y, . . . Term variables
e Expression
c ::= �p → e Clause

Patterns
K Data constructors
p, q ::= x | K �p | G Pattern
G ::= p ← e Guard

Value abstractions
S,C, U,D ::= v Value set abstraction
v ::= Γ � �u � Δ Value vector abstraction
u,w ::= x | K �u Value abstraction

Constraints
Δ ::= � | Δ ∪Δ

| Q Type constraint
| x ≈ e Term-equality constraint
| x ≈ ⊥ Strictness constraint

Q ::= τ ∼ τ Type-equality constraint
| ... other constraint

Figure 2: Syntax

4. Our Algorithm in Detail
4.1 Syntax
Figure 2 gives the syntax used in the formalisation of the algo-
rithm. The syntax for types, type constraints and type environments
is entirely standard. We are explicit about the binding of type vari-
ables in Γ, but for this paper we assume they all have kind ∗, so
we omit their kind ascriptions. (Our real implementation supports
higher kinds, and indeed kind polymorphism.)

A clause is a vector of patterns �p and a right-hand side e, which
should be evaluated if the pattern matches. Here, a “vector” �p
of patterns is an ordered sequence of patterns: it is either empty,
written �, or is of the form p �p.

A pattern p is either a variable pattern x, a constructor pattern
K �p or a guard G. We defer everything concerning guards to
Section 4.4, so that we can initially concentrate on GADTs.

Value abstractions play a central role in this paper, and stand for
sets of values. They come in three forms:

• A value set abstraction S is a set of value abstractions v̄. We use
an overline v̄ (rather than an arrow) to indicate that the order of
items in S does not matter.

• A value vector abstraction v has the form Γ � �u �Δ. It consists
of a vector �u of syntactic value abstractions, and a constraint Δ.
The type environment Γ binds the free variables of �u and Δ.

• A syntactic value abstraction u is either a variable x, or is of
the form K �u, where K is a data constructor.

A value abstraction represents a set of values, using the intuitions of
Sections 3.1 and 3.2. We formalise these sets precisely in Section 5.

Finally, a constraint Δ is a conjunction of either type constraints
Q or term equality constraints x ≈ e, and in addition strictness
constraints x ≈ ⊥. Strictness constraints are important for com-
puting diverge sets for which we’ve used informal notation in the

previous sections: For example {(_:_)⊥} is formally represented
as {Γ � (x:y) z � z ≈ ⊥} for some appropriate environment Γ.

Type constraints include type equalities τ1 ∼ τ2 but can also
potentially include other constraints introduced by pattern match-
ing or type signatures (examples would be type class constraints or
refinements [24, 31]). We leave the syntax of Q deliberately open.

4.2 Clause Processing
Our algorithm performs an abstract interpretation of the concrete
dynamic semantics described in the last section, and manipulates
value vector abstractions instead of concrete value vectors. It fol-
lows the scheme described in Section 3.1 and illustrated in Figure 1.
The key question is how patVectProc works; that is the subject of
this section, and constitutes the heart of the paper.

Initialisation As shown in Figure 1, the algorithm is initialised
with a set U0 representing “all values”. For every function defini-
tion of the form:

f::∀�a.τ1 → . . . → τn → τ
f p11 . . . p1n = . . .

. . .
f pm1 . . . pmn = . . .

the initial call to patVectProc will be with a singleton set:

U0 = {�a, (x1:τ1), . . . , (xn:τn) � x1 . . . xn � �}
As a concrete example, the pattern match clauses of function zip
of type ∀ab.[a] → [b] → [(a, b)] from Section 3.1 will be
initialised with

U0 = {a, b, (x1:[a]), (x2:[b]) � x1 x2 � �}
Notice that we use variables xi, rather than the underscores used
informally in Section 3.1, so that we can record their types in Γ,
and constraints on their values in Δ.

The main algorithm Figure 3 gives the details of patVectProc.
Given a pattern vector �p and an incoming set S of value vector
abstractions, patVectProc computes the sets C,U,D of covered,
uncovered, and diverging values respectively. As Figure 3 shows,
each is computed independently, in two steps. For each value vector
abstraction v in S:

• Use syntactic structure: an auxiliary function (C,U and D)
identifies the subset of v that is covered, uncovered, and diver-
gent, respectively.

• Use type and term constraints: filter the returned set, retaining
only those members whose constraints Δ are satisfiable.

We describe each step in more detail, beginning with the syntactic
function for covered sets, C.

Computing the covered set The function C �p v refines v into
those vectors that are covered by the pattern vector �p. It is defined
inductively over the structure of �p.

Rule [CNIL] handles the case when both the pattern vector and
the value vector are empty. In this case the value vector is trivially
covered.

Rule [CCONCON] handles the case when both the pattern and
value vector start with constructors Ki and Kj respectively. If the
constructors differ, then this particular value vector is not covered
and we return ∅. If the constructors are the same, Ki = Kj , then
we proceed recursively with the subterms �p and �u and the suffixes
�q and �w. We flatten these into a single recursive call, and recover
the structure afterwards with kcon Ki, defined thus:

kcon K (Γ � �u �w � Δ) = Γ � (K �u) �w � Δ

where �u matches the arity of K.

428

patVectProc(�p, S) = �C,U,D�

patVectProc (�p, S) = �C,U,D� where
C = {w | v ∈ S,w ∈ C �p v, �SAT w}
U = {w | v ∈ S,w ∈ U �p v, �SAT w}
D= {w | v ∈ S,w ∈ D �p v, �SAT w}

C �p v = C (always empty or singleton set)

[CNIL] C � (Γ � � � Δ) = { Γ � � � Δ }
[CCONCON] C ((Ki �p) �q) (Γ � (Kj �u) �w � Δ) =

�
map (kcon Ki) (C (�p �q) (Γ � �u �w � Δ)) if Ki = Kj

∅ if Ki �= Kj

[CCONVAR] C ((Ki �p) �q) (Γ � x �u � Δ) = C ((Ki �p) �q) (Γ
� � (Ki �y) �u � Δ�)

where �y#Γ �a#Γ (x:τx) ∈ Γ Ki :: ∀�a.Q ⇒ �τ → τ
Γ� = Γ,�a, �y:�τ
Δ� = Δ ∪Q ∪ τ ∼ τx ∪ x ≈ Ki �y

[CVAR] C (x �p) (Γ � u �u � Δ) = map (ucon u) (C (�p) (Γ, x:τ � �u � Δ ∪ x ≈ u)) where x#Γ Γ � u : τ
[CGUARD] C ((p ← e) �p) (Γ � �u � Δ) = map tail (C (p �p) (Γ, y:τ � y �u � Δ ∪ y ≈ e)) where y#Γ Γ � e : τ

