
Evidence normalization in System FC

Dimitrios Vytiniotis and Simon Peyton Jones

Microsoft Research, Cambridge

Abstract

System FC is an explicitly typed language that serves as the target language for Haskell source

programs. System FC is based on System F with the addition of erasable but explicit type equality

proof witnesses. Equality proof witnesses are generated from type inference performed on source

Haskell programs. Such witnesses may be very large objects, which causes performance degradation

in later stages of compilation, and makes it hard to debug the results of type inference and subse-

quent program transformations. In this paper we present an equality proof simpli�cation algorithm,

implemented in GHC, which greatly reduces the size of the target System FC programs.

1998 ACM Subject Classi�cation F.4.2 Grammars and Other Rewriting Systems

1 Introduction

A statically-typed intermediate language brings a lot of bene�ts to a compiler: it is free

from the design trade-o�s that come with source language features; types can inform op-

timisations; and type checking programs in the intermediate language provides a powerful

consistency check on each stage of the compiler.

The Glasgow Haskell Compiler (GHC) has just such an intermediate language, which

has evolved from System F to System FC [16, 20] to accommodate the source-language

features of GADTs [6, 15, 13] and type families [9, 3]. The key feature that allows System

FC to accomodate GADTs and type families is its use of explicit coercions that witness the

equality of two syntactically-di�erent types. Coercions are erased before runtime but, like

types, serve as a static consistency proof that the program will not �go wrong�.

In GHC, coercions are produced by a fairly complex type inference (and proof inference)

algorithm that elaborates source Haskell programs into FC programs [18]. Furthermore,

coercions undergo major transformations during subsequent program optimization passes.

As a consequence, they can become very large, making the compiler bog down. This paper

describes how we �xed the problem:

Our main contribution is a novel coercion simpli�cation algorithm, expressed as a rewrite

system, that allows the compiler to replace a coercion with an equivalent but much

smaller one (Section 4).

Coercion simpli�cation is important in practice. We encountered programs whose un-

simpli�ed coercion terms grow to many times the size of the actual executable terms,

to the point where GHC choked and ran out of heap. When the simpli�er is enabled,

coercions simplify to a small fraction of their size (Section 5).

To get these bene�ts, coercion simpli�cation must take user-declared equality axioms

into account, but the simpli�er must never loop while optimizing a coercion � no matter

which axioms are declared by users. Proof normalization theorems are notoriously hard,

but we present such a theorem for our coercion simpli�cation. (Section 6)

Equality proof normalization was �rst studied in the context of monoidal categories and we

give pointers to early work in Section 7 � this work in addition addresses the simpli�cation

of open coercions containing variables and arbitrary user-declared axioms.

© TO BE PROVIDED;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl � Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Evidence normalization in System FC

c ∈ Coercion variables

x ∈ Term variables

e, u ::= x | l | λx :σ.e | e u

| Λa:η.e | e φ Type polymorphism

| λc:τ.e | e γ Coercion abstraction/application

| K | case e of p → u Constructors and case expressions

| let x :τ = e in u Let binding

| e . γ Cast

p ::= K c:τ x :τ Patterns

Figure 1 Syntax of System FC (Terms)

Types

φ, σ, τ, υ ::= a Variables

| H Constants

| F Type functions

| φ1 φ2 Application

| ∀a:η.φ Polymorphic types

Type constants

H ::= T Datatypes

| (→) Arrow

| (∼#) Coercion

Kinds

κ, η ::= ? | κ→ κ

| Constraint# Coercion kind

Coercion values

γ, δ ::= c Variables

| 〈φ〉 Re�exivity

| γ1; γ2 Transitivity

| sym γ Symmetry

| nth k γ Injectivity

| γ1 γ2 Application

| C γ Type family axiom

| ∀a:η.γ Polym. coercion

| γ@φ Instantiation

Figure 2 Syntax of System FC (types and coercions)

2 An overview of System FC

We begin by reviewing the role of an intermediate language. GHC desugars a rich, complex

source language (Haskell) into a small, simple intermediate language. The source language,

Haskell, is implicitly typed, and a type inference engine �gures out the type of every binder

and sub-expression. To make type inference feasible, Haskell embodies many somewhat ad-

hoc design compromises; for example, λ-bound variables are assigned monomorphic types.

By contrast, the intermediate language is simple, uniform, and explicitly typed. It can be

typechecked by a simple, linear time algorithm. The type inference engine elaborates the

implicitly-typed Haskell program into an explicitly-typed FC program.

To make this concrete, Figure 1 gives the syntax of System FC, the calculus implemented

by GHC's intermediate language. The term language is mostly conventional, consisting of

System F, together with let bindings, data constructors and case expressions. The syntax

of a term encodes its typing derivation: every binder carries its type, and type abstractions

Λa:η.e and type applications e φ are explicit.

The types and kinds of the language are given in Figure 2. Types include variables

(a) and constants H (such as Int and Maybe), type applications (such as Maybe Int), and

polymorphic types (∀a:η.φ). The syntax of types also includes type functions (or type

families in the Haskell jargon), which are used to express type level computation. For

instance the following declaration in source Haskell:

D. Vytiniotis and S. Peyton Jones 3

Environments

Γ,∆ ::= · | Γ, bnd
bnd ::= a : η Type variable

| c : σ ∼# φ Coercion variable

| x : σ Term variable

| T : κ→ ? Data type

| K : ∀(a:η).τ → T a Data constructor

| Fn : κn → κ Type families (of arity n)

| C (a:η) : σ ∼# φ Axioms

Notation

T τ ≡ T τ1 . . . τn
τ → τ ≡ τ1 → . . .→ τn → τ

τ1..n ≡ τ1, . . . , τn

Figure 3 Syntax of System FC (Auxiliary de�nitions)

type family F (a :: *) :: a

type instance F [a] = a

introduces a type function F at the level of System FC. The accompanying instance line

asserts that any expression of type F [a] can be viewed as having type a. We shall see

in Section 2.2 how this fact is expressed in FC. Finally type constants include datatype

constructors (T) but also arrow (→) as well as a special type constructor ∼# whose role we

explain in the following section. The kind language includes the familiar ? and κ1 → κ2 kinds

but also a special kind called Constraint# that we explain along with the ∼# constructor.

The typing rules for System FC are given in Figure 4. We urge the reader to consult

[16, 20] for more examples and intuition.

2.1 Coercions

The unusual feature of FC is the use of coercions. The term e . γ is a cast, that converts

a term e of type τ to one of type φ (rule ECast in Figure 4). The coercion γ is a witness,

or proof, providing evidence that τ and φ are equal types � that is, γ has type τ ∼# φ.

We use the symbol �∼#� to denote type equality1. The syntax of coercions γ is given in

Figure 2, and their typing rules in Figure 6. For uniformity we treat ∼# as an ordinary type

constructor, with kind κ→ κ→ Constraint# (Figure 5).

