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Abstract

Sheet-defined functions (SDFs) bring modularity and abstraction to the world of spreadsheets. Alas,
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such functions to become elastic SDFs that work over inputs of arbitrary size. We prove that under
natural, checkable conditions our algorithm returns the principal generalisation of an input SDF. We
describe a formal semantics and several efficient implementation strategies for elastic SDFs. A user
study with spreadsheet users compares the human experience of programming with elastic SDFs to
the alternative of relying on array processing combinators. Our user study finds that the cognitive load
of elastic SDFs is lower than for SDFs with map/reduce array combinators, the closest alternative
solution.

∗ This article has been published in a revised form in the Journal of Functional Programming. This is the authors’
version as of July 8, 2020, reformatted on September 21, 2020, and is licensed under CC-BY-NC-ND 4.0. No
commercial re-distribution or re-use allowed. Derivative works cannot be distributed. c© 2020 Microsoft.

1 Most of the contribution of these authors was made while they were interning at Microsoft Research.

https://doi.org/10.1017/S0956796820000234
https://orcid.org/0000-0003-4814-5148
mailto:matt@mattmccutchen.net
https://orcid.org/0000-0001-9716-0147
mailto:jborghou@uci.edu
https://orcid.org/0000-0002-5809-2484
mailto:adg@microsoft.com
https://orcid.org/0000-0002-6085-1435
mailto:simonpj@microsoft.com
https://orcid.org/0000-0002-5401-3478
mailto:advait@microsoft.com
https://doi.org/10.1017/S0956796820000234
https://creativecommons.org/licenses/by-nc-nd/4.0/


2 M. McCutchen et al.

1 Introduction

Suppose we want to use a spreadsheet to compute the average of the numeric cells2 in
A1:A10. We might do so like this, using a simple textual notation for the spreadsheet grid,
described in Section 3:

B1 = SUM( A1:A10 ); B2 = COUNT( A1:A10 ); B3 = B1/B2

Rather than repeat this logic in many places, it would be better to define it once, and call
it in many places. With this in mind, Peyton Jones et al. (2003) propose that a function
can be defined by an ordinary worksheet with specially-identified input and output cells.
These sheet-defined functions (SDFs) are explored and implemented by Sestoft (2014), in
his comprehensive monograph on spreadsheet implementation technology. In our textual
notation we might write

function AVG( A1:A10 ) returns B3 {
B1 = SUM( A1:A10 ); B2 = COUNT( A1:A10 ); B3 = B1/B2 }

But there is a problem: this function only works on vectors of length 10, unlike the built-
in AVG which works on vectors of arbitrary size. We would like to generalise AVG, by
replacing the fixed 10 by a length variable α , thus making an elastic SDF:3

function AVG( A1:A{α} ) returns B3 {
B1 = SUM( A1:A{α} ); B2 = COUNT( A1:A{α} ); B3 = B1/B2 }

This simple example is representative of a large class of problems that a user might want to
solve by first defining a function that manipulates individual elements of fixed-size input
arrays (because that is easy in spreadsheets), and then somehow generalising the function
to work on inputs of arbitrary size. The core contribution of this paper is an algorithm to
perform this generalisation step. Our specific contributions are these:

• Sarkar et al. (2018) propose a simple textual notation for spreadsheet programs
(Section 3). We develop this idea further by introducing new notation for sheet-
defined functions (SDFs).

• We generalise the SDF notation so that it can describe elastic SDFs, which work
on inputs of varying size (Section 4), and give our new notation a precise semantics
(Section 5) using what we call tiles. We also discuss practical execution mechanisms
in Section 9.

• Our goal is to find the elastic SDF that is the unique principal generalisation of
the original SDF. We begin by specifying what it means for one generalisation to
be “more general than” another, and identifying a series of obstacles to the very
existence of a principal generalisation (Section 6).

• In Section 7 we show that every (suitable) SDF does indeed enjoy a principal gen-
eralisation under certain restrictions. Better still, we give an algorithm that finds the
principal generalisation, and prove the algorithm correct. However, if the SDF does
not use any computational pattern our system can generalise, the principal general-
isation may just be the original SDF. In Section 8, we extend the system to support

2 I.e., ignoring cells that are blank or that contain strings or booleans. Note that SUM and COUNT both do
this. We temporarily ignore the fact that many spreadsheet tools have a built-in AVERAGE function that
solves the original problem.

