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Abstract

System FC is an explicitly typed language that serves as the tar-
get language for Haskell source programs. System FC is based on
System F with the addition of erasable but explicit type equality
proof witnesses. This paper improves FC in two directions: The
first contribution is extending term-level functions with the ability
to return equality proof witnesses, which allows the smooth inte-
gration of equality superclasses and indexed constraint synonyms,
features currently absent from Haskell. We show how to ensure
soundness and satisfy the zero-cost requirement for equality wit-
nesses using a familiar mechanism, already present in GHC: that
of unlifted types. Our second contribution is an equality proof sim-
plification algorithm, which greatly reduces the size of the target
System FC terms.

Categories and Subject Descriptors D.3.3 [Language Constructs
and Features]: Abstract data types; F.3.3 [Studies of Program
Constructs]: Type structure

General Terms Design,Languages

Keywords Haskell, Type functions, System FC

1. Introduction

A typed intermediate language provides a firm place to stand, free
from the design trade-offs of a complex source language. Moreover,
type-checking the intermediate program provides a powerful con-
sistency check on the earlier stages of elaboration, desugaring, and
optimization. The Glasgow Haskell Compiler (GHC) has just such
an intermediate language, which has evolved recently from System
F to System FC (Sulzmann et al. 2007; Weirich et al. 2011) to ac-
commodate the source-language features of GADTs (Cheney and
Hinze 2003; Peyton Jones et al. 2006; Sheard and Pasalic 2004) and
type families (Chakravarty et al. 2005; Kiselyov et al. 2010) In this
paper we distill some lessons gained from our practical experience
of implementing FC. Specifically, we offer two main contributions:

• Our earlier work treated equality evidence as a type-level phe-
nomenon, completely erased before code generation begins. In
this paper we show that it is both simpler and more expressive
to treat equality evidence as a term-level value – without com-
promising the zero runtime cost property. (Section 3).

The approach allows us to maintain an erasable coercion
language, where proofs may nevertheless be produced by
runtime, potentially divergent, terms. We discuss several
more traditional approaches to erasure in Section 5.
Moreover, the approach has greatly simplified the type in-
ference and core typechecking implementation in GHC by
treating type class evidence and coercion evidence uni-
formly, as ordinary expressions. A particularly important

consequence is that it becomes easy to implement “equal-
ity super-classes”, which were previously so awkward that
GHC did not support them.
By treating coercions as ordinary expressions that have or-
dinary types we are able for the first time to support (type-
indexed) equality constraint synonyms, subsuming the class
constraint synonyms proposal of Orchard and Schrijvers
(2010), a feature sought by Haskell programmers. 1

• We present a novel coercion simplification algorithm which
allows the compiler to replace a coercion with an equivalent
but much smaller one (Section 4).

Coercion simplification is of great practical importance. We
encountered programs whose un-simplified coercion terms
grow to many times the size of the actual executable terms,
to the point where GHC choked and ran out of heap. When
the simplifier is enabled, coercions simplify to a small frac-
tion of their size (Section 4.2).
To get these benefits, coercion simplification must take user-
declared equality axioms into account, but the simplifier
must never loop while optimizing a coercion – no matter
which axioms are declared by users. We prove that this is
the case in Section 4.3.

Despite its great practical importance, coercion simplification
did not appear to be well-studied in the coercion literature, but
we give some connections to related work in Section 5.

2. Coercions as values

We begin by reviewing the role of an intermediate language. A rich,
complex source language (Haskell) is desugared into a small, sim-
ple intermediate language. The source language is implicitly typed,
and a type inference engine figures out the type of every binder
and sub-expression. To make type inference feasible, Haskell em-
bodies many somewhat ad-hoc design compromises; for example,
λ-bound variables are assigned monomorphic types. By contrast,
the intermediate language is simple, uniform, and explicitly typed.
It can be typechecked by a simple, linear time algorithm.

To make this concrete, Figure 1 gives the syntax of System FC, the
calculus implemented by GHC’s intermediate language. The term
language is mostly conventional, consisting of System F, together
with let bindings, data constructors and case expressions. The syn-
tax of a term encodes its typing derivation: every binder carries its
type, and type abstractions Λa:η.e and type applications e ϕ are
explicit. The typing rules are given in Figure 2.

1 http://www.haskell.org/pipermail/haskell-cafe/
2010-November/086701.html
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Kinds
η ::= ? | κ→ κ
κ ::= # | η
Type constants
H ::= T Datatypes

| (→) Arrow
| (∼) Equality type

Types
ϕ, σ, τ, υ ::= a Variables

| H Constants
| F Type functions
| ϕ1 ϕ2 Application
| ∀a:η.ϕ Polymorphic types

Coercion values
γ, δ ::= x Variables

| C γ Axiom application
| γ1 γ2 Application
| 〈ϕ〉 Reflexivity
| γ1 ; γ2 Transitivity
| sym γ Symmetry
| nth k γ Injectivity
| ∀a:η.γ Polymorphic coercion
| γ@ϕ Instantiation

Expressions
e, u ::= x | λx :σ.e | e u

| Λa:η.e | e ϕ
| K | case e of p → u
| let x :τ = e in u
| e . γ Casts
| bγc Coercions

p ::= Kc:η x :τ Patterns

Types of data constructors
K : ∀a:ηac:ηc.τ → T a

Types of axioms
C : ∀a:η.ϕ1 ∼ ϕ2

Environments
Γ ::= · | Γ, bnd
bnd ::= a:η | x :σ

| K :σ | T :κ | F :κ | C :σ
Notation
T τ ≡ T τ1 . . . τn
τ → τ ≡ τ1 → . . .→ τn → τ
Γ0 ≡ initial (closed) environment

Figure 1: Syntax of System FC

2.1 Coercions

The unusual feature of FC is the use of coercions, which we review
briefly in this section. We urge the reader to consult (Sulzmann
et al. 2007; Weirich et al. 2011) for more examples and intuition.

The term e . γ is a cast, that converts a term e of type τ to one
of type ϕ (rule ECAST in Figure 2). The coercion γ is a witness,
providing evidence that τ and ϕ are equal types – that is, γ has
type τ ∼ ϕ. The syntax of coercions γ is given in Figure 1, and
their typing rules in Figure 4. To see casts in action, consider this
Haskell program which uses GADTs:

data T a where
T1 :: Int -> T Int
T2 :: a -> T a

f :: T a -> [a]
f (T1 x) = [x+1]
f (T2 v) = [v]
main = f (T1 4)

Γ `tm e : τ

(x :τ) ∈ Γ τ 6= σ1 ∼ σ2

EVAR
Γ `tm x : τ

Γ, (x :σ) `tm e : τ
Γ `ty σ : κ EABS

Γ `tm λx :σ.e : σ → τ

Γ `tm e : σ → τ
Γ `tm u : σ EAPP

Γ `tm e u : τ

Γ, (a:η) `tm e : τ ETABS
Γ `tm Λa:η.e : ∀a:η.τ

Γ `tm e : ∀a:η.τ
Γ `ty ϕ : η ETAPP

Γ `tm e ϕ : τ [ϕ/a]

Γ `ty σ : κ Γ `tm u : σ Γ, (x :σ) `tm e : τ
ELET

Γ `tm let x :σ = u in e : τ

Γ `tm e : τ Γ `co γ : τ ∼ ϕ
ECAST

Γ `tm e . γ : ϕ

Γ `co γ : σ1 ∼ σ2

ECOERCION
Γ `tm bγc : σ1 ∼ σ2

(K :σ) ∈ Γ0
ECON

Γ `tm K : σ

(K :∀a:ηac:ηc.ϕ→ T a) ∈ Γ0 Γ ` e : T σ
for each branch K c:ηc x :τ → u
τi = ϕi [σ/a]
Γ, c:ηc , x :τ ` u : σ

ECASE
Γ ` case e of K c:ηc x :τ → u : σ

Figure 2: Well-formed terms

We regard the GADT data constructor T1 as having the type

T1 : ∀a.(a ∼ Int)→ Int→ T a

So in FC, T1 takes three arguments: a type argument to instantiate
a , a coercion witnessing the equivalence of a and Int, and a value
of type Int. Here is the FC elaboration of main:

main = f Int (T1 Int <Int> 4)

The coercion argument has kind (Int ∼ Int), for which the
evidence is just 〈Int〉 (reflexivity). Similarly, pattern-matching on
T1 binds two variables: a coercion variable, and a term variable.
Here is the FC elaboration of f:

f = /\(a:*). \(x:T a).
case x of
T1 c n -> (Cons (n+1) Nil) |> sym [c]
T2 v -> Cons v Nil

main = f Int (T1 Int <Int> 4)

The cast converts the type of the result from [Int] to [a]. The
coercion sym[c] is evidence for (or a proof of) the equality of these
types, using c, of type (a ∼ Int). Figure 4 gives the rules for
coercions.