U �p v = U

[UNIL] U � (Γ � � � Δ) = ∅

[UCONCON] U ((Ki �p) �q) (Γ � (Kj �u) �w � Δ) =

�
map (kcon Ki) (U (�p �q) (Γ � �u �w � Δ) if Ki = Kj

{ Γ � (Kj �u) �w � Δ } if Ki �= Kj

[UCONVAR] U ((Ki �p) �q) (Γ � x �u � Δ) =
�

Kj
U ((Ki �p) �q) (Γ

� � (Kj �y) �u � Δ�)
where �y#Γ �a#Γ (x:τx) ∈ Γ Kj :: ∀�a.Q ⇒ �τ → τ

Γ� = Γ,�a, �y:�τ Δ� = Δ ∪Q ∪ τ ∼ τx ∪ x ≈ Kj �y
[UVAR] U (x �p) (Γ � u �u � Δ) = exactly like [CVAR], with U instead of C
[UGUARD] U ((p ← e) �p) (Γ � �u � Δ) = exactly like [CGUARD], with U instead of C

D �p v = D

[DNIL] D � (Γ � � � Δ) = ∅

[DCONCON] D ((Ki �p) �q) (Γ � (Kj �u) �w � Δ) =

�
map (kcon Ki) (D (�p �q) (Γ � �u �w � Δ) if Ki = Kj

∅ if Ki �= Kj

[DCONVAR] D ((Ki �p) �q) (Γ � x �u � Δ) = { Γ � x �u � Δ ∪ (x ≈ ⊥)} ∪ D ((Ki �p) �q) (Γ
� � (Ki �y) �u � Δ�)

where �y#Γ �a#Γ (x:τx) ∈ Γ Ki :: ∀�a.Q ⇒ �τ → τ
Γ� = Γ,�a, �y:�τ Δ� = Δ ∪Q ∪ τ ∼ τx ∪ x ≈ Ki �y

[DVAR] D (x �p) (Γ � u �u � Δ) = exactly like [CVAR], with D instead of C
[DGUARD] D ((p ← e) �p) (Γ � �u � Δ) = exactly like [CGUARD], with D instead of C

Figure 3: Clause Processing

Rule [CCONVAR] handles the case when the pattern vector
starts with constructor Ki and the value vector with variable x. In
this case we refine x to the most general abstraction that matches
the constructor, Ki �y, where the variables �y are fresh for Γ, written
�y#Γ. Once the constructor shape for x has been exposed, rule
[CCONCON] will fire to recurse into the pattern and value vectors.
The constraint (Δ�) used in the recursive call consists of the union
of the original Δ with:

• Q; this is the constraint bound by the constructor Ki ::
∀�a.Q ⇒ �τ → τ , which may for example include type equali-
ties (in the case of GADTs).

• x ≈ Ki �y; this records a term-level equality in the constraint
that could be used by guard expressions.

• τ ∼ τx, where τx is the type of x in the environment Γ, and τ is
the return type of the constructor. This constraint will be useful
when dealing with GADTs as we explain in Section 4.3.

Rule [CVAR] applies when the pattern vector starts with a
variable pattern x. This matches any value abstraction u, so we can
proceed inductively in �p and �u. However x may appear in some
guard in the rest of the pattern, for example:

f x y | Nothing <- lookup x env = ...

To expose the fact that x is bound to u in subsequent guards (and
in the right-hand side of the clause, see Section 4.6), rule [CVAR]
adds x ≈ u to the constraints Δ, and correspondingly extends Γ to
maintain the invariant that Γ binds all variables free in Δ. Finally,
map (ucon u) prefixes each of the recursive results with u:

ucon u (Γ � �u � Δ) = Γ � u �u � Δ

Rule [CGUARD] deals with guards: see Section 4.4.
Finally it is worth noting that the C �p v function always returns

an empty or singleton set, but we use the full set notation for
uniformity with the other functions.

Computing the uncovered and divergent sets The two other
functions have a similar structure. Hence, we only highlight the
important differences.

The function U �p v returns those vectors that are not covered
by the pattern vector �p. When both the pattern vector and value
vector are empty then (we have seen in the previous case) that the
value vector is covered and hence we return ∅. In rule [UCON-
CON] there are two cases, just as in [CCONCON]. If the head con-
structors match (Ki = Kj), we simply recurse; but if not, the en-
tire value vector abstraction is uncovered, so we return it. In case
[UCONVAR] we take the union of the uncovered sets for all re-
finements of the variable x to a constructor Kj ; each can lead re-
cursively through rule [UCONCON] to uncovered cases. To inform

429

guards, we record the equality x ≈ Kj �y for each constructor. As
in rule [CCONVAR] we also record a type constraint between the
constructor return type and the type of x in Γ. (Section 4.3)

The function D �p v returns those vectors that diverge when
matching the pattern vector �p. The empty value vector does not di-
verge [DNIL]. The case for variables [DVAR] is similar to previous
cases. In the case of constructors in the head of the pattern vector
as well as the value vector [DCONCON] there is no divergence ei-
ther – we either recurse when the constructors match or else return
the empty divergent set. When the clause starts with constructor
Ki, and the vector with a variable x, rule [DCONVAR] combines
two different results: (a) the first result represents symbolically all
vectors where x diverges; (b) the second result recurses by refining
x to Ki �y. In the first case we record the divergence of x with a
strictness constraint (x ≈ ⊥). For the second case, we appeal re-
cursively to the divergent set computation (We give more details on
the Δ� that we use to recurse in Section 4.3.)

Filtering the results with constraints Function patVectProc
prunes the results of C �p v, U �p v, and D �p v that are semantically
empty by appealing to an oracle judgement �SAT (Γ � �u � Δ).
In the next section we define “semantically empty” by giving a
denotational semantics to a value vector abstraction �v� as a set of
concrete value vectors.

The purpose of �SAT is to determine whether this set is empty.
However, because satisfiability is undecidable in general (partic-
ularly when constraints involve term equivalence), we have to be
content with a decidable algorithm �SAT that gives sound but in-
complete approximation to satisfiability:

��SAT v ⇒ �v� = ∅
In terms of the outcomes (1-3) in Section 3.1, “soundness” means

1. If we do not warn that a set of clauses may be non-exhaustive,
then they are definitely exhaustive.

2. If we warn that a clause is redundant, then it definitely is
redundant.

3. If we warn that a right-hand side of a non-redundant clause is
inaccessible, then it definitely is inaccessible.

Since �SAT is necessarily incomplete, the converse does not hold
in general. There is, of course, a large design space of less-than-
complete implementations for �SAT. Our implementation is ex-
plained in Section 6.