3 We explain in Section 6.4 why we do not also generalise the width of 1 to a variable.
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more computational patterns and thereby provide useful generalisations for more
SDFs.

• The ultimate goal of programming language research is to make human beings more
productive. So in Section 10 we describe a user study in which we asked 20 partici-
pants to write array-processing SDFs, either using elastic SDFs or by the method of
storing input and output arrays in single cells (the idea of arrays-in-cells (Blackwell
et al., 2004)). A key finding is that users perceived a significantly lower cognitive
workload for elastic SDFs, versus SDFs with arrays-in-cells.

Spreadsheets have a vastly larger user base than mainstream programming languages, but
are seldom studied by programming language researchers. This paper is one of only a
handful to apply the formal arsenal of the programming language community to spread-
sheets, by giving a textual notation for spreadsheets, a formal semantics, a generalisation
ordering, and a principal generalisation theorem. The technical details of elastic SDFs are
subtle, but the task is hard: generalising a single, concrete program to a size-polymorphic
one, not just with heuristics, but in a provably most-general way. From the point of view
of the user, however, things are very simple: you can build a spreadsheet using familiar
element-wise formulas and copy/paste, capture that computation as a reusable function
(exemplified on inputs of fixed size), and have it reliably and automatically generalised to
work on inputs of arbitrary size. That is a valuable prize.

Nothing in this paper is vendor-specific; our generalisation technique relies only on the
structure of the spreadsheet grid, and the copy/paste behaviour of absolute and relative
references, features that are present in essentially all spreadsheets, and that we describe in
Section 3.1.

We break this lengthy paper into sections as follows:

• Section 2 reviews the idea of sheet-defined functions.
• Section 3 introduces a formal textual notation for spreadsheets, used in our technical

development.
• Section 4 defines the syntax and informal semantics of elastic SDFs.
• Section 5 describes a formal semantics for SDFs and elastic SDFs.
• Section 6 studies the idea of generalizing from an example SDF to an elastic SDF

and the restrictions we need to impose so that a principal (most general) elastic SDF
exists.

• Section 7 describes our generalization algorithm and proves it correct.
• Section 8 extends the system of Sections 6 and 7 to provide useful generalisations

for more SDFs.
• Section 9 describes several techniques for executing elastic SDFs.
• Section 10 reports our user study.
• Section 11 discusses related work.
• Section 12 draws conclusions.
• Appendix A describes details of a collision-avoidance algorithm used in Section 9.
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2 Sheet-defined functions

Fifteen years ago Peyton Jones et al. argued that it should be possible for spreadsheet users
to define new spreadsheet functions whose implementation is given by a spreadsheet –
that is, a sheet-defined function (SDF) (Peyton Jones et al., 2003). This approach contrasts
with that taken by typical spreadsheet products today: users may define custom functions
but only by using a conventional programming language separate from the spreadsheet
formula language. Microsoft Excel allows custom functions to be defined using Visual
Basic or JavaScript, while Google Sheets allows custom functions written in JavaScript.

Requiring a switch of programming language – and indeed of programming paradigm
– puts a huge barrier between the domain expert using a spreadsheet and their goal of
composing existing functions together to build a new one. No other programming language
demands that users write functions in a different language – why should spreadsheets be
different?

2.1 Is there any demand for SDFs?

The key goal of sheet-defined functions is to support re-use, allowing spreadsheet users
to write code once, rather than repeatedly. There is clearly very strong demand for such
re-use in spreadsheet applications:

• Excel has long allowed users to write custom functions in a dialect of Visual
Basic known as VBA (Visual Basic for Applications), an implementation of the
programming language Visual Basic 6. The VBA scripting feature is immensely
popular, with the query “Excel VBA” currently retrieving over 119,000 results on
StackOverflow.45 For context: at present, that is greater than the number of results
for 6 out of the 20 most popular programming languages (as ranked by the January
2020 Tiobe index6).

• Besides writing VBA scripts, users commonly extend the function library available
in Excel by installing add-ins. For example, one add-in7 that introduces a number of
functions to Excel is extremely popular, with over 750,000 users.