2.2 Equality superclasses

In our earlier work, coercions (like types) may be passed as an ar-
gument to a function, but may not be returned as a result. However,
it is sometimes very convenient for a function to return a coercion.
Haskell allows a type class to have a superclass; for example

class Eq a => Ord a where
(>=) :: a -> a -> a

This defines class Ord to have a method (>=) and a superclass Eq.
Every instance of Ord must be an instance of Eq. A class has a
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runtime representation as a record, or “dictionary”, of its methods
and superclasses so, for example, from an Ord dictionary one can
select the (>=) method or the Eq dictionary. In the FC elaboration,
the class declaration is translated to a data type declaration and a
collection of selectors:

data Ord a where
MkOrd :: Eq a -> (a -> a -> a) -> Ord a

geq :: forall a. Ord a -> a -> a -> a
geq (MkOrd _ geq) = geq

eqOrd :: forall a. Ord a -> Eq a
eqOrd (MkOrd eq _) = eq

It is very desirable to extend the superclass idea to include equality
constraints. For example, consider this Haskell class:

class (b ~ F a) => C a b where
op :: a -> b

The equality superclass specifies that any types σ, τ that instantiate
Cσ τ must satisfy τ ∼ Fσ. But what does the selector look like,
the equivalent of eqOrd? The simple, uniform thing would be:

scC :: forall a b. C a b -> (b ~ F a)
scC (MkC eq _) = eq

Here, for the first time, we have a function that returns a coercion.

2.3 Elaboration simplifications

Having functions that return coercions is not just an aesthetic im-
provement, but rather a real implementation simplification of the
source-to-target elaboration process. Assume we are given:

type family F
type instance F Bool = Char
instance C Bool Char where ...

GHC supports type-level functions, such as F above, that are de-
scribed by top-level axioms, such as Fax : F Bool ∼ Char above.
Assume the variable f::∀ab.C a b ⇒ a → b → b is bound in
the context. Elaboration of the term (f True ’c’) :: F Bool
will introduce fresh variables d and co for yet-unknown evidence:

f Bool Char d True ’c’ |> co

The type inference constraint solver must fill in evidence for d :
C Bool Char and co : Char ∼ F Bool. For instance it may use
the class instance for d and the type family axiom for co. The final
elaborated term is:

let d = dCBoolChar -- Dict. from instance decl.
in f Bool Char d True ’c’ |> sym Fax

But what happens if instead of Fax, a constraint solver picks up
the equality superclass from d? If coercions cannot be returned, the
only option is to elaborate the original term using pattern matching:

let d = dCBoolChar
in case d of

MkC co _ -> f Bool Char d True ’c’ |> co

This means that, after type inference is finished, we must “desugar”
the term adding let-bindings in some cases, or adding pattern
matching wrappers in other cases. More complex evidence terms
that may depend on other evidence add even more complexity to
this desugaring phase.

Instead, we’d like to be able to simply return and bind coercions,
just as we do for dictionaries:

let d = dCBoolChar
co = scC d

in f Bool Char d True ’c’ |> co

Γ `ty τ : κ

(a:η) ∈ Γ
TVAR

Γ `ty a : η

(T :κ) ∈ Γ
TDATA

Γ `ty T : κ

(F :κ) ∈ Γ
TFUN

Γ `ty F : κ

κ1, κ2 ∈ {#, ?}
TARR

Γ `ty (→) : κ1→κ2→?
TEQPRED

Γ `ty (∼) : κ→κ→#

Γ `ty ϕ1 : κ1 → κ2

Γ `ty ϕ2 : κ1
TAPP

Γ `ty ϕ1 ϕ2 : κ2

Γ, (a:η) `ty τ : ?
TALL

Γ `ty ∀a:η.τ : ?

Figure 3: Well-formed types

No special treatment is required then during desugaring, and the
mechanism for handling (potentially recursive) term-level bindings
is readily applicable to coercions.

2.4 Coercion erasure

An elaborated program can contain many casts and coercions. But
we do not want them to make the program run slower, because
coercions in FC have no computational content. In the end, at
runtime they all boil down to the identity function, so a cast can
be implemented by a no-op. In this respect coercions are very like
types: perhaps we can simply erase them? That was the approach
we took in our earlier work (Sulzmann et al. 2007), and in our
implementation in GHC. It works fine for the original version of
FC, but we discovered that it was not quite expressive enough
(Section 2.2), and that in turn has led us to re-think erasure.

Even in the original FC there was a whiff of a problem. In the
source language, equality constraints are treated uniformly with
type-class constraints and implicit parameters: anywhere a class
constraint can appear, an equality constraint can appear, and vice
versa. But in the original FC, types and coercions are erased, while
class and implicit-parameter constraints (which have computational
content) are not. This gave rise to many annoying (but manageable)
special cases in the compiler.

The question of equality superclasses highlights the non-uniformity.
There is no problem with a function that returns evidence for a class
constraint (such as eqOrd above), so why should there be a problem
with one that returns evidence for an equality constraint?

2.5 Outline of the solution

The solution should be evident by now: instead of treating coer-
cions like types, treat them like values, uniformly to other forms
of evidence. So a coercion, like a dictionary, becomes a first-class
value that can be passed to a function, returned as a result, stored in
data structure and so on. We describe the modified language in Sec-
tion 3. What becomes of our claim that casts and coercion-passing
should cost nothing? After all, coercions still have no computa-
tional content. Happily, it turns out that we can use a form of value
erasure to achieve this, and one that is already present in GHC for
a completely different reason, as we shall see in Section 3.4.

3. The new FC language

We now give the full story for the new coercions-as-values version
of FC. The syntax is in Figure 1, while the typing rules are in Fig-
ures 2, 3, and 4. The main new feature is that coercion values bγc
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Γ `co γ : σ1 ∼ σ2

(x :σ1 ∼ σ2) ∈ Γ CVAR
Γ `co x : σ1 ∼ σ2

(C :∀a:η.τ1 ∼ τ2) ∈ Γ
Γ `co γi : σi ∼ ϕi CAX

Γ `co C γ : τ1[σ/a] ∼ τ2[ϕ/a]

Γ `co γ1 : σ1 ∼ σ2

Γ `co γ2 : σ2 ∼ σ3 CTRANS
Γ `co γ1 ; γ2 : σ1 ∼ σ3

Γ `ty ϕ : κ CREFL
Γ `co 〈ϕ〉 : σ ∼ σ

Γ `co γ : σ1 ∼ σ2

CSYM
Γ `co sym γ : σ2 ∼ σ1

Γ `co γ : H σ ∼ H τ
CNTH

Γ `co nth k γ : σk ∼ τk

Γ, (a:η) `co γ : σ1 ∼ σ2
CALL

Γ `co ∀a:η.γ : (∀a:η.σ1) ∼ (∀a:η.σ2)

Γ `co γ1 : σ1 ∼ σ2 Γ `co γ2 : ϕ1 ∼ ϕ2 Γ `ty: σ1 ϕ1 : κ
CAPP

Γ `co γ1 γ2 : σ1 ϕ1 ∼ σ2 ϕ2

Γ `ty ϕ : η Γ `co γ : (∀a:η.σ1) ∼ (∀a:η.σ2)
CINST

Γ `co γ@ϕ : σ1[ϕ/a] ∼ σ2[ϕ/a]

Figure 4: Well-formed coercions

[x 7→u]tm(e) = e′

[x 7→u]tm(e . γ) = [x 7→u]tm(e) . [x 7→u]co(γ)
[x 7→u]tm(bγc) = b[x 7→u]co(γ)c

etc

[x 7→u]co(γ) = γ′

[x 7→bγ1c]co(γ) = γ[γ1/x ]
[x 7→bγ1c . γ2]co(γ) = γ[sym(nth 1 γ2);γ1;(nth 2 γ2)/x ]

[x 7→u]co(γ) = γ otherwise

Figure 5: Term and coercion substitutions

[a 7→ γ]↑(τ) = γ′

[a 7→ γ]↑(a) = γ
[a 7→ γ]↑(b) = 〈b〉
[a 7→ γ]↑(H ) = 〈H 〉
[a 7→ γ]↑(F ) = 〈F 〉

[a 7→ γ]↑(τ1 τ2) =

 〈ϕ1 ϕ2〉 when [a 7→ γ]↑(τi ) = 〈ϕi 〉
([a 7→ γ]↑(τ1)) ([a 7→ γ]↑(τ2))

otherwise

[a 7→ γ]↑(∀a:η.τ) =

{
〈∀a:η.ϕ〉 when [a 7→ γ]↑(τ) = 〈ϕ〉
∀a:η.([a 7→ γ]↑(τ)) otherwise

Figure 6: Lifting types to coercions

are now a form of term e , rather than appearing only in applica-
tions (as do types). There is a naturally-corresponding typing rule
(ECOERCE in Figure 2), which in turn means that σ ∼ τ is a type.
Since Haskell and FC have a higher-order type system, we define
(∼) to be a type constructor, and construct σ ∼ τ using ordinary
type application (Figure 1).