To see casts in action, consider this Haskell program which uses GADTs:

data T a where f :: T a -> [a]

T1 :: Int -> T Int f (T1 x) = [x+1]

T2 :: a -> T a f (T2 v) = [v]

main = f (T1 4)

We regard the GADT data constructor T1 as having the type

T1 : ∀a.(a ∼# Int)→ Int→ T a

1 The �#� subscript is irrelevant for this paper; the interested reader may consult [19] to understand the
related type equality ∼, and the relationship between ∼ and ∼#.

4 Evidence normalization in System FC

Γ `tm e : τ

(x :τ) ∈ Γ
EVar

Γ `tm x : τ

(K :σ) ∈ Γ
ECon

Γ `tm K : σ

Γ, (x :σ) `tm e : τ Γ `ty σ : ?
EAbs

Γ `tm λx :σ.e : σ → τ

Γ `tm e : σ → τ Γ `tm u : σ
EApp

Γ `tm e u : τ

Γ, (c:σ) `tm e : τ

Γ `ty σ : Constraint#
ECAbs

Γ `tm λc:σ.e : σ → τ

Γ `tm e : (σ1 ∼# σ2)→ τ

Γ `co γ : σ1 ∼# σ2
ECApp

Γ `tm e γ : τ

Γ, (a:η) `tm e : τ
ETabs

Γ `tm Λa:η.e : ∀a:η.τ

Γ `tm e : ∀a:η.τ Γ `ty φ : η
ETApp

Γ `tm e φ : τ [φ/a]

Γ, (x :σ) `tm u : σ Γ, (x :σ) `tm e : τ
ELet

Γ `tm let x :σ = u in e : τ

Γ `tm e : τ Γ `co γ : τ ∼# φ
ECast

Γ `tm e . γ : φ

Γ `tm e : T κ σ

For each branch K x :τ → u

(K :∀(a:ηa).σ1 ∼# σ2 → τ → T a) ∈ Γ

φi = τi [σ/a]

φ1i = σ1i [σ/a]

φ2i = σ2i [σ/a] Γ, c:φ1 ∼# φ2 x :φ `tm u : σ
ECase

Γ `tm case e of K (c:σ1 ∼# σ2) (x :τ)→ u : σ

Figure 4 Well-formed terms

Γ `ty τ : κ

(a:η) ∈ Γ
TVar

Γ `ty a : η

(T :κ) ∈ Γ
TData

Γ `ty T : κ

(F :κ) ∈ Γ
TFun

Γ `ty F : κ

κ1, κ2 ∈ {Constraint#, ?}
TArr

Γ `ty (→) : κ1 → κ2 → ?
TEqPred

Γ `ty (∼#) : κ→ κ→ Constraint#

Γ `ty φ1 : κ1 → κ2 Γ `ty φ2 : κ1

TApp
Γ `ty φ1 φ2 : κ2

Γ, (a:η) `ty τ : ?
TAll

Γ `ty ∀a:η.τ : ?

Figure 5 Well-formed types

D. Vytiniotis and S. Peyton Jones 5

Γ `co γ : σ1 ∼# σ2

(c:σ1 ∼# σ2) ∈ Γ
CVar

Γ `co c : σ1 ∼# σ2

(C a:η : τ1 ∼# τ2) ∈ Γ

Γ `co γi : σi ∼# φi
CAx

Γ `co C γ : τ1[σ/a]∼#τ2[φ/a]

Γ `ty φ : κ
CRefl

Γ `co 〈φ〉 : σ ∼# σ

Γ `co γ1 : σ1 ∼# σ2

Γ `co γ2 : σ2 ∼# σ3
CTrans

Γ `co γ1; γ2 : σ1∼#σ3

Γ `co γ : σ1 ∼# σ2

CSym
Γ `co sym γ : σ2 ∼# σ1

Γ `co γ : H σ ∼# H τ
CNth

Γ `co nth k γ : σk ∼# τk

Γ, (a:η) `co γ : σ1 ∼# σ2

CAll
Γ `co ∀a:η.γ : (∀a:η.σ1) ∼# (∀a:η.σ2)

Γ `co γ1 : σ1 ∼# σ2

Γ `co γ2 : φ1 ∼# φ2 Γ `ty: σ1 φ1 : κ
CApp

Γ `co γ1 γ2 : σ1 φ1 ∼# σ2 φ2

Γ `ty φ : η

Γ `co γ : (∀a:η.σ1) ∼# (∀a:η.σ2)
CInst

Γ `co γ@φ : σ1[φ/a] ∼# σ2[φ/a]

Figure 6 Well-formed coercions

So in FC, T1 takes three arguments: a type argument to instantiate a, a coercion witnessing

the equivalence of a and Int, and a value of type Int. Here is the FC elaboration of main:

main = f Int (T1 Int <Int> 4)

The coercion argument has kind (Int ∼# Int), for which the evidence is just 〈Int〉 (re�ex-
ivity). Similarly, pattern-matching on T1 binds two variables: a coercion variable, and a

term variable. Here is the FC elaboration of function f:

f = /\(a:*). \(x:T a).

case x of

T1 (c:a ~# Int) (n:Int) -> (Cons (n+1) Nil) |> sym [c]

T2 (v:a) -> Cons v Nil

The cast converts the type of the result from [Int] to [a]. The coercion sym [c] is evidence

for (or a proof of) the equality of these types, using coercion c, of type (a ∼# Int).

2.2 Typing coercions

Figure 6 gives the typing rules for coercions. The rules include unsurprising cases for re-

�exivity (CRefl), symmetry (CSym), and transitivity (CTrans). Rules CAll and CApp

allow us to construct coercions on more complex types from coercions on simpler types.

Rule CInst instantiates a coercion between two ∀-types, to get a coercion between two

instantiated types. Rule CVar allows us to use a coercion that has been introduced to the

context by a coercion abstraction (λc:τ∼#φ.e), or a pattern match against a GADT (as in

the example above).

Rule CAx refers to instantiations of axioms. In GHC, axioms can arise as a result of

newtype or type family declarations. Consider the following code:

newtype N a = MkN (a -> Int)

6 Evidence normalization in System FC

type family F (x :: *) :: *

type instance F [a] = a

type instance F Bool = Char

N is a newtype (part of the original Haskell 98 de�nition), and is desugared to the following

FC coercion axiom:

CN a : N a ∼# a → Int

which provides evidence of the equality of types (N a) and (a → Int).

In the above Haskell code, F is a type family [4, 3], and the two type instance declara-

tions above introduce two FC coercion axioms:

C1 a : F [a] ∼# a

C2 : F Bool ∼# Char

Rule CAx describes how these axioms may be used to create coercions. In this particular

example, if we have γ : τ ∼# σ, then we can prove that C1 γ : F [τ] ∼# σ. Using such

coercions we can get, for example, that (3 . sym (C1 〈Int〉)) : F [Int].

Axioms always appear saturated in System FC, hence the syntax C γ in Figure 2.

3 The problem with large coercions

System FC terms arise as the result of elaboration of source language terms, through type

inference. Type inference typically relies on a constraint solver [18] which produces System

FC witnesses of equality (coercions), that in turn decorate the elaborated term. The con-

straint solver is not typically concerned with producing small or readable witnesses; indeed

GHC's constraint solver can produce large and complex coercions. These complex coercions

can make the elaborated term practically impossible to understand and debug.