Another helpful insight is this: during constraint generation
(Figure 3) the sole purpose of adding constraints to Δ is to increase
the chance that �SAT will report “unsatisfiable”. It is always sound
to omit constraints from Δ; so an implementation is free to trade
off accuracy against the size of the constraint set.

4.3 Type Constraints from GADTs
Rules [CCONVAR], [UCONVAR], and [DCONVAR] record type
equalities of the form τ ∼ τx between the value abstraction type
(τx) and the return type of the appropriate data constructor each
time (τ).

Recording these constraints in [CCONVAR] and [UCONVAR]
is important for reporting precise warnings when dealing with
GADTs, as the following example demonstrates:

data T a where
TList :: T [a]
TBool :: T Bool

foo :: T c -> T c -> Int
foo TList _ = ...
foo _ TList = ...

To determine C2, the covered set from the second equation, we start
from an initial singleton vector abstraction U0 = {Γ0 � x1 x2 � �}
with Γ = c, x1:T c, x2:T c. Next compute the uncovered set
from the first clause, which (via [UCONVAR] and [UVAR]) is
U1 = {Γ1 � TBool x2 � Δ1}, where

Γ1 = Γ0, a
Δ1 = (x1 ≈ TBool) ∪ (T c ∼ T Bool)

Note the recorded type constraint for the uncovered constructor
TBool from rule [UCONVAR]. Next, from U1, compute the cov-
ered set for the second equation (via [CVAR] and [CCONVAR]):

C2 = C (_ TList) (Γ1 � TBool x2 � Δ1)
= {Γ1, b � TBool TList � Δ2}

where Δ2 = Δ1 ∪ (x2 ≈ TList) ∪ (T c ∼ T [b])

Note the type constraint T c ∼ T[b] generated by rule [CCONVAR].
The final constraint Δ2 is unsatisfiable and C2 is semantically
empty, and the second equation is unreachable. Unless [CCONVAR]
or [UCONVAR] both record the type constraints we would miss re-
porting the second branch as redundant.

Rule [DCONVAR] also records term and type-level constraints
in the recursive call. Indeed if the first case in that rule is deemed
unsatisfiable by our oracle it is important to have a precise set
of constraints for the recursive call to detect possible semantic
emptiness of the result.

4.4 Guards
A major feature of our approach is that it scales nicely to handle
guards, and other syntactic extensions of pattern-matching sup-
ported by GHC. We briefly reprise the development so far, adding
guards at each step.

Syntax (Section 4.1). We begin with the syntax in Figure 2: a
pattern p can be a guard, g, of the form (p ← e). This syntax is
very general. For example, the clauses of abs1 (Section 2.4) would
desugar to:

x (True <- x<0) -> -x
x (True <- otherwise) -> x

Notice that these two-element pattern vectors match against one
argument; a guard (p ← e) matches against e, not against an
argument.

GHC’s pattern guards are equally easy to represent; there is
no desugaring to do! However, the syntax of Figure 2 is more
expressive than GHC’s pattern guards, because it allows a guard to
occur arbitrarily nested inside a pattern. This allow us to desugar
literal patterns and view patterns. For example, consider the Haskell
function

f (’x’, []) = True
f _ = False

The equality check against the literal character ’x’ must occur
before matching the second component of the tuple, so that the
call (f (’y’,,⊥)) returns False rather than diverging. With our
syntax we can desugar f to these two clauses:

(a (True <- a==’x’), []) -> True
c -> False

Note the nested guard True <- a==’x’. It is not hard to see how
to desugar view patterns in a similar way; see the extended version
of this paper [11].

Clause processing (Section 4.2). It is easy to extend the clause-
processing algorithm to accommodate guards. For example, equa-
tion [CGUARD] in Figure 3 deals with the case when the first pat-
tern in the pattern vector is a guard (p ← e). We can simply make

430

a recursive call to C adding p to the front of the pattern vector, and
a fresh variable y to the front of the value abstraction. This variable
y has the same type τ as e, and we add a term-equality constraint
y ≈ e to the constraint set. Finally, the map tail removes the guard
value from the returned value vector:

tail (Γ � u �us � Δ) = Γ � �us � Δ)

That’s all there is to it! The other cases are equally easy. How-
ever, it is illuminating to see how the rules work in practice. Con-
sider again function abs1 in Section 2.4. We may compute (labori-
ously) as follows:

U0 = {v:Int � v � }
U1 = U (x (True ← x<0)) (v:Int � v �)

= (apply [UVAR])
map (ucon v) (U (True ← v<0) (v:Int � � � x ≈ v))

= (apply [UGUARD])
map (ucon v) (map tail
(U (True) (v:Int, y:Bool � y � x ≈ v, y ≈ v<0))

= (apply [UCONVAR]; the True/True case yields ∅)
map (ucon v) (map tail (map (ucon y)
(U (True) (v:Int, y:Bool � False

� x ≈ v, y ≈ v<0, y ≈ False))
= (apply [UCONCON] with Ki �= Kj , and do the maps)

{v:Int, y:Bool � v � x ≈ v, y ≈ v<0, y ≈ False}
This correctly characterises the uncovered values as those v:Int
for which v<0 is False.

4.5 Extension 1: Smarter Initialisation
In the previous section, we always initialised U0 with the empty
constraint, Δ = �. But consider these definitions:

type family F a data T a where
type instance F Int = Bool TInt :: T Int

TBool :: T Bool

Datatype T is a familiar GADT definition. F is a type family,
or type-level function, equipped with an instance that declares
F Int = Bool. Given these definitions, is the second clause of f
below redundant?

f :: F a ~ b => T a -> T b -> Int
f TInt TBool = ...
f TInt x = ...
f TBool y = ...

Function f matches the first argument with TInt, yielding the local
type equality a ∼ Int. Using this fact, together with the signature
constraint F a ∼ b and the top-level equation F Int = Bool,
we can deduce that Bool ∼ b, and hence the second clause is
in fact redundant. In this reasoning we had to use the quantified
constraint F a ∼ b from the signature of f. Hence the initial value
abstraction U0 for this pattern match should include constraints
from the function signature:

U0 = {a, b, (x1:T a), (x2:T b) � x1 x2 � F a ∼ b}

4.6 Extension 2: Nested Pattern Matches
Consider this definition:

f [] = ...
f x = ...(case x of { w:ws -> e })...

The clauses of f and those of the inner case expression are entirely
disconnected. And yet we can see that both of the inner case
expressions are exhaustive, because the x = [] case is handled
by the first equation.