Type-level functions are denoted with F , and we use C for top-
level equality axioms (Figure 1). Rather than give concrete syntax
for declarations of data types, type functions, and axioms, we
simply populate the initial top-level type environment Γ0 with their
kinds, as the syntax of Γ in Figure 1 shows. To take an example, the
Haskell declarations

type family F a :: *
type instance F [a] = [F a]
type instance F Int = Bool

give rise to the following bindings in Γ0:

F : ?→ ?
C1 : ∀a:?→ ?.F [a] ∼ [F a]
C2 : F Int ∼ Bool

Another notable feature is that the syntax and rule CAX in Figure 4
apply axioms to coercions (C γ) and not simply types (C τ ),
contrary to previous FC presentations. This generalization does
not improve expressivity2 but is of great importance for coercion
simplification as we shall see towards the end of Section 4.1.

3.1 Coercions are unlifted

Here is an unsettling expression:

letrec (loop:() -> (Int~Bool)) = \x. loop x
in let (g:Int~Bool) = loop ()
in (4 |> g) && True

(Our formalism lacks letrec for brevity, but our implementation
supports it of course.) We bind a coercion g to the divergent term
loop (), and then use g to cast 4 to Bool. If we were to actually
take the && of 4 with True we would get a segmentation fault (or
something worse). Yet the program is well-typed, using the coer-
cion g whose kind is (Int~Bool), which in turn is returned by the
diverging function loop. So what has become of type soundness?

In any system that allows equality evidence to be computed and
returned by a possibly-divergent function we must ensure that
evidence is evaluated before it is acted upon. In a call-by-value
language this would be automatic, but Haskell and FC are call-
by-need. So the key to type soundness is to ensure that equality
evidence is always evaluated in a call-by-value fashion. (Exactly
the same applies to type-class dictionaries, but since they have
computational content, using them necessarily forces evaluation.)

Fortunately, although FC is call-by-need, its realization in GHC
already has a type-directed call-by-value mechanism, for a com-
pletely different reason: unlifted types (Peyton Jones and Launch-
bury 1991). Here is GHC’s implementation of addition on Int:

data Int = I# Int#
plusInt :: Int -> Int -> Int
plusInt (I# x) (I# y)

= let z = x +# y
in I# z

An Int is an ordinary algebraic data type with a single constructor
I# (the ’#’ is not special; it is just part of the constructor name).

2 Exercise: encode the coercion C γ as the transitive composition of coer-
cions that mention C 〈τ1〉 . . . 〈τn 〉.
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strict(K , i)

(K :∀a:ηac:ηc.τ1..j → T a) ∈ Γ0

j ≥ i ≥ 1 Γ0, a:ηa , c:ηc ` τi : #
STRICT

` strict(K , i)

val(u), cv(u)

if strict(K , i) then cv(ei )
VALK

val(K τ ϕ e)

VALABS
val(λx :τ.e)

VALTABS
val(Λa:η.e)

VALCO
val(bγc)

val(e)
CVAL

cv(e)

val(e)
CVALCAST

cv(e . γ)

Notation:

val ∈ {e | val(e)}

Figure 7: Value forms

This constructor has a single argument, of type Int#, which is the
type of unboxed integers, a honest-to-goodness 32-bit integer value
like C’s int. A value of type Int is always heap-allocated and can
be a thunk; a value of type Int# is never heap-allocated, and cannot
be a thunk – it is always a value. So there is no bottom value of type
Int#, and we say that it is an unlifted type.
Unlifted types are always treated using call-by-value. For example
the let binding for z does not heap-allocate a thunk, as let does
for lifted types. Rather, the right-hand side is evaluated immedi-
ately and the result is bound to z.
This is just what we want for coercions: all we need do is to
declare that the type of a coercion, σ ∼ τ , is an unlifted type,
and the existing mechanisms will do the rest. In the troubling
example above, the program will loop (trying to evaluate loop) but
it will not seg-fault. Of course, a good compiler will try to detect
unsatisfiable equality constraints, such as Int~Bool, and flag a
warning that the program is probably erroneous, but in general
unsatisfiability is undecidable, so we need a solid base that does
not depend on detecting unsatisfiablity.
Formally, we use kinds to distinguish lifted and unlifted types: A
lifted type has kind ? while an unlifted one has kind # (Figure 1).
We use η for a non-# kind and make sure in Figure 3 that all quanti-
fied type variables have η-kinds. Importantly, type constructor (∼)
returns # (rule TEQPRED) to ensure that σ ∼ τ is unlifted.

3.2 Operational semantics

The kind distinctions we have introduced above are used in the
operational semantics to guide the evaluation order, in Figure 8. Its
value forms are given in Figure 7. We follow (Sulzmann et al. 2007)
and define values val(·) and coerced values cv(·). Values include
constructor applications, λ-abstractions and type abstractions, and
the new form of coercion values bγc (absent in (Sulzmann et al.
2007)). Data constructor applications are considered values only
when the arguments in which the constructor is strict are coerced
values. Coerced values are either just values, or values cast by a
coercion. For instance if we have an axiom C :F Int ∼ [Int ], then
(Nil [Int ]) . sym C is such a coerced value. Therefore the design
goal of the operational semantics will be:

A closed well-typed expression is either a coerced value or
can step to a well-typed expression.

Turning to the operational semantics in Figure 8, valid evaluation
contexts E are classified with the judgement `E E . For instance, not
all let-expressions are valid evaluation contexts, but only those
that bind an argument whose type is unlifted (rule ELETOK). Sim-
ilarly, not all constructor applications are valid evaluation contexts,
but only those where the constructor is strict in the argument we
apply (rule ECAPPOK). The rest of the rules are straightforward.
Rule EVAL decomposes a term into an evaluation context and a
redex and uses the relation to perform a one-step reduction.

The rules for  are almost identical to those appearing in our
previous work, but for the sake of self-containment we give a
brief description. Rules PUSH and TPUSH push coercions when
they stand in the way of a term or type application. Rule APPLET
translates applications of λ-expressions to let-expressions. Rule
TMBETA performs a substitution when the bound expression is
either a coerced value or has lifted kind – in all other cases we
have to keep evaluating as rule ELETOK suggests. Rule COMB
combines two casts and rule CASE reduces a pattern match. Rule
KPUSH finally pushes a coercion that stands in the way of pattern
matching, by introducing new coercions [a 7→ δ]↑(σi [ϕ/c]).

The notation [a 7→ γ]↑(τ) = γ′ describes how a type can be
lifted to become a coercion, by substituting coercions for its free
variables, and is defined in Figure 6. Lifting satisfies the following:
Lemma 3.1 (Lifting). If Γ, (a:η) `ty τ : κ and Γ `co γ : σ1 ∼ σ2

for Γ `ty σi : η then Γ `co [a 7→ γ]↑(τ) : τ [σ1/a] ∼ τ [σ2/a].

With this property of lifting in mind, the reader can verify that
rule KPUSH produces a well-typed term. As an aside, observe that
lifting produces coercions in which reflexivity has been pushed as
high as possible in the result coercion tree structure – this is not
strictly necessary for soundness but will be handy for the coercion
simplifier presentation in Section 4.