Moreover, GHC's optimiser transforms well-typed FC terms. Insofar as these transfor-

mations involve coercions, the coercions themselves may need to be transformed. If you

think of the coercions as little proofs that fragments of the program are well-typed, then the

optimiser must maintain the proofs as it transforms the terms.

3.1 How big coercions arise

The trouble is that term-level optimisation tends to make coercions bigger. The full details

of these transformations are given in the so called push rules in our previous work [20], but

we illustrate them here with an example. Consider this term:

(λx .e . γ) a

where
γ : (σ1 → τ1) ∼# (σ2 → τ2)

a : σ2

We would like to perform the beta reduction, but the cast is getting in the way. No matter!

We can transform thus:

(λx .e . γ) a

= ((λx .e) (a . sym (nth 0 γ))) . nth 1 γ

D. Vytiniotis and S. Peyton Jones 7

From the coercion γ we have derived two coercions whose syntactic form is larger, but whose

types are smaller:
γ : (σ1 → τ1) ∼# (σ2 → τ2)

sym (nth 0 γ) : σ2 ∼# σ1
nth 1 γ : τ1 ∼# τ2

Here we make use of the coercion combinators sym, which reverses the sense of the proof;

and nth i , which from a proof of T σ ∼# T τ gives a proof of σi ∼# τi . Finally, we use

the derived coercions to cast the argument and result of the function separately. Now the

lambda is applied directly to an argument (without a cast in the way), so β-reduction can

proceed as desired. Since β-reduction is absolutely crucial to the optimiser, this ability to

�push coercions out of the way� is fundamental. Without it, the optimiser is hopelessly

compromised.

A similar situation arises with case expressions:

case (K e1 . γ) of {. . . ; K x → e2; . . .}

where K is a data constructor. Here we want to simplify the case expression, by picking

the correct alternative K x → e2, and substituting e1 for x . Again the coercion gets in the

way, but again it is possible to push the coercion out of way.

3.2 How coercions can be simpli�ed

Our plan is to simplify complicated coercion terms into simpler ones, using rewriting. Here

are some obvious rewrites we might think of immediately:

sym (sym γ) γ

γ; sym γ 〈τ〉 if γ : τ ∼# φ

But ther are much more complicated rewrites to consider. Consider these coercions, where

CN is the axiom generated by the newtype coercion in Section 2.2:

γ1 : τ1 ∼# τ2
γ2 = sym (CN 〈τ1〉) : (τ1 → Int) ∼# (N τ1)

γ3 = N 〈γ1〉 : (N τ1) ∼# (N τ2)

γ4 = CN 〈τ2〉 : (N τ2) ∼# (τ2 → Int)

γ5 = γ2; γ3; γ4 : (τ1 → Int) ∼# (τ2 → Int)

Here γ2 takes a function, and wraps it in the newtype; then γ3 coerces that newtype from

N τ1 to N τ2; and γ4 unwraps the newtype. Composing the three gives a rather large,

complicated coercion γ2; γ3; γ4. But its type is pretty simple, and indeed the coercion γ1 →
〈Int〉 is a much simpler witness of the same equality. The rewrite system we present shortly

will rewrite the former to the latter.

Finally, here is an actual example taken from a real program compiled by GHC (don't

look at the details!):

Mut 〈v〉 (sym (CStateT 〈s〉)) 〈a〉
; sym (nth 0 ((∀wtb. Mut 〈w〉 (sym (CStateT 〈t〉)) 〈b〉 → 〈ST t (w b)〉)@v@s@a)

 〈Mut v s a〉

As you can see, the shrinkage in coercion size can be dramatic.

8 Evidence normalization in System FC

4 Coercion simpli�cation

We now proceed to the details of our coercion simpli�cation algorithm. We note that the

design of the algorithm is guided by empirical evidence of its e�ectiveness on actual programs

and that other choices might be possible. Nevertheless, we formally study the properties of

this algorithm, namely we will show that it preserves validity of coercions and terminates �

even when the rewrite system induced by the axioms is not strongly normalizing.

4.1 Simpli�cation rules

Coercion simpli�cation is given as a non-deterministic relation in Figure 7 and Figure 8 In

these two �gures we use some syntactic conventions: Namely, for sequences of coercions γ1
and γ2, we write γ1; γ2 for the sequence of pointwise transitive compositions and sym γ1 for

pointwise application of symmetry. We write nontriv(γ) i� γ contains some variable c or

axiom application C γ.

We de�ne coercion evaluation contexts, G, as coercion terms with holes inside them. The

syntax of G allows us to rewrite anywhere inside a coercion. The main coercion evaluation

rule isCoEval. If we are given a coercion γ, we �rst decompose it to some evaluation context

G with γ1 in its hole. Rule CoEval works up to associativity of transitive composition; for

example, we will allow the term (γ1; γ2;); γ3 to be written as G[γ2; γ3] where G = γ1;2. This

treatment of transitivity is extremely convenient, but we must be careful to ensure that

our argument for termination remains robust under associativity (Section 6). Once we have

�gured out a decomposition G[γ1], CoEval performs a single step of rewriting ∆ ` γ1 γ2
and simply return G[γ2]. Since we are allowed to rewrite coercions under a type environment

(∀a:η.G is a valid coercion evaluation context), ∆ (somewhat informally) enumerates the

type variables bound by G. For instance we should be allowed to rewrite ∀a:η.γ1 to ∀a:η.γ2.

This can happen if (a:η)| − γ1 γ2. The precondition ∆ `co γ1 : σ ∼# φ of rule CoEval

ensures that this context corresponds to the decomposition of γ into a context and γ1.

Moreover, the ∆ is passed on to the relation, since some of the rules of the relation

that we will present later may have to consult the context ∆ to establish preconditions for

rewriting.

The soundness property for the −→ relation is given by the following theorem.

I Theorem 1 (Coercion subject reduction). If `co γ1 : σ ∼# φ and γ1 −→ γ2 then `co γ2 :

σ ∼# φ.

The rewriting judgement ∆ ` γ1 γ2 satis�es a similar property.

I Lemma 2. If ∆ `co γ1 : σ ∼# φ and ∆ ` γ1 γ2 then ∆ `co γ2 : σ ∼# φ.

To explain coercion simpli�cation, we now present the reaction rules for the relation,

organized in several groups.

4.1.1 Pulling re�exivity up

Rules ReflApp, ReflAll, ReflElimL, and ReflElimR, deal with uses of re�exivity.

Rules ReflApp and ReflAll �swallow� constructors from the coercion language (coercion

application, and quanti�cation respectively) into the type language (type application, and

quanti�cation respectively). Hence they pull re�exivity as high as possible in the tree struc-

ture of a coercion term. Rules ReflElimL and ReflElimR simply eliminate re�exivity

uses that are composed with other coercions.