Happily there is a principled way to allow the inner case to take
advantage of knowledge from the outer one: gather the constraints

from the covered set of the outer pattern match, propagate them
inwards, and use them to initialise U0 for the inner one. In this
example, we may follow the algorithm as follows:

U f
0 = {a, v:[a] � v � }

U f
1 = {a, v:[a], v1:a, v2:[a] � (v1:v2) � }

C f
2 = {a, v:[a], v1:a, v2:[a], x:[a] � (v1:v2) � x ≈ v1:v2}

Propagate C f
2 inwards to the case expression. Now initialise the

U case
0 for the case expression thus:

U case
0 = {(Γ � x � Δ) | (Γ � �u � Δ) ∈ C f

2 }
You can see that the Δ used for the inner case will include the
constraint x = v1:v2 inherited from C f

2 , and that in turn can
be used by �SAT to show that the [] missing branch of the case
is inaccessible. Notice that U0 many now have more than one
element; until now it has always been a singleton.

The same idea works for type equalities, so that type-equality
knowledge gained in an outer pattern-match can be carried inwards
in Δ and used to inform inner pattern matches. Our implementation
does exactly this and solves the existing GHC ticket #4139 that
needs this functionality. (Caveat: our implementation so far only
propagates type constraints, not term constraints.)

5. Meta-theory
In order to formally relate the algorithm to the dynamic semantics
of pattern matching, we first formalise the latter as well as the
semantics of the value abstractions used by the former.

5.1 Value Abstractions
As outlined in Section 3.1 a value abstraction denotes a set of
values. Figure 4 formalises this notion.

As the Figure shows, the meaning of a closed value abstraction
Γ � �u � Δ is the set of all type-respecting instantiations of �u to a
vector of (closed) values �V = θ(�u), such that the constraints θ(Δ)
are satisfied. The judgement |= Δ denotes the logical entailment of
the (closed) constraints Δ; we omit the details of its definition for
the sake of brevity.

A “type-respecting instantiation”, or denotation, of a type envi-
ronment Γ is a substitution θ whose domain is that of Γ; it maps
each type variable a ∈ Γ to a closed type; and each term variable
x:τ ∈ Γ to a closed value V of the appropriate type �v V : τ .
The syntax of closed types and values is given in Figure 4, as is the
typing judgement for values. For example,

�{a, b, x : a, y : b � x y � a ∼ Bool, b ∼ ()}�
= { True () , False () , ⊥ () ,

True ⊥ , False ⊥ , ⊥ ⊥ }

5.2 Pattern Vectors
Figure 4 formalises the dynamic semantics of pattern vectors.

The basic meaning ��p�θ of a pattern vector �p is a function that
takes a vector of values �V to a matching result M . There may be
free variables in (the guards of) �p; the given substitution θ binds
them to values. The matching result M has the form T , F or ⊥
depending on whether the match succeeds, fails or diverges.

Consider matching the pattern vector x (True <- x > y),
where y is bound to 5, against the value 7; this match succeeds.
Formally, this is expressed thus:

�x (True <- x > y)�[y�→5](7) = T
For comparing with our algorithm, this formulation of the dy-

namic semantics is not ideal: the former acts on whole sets of value
vectors (in the form of value abstractions) at a time, while the latter
considers only one value vector at a time. To bridge this gap, ��p�

431

τc ::= T τ c | τc → τc Closed Monotypes
V,W ::= K �V | λx.e | ⊥ Values
M ::= T | F | ⊥ Matching Result
S ,C ,U ,U ::= �̄V Set of value vectors

Denotation of expressions

E�e� = V

(definition omitted)

Denotation of value abstractions

�S� = �V

�S� = {θ(�u) | (Γ � �u � Δ) ∈ S, θ ∈ �Γ�, |= θ(Δ)}
Denotation of typing environments

�Γ� = θ̄

��� = {�}
�x : τc,Γ� = {θ · [x �→ V] | �v V : τc, θ ∈ �Γ�}
�a,Γ� = {θ · [a �→ τc] | θ ∈ �[a �→ τc](Γ)�}

Well-typed values

�v V : τc

BOT
�v ⊥ : τc

x : τc,1 � e : τc,2
FUN

�v λx.e : τc,1 → τc,2

K :: ∀a b.Q ⇒ τ → T a |= θ(Q)
θ = [a �→ τci , b �→ τcj] �v Vi : θ(τi) (∀i)

CON
�v K �V : T �τci

Denotation of patterns

��p�θ :: �V → M

���θ(�) = T
�x �p�θ(V �V) = ��p�[x�→V]·θ(�V)

�(p ← e) �p�θ(�V) = �p �p�θ(E�θ(e)� �V)

�(Ki �p) �q�θ((Kj
�V) �W) =

�
��p �q�θ(�V �W) , if Ki = Kj

F , if Ki �= Kj

�(Ki �p) �q�θ(⊥ �V) = ⊥

��p� :: �̄V → � �̄Vc, �̄Vu, �̄V⊥�

��p�(S) = �{�V | �V ∈ S where ��p��(�V) = T }
, {�V | �V ∈ S where ��p��(�V) = F}
, {�V | �V ∈ S where ��p��(�V) = ⊥}�

Figure 4: Semantics of Value Abstractions and Patterns

lifts ��p�� from an individual value vector �V to a whole set S of
value vectors. It does so by partitioning the set based on the match-
ing outcome, which is similar to the behaviour of our algorithm.

5.3 Correctness Theorem
Now we are ready to express the correctness of the algorithm
with respect to the dynamic semantics. The algorithm is essentially

an abstraction of the dynamic semantics. Rather than acting on
an infinite set of values, it acts on a finite representation of that
set, the value abstractions. Correctness amounts to showing that
the algorithm treats the abstract set in a manner that faithfully
reflects the way the dynamic semantics treats the corresponding
concrete set. In other words, it should not matter whether we run
the algorithm on an abstract set S and interpret the abstract result
�C,U,D� as sets of concrete values �C ,U ,D�, or whether we first
interpret the abstract set S as a set S of concrete values and then
run the concrete dynamic semantics on those.

This can be expressed concisely as a commuting diagram:

S

�·�
��

patVectProc(�p)
�� �C,U,D�

�·�
��

S ��p�
�� �C ,U ,D�

This diagram allows us to interpret the results of the algorithm.
For instance, if we choose s to cover all possible value vectors and
we observe that C is empty, we can conclude that no value vector
successfully matches �p.

To state correctness precisely we have to add the obvious formal
fine print about types: The behaviour of pattern matching is only
defined if:

1. the pattern vector �p is well-typed,

2. the value vector �V and, by extension, the value set S and the
abstract value set S are well-typed, and

3. the types of pattern vector �p and value vector �V correspond.

The first condition we express concisely with the judgement Q;Γ �
�p : �τ , which expresses that the pattern vector �p has types �τ for a
type environment Γ and given type constraints Q.