Interesting details hide in the definition of the substitution function
[x 7→u]tm(e), in Figure 5. This function is standard for terms, but
appeals to a different function [x 7→u]co(γ) when it crosses a coer-
cion boundary. A variable that we substitute for, x , may either be
of type τ1 ∼ τ2 or not. If it is of type τ1 ∼ τ2 then its kind is #,
which means that u must be a coerced value and by inversion on
the value judgement must have one of the following two forms:

• u = bγ1c in which case we may simply substitute γ1 in γ, or
• u = bγ1c . γ2, in which case `co γ1 : σ1 ∼ ϕ1, `co γ2 :

(σ1 ∼ ϕ1) ∼ (σ2 ∼ ϕ2), and `tm u : σ2 ∼ ϕ2. Here γ2 is a
coercion between coercions, a higher-dimensional construction
in the terminology of recent re-formulations of dependent type
theory (Licata and Harper 2011). Luckily in our case we can
immediately collapse the term bγ1c . γ2 to a coercion of
type σ2 ∼ ϕ2, taking advantage of injectivity of (∼) and
symmetry (features that may or may not be present in more
general settings). The collapsed term is just sym(nth 1 γ2) ;
γ1 ; (nth 2 γ2).

Otherwise u will not be of type τ1 ∼ τ2 and hence there is no
substitution to perform since all variables in γ will be of type
τ1 ∼ τ2 by rule CVAR in Figure 4. This is reflected in the third
line of the definition of [x 7→u]co(γ).

Formally, subject reduction is proved with the next three results.
Lemma 3.2 (Substitution). The following are true:

• If ∆, (x :τ) `tm e : σ and ∆ `ty τ : # and ∆ ` u : τ and
∆ ` cv(u) then ∆ `tm [x 7→u]tm(e) : σ.
• If ∆, (x :τ) `tm e : σ and ∆ `ty τ : η and ∆ ` u : τ then

∆ `tm [x 7→u]tm(e) : σ.
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Expression evaluation contexts E ::= 2 | E e | E . γ | E ϕ | (K τ ϕ e) E | case E of p → e | let x :σ = E in e

` e −→ u `E E

`E E
e  u

EVAL
` E[e] −→ E[u]

EHOLEOK
`E 2

`E E
EAPPOK

`E E e

`E E
ECASTOK

`E E . γ

`E E
ETAPPOK

`E E ϕ

`E E
ECASEOK

`E case E of p→e

`E E
val(K σ ϕ e1..j )
strict(K , j+1)

ECAPPOK
`E (K σ ϕ e1..j ) E

`E E `ty σ : #
ELETOK

`E let x :σ = E in e

e  e′

PUSH (val . γ) ϕ  (val ϕ) . (γ@ϕ)
TPUSH (val . γ) e  (val (e . sym(nth 1 γ))) . nth 2 γ
APPLET (λx :σ.e) u  let x :σ = u in e
TYBETA (Λa:η.e) ϕ  e[ϕ/a]
TMBETA let x :σ = u in e  [x 7→u]tm(e) when cv(u) ∨ `ty σ : η
COMB val . γ1 . γ2  val . (γ1 ; γ2)
CASE case K τ ϕ e of . . .K c:η x :σ → u . . .  [x 7→e]tm(u[ϕ/c]) when cv(K τ ϕ e)
KPUSH case K τ ϕ e . γ of p → u  case K τ ′ ϕ e′ of p → u

when cv(K τ ϕ e) `co γ : T τ ∼ T τ ′

K :∀a:ηac:ηc.σ → T a ∈ Γ0 e′i = ei . [a 7→ δ]↑(σi [ϕ/c])
δj = nth j γ

Figure 8: Typed operational semantics

Lemma 3.3 (Type-in-coercion substitution). If Γ, (a:η) `co γ :
σ1 ∼ σ2 and Γ `ty τ : η then Γ `co γ[τ/a] : σ1[τ/a] ∼ σ2[τ/a].
Theorem 3.4 (Subject reduction). The following are true:

• If `tm e : τ and e  u then `tm u : τ .
• If `tm e : τ and e −→ u then `tm u : τ .

Finally, progress relies on the assumption of consistency, trans-
ferred directly from our previous work. Consistency requires that
for every two closed types τ1 and τ2 that are inhabited by values
(including applications of (∼)), if we can derive `co γ : τ1 ∼ τ2
then τ1 and τ2 must have the same head constructor.
Theorem 3.5 (Progress). Under the assumption of consistency, if
`tm e : τ then either e −→ e ′ or cv(e).

3.3 Coercions as zero-width values

If coercions are runtime values, one might worry about the runtime
cost of passing them around. They cannot be erased altogether
because, as we have seen, we must evaluate evidence before using
it. If we erased all traces of coercions and their computations, the
system would become unsound, as we saw in Section 3.1.

Happily, a solution lies readily to hand. Although we cannot erase
coercions altogether, once a coercion is evaluated we do not need
to look at it. Its structure is irrelevant to the computation, so it
can be represented by a very narrow bit-field indeed. We have
already seen that Int# is an unboxed integer, represented by a 32-
bit value, and typically passed in a register. Similarly Double# is
an unboxed double-precision float, represented by a 64-bit value,
typically passed in a floating point register. So we are free to decide
that σ ∼ τ is an unboxed type, represented by a zero-bit value, and
passed in, well, a zero-bit register, in a manner reminiscent of the
void type in C:

• When a function takes a coercion as an argument, we can
pass it in a zero-bit register (using call-by-value to evaluate the
coercion first, of course).

• When a function returns a coercion, we can return it in a zero-
bit register.
• When allocating a data constructor with a coercion argument

(such as T1 in Section 2.1), we can allocate zero bits to hold the
coercion.

We have an infinite number of zero-bit registers available, and it
takes no instructions to load and store zero-bit values... in short, co-
ercions have no runtime overhead at all. Better still, the mechanism
for supporting zero-width values is already present in GHC for an-
other unrelated reason: the I/O monad. In GHC, the I/O monad is
implemented like this:

type RW = State# RealWorld
newtype IO a = IO (RW -> (# RW, a #)

A value of type RW is a kind of token representing the state of the
world. An I/O computation may transform the world, and hence
returns a new RW token. However, the state token is passed around
merely to maintain the dependency order of I/O operations. Like
coercions, it has no computational content, because I/O operations
are performed by side effect on the (actual) real world. So values of
type (State# a) are represented by a zero-width value, and this
mechanism is precisely what we need to support coercions.

3.4 Erasure

To be concrete, we formalize the zero-width register idea in a low-
level untyped language with facilities for strict evaluation and a
“zero-width” value. This language is given in Figure 9, and is
a usual λ-calculus with strict λ-abstractions (λ!x.e), strict let
(let !x = e in u), and a zero-width value • (pronounced “spot”).

The erasure of a System FC term e is given by the function {x}∆
which also accepts a type environment ∆. The first interesting case
is erasure for λ-abstractions, which – depending on the kind of the
type of the argument – erases to strict or non-strict λ-terms. Hence
it needs to consult the environment ∆ to determine the kind of the
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Erasure language
e ::= x | λx.e | λ!x.e | e u | K | case e of p→ u

| let x = e in u | let !x = e in u | •
p ::= K x

{e}∆ = e

{x}∆ = x
{K}∆ = K
{λx :σ.e}∆ = λx.{e}∆ when ∆ `ty σ : η
{λx :σ.e}∆ = λ!x.{e}∆ when ∆ `ty σ : #
{e u}∆ = {e}∆ {u}∆
{Λa:η.e}∆ = λ!x.{e}∆,(a:κ)

{e ϕ}∆ = {e}∆ •
{case e of

K c:ηc x :τ→u}∆ = case {e}∆ of Kxcx→{u}∆,c:ηc
{let x :σ = e in u}∆ = let !x = {e}∆ in {u}∆

when ∆ `ty σ : #
{let x :σ = e in u}∆ = let x = {e}∆ in {u}∆

when ∆ `ty σ : η
{e . γ}∆ = {e}∆
{bγc}∆ = •

Figure 9: Erasure

argument. For instance, if the argument type is σ1 ∼ σ2, its kind
will be #, and the resulting λ-term will be strict. The rules for let
translate to either strict or ordinary let expressions depending on
the type of the argument. Casts are completely erased and lifted
coercions bγc are erased to •. Finally, we convert type abstractions
Λa:η.e to strict λ-terms, and correspondingly type applications to
applications to •. This is a divergence from Haskell’s operational
semantics that simply discards type abstractions altogether but is
arguably more satisfactory and may also shed some light on erasure
if types, in addition to coercions, are returned by terms.

We can define a straightforward operational semantics of this lan-
guage and prove a bisimulation theorem between System FC terms
and their erasure – the details are not particularly interesting.

3.5 Indexed constraint synonyms

Another advantage of coercions-as-values mentioned in the intro-
duction is that they naturally allow equality constraint synonyms,
subsuming previous proposals for class constraint synonyms (Or-
chard and Schrijvers 2010). For instance, consider first a map class
declaration à la associated type synonyms (Chakravarty et al. 2005):

class Map a where
type Elem a, Key a
find :: Key a -> a -> Maybe (Elem a)
...