D. Vytiniotis and S. Peyton Jones 9

Coercion evaluation contexts G ::= 2 | G γ | γ G | C γ1Gγ2 | sym G | ∀a:η.G | G@τ | G; γ | γ;G

γ ∼= G[γ1] modulo associativity of (;) ∆ `co γ1 : σ ∼# φ ∆ ` γ1 γ2
CoEval

γ −→ G[γ2]

∆ ` γ1 γ2

Re�exivity rules

ReflApp ∆ ` 〈φ1〉 〈φ2〉 〈φ1 φ2〉
ReflAll ∆ ` ∀a:η.〈φ〉 〈∀a:η.φ〉
ReflElimL ∆ ` 〈φ〉; γ γ

ReflElimR ∆ ` γ; 〈φ〉 γ

Eta rules

EtaAllL ∆ ` ((∀a:η.γ1); γ2)@φ γ1[φ/a]; (γ2@φ)

EtaAllR ∆ ` (γ1; (∀a:η.γ2))@φ γ1@φ; γ2[φ/a]

EtaNthL ∆ ` nth k (〈H τ1..`〉 γ; γ)

{
nth k γ if k ≤ `
γk−`;nth k γ otherwise

EtaNthR ∆ ` nth k (γ; 〈H τ1..`〉 γ)

{
nth k γ if k ≤ `
nth k γ; γk−` otherwise

Symmetry rules

SymRefl ∆ ` sym 〈φ〉 〈φ〉
SymAll ∆ ` sym (∀a:η.γ) ∀a:η. sym γ

SymApp ∆ ` sym (γ1 γ2) (sym γ1) (sym γ2)

SymTrans ∆ ` sym (γ1; γ2) (sym γ2);(sym γ1)

SymSym ∆ ` sym (sym γ) γ

Reduction rules

RedNth ∆ ` nth k (〈H τ1..`〉 γ)

{
〈τk 〉 if k ≤ `
γk−` otherwise

RedInstCo ∆ ` (∀a:η.γ)@φ γ[φ/a]

RedInstTy ∆ ` 〈∀a:η.τ〉@φ 〈τ [φ/a]〉

Push transitivity rules

PushApp ∆ ` (γ1 γ2); (γ3 γ4) (γ1; γ3) (γ2; γ4)

PushAll ∆ ` (∀a:η.γ1); (∀a:η.γ2) ∀a:η.γ1; γ2
PushInst ∆ ` (γ1@τ); (γ2@τ) (γ1; γ2)@τ when ∆ `co γ1; γ2 : σ1 ∼# σ2

PushNth ∆ ` (nth k γ1); (nth k γ2) nth k (γ1; γ2) when ∆ `co γ1; γ2 : σ1 ∼# σ2

Figure 7 Coercion simpli�cation (I)

10 Evidence normalization in System FC

4.1.2 Pushing symmetry down

Uses of symmetry, contrary to re�exivity, are pushed as close to the leaves as possible or

eliminated, (rules SymRefl, SymAll, SymApp, SymTrans, and SymSym) only getting

stuck at terms of the form sym x and sym (C γ). The idea is that by pushing uses of

symmetry towards the leaves, the rest of the rules may completely ignore symmetry, except

where symmetry-pushing gets stuck (variables or axiom applications).

4.1.3 Reducing coercions

Rules RedNth, RedInstCo, and RedInstTy comprise the �rst interesting group of rules.

They eliminate uses of injectivity and instantiation. Rule RedNth is concerned with the

case where we wish to decompose a coercion of type H φ ∼# H σ, where the coercion term

contains H in its head. Notice that H is a type and may already be applied to some type

arguments τ1..`, and hence the rule has to account for selection from the �rst ` arguments, or

a later argument. Rule RedInstCo deals with instantiation of a polymorphic coercion with

a type. Notice that in rule RedInstCo the quanti�ed variable may only appear �protected�

under some 〈σ〉 inside γ, and hence simply substituting γ[φ/a] is guaranteed to produce

a syntactically well-formed coercion. Rule RedInstTy deals with the instantiation of a

polymorphic coercion that is just a type.

4.1.4 Eta expanding and subsequent reducing

Redexes of RedNth and RedInstCo or RedInstTy may not be directly visible. Consider

nth k (〈H τ1..`〉 γ; γ). The use of transitivity stands in our way for the �ring of ruleRedNth.

To the rescue, rules EtaAllL, EtaAllR, EtaNthL, and EtaNthR, push decomposition

or instantiation through transitivity and eliminate such redexes. We call these rules �eta�

because in e�ect we are η-expanding and immediately reducing one of the components of the

transitive composition. Here is a decomposition of EtaAllL in smaller steps that involve

an η-expansion (of γ2 in the second line):

((∀a:η.γ1); γ2)@φ

 ((∀a:η.γ1); (∀a:η.γ2@a))@φ

 (∀a:η.γ1; γ2@a)@φ γ1[φ/a]; γ2@φ

We have merged these steps in a single rule to facilitate the proof of termination. In doing

this, we do not lose any reactions, since all of the intermediate terms can also reduce to the

�nal coercion.

There are many design possibilities for rules that look like our η-rules. For instance

one may wonder why we are not always expanding terms of the form γ1; (∀a:η.γ2) to

∀a:η.γ1@a; γ2, whenever γ1 is of type ∀a:η.τ ∼# ∀a:η.φ. We experimented with several

variations like this, but we found that such expansions either complicated the termination ar-

gument, or did not result in smaller coercion terms. Our rules in e�ect perform η-expansion

only when there is a �ring reduction directly after the expansion.

4.1.5 Pushing transitivity down

Rules PushApp, PushAll, PushNth, and PushInst push uses of transitivity down the

structure of a coercion term, towards the leaves. These rules aim to reveal more redexes

at the leaves, that will be reduced by the next (and �nal) set of rules. Notice that rules

D. Vytiniotis and S. Peyton Jones 11

∆ `co c : τ ∼# υ
VarSym

∆ ` c; sym c 〈τ〉

∆ `co c : τ ∼# υ
SymVar

∆ ` sym c; c 〈υ〉

(C (a:η) : τ ∼# υ) ∈ Γ a ⊆ ftv(υ)
AxSym

∆ ` C γ1; sym (C γ2)
[a 7→ γ1; sym γ2]↑(τ)

(C (a:η) : τ ∼# υ) ∈ Γ a ⊆ ftv(τ)
SymAx

∆ ` sym (C γ1);C γ2
[a 7→ sym γ1; γ2]↑(υ)

(C (a:η) : τ ∼# υ) ∈ Γ

a ⊆ ftv(υ) nontriv(δ)

δ = [a 7→ γ2]↑(υ)
AxSuckR

∆ ` (C γ1); δ C γ1;γ2

(C (a:η) : τ ∼# υ) ∈ Γ

a ⊆ ftv(τ) nontriv(δ)

δ = [a 7→ γ1]↑(τ)
AxSuckL

∆ ` δ; (C γ2) C γ1;γ2

(C (a:η) : τ ∼# υ) ∈ Γ a ⊆ ftv(τ)

nontriv(δ) δ = [a 7→ γ2]↑(τ)
SymAxSuckR

∆ ` sym (C γ1); δ sym (C sym γ2;γ1)

(C (a:η) : τ ∼# υ) ∈ Γ a ⊆ ftv(υ)

nontriv(δ) δ = [a 7→ γ1]↑(υ)
SymAxSuckL

∆ ` δ; sym (C γ2) sym (C γ2; sym γ1)

Figure 8 Coercion simpli�cation (II)

PushInst and PushNth impose side conditions on the transitive composition γ1; γ2. With-

out these conditions, the resulting coercion may not be well-formed. Take γ1 = ∀a:η.〈T a a〉
and γ2 = ∀a:η.〈T a Int〉. It is certainly the case that (γ1@Int); (γ2@Int) is well formed.