For the second condition, we first consider the set of all values
value vectors compatible with types �τ , type environment Γ and
given type constraints Q. This set can be compactly written as the
interpretation �S∗� of the value abstraction S∗ = {Γ, �x : �τ �
�x � Q}. Any other well-typed value vectors �V must be contained
in this set: �V ∈ �S∗�. Similarly, S ⊆ �S∗� and �S� ⊆ �S∗�

Finally, the third condition is implicitly satisfied by using the
same types �τ , type environment Γ and given type constraints Q.

Wrapping up we formally state the correctness theorem as fol-
lows:

Theorem 1 (Correctness).

∀Γ, Q, �p,�τ , S : Q;Γ � �p : �τ ∧ �S� ⊆ �{Γ, �x : �τ � �x � Q}�
=⇒ �patVectProc(�p, S)� = ��p��S�

6. Implementation
This section describes the current implementation of our algorithm
in GHC and possible improvements.

The pattern-match warning pass runs once type inference is
complete. At this stage the syntax tree is richly decorated with
type information, but has not yet been desugared. Warnings will
therefore refer to the program text written by the user, and not
so some radically-desugared version. Actually the pattern-match
warning generator is simply called by the desugarer, just before it
desugars each pattern match.

The new pattern match checker takes 504 lines of Haskell,
compared to 588 lines for the old one. So although the new checker
is far more capable, it is of comparable code size.

432

6.1 The Oracle
The oracle judgement �SAT is treated as a black box by the algo-
rithm. As long as it is conservative, any definition will do, even
accepting all constraints. Our implementation does quite a bit bet-
ter than that.

Type-level constraints For type constraints we simply re-use the
powerful type-constraint solver, which GHC uses for type infer-
ence [25]. Hence, inconsistency of type constraints is defined uni-
formly and our oracle adapts automatically to any changes in the
type system, such as type-level functions, type-level arithmetic, and
so on.

Term-level constraints Currently, our oracle implementation for
term-level constraints is vestigial. It is specialised for trivial guards
of the form True and knows that these cannot fail. Thus only con-
junctions of constraints of the form y ≈ True, y ≈ False are
flagged as inconsistent. This enables us to see that abs1 (Sec-
tion 2.4) is exhaustive, but not abs2. There is therefore plenty of
scope for improvement, and various powerful term-level solvers,
such as Zeno [29] and HipSpec [5], could be used to serve the ora-
cle.

6.2 Performance Improvements
We have optimised the presentation of our algorithm in Section 4
for clarity, rather than runtime performance. Even though we can-
not improve upon the asymptotic worst-case time complexity, var-
ious measures can improve the average performance a big deal.

Implicit solving The formulation of the algorithm in Section 4
generates type constraints for the oracle with a high frequency. For
instance, rule [CCONVAR] of the C function generates a new type
equality constraint τ ∼ τx every time it fires, even for Haskell’98
data types.

While there are good reasons for generating these constraints
in general, we can in many cases avoid generating them explicitly
and passing them on to the oracle. Instead, we can handle them
immediately and much more cheaply. One important such case is
covered by the specialised variant of rule [CCONVAR] in Figure 5:
the type τx has the form T �τx, where T is also the type constructor
of the constructor Ki. This means that the generated type constraint
τ ∼ τx actually has the form T �a ∼ T �τx. We can simplify
this constraint in two steps. Firstly, we can decompose it into
simpler type equality constraints ai ∼ τx,i, one for each of the
type parameters. Secondly, since all type variables �a are actually
fresh, we can immediately solve these constraints by substituting
all occurrences of �a by �τx. Rule [CCONVAR] incorporates this
simplification and does not generate any type constraints at all for
Haskell’98 data types.

Incremental solving Many constraint solvers, including the OUT-
SIDEIN(X) solver, support an incremental interface:

solve :: Constraint -> State -> Maybe State

In the process of checking given constraints C0 for satisfiability,
they also normalise them into a compact representation. When the
solver believes the constraints are satisfiable, it returns their normal
form: a state σ0. When later the conjunction C0 ∧ C1 needs to
be checked, we can instead pass the state σ0 together with C1 to
the solver. Because σ0 has already been normalised, the solver can
process the latter combination much more cheaply than the former.

It is very attractive for our algorithm to incorporate this incre-
mental approach, replace the constraints Δ by normalised solver
states σ and immediately solve new constraints when they are gen-
erated. Because the algorithm refines step by step one initial value
abstraction into many different ones, most value abstractions share
a common prefix of constraints. By using solver states for these

common prefixes, we share the solving effort among all refinements
and greatly save on solving time. Moreover, by finding inconsisten-
cies early, we can prune eagerly and avoid refining in the first place.

7. Evaluation
Our new pattern checker addresses the three challenges laid out in
Section 2: GADTs, laziness, and guards. However in our evalua-
tion, only the first turned out to be significant. Concerning laziness,
none of our test programs triggered the warning for a clause that
is irredundant, but has an inaccessible right hand side; clearly such
cases are rare! Concerning guards, our prototype implementation
only has a vestigial term-equality solver, so until we improve it we
cannot expect to see gains.

For GADT-rich programs, however, we do hope to see im-
provements. However, many programs do not use GADTs at all;
and those that do often need to match over all constructors of
the type anyway. So we sought test cases by asking the Haskell
libraries list for cases where the authors missed accurate warn-
ings for GADT-using programs. This has resulted in identifying 9
hackage packages and 3 additional libraries, available on GitHub.2

We compared three checkers. The baseline is, of course, vanilla
GHC. However, GHC already embodies an ad hoc hack to improve
warning reports for GADTs, so we ran GHC two ways: both with
(GHC-2) and without (GHC-1) the hack. Doing so gives a sense
of how effective the ad hoc approach was compared with our new
checker.

For each compiler we measured:

• The number of missing clauses (M). The baseline compiler
GHC-1 is conservative, and reports too many missing clauses;
so a lower M represents more accurate reporting.

• The number of redundant (R) clauses. The baseline compiler is
conservative, and reports too few redundant clauses; so a higher
R represents more accurate reporting.

The results are presented in Table 1. They clearly show that the
ad-hoc hack of GHC-2 was quite succesful at eliminating unnec-
essary missing pattern warnings, but is entirely unable to identify
redundant clauses. The latter is where our algorithm shines: it iden-
tifies 38 pattern matches with redundant clauses, all of them catch-
all cases added to suppress erroneous warnings. We also see a good
reduction (-27) of the unnecessary missing pattern warnings. The
remaining spurious missing pattern warnings in accelerate and d-
bus involve pattern guards and view patterns; these can be elimi-
nated by upgrading the term-level reasoning of the oracle.