It defines the class of a map whose keys are given by the type family
Key and elements by Elem . The modifications to System FC allow
us now to define a constraint for maps with integer keys as:

type family IMap a
type instance IMap a = (Key a ~ Int, Map a)

Simply pairing-up an equality constraint with a class constraint is
now entirely possible. Incidentally, considering coercions as values
allows us to even define indexed equality synonyms, such as:

F [e] = Key [e] ~ Int
F (Trie e) = Key (Trie e) ~ BitString

Though we have not yet identified very compelling cases for such
indexed equality constraint synonyms, our formalism readily sup-
ports them.

4. Coercion simplification
System FC terms arise as the result of elaboration of source lan-
guage terms through type inference or checking. Type inference
typically relies on a constraint solver which produces System FC
witnesses of equality, that decorate the elaborated term. A con-
straint solver is not typically concerned with producing small or
readable witnesses; indeed GHC’s constraint solver can produce
large and complex coercions that can make the elaborated term
practically impossible to understand and debug.
Moreover, GHC’s optimizer transforms FC terms to FC terms. Any
decent optimizer contains a symbolic evaluator, and GHC is no
exception, so it faithfully implements the operational semantics of
Figure 8. Some of these rules, notably the “push” rules, increase
the size of coercion terms – and may be repeatedly applied.

Here is such a coercion, produced by GHC’s constraint solver.3

axiom Cn a :: N a ~ forall xy. a x -> a y
axiom Cf :: F () ~ Maybe

nth 2 (inst (inst (trans
(sym (Cn Maybe))
(trans (N (sym Cf))

(Cn (F ()))))
xa) ya) :: Maybe ya ~ F () ya

Coercion simplification is designed to reduce the size of the proof
terms inside an FC term. The above coercion is transformed by
GHC’s simplifier that we describe in the rest of this section to:
(sym Cf) ya :: Maybe ya ~ F () ya

A clear improvement!

4.1 Coercion simplification rules

Coercion simplification is given as a non-deterministic algorithm,
presented in Figure 10. In this figure we use some syntactic con-
ventions: Namely, for sequences of coercions γ1 and γ2, we write
γ1 ; γ2 for the sequence of pointwise transitive compositions and
sym γ1 for pointwise application of symmetry. We write good(γ)
iff γ contains some variable x or axiom application C γ.
We define coercion evaluation contexts, G, as coercion terms with
holes inside them. The syntax of G allows us to rewrite anywhere
inside a coercion. The main coercion evaluation rule is COEVAL.
If we are given a coercion γ, we first decompose it to an evalu-
ation context G with γ1 in its hole. Rule COEVAL works up to
associativity of transitivity; for example, we will allow the term
(γ1 ; γ2;) ; γ3 to be written as G[γ2 ; γ3] where G = γ1 ; 2. This
treatment of transitivity is extremely convenient, but we must be
careful to ensure that our argument for termination remains robust
under associativity (Section 4.3). Once we have figured out a de-
composition G[γ1], COEVAL performs a single step of rewriting
∆ ` γ1  γ2. Since we are allowed to rewrite coercions under a
type environment (∀a:η.G is a valid coercion evaluation context),
∆ (somewhat informally) enumerates the type variables bound by
G. Finally we may simply return G[γ2]. The soundness property for
the −→ relation is given by the following theorem.
Theorem 4.1 (Coercion subject reduction). If `co γ : σ ∼ ϕ and
γ −→ γ′ then `co γ : σ ∼ ϕ.

The rewriting judgement ∆ ` γ1  γ2 satisfies a similar property.
Lemma 4.2. If ∆ `co γ1 : σ ∼ ϕ and ∆ ` γ1  γ2 then
∆ `co γ2 : σ ∼ ϕ.

To explain coercion simplification, we now present the reaction
rules for the relation, organized in several groups.

3 We will give its transcription to our mathematical notation later; for
brevity we do not explicitly show uses of reflexivity in the example.
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Coercion evaluation contexts G ::= 2 | G γ | γ G | C γ1Gγ2 | sym G | ∀a:η.G | G@τ | G ; γ | γ ; G

γ ∼= G[γ1] modulo associativity of (;) ∆ `co γ1 : σ ∼ ϕ ∆ ` γ1  γ2

COEVAL
γ −→ G[γ2]

∆ ` γ1  γ2

Reflexivity rules
REFLAPP ∆ ` 〈ϕ1〉 〈ϕ2〉  〈ϕ1 ϕ2〉
REFLALL ∆ ` ∀a:η.〈ϕ〉  〈∀a:η.ϕ〉
REFLELIML ∆ ` 〈ϕ〉 ; γ  γ
REFLELIMR ∆ ` γ ; 〈ϕ〉  γ

Eta rules
ETAALLL ∆ ` ((∀a:η.γ1) ; γ2)@ϕ  γ1[ϕ/a] ; (γ2@ϕ)
ETAALLR ∆ ` (γ1 ; (∀a:η.γ2))@ϕ  γ1@ϕ ; γ2[ϕ/a]

ETANTHL ∆ ` nth k (〈H τ1..`〉 γ ; γ)  

{
nth k γ if k ≤ `
γk−` ; nth k γ otherwise

ETANTHR ∆ ` nth k (γ ; 〈H τ1..`〉 γ)  

{
nth k γ if k ≤ `
nth k γ ; γk−` otherwise

Symmetry rules
SYMREFL ∆ ` sym〈ϕ〉  〈ϕ〉
SYMALL ∆ ` sym(∀a:η.γ)  ∀a:η. sym γ
SYMAPP ∆ ` sym(γ1 γ2)  (sym γ1) (sym γ2)
SYMTRANS ∆ ` sym(γ1 ; γ2)  (sym γ2);(sym γ1)
SYMSYM ∆ ` sym sym γ  γ

Reduction rules

REDNTH ∆ ` nth k (〈H τ1..`〉 γ)  

{
〈τk 〉 if k ≤ `
γk−` otherwise

REDINSTCO ∆ ` (∀a:η.γ)@ϕ  γ[ϕ/a]
REDINSTTY ∆ ` 〈∀a:η.τ〉@ϕ  〈τ [ϕ/a]〉

Push transitivity rules
PUSHAPP ∆ ` (γ1 γ2) ; (γ3 γ4)  (γ1 ; γ3) (γ2 ; γ4)
PUSHALL ∆ ` (∀a:η.γ1) ; (∀a:η.γ2)  ∀a:η.γ1 ; γ2

PUSHINST ∆ ` (γ1@τ) ; (γ2@τ)  (γ1 ; γ2)@τ when ∆ `co γ1 ; γ2 : σ1 ∼ σ2

PUSHNTH ∆ ` (nth k γ1) ; (nth k γ2)  nth k (γ1 ; γ2) when ∆ `co γ1 ; γ2 : σ1 ∼ σ2

Leaf rules

∆ `co x : τ ∼ υ
VARSYM

∆ ` x ; sym x  〈τ〉

∆ `co x : τ ∼ υ
SYMVAR

∆ ` sym x ; x  〈υ〉

(C :∀a:η.τ ∼ υ) ∈ Γ0 a ⊆ ftv(υ)
AXSYM

∆ ` C γ1 ; sym(C γ2) [a 7→ γ1 ; sym γ2]↑(τ)

(C :∀a:η.τ ∼ υ) ∈ Γ0 a ⊆ ftv(τ)
SYMAX

∆ ` sym(C γ1) ; C γ2  [a 7→ sym γ1 ; γ2]↑(υ)

(C :∀a:η.τ ∼ υ) ∈ Γ0 a ⊆ ftv(υ)
good(δ) δ = [a 7→ γ2]↑(υ) AXSUCKR
∆ ` (C γ1) ; δ  C γ1;γ2

(C :∀a:η.τ ∼ υ) ∈ Γ0 a ⊆ ftv(τ)
good(δ) δ = [a 7→ γ1]↑(τ)

AXSUCKL
∆ ` δ ; (C γ2) C γ1;γ2

(C :∀a:η.τ ∼ υ) ∈ Γ0 a ⊆ ftv(τ)
good(δ) δ = [a 7→ γ2]↑(τ)

SYMAXSUCKR
∆ ` sym(C γ1) ; δ  sym(C sym γ2;γ1)

(C :∀a:η.τ ∼ υ) ∈ Γ0 a ⊆ ftv(υ)
good(δ) δ = [a 7→ γ1]↑(υ) SYMAXSUCKL

∆ ` δ ; sym(C γ2) sym(C γ2; sym γ1)

Figure 10: Coercion simplification

Pulling reflexivity up Rules REFLAPP, REFLALL, REFLELIML,
and REFLELIMR, deal with uses of reflexivity. Rules REFLAPP
and REFLALL “swallow” constructors from the coercion language
(coercion application, and quantification respectively) into the type
language (type application, and quantification respectively). Hence
they pull reflexivity as high as possible in the tree structure of a co-
ercion term. Rules REFLELIML and REFLELIMR simply eliminate
reflexivity uses that are composed with other coercions.