However, `co γ1 : ∀a:η.T a a ∼# ∀a:η.T a a and `co γ2 : ∀a:η.T a Int ∼# ∀a:η.T a Int,

and hence (γ1; γ2)@Int is not well-formed. A similar argument applies to rule PushNth.

4.1.6 Leaf reactions

When transitivity and symmetry have been pushed as low as possible, new redexes may

appear, for which we introduce rules VarSym, SymVar, AxSym, SymAx, AxSuckR,

AxSuckL, SymAxSuckR, SymAxSuckL. (Figure 8)

Rules VarSym and SymVar are entirely straightforward: a coercion variable (or its

symmetric coercion) meets its symmetric coercion (or the variable) and the result is the

identity.

Rules AxSym and SymAx are more involved. Assume that the axiom (C (a:η):τ ∼#

υ) ∈ Γ, and a well-formed coercion of the form: C γ1; sym (C γ2). Moreover ∆ `co
γ1 : σ1 ∼# φ1 and ∆ `co γ2 : σ2 ∼# φ2. Then we know that ∆ `co C γ1; sym (C γ2) :

τ [σ1/a] ∼# τ [σ2/a]. Since the composition is well-formed, it must be the case that

υ[φ1/a] = υ[φ2/a]. If a ⊆ ftv(υ) then it must be φ1 = φ2. Hence, the pointwise

composition γ1; sym γ2 is well-formed and of type σ1 ∼# σ2. Consequently, we may

replace the original coercion with the lifting of τ over a substitution that maps a to

γ1; sym γ2: [a 7→ γ1; sym γ2]↑(τ).

What is this lifting operation, of a substitution from type variables to coercions, over a

type? Its result is a new coercion, and the de�nition of the operation is given in Figure 9.

The easiest way to understand it is by its e�ect on a type:

12 Evidence normalization in System FC

[a 7→ γ]↑(τ) = γ′

[a 7→ γ]↑(a) = γ

[a 7→ γ]↑(b) = 〈b〉
[a 7→ γ]↑(H) = 〈H 〉
[a 7→ γ]↑(F) = 〈F 〉

[a 7→ γ]↑(τ1 τ2) =

{
〈φ1 φ2〉 when [a 7→ γ]↑(τi) = 〈φi〉
([a 7→ γ]↑(τ1)) ([a 7→ γ]↑(τ2)) otherwise

[a 7→ γ]↑(∀b:η.τ) =

{
〈∀a:η.φ〉 when [a 7→ γ]↑(τ) = 〈φ〉
∀b:η.([a 7→ γ]↑(τ)) otherwise (b /∈ ftv(γ), b 6= a)

Figure 9 Lifting

I Lemma 3 (Lifting). If ∆, (a:η) `ty τ : η and ∆ `co γ : σ ∼ φ such that ∆ `ty σ : η and

∆ `ty φ : η, then ∆ `co [a 7→ γ]↑(τ) : τ [σ/a] ∼# τ [φ/a]

Notice that we have made sure that lifting pulls re�exivity as high as possible in the

syntax tree � the only signi�cance of this on-the-�y normalization was that it appeared

to simplify the argument we have given for termination of coercion normalization.

Returning to rules AxSym and SymAx, we stress that the side condition is essential for

the rule to be sound. Consider the following example:

C (a:?) : F [a] ∼# Int ∈ Γ

Then (C 〈Int〉); sym (C 〈Bool〉) is well-formed and of type F [Int] ∼# F [Bool], but

〈F 〉 (〈Int〉; sym 〈Bool〉) is not well-formed! Rule SymAx is symmetric and has a similar

soundness side condition on the free variables of τ this time.

The rest of the rules deal with the case when an axiom meets a lifted type � the re-

action swallows the lifted type inside the axiom application. For instance, here is rule

AxSuckR:

(C (a:η):τ ∼# υ) ∈ Γ a ⊆ ftv(υ)

nontriv(δ) δ = [a 7→ γ2]↑(υ)
AxSuckR

∆ ` (C γ1); δ C γ1;γ2

This time let us assume that ∆ `co γ1 : σ1 ∼# φ1. Consequently ∆ `co C γ1 : τ [σ1/a] ∼#

υ[φ1/a]. Since a ⊆ ftv(υ) it must be that ∆ `co γ2 : φ1 ∼# φ3 for some φ3 and

we can pointwise compose γ1;γ2 to get coercions between σ1 ∼# φ3. The resulting

coercion C γ1;γ2 is well-formed and of type τ [σ1/a] ∼# υ[φ3/a]. Rules AxSuckL,

SymAxSuckL, and SymAxSuckR involve a similar reasoning.

The side condition nontriv(δ) is not restrictive in any way � it merely requires that

δ contains some variable c or axiom application. If not, then δ can be converted to

re�exivity:

I Lemma 4. If `co δ : σ∼#φ and ¬ nontriv(δ), then δ−→∗〈φ〉.
Re�exivity, when transitively composed with any other coercion, is eliminable via Re-

flElimL/R or and consequently the side condition is not preventing any reactions from

�ring. It will, however, be useful in the simpli�cation termination proof in Section 6.

The purpose of rules AxSuckL/R and SymAxSuckL/R is to eliminate intermediate

coercions in a big transitive composition chain, to give the opportunity to an axiom to meet

D. Vytiniotis and S. Peyton Jones 13

its symmetric version and react with rules AxSym and SymAx. In fact this rule is precisely

what we need for the impressive simpli�cations from Section 3. Consider that example again:

γ5 = γ2; γ3; γ4
= sym (CN 〈τ1〉); (〈N 〉 γ1); (CN 〈τ2〉) (AxSucL with δ := (〈N 〉 γ1))

−→ sym (CN 〈τ1〉); (CN (γ1; 〈τ2〉)) (ReflElimR with γ := γ1, φ := τ2)

−→ sym (CN 〈τ1〉); (CN γ1) (SymAx)

−→ 〈→〉 (〈τ1〉; γ1) 〈Int〉 (ReflElimL with φ := τ1, γ := γ1)

−→ 〈→〉 γ1 〈Int〉

Notably, rules AxSuckL/R and SymAxSuckL/R generate axiom applications of the

form C γ (with a coercion as argument). In our previous papers, the syntax of axiom

applications was C τ , with types as arugments. But we need the additional generality to

allow coercions rewriting to proceed without getting stuck.