Erroneous suppression of warnings We have found three cases
where the programmer has erroneously added clauses to suppress
warnings. We have paraphrased one such example in terms of the
Vect n a type of Section 1.

data EQ n m where
EQ :: n ~ m => EQ n m

eq :: Vect n a -> Vect m a -> EQ n m -> Bool
eq VN VN EQ = True
eq (VC x xs) (VC y ys) EQ = x == y && eq xs ys
eq VN (VC _ _) _ = error "redundant"
eq (VC _ _) VN _ = error "redundant"

This example uses the EQ n m type as a witness for the type-level
equality of n and m. This equality is exposed by pattern matching on

2 https://github.com/amosr/merges/blob/master/stash/Lists.hs
https://github.com/gkaracha/gadtpm-example
https://github.com/jstolarek/dep-typed-wbl-heaps-hs

433

[CCONVAR’] C ((Ki �p) �q) (Γ � x �u � Δ) = C ((Ki �p) �q) (Γ
� � (Ki �y) �u � Δ�)

where �y#Γ �b#Γ (x:T �τx) ∈ Γ Ki :: ∀�a,�b.Q ⇒ �τ → T �a

θ = [�a �→ �τx] Γ� = Γ,�b, �y:θ(�τ)
Δ� = Δ ∪ θ(Q) ∪ x ≈ Ki �y

Figure 5: Specialised Clause Processing

Table 1: Results

GHC-1 GHC-2 New

Hackage Packages LoC M R M R M R
accelerate 11, 393 11 0 9 0 8 14
ad 1, 903 2 0 0 0 0 6
boolsimplifier 256 10 0 0 0 0 0
d-bus 2, 753 45 0 42 0 16 1
generics-sop 1, 008 0 0 0 0 0 3
hoopl 2, 147 33 0 0 0 0 3
json-sop 393 0 0 0 0 0 2
lens-sop 280 2 0 0 0 0 2
pretty-sop 27 0 0 0 0 0 1

Additional tests LoC M R M R M R
lists 66 1 0 0 0 0 3
heterogeneous lists 38 0 0 0 0 0 2
heaps 540 3 0 0 0 0 1

EQ. Hence, the third and fourth clauses must be redundant. After all,
we cannot possibly have an equality witness for Zero ~ Succ n.
Yes, we can: that witness is ⊥ :: EQ Zero (Succ n) and it is
not ruled out by the previous clauses. Indeed, calls of the form
eq VN (VCxxs)⊥ and eq (VCxxs) VN⊥ are not covered by the
first two clauses and hence rightly reported missing. The bottoms
can be flushed out by moving the equality witness to the front of
the argument list and matching on it first. Then the first two clauses
suffice.

GHC tickets With our new algorithm we have also been able to
close nine GHC tickets related to GADT pattern matching (#3927,
#4139, #6124, #8970) and literal patterns (#322, #2204, #5724,
#8016, #8853).

8. Related Work
8.1 Compiling Pattern Matching
There is a large body of work concerned with the efficient compila-
tion of pattern matching, for strict and lazy languages [13, 15, 17,
18]. Although superficially related, these works focus on an entirely
different problem, one that simply does not arise for us. Consider

f True True = 1
f _ False = 2
f False True = 3

In a strict language one can choose whether to begin by matching
the first argument or the second; the choice affects only efficiency,
not semantics. In a lazy language the choice affects semantics;
for example, does f (⊥, False) diverge, or return 2? Laville and
Maranget suggest choosing a match order that makes f maximally
defined [15], and they explore the ramifications of this choice.

However, Haskell does not offer this degree of freedom; it
fixes a top-to-bottom and left-to-right order of evaluation in pattern
match clauses.

8.2 Warnings for Simple Patterns
We now turn our attention to generating warnings for inexhaus-
tive or redundant patterns. For simple patterns (no guards, no
GADTs) there are several related works. The most closely-related
is Maranget’s elegant algorithm for detecting missing and redun-
dant (or “useless”) clauses [16]. Maranget recursively defines a
predicate that determines whether there could be any vector of val-
ues v that matches pattern vector �p, without matching any pattern
vector row in a matrix P , Ureq(P, �p), and answers both ques-
tions of exhaustiveness (query Ureq(P, _)) and redundancy (query
Ureq(P

1..(j−1), �pj) where P 1..(j−1) corresponds to all previous
clauses). Our algorithm has many similarities (e.g. in the way it ex-
pands constructor patterns) but is more incremental by propagating
state from one clause to the next instead of examining all previous
clauses for each clause.

Maranget’s algorithm does not deal with type constraints (as
those arising from GADTs), nor guards and nested patterns that
require keeping track of Δ and environment Γ. Finally the subtle
case of an empty covered set but a non-empty divergent set would
not be treated specially (and the clause would be considered as non-
redundant, though it could only allow values causing divergence).

Krishnaswami [12] accounts for exhaustiveness and redundancy
checking as part of formalisation of pattern matching in terms of
the focused sequent calculus. His approach assumes a left-to-right
ordering in the translation of ML patterns, which is compatible with
Haskell’s semantics.

Sestoft [27] focuses on compiling pattern matches for a simply-
typed variant of ML, but his algorithm also identifies inexhaustive
matches and redundant match rules as a by-product.

8.3 Warnings for GADT Patterns
OCaml and Idris both support GADTs, and both provide some
GADT-aware support for pattern-match checking. No published
work describes the algorithm used in these implementations.

OCaml When Garrigue and Le Normand introduced GADTs to
the OCaml language [10], they also extended the checking al-
gorithm. It eliminates the ill-typed uncovered cases proposed by
OCaml’s original algorithm. However, their approach does not
identify clauses that are redundant due to unsatisfiable type con-
straints. For instance, the third clause in f below is not identified as
redundant.

type _ t = T1 : int t | T2 : bool t

let f (type a) (x: a t) (y: a s) : unit =
match (x, y) with
| (T1, T1) -> ()
| (T2, T2) -> ()
| (_, _) -> ()

Idris Idris [2, 3] has very limited checking of overlapping pat-
terns or redundant patterns.3 It does, however, check coverage, and
will use this information in optimisation and code generation.

3 Edwin Brady, personal communication

434

ML variants Xi. [34–36] shows how to eliminate dead code for
GADT pattern matching – and dependent pattern matching in gen-
eral – for Dependent ML. He has a two-step approach: first add all
the missing patterns using simple-pattern techniques (Section 8.2),
and then prune out redundant clauses by checking when typing con-
straints are un-satisfiable. We combine the two steps, but the satis-
fiability checking is similar.

Dunfield’s thesis [7, Chapter 4] presents a coverage checker for
Stardust [8], another ML variant with refinement and intersection
types. The checker proceeds in a top-down, left-to-right fashion
much like Figure 1 and uses type satisfiability to prune redundant
cases.