Pushing symmetry down Uses of symmetry, contrary to reflexiv-
ity, are pushed as close to the leaves as possible or eliminated, (rules
SYMREFL, SYMALL, SYMAPP, SYMTRANS, and SYMSYM) only
getting stuck at terms of the form sym x and sym(C γ). The
idea is that by pushing uses of symmetry towards the leaves, the
rest of the rules may completely ignore symmetry, except where
symmetry-pushing gets stuck (variables or axiom applications).

Reducing coercions Rules REDNTH, REDINSTCO, and REDIN-
STTY are the first interesting group of rules. They eliminate uses of
injectivity and instantiation. Rule REDNTH is concerned with the
case where we wish to decompose a coercion between H ϕ ∼
H σ, where the coercion term contains H in its head. Notice,
that H is a type and may already be applied to some type argu-
ments τ1..`, and hence the rule has to account for selection from
the first ` arguments, or a later argument. Rule REDINSTCO deals
with instantiation of a polymorphic coercion with a type. Thanks
to Lemma 3.3 we may freely substitute a type inside a coercion
term in the place of a type variable, since the type variable will be
“guarded” by uses of 〈·〉. Rule REDINSTTY deals with the instan-
tiation of a polymorphic coercion that is just a type.

Eta expanding and subsequent reducing Redexes of REDNTH
and REDINSTCO or REDINSTTY may not be directly visible. Con-
sider nth k (〈H τ1..`〉 γ ; γ). The use of transitivity stands in our
way for the firing of rule REDNTH. To the rescue, rules ETAALLL,
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ETAALLR, ETANTHL, and ETANTHR, push decomposition or in-
stantiation through transitivity and eliminate such redexes. We call
these rules “eta” because in effect we are η-expanding and immedi-
ately reducing one of the components of the transitive composition.
Here is a decomposition of ETAALLL in smaller steps that involve
an η-expansion (of γ2 in the second line):

((∀a:η.γ1) ; γ2)@ϕ
 ((∀a:η.γ1) ; (∀a:η.γ2@a))@ϕ
 (∀a:η.γ1 ; γ2@a)@ϕ  γ1[ϕ/a] ; γ2@ϕ

We have merged these steps in a single rule to facilitate the proof
of termination. In doing this, we do not lose any reactions, since all
of the intermediate terms can also reduce to the final coercion.

There are many design possibilities for rules that look like our
η-rules. For instance one may wonder why we are not always
expanding terms of the form γ1 ; (∀a:η.γ2) to ∀a:η.γ1@a ; γ2,
whenever γ1 is of type ∀a:η.τ ∼ ∀a:η.ϕ. We experimented with
several variations like this, but we found that such expansions either
complicated the termination argument, or did not result in smaller
coercion terms. Our rules in effect perform η-expansion only when
there is a firing reduction directly after the expansion.

Pushing transitivity down Rules PUSHAPP, PUSHALL, PUSH-
NTH, and PUSHINST push uses of transitivity down the structure
of a coercion term, towards the leaves. These rules aim to reveal
more redexes at the leaves, that will be reduced by the next (and
final) set of rules. Notice that rules PUSHINST and PUSHNTH im-
pose side conditions on the transitive composition γ1 ; γ2. Without
these conditions, the resulting coercion may not be well-formed.
Take γ1 = ∀a:η.〈T a a〉 and γ2 = ∀a:η.〈T a Int〉. It is cer-
tainly the case that (γ1@Int) ; (γ2@Int) is well formed. However,
`co γ1 : ∀a:η.T a a ∼ ∀a:η.T a a and `co γ2 : ∀a:η.T a Int ∼
∀a:η.T a ; Int , and hence (γ1 ; γ2)@Int is not well-formed. A
similar argument applies to rule PUSHNTH.

Leaf reactions When transitivity and symmetry have been pushed
as low as possible, new redexes may appear, for which we intro-
duce rules VARSYM, SYMVAR, AXSYM, SYMAX, AXSUCKR,
AXSUCKL, SYMAXSUCKR, SYMAXSUCKL.

• Rules VARSYM and SYMVAR are entirely straightforward: a
coercion variable (or its symmetric coercion) meets its symmet-
ric coercion (or the variable) and the result is the identity.
• Rules AXSYM and SYMAX are more involved. Assume that the

axiom (C :∀a:η.τ ∼ υ) ∈ Γ0, and a well-formed coercion of
the form: C γ1 ; sym(C γ2). Moreover ∆ `co γ1 : σ1 ∼ ϕ1

and ∆ `co γ2 : σ2 ∼ ϕ2. Then we know that ∆ `co C γ1 ;
sym(C γ2) : τ [σ1/a] ∼ τ [σ2/a]. Since the composition is
well-formed, it must be the case that υ[ϕ1/a] = υ[ϕ2/a]. If
a ⊆ ftv(υ) then it must be ϕ1 = ϕ2. Hence, the pointwise
composition γ1 ; sym γ2 is well-formed and of type σ1 ∼ σ2.
Consequently, we may replace the original coercion with the
lifting of τ over a substitution that maps a to γ1 ; sym γ2:
[a 7→ γ1 ; sym γ2]↑(τ). The side condition is essential for the
rule to be sound. Consider the following example:

C : ∀a: ? .F [a] ∼ Int ∈ Γ0

Then (C 〈Int〉) ; sym(C 〈Bool〉) is well-formed and of type
F [Int ] ∼ F [Bool ], but 〈F 〉 (〈Int〉 ; sym〈Bool〉) is not well-
formed! Rule SYMAX is symmetric and has a similar soundness
side condition on the free variables of τ this time.
• The rest of the rules deal with the case when an axiom meets

a lifted type – the reaction swallows the lifted type inside the

axiom application. For instance, here is rule AXSUCKR:
(C :∀a:η.τ ∼ υ) ∈ Γ0 a ⊆ ftv(υ)

good(δ) δ = [a 7→ γ2]↑(υ)
AXSUCKR

∆ ` (C γ1) ; δ  C γ1;γ2

This time let us assume that ∆ `co γ1 : σ1 ∼ ϕ1. Consequently
∆ `co C γ1 : τ [σ1/a] ∼ υ[ϕ1/a]. Since a ⊆ ftv(υ) it
must be that ∆ `co γ2 : ϕ1 ∼ ϕ3 for some ϕ3 and we can
pointwise compose γ1;γ2 to get coercions between σ1 ∼ ϕ3.
The resulting coercion C γ1;γ2 is well-formed and of type
τ [σ1/a] ∼ υ[ϕ3/a]. Rules AXSUCKL, SYMAXSUCKL, and
SYMAXSUCKR involve a similar reasoning.
The side condition good(δ) is not restrictive in any way –
it merely requires that δ contains some variable x or axiom
application. If not, then δ can be converted to reflexivity:4

Lemma 4.3. If `co δ : σ∼ϕ and ¬ good(δ), then `co γ−→∗〈ϕ〉.
Reflexivity, when transitively composed with any other coer-
cion, is eliminable via REFLELIML/R or and consequently the
side condition is not preventing any reactions from firing. It
will, however, be useful in the simplification termination proof
in Section 4.3.

The purpose of rules AXSUCKL/R and SYMAXSUCKL/R is to
eliminate intermediate coercions in a big transitive composition
chain, to give the opportunity to an axiom to meet its symmetric
version and react with rules AXSYM and SYMAX. In fact this rule
is precisely what we need for the impressive simplification from the
beginning of this section:

Cn : ∀a:?→ ?.N a ∼ ∀xy.a x → a y ∈ Γ0

Cf : F () ∼ Maybe ∈ Γ0

Our coercion term is:

nth 2 (((sym Cn 〈Maybe〉;〈N 〉 (sym Cf );Cn 〈F ()〉)@xa)@ya)

Its simplification is given in Figure 11. Notably, rules AXSUCKL/R
and SYMAXSUCKL/R rely on axiom applications be of the form
C γ instead of the simpler C τ found in previous FC papers.