5 Coercion simpli�cation in GHC

To assess the usefulness of coercion simpli�cation we added it to GHC. For Haskell programs

that make no use of GADTs or type families, the e�ect will be precisely zero, so we took

measurements on two bodies of code. First, our regression suite of 151 tests for GADTs and

type families; these are all very small programs. Second, the Data.Accelerate library that

we know makes use of type families [5]. This library consists of 18 modules, containing 8144

lines of code.

We compiled each of these programs with and without coercion simpli�cation, and mea-

sured the percentage reduction in size of the coercion terms with simpli�cation enabled. This

table shows the minimum, maximum, and aggregate reduction, taken over the 151 tests and

18 modules respectively. The �aggregate reduction� is obtained by combining all the pro-

grams in the group (testsuite or Accelerate) into one giant �program�, and computing the

reduction in coercion size.

Testsuite Accelerate

Minimum −97% −81%

Maximum +14% 0%

Aggregate −58% −69%

There is a substantial aggregate decrease of 58% in the testsuite and 69% in Accelerate,

with a massive 97% decrease in special cases. These special cases should not be taken lightly:

in one program the types and coercions taken together were �ve times bigger than the term

they decorated; after simpli�cation they were �only� twice as big. The coercion simpli�er

makes the compiler less vulnerable to falling o� a cli�.

Only one program showed an increase in coercion size, of 14%, which turned out to be

the e�ect of this rewrite:

sym (C ;D) −→ (sym D); (sym C)

Smaller coercion terms make the compiler faster, but the normalization algorithm itself

consumes some time. However, the e�ect on compile time is barely measurable (less than

1%), and we do not present detailed �gures.

Of course none of this would matter if coercions were always tiny, so that they took very

little space in the �rst place. And indeed that is often the case. But for programs that

make heavy use of type functions, un-optimised coercions can dominate compile time. For

14 Evidence normalization in System FC

Axiom polynomial

p(sym γ) = p(γ)

p(C γ) = z · Σp(γi) + z + 1

p(c) = 1

p(γ1; γ2) = p(γ1) + p(γ2) + p(γ1) · p(γ2)

p(〈φ〉) = 0

p(nth k γ) = p(γ)

p(γ@φ) = p(γ)

p(γ1 γ2) = p(γ1) + p(γ2)

p(∀a:η.γ) = p(γ)

Coercion weight

w(sym γ) = w(γ)

w(C γ) = Σw(γi) + 1

w(c) = 1

w(γ1; γ2) = 1 + w(γ1) + w(γ2)

w(〈φ〉) = 1

w(nth k γ) = 1 + w(γ)

w(γ@φ) = 1 + w(γ)

w(γ1 γ2) = 1 + w(γ1) + w(γ2)

w(∀a:η.γ) = 1 + w(γ)

Symmetry weight

sw(sym γ) = w(γ) + sw(γ)

sw(C γ) = Σsw(γi)

sw(c) = 0

sw(γ1; γ2) = sw(γ1) + sw(γ2)

sw(〈φ〉) = 0

sw(nth k γ) = sw(γ)

sw(γ@φ) = sw(γ)

sw(γ1 γ2) = sw(γ1) + sw(γ2)

sw(∀a:η.γ) = sw(γ)

Figure 10 Metrics on coercion terms

example, the Accelerate library makes heavy use of type functions. The time and memory

consumption of compiling all 21 modules of the library are as follows:

Compile time Memory allocated Max residency

With coercion optimisation 68s 31Gbyte 153Mbyte

Without coercion optimisation 291s 51Gbyte 2, 000Mbyte

As you can see, the practical e�ects can be extreme; the cli� is very real.

6 Termination and con�uence

We have demonstrated the e�ectiveness of the algorithm in practice, but we must also

establish termination. This is important, since it would not be acceptable for a compiler

to loop while simplifying a coercion, no matter what axioms are declared by users. Since

the rules �re non-deterministically, and some of the rules (such as RedInstCo or AxSym)

create potentially larger coercion trees, termination is not obvious.

6.1 Termination

To formalize a termination argument, we introduce several de�nitions in Figure 10. The

axiom polynomial of a coercion over a distinguished variable z , p(·), returns a polynomial

with natural number coe�cients that can be compared to any other polynomial over z . The

coercion weight of a coercion is de�ned as the function w(·) and the symmetry weight of a

coercion is de�ned with the function sw(·) in Figure 10. Unlike the polynomial and coercion

weights of a coercion, sw(·) does take symmetry into account. Finally, we will also use the

number of coercion applications and coercion ∀-introductions, denoted with intros(·) in what

follows.

D. Vytiniotis and S. Peyton Jones 15

Our termination argument comprises of the lexicographic left-to-right ordering of:

µ(·) = 〈p(·),w(·), intros(·), sw(·)〉

We will show that each of the reductions reduces this tuple. For this to be a valid

termination argument for (−→) we need two more facts about each component measure,

namely that (i) (=) and (<) are preserved under arbitrary contexts, and (ii) each component

is invariant with respect to the associativity of (;).

I Lemma 5. If ∆ `co γ1 : τ ∼# σ and γ1 ∼= γ2 modulo associativity of (;), then p(γ1) = p(γ2),

w(γ1) = w(γ2), intros(γ1) = intros(γ2), and sw(γ1) = sw(γ2).

Proof. This is a simple inductive argument, the only interesting case is the case for p(·)
where the reader can calculate that p(γ1; (γ2; γ3)) = p((γ1; γ2); γ3) and by induction we are

done. J

I Lemma 6. If Γ,∆ `co γi : τ ∼# σ (for i = 1, 2) and p(γ1) < p(γ2) then p(G[γ1]) < p(G[γ2])

for any G with Γ `co G[γi] : φ ∼# φ′. Similarly if we replace (<) with (=).

Proof. By induction on the shape of G. The only interesting case is the transitivity case

again. Let G = γ;G′. Then p(γ;G′[γ1]) = p(γ) + p(G′[γ1]) + p(γ) · p(G′[γ1]) whereas

p(γ;G′[γ2]) = p(γ) + p(G′[γ2]) + p(γ) · p(G′[γ2]). Now, either p(γ) = 0, in which case we

are done by induction hypothesis for G′[γ1] and G′[γ2], or p(γ) 6= 0 in which case again

induction hypothesis gives us the result since we are multiplying p(G′[γ1]) and p(G′[γ2]) by

the same polynomial. The interesting �trick� is that the polynomial for transitivity contains

both the product of the components and their sum (since product alone is not preserved by

contexts!). J

I Lemma 7. If Γ,∆ `co γi : τ ∼# σ and w(γ1) < w(γ2) then w(G[γ1]) < w(G[γ2]) for any G
with Γ `co G[γi] : φ ∼# φ′. Similarly if we replace (<) with (=).

I Lemma 8. If Γ,∆ `co γi : τ ∼# σ and intros(γ1) < intros(γ2) then intros(G[γ1]) <

intros(G[γ2]) for any G with Γ `co G[γi] : φ ∼# φ′. Similarly if we replace (<) with (=).