Neither of these works handles guards or laziness.

8.4 Total Languages
Total languages like Agda [22] and Coq [19] must treat non-
exhaustive pattern matches as an error (not a warning). More-
over, they also allow overlapping patterns and use a variation of
Coquand’s dependent pattern matching [6] to report redundant
clauses. The algorithm works by splitting the context, until the
current neighbourhood matches one of the original clauses. If the
current neighbourhood fails to match all the given clauses, the
pattern match is non-exhaustive and a coverage failure error is is-
sued. If matching is inconclusive though, the algorithm splits along
one of the blocking variables and proceeds recursively with the
resulting neighbourhoods. Finally, the with-construct [22], first in-
troduced by McBride and McKinna [20], provides (pattern) guards
in a form that is suitable for total languages.

The key differences between our work and work on dependent
pattern matching are the following: (i) because of the possibility of
divergence we have to take laziness into account; (ii) current pre-
sentations of with-clauses [20] do not introduce term-level equal-
ity propositions and hence may report inexhaustiveness checking
more often than necessary, (iii) our approach is easily amenable to
external decision procedures that are proven sound but do not have
to return proof witnesses in the proof theory in hand.

8.5 Verification Tools
ESC/Haskell. A completely different but more powerful ap-
proach can be found in ESC/Haskell [38] and its successor [39].
ESC/Haskell is based on preconditions and contracts, so, it is able
to detect far more defects in programs: pattern matching failures,
division by zero, out of bounds array indexing, etc. Although it is
far more expressive than our approach (e.g. it can verify even some
sorting algorithms), it requires additional work by the programmer
through explicit pre/post-conditions.

Catch. Another approach that is closer to our work but retains
some of the expressiveness of ESC/Haskell is the tool Catch [21]
Catch generates pre- and post-conditions that describe the sets of
incoming and returned values of functions (quite similarly to our
value abstraction sets). Catch is based on abstract interpretation
over Haskell terms – the scope of abstract interpretation in our case
is restricted to clauses (and potentially nested patterns). A differ-
ence is that Catch operates at the level of Haskell Core, GHC’s in-
termediate language [40]. The greatest advantage of this approach
is that this language has only 10 data constructors, and hence Catch
does not have to handle the more verbose source Haskell AST. Un-
fortunately, at the level of Core, the original syntax is lost, leading
to less comprehensive error messages. On top of that, Catch does
not take into account type constraints, such as those that arise from
GADT pattern matching. Our approach takes them into account
and reuses the existing constraint solver infrastructure to discharge
them.

Liquid types. Liquid types [24, 31] is a refinement types exten-
sion to Haskell. Similarly to ESC/Haskell, it could be used to de-
tect redundant, overlapping, or non-exhaustive patterns, using an
SMT-based version of Coquand’s algorithm [6]. To take account
of type-level constraints (such as type equalities from GADTs) one
would have to encode them as refinement predicates. The algorithm
that we propose for computing covered, uncovered, and diverging
sets would still be applicable, but would have to emit constraints in
the vocabulary of Liquid types.

9. Discussion and Further Work
We presented an algorithm that provides warnings for functions
with redundant or missing patterns. These warnings are accurate,
even in the presence of GADTs, laziness and guards. Our im-
plementation is already available in the GHC repository (branch
wip/gadtpm). Given its power, the algorithm is both modular and
simple: Figure 3 is really the whole thing, apart from the satisfi-
ability checker. It provides interesting opportunities for follow-on
work, such as smarter reasoning about term-level constraints, and
exploiting the analysis results for optimised compilation.

Acknowledgments
We are grateful to Edwin Brady for explaining Idris’ behaviour,
and to Jacques Garrigue and Jacques Le Normand for explaining
OCaml’s behaviour. We would also like to thank Nikolaos Papaspy-
rou for his contribution in the early stages of this work; and Gabor
Greif, Conor McBride, and the ICFP referees for their helpful feed-
back. This work was partially funded by the Flemish Fund for Sci-
entific Research (FWO).

References
[1] L. Augustsson. Compiling pattern matching. In Proceedings of the

1985 Conference on Functional Programming and Computer Archi-
tecture, 1985.

[2] E. Brady. Programming and reasoning with algebraic effects and de-
pendent types. In Proceedings of the 18th ACM SIGPLAN Interna-
tional Conference on Functional Programming, ICFP ’13, pages 133–
144, New York, NY, USA, 2013. ACM. .

[3] E. Brady. Idris, a general-purpose dependently typed programming
language: Design and implementation. Journal of Functional Pro-
gramming, 23:552–593, 9 2013. .

[4] J. Cheney and R. Hinze. First-class phantom types. Technical report,
Cornell University, 2003.

[5] K. Claessen, M. Johansson, D. Rosén, and N. Smallbone. Automating
inductive proofs using theory exploration. In M. P. Bonacina, editor,
CADE, volume 7898 of Lecture Notes in Computer Science, pages
392–406. Springer, 2013.

[6] T. Coquand. Pattern matching with dependent types. In Proceedings
of the Workshop on Types for Proofs and Programs, 1992.

[7] J. Dunfield. A Unified System of Type Refinements. PhD thesis,
Carnegie Mellon University, Aug. 2007. CMU-CS-07-129.

[8] J. Dunfield. Refined typechecking with Stardust. In Proceedings
of the 2007 Workshop on Programming Languages Meets Program
Verification, PLPV ’07, pages 21–32, New York, NY, USA, 2007.
ACM. .

[9] M. Erwig and S. Peyton Jones. Pattern guards and transformational
patterns. In Proceedings of the 2000 Haskell Symposium. ACM, 2000.

[10] J. Garrigue and J. L. Normand. Adding GADTs to OCaml: the direct
approach. In Workshop on ML, 2011.

[11] G. Karachalias, T. Schrijvers, D. Vytiniotis, and S. P. Jones. GADTs
meet their match (extended version). Technical report, KU Leu-
ven, 2015. URL http://people.cs.kuleuven.be/~george.
karachalias/papers/gadtpm_ext.pdf.

435

[12] N. R. Krishnaswami. Focusing on pattern matching. In Proceedings of
the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’09, pages 366–378, New York, NY,
USA, 2009. ACM. .

[13] A. Laville. Comparison of priority rules in pattern matching and term
rewriting. J. Symb. Comput., 11(4):321–347, May 1991. .

[14] F. Le Fessant and L. Maranget. Optimizing pattern-matching. In
Proceedings of the 2001 International Conference on Functional Pro-
gramming, 2001.

[15] L. Maranget. Compiling lazy pattern matching. In Proceedings of the
1992 ACM Conference on LISP and Functional Programming, LFP
’92, pages 21–31, New York, NY, USA, 1992. ACM. .