4.2 Coercion simplification in GHC

To assess the usefulness of coercion simplification we added it to
GHC. For Haskell programs that make no use of GADTs or type
families, the effect will be precisely zero, so we took measurements
on two bodies of code. First, our regression suite of 151 tests
for GADTs and type families; these are all very small programs.
Second, the Data.Accelerate library that we know makes use of
type families (Chakravarty et al. 2011). This library consists of 18
modules, containing 8144 lines of code.

We compiled each of these programs with and without coercion
simplification, and measured the percentage reduction in size of
the coercion terms with simplification enabled. This table shows
the minimum, maximum, and aggregate reduction, taken over the
151 tests and 18 modules respectively. The “aggregate reduction”
is obtained by combining all the programs in the group (testsuite
or Accelerate) into one giant “program”, and computing the
reduction in coercion size.

Testsuite Accelerate
Minimum −97% −81%
Maximum +14% 0%
Aggregate −58% −69%

There is a substantial aggregate decrease of around 60% in the
testsuite and 70% in Accelerate, with a massive 97% decrease

4 Technically, we need a (still true) generalization of this lemma and−→ to
open environments, but we refrain from giving the details for lack of space.
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nth 2 (((sym Cn 〈Maybe〉 ; 〈N 〉 (sym Cf ) ; Cn 〈F ()〉 )@xa )@ya )

(AXSUCKL) 

nth 2 (( (sym Cn 〈Maybe〉 ; Cn ((sym Cf ) ; 〈F ()〉)) @xa )@ya )

(SYMAX) 

nth 2 (((∀xy.(sym〈Maybe〉 ; sym Cf ; 〈F ()〉) 〈x〉 〈→〉 (sym〈Maybe〉 ; sym Cf ; 〈F ()〉) 〈y〉)@xa )@ya )

(REFLELIML, REFLELIMR, SYMREFL) ∗

nth 2 (((∀xy.(sym Cf ) 〈x〉 〈→〉 (sym Cf ) 〈y〉)@xa )@ya )

(REDINSTCO) ∗ nth 2 ((sym Cf ) 〈xa 〉 〈→〉 (sym Cf ) 〈ya 〉) (REDNTH) (sym Cf ) 〈ya 〉

Figure 11: Simplification example

in special cases. These special cases should not be taken lightly: in
one program the types and coercions taken together were five times
bigger than the term they decorated; after simplification they were
“only” twice as big. The coercion simplifier makes the compiler
less vulnerable to falling off a cliff.

Only one program showed an increase in coercion size, of 14%,
which turned out to be the effect of this rewrite:

sym(C ; D) −→ (sym D) ; (sym C )

Smaller coercion terms make the compiler faster, but the normal-
ization algorithm itself consumes some time. However, the effect
on compile time is barely measurable (less than 1%), and we do
not present detailed figures.

4.3 Termination and confluence

We have demonstrated the effectiveness of the algorithm in prac-
tice, but we must also establish termination. This is important, since
it would not be acceptable for a compiler to loop while simplify-
ing a coercion, no matter what axioms are declared by users. Since
the rules fire non-deterministically, and some of the rules (such as
REDINSTCO or AXSYM) create potentially larger coercion trees,
termination is not obvious.

To formalize a termination argument, we introduce several defi-
nitions in Figure 12. The axiom polynomial of a coercion over a
distinguished variable z , p(·), returns a polynomial with natural
number coefficients that can be compared to any other polynomial
over z . The coercion weight of a coercion is defined as the func-
tion w(·) and the symmetry weight of a coercion is defined with
the function sw(·) in Figure 12. Unlike the polynomial and coer-
cion weights of a coercion, sw(·) does take symmetry into account.
Finally, we will also use the number of coercion applications and
coercion ∀-introductions, denoted with intros(·) in what follows.

Our termination argument comprises of the lexicographic left-to-
right ordering of:

µ(·) = 〈p(·),w(·), intros(·), sw(·)〉
We will show that each of the reductions reduces this tuple. For
this to be a valid termination argument for (−→) we need two more
facts about each component measure, namely that (i) (=) and (〈)
are preserved under arbitrary contexts, and (ii) each component is
invariant with respect to the associativity of (;).
Lemma 4.4. If ∆ `co γ1 : τ ∼ σ and γ1

∼= γ2 modulo associativity
of (;), then p(γ1) = p(γ2), w(γ1) = w(γ2), intros(γ1) =
intros(γ2), and sw(γ1) = sw(γ2).

Proof. This is a simple inductive argument, the only interesting
case is the case for p(·) where the reader can calculate that p(γ1 ;
(γ2 ; γ3)) = p((γ1 ; γ2) ; γ3) and by induction we are done.

Lemma 4.5. If Γ,∆ `co γi : τ ∼ σ (for i = 1, 2) and p(γ1)〈p(γ2)
then p(G[γ1])〈p(G[γ2]) for any G with Γ `co G[γi ] : ϕ ∼ ϕ′.
Similarly if we replace (〈) with (=).
Proof. By induction on the shape of G. The only interesting case is
the transitivity case again. Let G = γ ; G′. Then p(γ ; G′[γ1]) =
p(γ) + p(G′[γ1]) + p(γ) · p(G′[γ1]) whereas p(γ ; G′[γ2]) =
p(γ) + p(G′[γ2]) + p(γ) · p(G′[γ2]). Now, either p(γ) = 0, in
which case we are done by induction hypothesis for G′[γ1] and
G′[γ2], or p(γ) 6= 0 in which case again induction hypothesis gives
us the result since we are multiplying p(G′[γ1]) and p(G′[γ2]) by
the same polynomial. The interesting “trick” is that the polynomial
for transitivity contains both the product of the components and
their sum (since product alone is not preserved by contexts!).

Lemma 4.6. If Γ,∆ `co γi : τ ∼ σ and w(γ1)〈w(γ2) then
w(G[γ1])〈w(G[γ2]) for any G with Γ `co G[γi ] : ϕ ∼ ϕ′. Similarly
if we replace (〈) with (=).
Lemma 4.7. If Γ,∆ `co γi : τ ∼ σ and intros(γ1)〈intros(γ2)
then intros(G[γ1])〈intros(G[γ2]) for any G with Γ `co G[γi ] : ϕ ∼
ϕ′. Similarly if we replace (〈) with (=).
Lemma 4.8. If Γ,∆ `co γi : τ ∼ σ, w(γ1) ≤ w(γ2), and
sw(γ1)〈sw(γ2) then sw(G[γ1])〈sw(G[γ2]) for any G with Γ `co
G[γi ] : ϕ ∼ ϕ′.
Proof. The only interesting case is when G = sym G′ and hence
we have that sw(G[γ1]) = sw(sym G′[γ1]) = w(G′[γ1]) +
sw(G′[γ1]). Similarly sw(G[γ2]) = w(G′[γ2]) + sw(G′[γ2]). By
the precondition for the weights and induction hypothesis we are
done. The precondition on the weights is not restrictive at all, since
w(·) has higher precedence than sw(·) inside µ(·).

The conclusion is the following theorem.
Theorem 4.9. If γ ∼= G[γ1] modulo associativity and ∆ `co γ1 :
σ ∼ ϕ, and ∆ ` γ1  γ2 such that µ(γ2)〈µ(γ1), it is the case
that µ(G[γ2])〈µ(γ).
Corollary 4.10. (−→) terminates on well-formed coercions if
each of the transitions reduces µ(·).