I Lemma 9. If Γ,∆ `co γi : τ ∼# σ, w(γ1) ≤ w(γ2), and sw(γ1) < sw(γ2) then sw(G[γ1]) <

sw(G[γ2]) for any G with Γ `co G[γi] : φ ∼# φ′.

Proof. The only interesting case is when G = sym G′ and hence we have that sw(G[γ1]) =

sw(sym G′[γ1]) = w(G′[γ1]) + sw(G′[γ1]). Similarly sw(G[γ2]) = w(G′[γ2]) + sw(G′[γ2]). By

the precondition for the weights and induction hypothesis we are done. The precondition

on the weights is not restrictive, since w(·) has higher precedence than sw(·) inside µ(·). J

The conclusion is the following theorem.

I Theorem 10. If γ ∼= G[γ1] modulo associativity of (;) and ∆ `co γ1 : σ ∼# φ, and

∆ ` γ1 γ2 such that µ(γ2) < µ(γ1), it is the case that µ(G[γ2]) < µ(γ).

I Corollary 11. (−→) terminates on well-formed coercions if each of the transitions

reduces µ(·).

Note that often the term rewrite literature requires similar conditions (preservation under

contexts and associativity), but also stability under substitution (e.g. see [1], Chapter 5). In

our setting, variables are essentially treated as constants and this is the reason that we do

not rely on stability under substitutions. For instance the rule ReflElimR ∆|−γ; 〈φ〉 γ

is not expressed as ∆|−c; 〈φ〉 c, as would be customary in a more traditional term-rewrite

system presentation.

We �nally show that indeed each of the steps reduces µ(·).

16 Evidence normalization in System FC

I Theorem 12 (Termination). If ∆ `co γ1 : σ ∼# φ and ∆ ` γ1 γ2 then µ(γ2) < µ(γ1).

Proof. It is easy to see that the re�exivity rules, the symmetry rules, the reduction rules, and

the η-rules preserve or reduce the polynomial component p(·). The same is true for the push

rules but the proof is slightly more interesting. Let us consider PushApp, and let us write pi
for p(γi). We have that p((γ1 γ2); (γ3 γ4)) = p1+p2+p3+p4+p1p3+p2p3+p1p4+p2p4. On

the other hand p((γ1; γ3) (γ2; γ4)) = p1+p3+p1p3+p2+p4+p2p4 which is a smaller or equal

polynomial than the left-hand side polynomial. Rule PushAll is easier. Rules PushInst

and PushNth have exactly the same polynomials on the left-hand and the right-hand side

so they are ok. Rules VarSym and SymVar reduce p(·). The interesting bit is with rules

AxSym, SymAx, and AxSuckR/L and SymAxSuckR/L. We will only show the cases for

AxSym and AxSuckR as the rest of the rules involve very similar calculations:

Case SymAx. We will use the notational convention p1 for p(γ1) (a vector of polynomi-

als) and similarly p2 for p(γ2). Then the left-hand side polynomial is:

(zΣp1+z+1) + (zΣp2+z+1)+

(zΣp1+z+1) · (zΣp2+z+1) =

(z 2+2z)Σp1 + (z 2+2z)Σp2 + z 2Σp1Σp2 + (z 2+4z+3)

For the right-hand side polynomial we know that each γ1i ; sym γ2i will have polynomial

p1i + p2i + p1ip2i and it cannot be repeated inside the lifted type more than a �nite

number of times (bounded by the maximum number of occurrences of a type variable

from a in type τ), call it k . Hence the right-hand side polynomial is smaller or equal to:

kΣp1 + kΣp2 + kΣ(p1ip2i) ≤ kΣp1 + kΣp2 + kΣp1Σp2

But that polynomial is strictly smaller than the left-hand side polynomial, hence we are

done.

Case AxSuckR. In this case the left-hand side polynomial is going to be greater or equal

to (because of re�exivity inside δ and because some of the a variables may appear more

than once inside υ it is not exactly equal to) the following:

(zΣp1 + z + 1) + Σp2 + (zΣp1 + z + 1)Σp2 =

zΣp1Σp2 + zΣp1 + zΣp2 + 2Σp2 + z + 1

On the other hand, the right-hand side polynomial is:

zΣ(p1i + p2i + p1ip2i) + z + 1 ≤ zΣp1 + zΣp2 + zΣp1Σp2 + z + 1

We observe that there is a di�erence of 2Σp2, but we know that δ satis�es nontriv(δ),

and consequently there must exist some variable or axiom application inside one of the

γ2. Therefore, Σp2 is non-zero and the case is �nished.

It is the arbitrary copying of coercions γ1 and γ2 in rules AxSym and SymAx that prevents

simpler measures that only involve summation of coercions for axioms or transitivity. Other

reasonable measures such as the height of transitivity uses from the leaves would not be

preserved from contexts, due to AxSym again.

So far we've shown that all rules but the axiom rules preserve the polynomials, and the

axiom rules reduce them. We next show that in the remaining rules, some other component

reduces, lexicographically. Re�exivity rules reduce w(·). Symmetry rules preserve w(·)
and intros(·) but reduce sw(·). Reduction rules and η-rules reduce w(·). Rules PushApp

and PushAll preserve or reduce w(·) but certainly reduce intros(·). Rules PushInst and

PushNth reduce w(·). J

We conclude that (−→) terminates.

D. Vytiniotis and S. Peyton Jones 17

6.2 Con�uence

Due to the arbitrary types of axioms and coercion variables in the context, we do not expect

con�uence to be true. Here is a short example that demonstrates the lack of con�uence;

assume we have the following in our context:

C1 (a:?→ ?) : F a ∼# a

C2 (a:?→ ?) : G a ∼# a

Consider the coercion:

(C1 〈σ〉); sym (C2 〈σ〉)

of type F σ ∼# G σ. In one reduction possibility, using rule AxSuckR, we may get

C1 (sym (C2 〈σ〉))

In another possibility, using SymAxSuckL, we may get

sym (C2 (sym (C1 〈σ〉)))

Although the two normal forms are di�erent, it is unclear if one of them is �better� than the

other.

Despite this drawback, con�uence or syntactic characterization of normal forms is, for

our purposes, of secondary importance (if possible at all for open coercions in such an under-

constrained problem!), since we never reduce coercions for the purpose of comparing their

normal forms. That said, we acknowledge that experimental results may vary with respect

to the actual evaluation strategy, but we do not expect wild variations.

7 Related and future work

Traditionally, work on proof theory is concerned with proof normalization theorems, namely

cut-elimination. Category and proof theory has studied the commutativity of diagrams in

monoidal categories [12], establishing coherence theorems. In our setting Lemma 4 expresses

such a result: any coercion that does not include axioms or free coercion variables is equiv-

alent to re�exivity. More work on proof theory is concerned with cut-elimination theorems

� in our setting eliminating transitivity completely is plainly impossible due to the presence

of axioms. Recent work on 2-dimensional type theory [10] provides an equivalence relation

on equality proofs (and terms), which su�ces to establish that types enjoy canonical forms.