[16] L. Maranget. Warnings for pattern matching. Journal of Functional
Programming, 17:387–421, 2007.

[17] L. Maranget. Compiling pattern matching to good decision trees. In
Proceedings of the ACM Workshop on ML, 2008.

[18] L. Maranget and P. Para. Two techniques for compiling lazy pattern
matching. Technical report, 1994.

[19] The Coq development team. The Coq proof assistant reference man-
ual. LogiCal Project, 2004. URL http://coq.inria.fr. Version
8.0.

[20] C. McBride and J. McKinna. The view from the left. Journal of
Functional Programming, 14(1):69–111, 2004.

[21] N. Mitchell and C. Runciman. Not all patterns, but enough: An auto-
matic verifier for partial but sufficient pattern matching. In Proceed-
ings of the First ACM SIGPLAN Symposium on Haskell, Haskell ’08,
pages 49–60, New York, NY, USA, 2008. ACM. .

[22] U. Norell. Towards a practical programming language based on de-
pendent type theory. PhD thesis, Department of Computer Science and
Engineering, Chalmers University of Technology, SE-412 96 Göte-
borg, Sweden, September 2007.

[23] S. Peyton Jones, D. Vytiniotis, S. Weirich, and G. Washburn. Sim-
ple unification-based type inference for GADTs. In Proceedings of
the Eleventh ACM SIGPLAN International Conference on Functional
Programming, ICFP ’06, pages 50–61, New York, NY, USA, 2006.
ACM. .

[24] P. M. Rondon, M. Kawaguci, and R. Jhala. Liquid types. In Proceed-
ings of the 2008 ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI ’08, pages 159–169, New
York, NY, USA, 2008. ACM. .

[25] T. Schrijvers, S. Peyton Jones, M. Sulzmann, and D. Vytiniotis. Com-
plete and decidable type inference for GADTs. In Proceedings of the
14th ACM SIGPLAN International Conference on Functional Pro-
gramming, ICFP ’09, pages 341–352, New York, NY, USA, 2009.
ACM. .

[26] R. C. Sekar, R. Ramesh, and I. V. Ramakrishnan. Adaptive pattern
matching. SIAM J. Comput., 24(6):1207–1234, Dec. 1995. ISSN
0097-5397. .

[27] P. Sestoft. ML pattern match compilation and partial evaluation. In
O. Danvy, R. Glück, and P. Thiemann, editors, Partial Evaluation,
volume 1110 of Lecture Notes in Computer Science, pages 446–464.
Springer Berlin Heidelberg, 1996. .

[28] T. Sheard. Languages of the future. In In OOPSLA ’04: Companion
to the 19th annual ACM SIGPLAN conference on Object-oriented
programming systems, languages, and applications, pages 116–119.
ACM Press, 2004.

[29] W. Sonnex, S. Drossopoulou, and S. Eisenbach. Zeno: An automated
prover for properties of recursive data structures. pages 407–421.
Springer-Verlag Berlin, 2012. .

[30] P. Thiemann. Avoiding repeated tests in pattern matching. In G. Filé,
editor, 3rd International Workshop on Static Analysis, number 724,
pages 141–152, Padova, Italia, Sept. 1993.

[31] N. Vazou, E. L. Seidel, R. Jhala, D. Vytiniotis, and S. Peyton-Jones.
Refinement types for Haskell. In Proceedings of the 19th ACM SIG-
PLAN International Conference on Functional Programming, ICFP
’14, pages 269–282, New York, NY, USA, 2014. ACM. .

[32] P. Wadler. Views: A way for pattern matching to cohabit with data
abstraction. In Proceedings of the 14th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages, POPL ’87,
pages 307–313, New York, NY, USA, 1987. ACM. .

[33] P. Wadler. Efficient compilation of pattern matching. In S. Pey-
ton Jones, editor, The implementation of functional programming lan-
guages, pages 78–103. Prentice Hall, 1987.

[34] H. Xi. Dead code elimination through dependent types. In Pro-
ceedings of the First International Workshop on Practical Aspects
of Declarative Languages, PADL ’99, pages 228–242, London, UK,
1998. Springer-Verlag.

[35] H. Xi. Dependent Types in Practical Programming. PhD thesis,
Carnegie Mellon University, Sept. 1998.

[36] H. Xi. Dependently typed pattern matching. Journal of Universal
Computer Science, 9:851–872, 2003.

[37] H. Xi, C. Chen, and G. Chen. Guarded recursive datatype constructors.
In Proceedings of the 30th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’03, pages 224–235,
New York, NY, USA, 2003. ACM. .

[38] D. N. Xu. Extended static checking for Haskell. In Proceedings of the
2006 ACM SIGPLAN Workshop on Haskell, Haskell ’06, pages 48–59,
New York, NY, USA, 2006. ACM. .

[39] D. N. Xu, S. Peyton Jones, and K. Claessen. Static contract checking
for Haskell. In Proceedings of the 36th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
’09, pages 41–52, New York, NY, USA, 2009. ACM. .

[40] B. A. Yorgey, S. Weirich, J. Cretin, S. Peyton Jones, D. Vytiniotis,
and J. P. Magalhães. Giving Haskell a promotion. In Proceedings of
the 8th ACM SIGPLAN Workshop on Types in Language Design and
Implementation, TLDI ’12, pages 53–66, New York, NY, USA, 2012.
ACM. .

A. Set Size Statistics
As we discussed in Section 3.4, our algorithm has exponential
behaviour in the worst case. Nevertheless, we expect this behaviour
to be rare in practice. To confirm this expectation, we put our
implementation to the test by collecting statistics concerning the
size of sets C and U our algorithm generates for the packages of
Section 7:

Maximum size of C/U Pattern Matches (%)
1− 9 8702 97.90%

10− 99 181 2.04%
100− 2813 5 0.06%

Since there was significant variance in the results, we divided them
into three size groups. Out of 8888 pattern matches checked in total,
almost 98% of the generated and processed sets have a size less
than 10. In fact, the vast majority (over 95%) have size 1 or 2.

The percentage of sets with size between 10 and 99 is 2.04%.
We believe that this percentage is acceptable for types with many
constructors and for pattern matches with many arguments.

Last but not least, we encountered 5 cases (only 0.06%) with
extremely large sets (≥ 100 elements). All of them were found in
a specific library4 of package ad. As expected, all these involved
pattern matches had the structure of function f from Section 3.4:

data T = A | B | C
f A A = True
f B B = True
f C C = True

Notably, the most extreme example which generated an uncovered
set of size 2813, matches against two arguments of type T with 54
data constructors, a match that gives rise to 3025 different value
combinations!

4 Library Data.Array.Accelerate.Analysis.Match.

436