We finally show that indeed each of the steps reduces µ(·).
Theorem 4.11 (Termination). If ∆ `co γ1 : σ ∼ ϕ and ∆ ` γ1  
γ2 then µ(γ2)〈µ(γ1).
Proof. It is easy to see that the reflexivity rules, the symmetry
rules, the reduction rules, and the η-rules preserve or reduce the
polynomial component p(·). The same is true for the push rules but
the proof is slightly more interesting. Let us consider PUSHAPP,
and let us write pi for p(γi). We have that p((γ1 γ2) ; (γ3 γ4)) =
p1 + p2 + p3 + p4 + p1p3 + p2p3 + p1p4 + p2p4. On the other
hand p((γ1 ; γ3) (γ2 ; γ4)) = p1 + p3 + p1p3 + p2 + p4 +
p2p4 which is a smaller or equal polynomial than the left-hand
side polynomial. Rule PUSHALL is easier. Rules PUSHINST and
PUSHNTH have exactly the same polynomials on the left-hand and
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Axiom polynomial
p(sym γ) = p(γ)
p(C γ) = z · Σp(γi ) + z + 1
p(x) = 1
p(γ1 ; γ2) = p(γ1) + p(γ2) + p(γ1) · p(γ2)
p(〈ϕ〉) = 0
p(nth k γ) = p(γ)
p(γ@ϕ) = p(γ)
p(γ1 γ2) = p(γ1) + p(γ2)
p(∀a:η.γ) = p(γ)

Coercion weight
w(sym γ) = w(γ)
w(C γ) = Σw(γi ) + 1
w(x) = 1
w(γ1 ; γ2) = 1 + w(γ1) + w(γ2)
w(〈ϕ〉) = 1
w(nth k γ) = 1 + w(γ)
w(γ@ϕ) = 1 + w(γ)
w(γ1 γ2) = 1 + w(γ1) + w(γ2)
w(∀a:η.γ) = 1 + w(γ)

Symmetry weight
sw(sym γ) = w(γ) + sw(γ)
sw(C γ) = Σsw(γi )
sw(x) = 0
sw(γ1 ; γ2) = sw(γ1) + sw(γ2)
sw(〈ϕ〉) = 0
sw(nth k γ) = sw(γ)
sw(γ@ϕ) = sw(γ)
sw(γ1 γ2) = sw(γ1) + sw(γ2)
sw(∀a:η.γ) = sw(γ)

Figure 12: Metrics on coercion terms

the right-hand side so they are ok. Rules VARSYM and SYMVAR
reduce p(·). The interesting bit is with rules AXSYM, SYMAX, and
AXSUCKR/L and SYMAXSUCKR/L. We will only show the cases
for AXSYM and AXSUCKR as the rest of the rules involve very
similar calculations:

• Case SYMAX. We will use the notational convention p1 for
p(γ1) (a vector of polynomials) and similarly p2 for p(γ2).
Then the left-hand side polynomial is:

(zΣp1+z+1) + (zΣp2+z+1)+
(zΣp1+z+1) · (zΣp2+z+1) =

(z 2+2z )Σp1 + (z 2+2z )Σp2 + z 2Σp1Σp2 + (z 2+4z+3)

For the right-hand side polynomial we know that each γ1i ;
sym γ2i will have weight p1i + p2i + p1ip2i and it cannot
be repeated inside the lifted type more than a finite number of
times (bounded by the maximum number of occurrences of a
type variable from a in type τ ), call it k . Hence the right-hand
side polynomial is smaller or equal to:

kΣp1 + kΣp2 + kΣ(p1ip2i) ≤ kΣp1 + kΣp2 + kΣp1Σp2

But that polynomial is strictly smaller than the left-hand side
polynomial, hence we are done.
• Case AXSUCKR. In this case the left-hand side polynomial is

going to be greater or equal to (because of reflexivity inside δ
and because some of the a variables may appear more than once
inside υ it is not exactly equal to) the following:

(zΣp1 + z + 1) + Σp2 + (zΣp1 + z + 1)Σp2 =
Σp1Σp2 + zΣp1 + zΣp2 + 2Σp2 + z + 1

On the other hand, the right-hand side polynomial is:

zΣ(p1i + p2i + p1ip2i) + z + 1 ≤
zΣp1 + zΣp2 + zΣp1Σp2 + z + 1

We observe that there is a difference of 2Σp2, but we know
that δ satisfies good(δ), and consequently there must exist some
variable or axiom application inside one of the γ2. Therefore,
Σp2 is non-zero and the case is finished.

It is the arbitrary copying of coercions γ1 and γ2 in rules AXSYM
and SYMAX that prevents simpler measures that only involve sum-
mation of coercions for axioms or transitivity. Other reasonable
measures such as the height of transitivity uses from the leaves
would not be preserved from contexts, due to AXSYM again.

So far we’ve shown that all rules but the axiom rules preserve
the polynomials, and the axiom rules reduce them. We next show
that in the remaining rules, some other component reduces, lexico-
graphically. Reflexivity rules reduce w(·). Symmetry rules preserve
w(·) and intros(·) but reduce sw(·). Reduction rules and η-rules
reduce w(·). Rules PUSHAPP and PUSHALL preserve or reduce
w(·) but certainly reduce intros(·). Rules PUSHINST and PUSH-
NTH reduce w(·).

We conclude that (−→) terminates.

Confluence Due to the arbitrary types of axioms and coercion
variables in the context, we do not expect confluence to be true.
Here is a short example that demonstrates the lack of confluence;
assume we have the following in our context:

C1 : ∀a:?→ ?.F a ∼ a ∈ Γ0

C2 : ∀a:?→ ?.G a ∼ a ∈ Γ0

Consider the coercion:

(C1 〈σ〉) ; sym(C2 〈σ〉)
of type F σ ∼ G σ. In one reduction possibility, using rule
AXSUCKR, we may get C1 (sym(C2 〈σ〉)). In another possibility,
using SYMAXSUCKL, we may get sym(C2 (sym(C1 〈σ〉))).
Although the two normal forms are different, it is unclear if one
of them is “better” than the other.

Despite this drawback, confluence or syntactic characterization of
normal forms is, for our purposes, of secondary importance (if
possible at all for open coercions in such an under-constrained
problem!), since we never reduce coercions for the purpose of
comparing their normal forms.

5. Related and future work

5.1 Coercion erasure

There is a substantial volume of related work on proof erasure in
the context of dependent type theory. Our method for sound, run-
time, but zero-cost equality proof terms lies in the middle ground
between two other general methodologies.

Type-based erasure On the one hand, Coq (The Coq Team) uses
a type-based erasure process by introducing a special universe for
propositions, Prop. Terms whose type lives in Prop are erased even
when they are applications of functions (lemmas) to computational
terms. This is sound since in Coq the computation language is also
strongly normalizing. As we have seen, this is not sound in FC.

Irrelevance-based erasure On the other hand, irrelevance-based
erasure is another methodology proposed in the context of pure
type systems and type theory. In the context of Epigram, Brady
et al. (2003) present an erasure technique where term-level in-
dices of inductive types can be erased even when they are decon-
structed inside the body of a function, since values of the indexed
inductive datatype will be simultaneously deconstructed and hence
the indices are irrelevant for the computation. In the Agda lan-
guage (Norell 2007) there exist plans to adopt a similar irrelevance-
based erasure strategy. Other related work (Abel 2011; Mishra-
Linger and Sheard 2008) proposes erasure in the context of PTSs
guided with lightweight programmer annotations.
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Finally, our approach of separating the “computational part” of a
proof, which always has to run before we get to a zero-cost “log-
ical part” is reminiscent of the separation that A-normal forms in-
troduce in refinement type systems, for instance (Bengtson et al.
2008). It is interesting future work to determine whether our treat-
ment of coercions is also applicable to types and hopefully paves
the way towards full-spectrum dependent types.

5.2 Coercion simplification

To our knowledge, most literature on coercions is not concerned
with coercion simplification but rather with inferring the place-
ment of coercions in source-level programs. Some recent examples
are (Luo 2008) and (Swamy et al. 2009).

One of the few comprehensive studies of coercions and their nor-
malization is that of Henglein (1994), motivated by coercion place-
ment in a language with type dynamic. His coercion language dif-
fers to ours in that (i) coercions there are not symmetric, (ii) do not
involve polymorphic axiom schemes and (iii) may have compu-
tational significance. Unlike us, Henglein is concerned with char-
acterizations of minimal coercions and confluence, fixes an equa-
tional theory of coercions, and presents a normalization algorithm
for that equational theory. In our case, in the absence of a denota-
tional semantics for System FC and its coercions, such an axiom-
atization would be no more ad-hoc than the algorithm and hence
not particularly useful: for instance we could consider adding type-
directed equations like ∆ ` γ  〈τ〉 when ∆ `co γ : τ ∼ τ ,
or other equations that only hold in consistent or confluent axiom
sets. It is certainly an interesting direction for future work to deter-
mine whether there even exists a maximal syntactic axiomatization
of equalities between coercions with respect to some denotational
semantics of System FC.

More recently, Rémy and Yakobowski (2010) present xMLF, a cal-
culus with coercions that capture instantiation instead of equality,
that serves as target for the MLF language. Although they are not
directly concerned with normalization as part of an intermediate
language simplifier, their translation of the graph-based instantia-
tion witnesses does produce xMLF normal proofs.

Finally, another future work direction would be to determine
whether we can encode coercions as λ-terms, and derive coercion
simplification by normalization in some suitable λ-calculus.
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