Although that work does not provide an algorithm for checking equivalence (this is harder

to do because of actual computation embedded with isomorphisms), that de�nition shares

many rules with our normalization algorithm. Finally there is a large literature in associative

commutative rewrite systems [7, 2].

To our knowledge, most programming languages literature on coercions is not concerned

with coercion simpli�cation but rather with inferring the placement of coercions in source-

level programs. Some recent examples are [11] and [17]. A comprehensive study of coercions

and their normalization in programming languages is that of [8], motivated by coercion

placement in a language with type dynamic. Henglein's coercion language di�ers to ours in

that (i) coercions there are not symmetric, (ii) do not involve polymorphic axiom schemes

and (iii) may have computational signi�cance. Unlike us, Henglein is concerned with charac-

terizations of minimal coercions and con�uence, �xes an equational theory of coercions, and

18 Evidence normalization in System FC

presents a normalization algorithm for that equational theory. In our case, in the absence

of a denotational semantics for System FC and its coercions, such an axiomatization would

be no more ad-hoc than the algorithm and hence not particularly useful: for instance we

could consider adding type-directed equations like ∆ ` γ 〈τ〉 when ∆ `co γ : τ ∼# τ , or

other equations that only hold in consistent or con�uent axiom sets. It is certainly an inter-

esting direction for future work to determine whether there even exists a maximal syntactic

axiomatization of equalities between coercions with respect to some denotational semantics

of System FC.

In the space of typed intermediate languages, xMLF[14] is a calculus with coercions that

capture instantiation instead of equality, and which serves as target for the MLF language.

Although the authors are not directly concerned with normalization as part of an interme-

diate language simpli�er, their translation of the graph-based instantiation witnesses does

produce xMLF normal proofs.

Finally, another future work direction would be to determine whether we can encode

coercions as λ-terms, and derive coercion simpli�cation by normalization in some suitable

λ-calculus.

Acknowledgments

Thanks to Tom Schrijvers for early discussions and for contributing a �rst implementation.

We would particularly like to thank Thomas Ströder for his insightful and detailed feedback

on our draft.

References

1 Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge University Press,

New York, NY, USA, 1998.

2 Leo Bachmair and David A. Plaisted. Termination orderings for associative-commutative

rewriting systems. J. Symb. Comput., 1(4):329�349, December 1985.

3 Manuel M. T. Chakravarty, Gabriele Keller, and Simon Peyton Jones. Associated type syn-

onyms. In ICFP '05: Proceedings of the Tenth ACM SIGPLAN International Conference on

Functional Programming, pages 241�253, New York, NY, USA, 2005. ACM.

4 Manuel M. T. Chakravarty, Gabriele Keller, Simon Peyton Jones, and Simon Marlow. Asso-

ciated types with class. SIGPLAN Not., 40(1):1�13, 2005.

5 Manuel M.T. Chakravarty, Gabriele Keller, Sean Lee, Trevor L. McDonell, and Vinod Grover.

Accelerating Haskell array codes with multicore GPUs. In Proceedings of the sixth workshop

on Declarative Aspects of Multicore Programming, DAMP '11, pages 3�14, New York, NY,

USA, 2011. ACM.

6 James Cheney and Ralf Hinze. First-class phantom types. CUCIS TR2003-1901, Cornell

University, 2003.

7 Nachum Dershowitz, Jien Hsiang, N. Alan Josephson, and David A. Plaisted. Associative-

commutative rewriting. In Proceedings of the Eighth international joint conference on Arti�-

cial intelligence - Volume 2, IJCAI'83, pages 940�944, San Francisco, CA, USA, 1983. Morgan

Kaufmann Publishers Inc.

8 Fritz Henglein. Dynamic typing: syntax and proof theory. Sci. Comput. Program., 22:197�230,

June 1994.

9 Oleg Kiselyov, Simon Peyton Jones, and Chung-chieh Shan. Fun with type functions. In Cli�

Jones and Bill Roscoe, editors, Re�ections on the work of CAR Hoare. Springer, 2010.

D. Vytiniotis and S. Peyton Jones 19

10 Daniel R. Licata and Robert Harper. Canonicity for 2-dimensional type theory. In Proceed-

ings of the 39th annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL '12, pages 337�348, New York, NY, USA, 2012. ACM.

11 Zhaohui Luo. Coercions in a polymorphic type system. Mathematical Structures in Computer

Science, 18(4):729�751, 2008.

12 Saunders Mac Lane. Categories for the Working Mathematician. Number 5 in Graduate Texts

in Mathematics. Springer-Verlag, 1971.

13 Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Geo�rey Washburn. Simple

uni�cation-based type inference for GADTs. In ICFP '06: Proceedings of the Eleventh ACM

SIGPLAN International Conference on Functional Programming, pages 50�61, New York,

NY, USA, 2006. ACM Press.

14 Didier Rémy and Boris Yakobowski. A Church-style intermediate language for MLF. In

Matthias Blume, Naoki Kobayashi, and German Vidal, editors, Functional and Logic Pro-

gramming, volume 6009 of Lecture Notes in Computer Science, pages 24�39. Springer Berlin

/ Heidelberg, 2010.

15 Tim Sheard and Emir Pasalic. Meta-programming with built-in type equality. In Proc 4th

International Workshop on Logical Frameworks and Meta-languages (LFM'04), Cork, pages

106�124, July 2004.

16 Martin Sulzmann, Manuel M. T. Chakravarty, Simon Peyton Jones, and Kevin Donnelly.

System F with type equality coercions. In TLDI '07: Proceedings of the 2007 ACM SIGPLAN

International Workshop on Types in Languages Design and Implementation, pages 53�66, New

York, NY, USA, 2007. ACM.

17 Nikhil Swamy, Michael Hicks, and Gavin M. Bierman. A theory of typed coercions and

its applications. In Proceedings of the 14th ACM SIGPLAN International Conference on

Functional Programming, ICFP '09, pages 329�340, New York, NY, USA, 2009. ACM.

18 Dimitrios Vytiniotis, Simon Peyton Jones, Tom Schrijvers, and Martin Sulzmann. Out-

sidein(x): modular type inference with local assumptions. Journal of Functional Program-

ming, 21, 2011.

19 Dimitrios Vytiniotisa, Simon Peyton Jones, and Pedro Magalhaea. Equality proofs and de-

ferred type errors. In Proceedings of ACM SIGPLAN International Conference on Functional

Programming (ICFP '12), pages 341�352, 2012.

20 Stephanie Weirich, Dimitrios Vytiniotis, Simon Peyton Jones, and Steve Zdancewic. Gener-

ative type abstraction and type-level computation. In Proceedings of the 38th annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL '11, pages

227�240, New York, NY, USA, 2011. ACM.

	Introduction
	An overview of System FC
	Coercions
	Typing coercions

	The problem with large coercions
	How big coercions arise
	How coercions can be simplified

	Coercion simplification
	Simplification rules
	Pulling reflexivity up
	Pushing symmetry down
	Reducing coercions
	Eta expanding and subsequent reducing
	Pushing transitivity down
	Leaf reactions

	Coercion simplification in GHC
	Termination and confluence
	Termination
	Confluence

	Related and future work