These user behaviours (writing VBA and installing custom add-ins) require significant pro-
gramming expertise and attention investment and, in the case of add-ins, usually a financial
investment. The fact that, despite these obstacles, such a large user base engages in these
activities at all indicates a significant demand for user-defined functions.

Sheet-defined functions require no additional expertise beyond understanding of the for-
mula language, and thus make it possible for a much larger class of end users to build their
own abstractions without the assistance of a professional programmer. It is not unreason-
able to expect that the use of SDFs will eclipse the use of conventional custom functions

4 https://stackoverflow.com/questions/tagged/excel+vba. Last accessed: January 6, 2020
5 It should be noted that sometimes VBA and add-in functions are used not for the straightforward encapsulation

of logic but because they have access to Excel or OS environment features that are outside the spreadsheet
computational model. Also, a search for “Excel VBA” could pick up uses of VBA for purposes other than
defining a function for use in formulas; for instance, making systematic edits to a spreadsheet.

6 https://www.tiobe.com/tiobe-index/.
7 https://www.asap-utilities.com/asap-utilities-excel-tools-tip.php?tip=259&
utilities=97&lang=en_us. Last accessed: January 6, 2020

https://stackoverflow.com/questions/tagged/excel+vba
https://www.tiobe.com/tiobe-index/
https://www.asap-utilities.com/asap-utilities-excel-tools-tip.php?tip=259&utilities=97&lang=en_us
https://www.asap-utilities.com/asap-utilities-excel-tools-tip.php?tip=259&utilities=97&lang=en_us
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or proprietary add-ins. One avenue for validating this idea, which we have not pursued at
present, is to analyse a corpus of spreadsheets to study the degree to which functionality
appears to be reused in multiple places, to better understand how much we might expect
SDFs to penetrate.

2.2 Design space for SDFs

Sestoft took the idea of sheet-defined functions and developed an open-source implementa-
tion (Sestoft and Sørensen, 2013; Sestoft, 2014). However, this and other implementations
are only points in a broader design space for SDFs. We have identified a few important
parameters of this design space, including:

• User interface. Through what user interface does the user define a new function,
give it a name, and specify its parameters and result?

• Function sheets. Is a worksheet that defines the body of a function special in some
way (a “function sheet”); or it is just a regular worksheet? Can multiple SDFs be
defined in a single worksheet?

• Debugging. What is the appropriate debugging support for SDFs? (Peyton Jones
et al. (2003) offers some ideas.)

• Libraries and distribution. How can SDFs be collected into a library, versioned, and
shared with others?

• Discoverability. How can SDFs be made discoverable, so that users actually know
they exist?

Then, for any particular realisation of SDFs, there are open questions about utility. Will
an end user find that SDFs justify their learning costs (Bostrom et al., 1990), and attention
investment requirements (Blackwell, 2002)? Do users actually become more productive by
using SDFs (Pandita et al., 2018)?

2.3 Elasticity

The questions posed in the previous section are important, but regardless of how these
design decisions are resolved, there remains the fundamental challenge of elasticity: how
to build functions that adapt to inputs of varying size. That (and only that) is the challenge
that we address in this paper.

One solution might be to require the user to make full use of arrays as values (Blackwell
et al., 2004). In our AVG example, we could say that the entire input array lands in cell
A1, and then compute the result as SUM(A1)/COUNT(A1), where the SUM adds up all the
elements of its input array, and similarly for COUNT.

The arrays-as-values approach would require the spreadsheet to allow a cell to contain an
array value and, in general, to support nested arrays. That might be technically reasonable,
but presents a significant practical challenge. Spreadsheet users have decades of experience
in doing iterated calculation by copy/paste or drag-fill, working with fixed-size ranges.
In our AVG example, it is appealingly concrete to write SUM(A1:A10)/COUNT(A1:A10).
Moreover, when using arrays-as-values, many common cases would require the use of
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Definition
of SHOP

=SHOP(N4:N9,N3)

=SHOP(K4:K6,K3)

Fig. 1: A spreadsheet containing the body of the SHOP SDF and two calls to it, one with a
different input size than the original.

maps, zips, folds, and other aggregate operations in the functional programming armory.
Even for a functional programmer some of the simple examples in this paper are quite
tricky to express, so many users would perhaps never get beyond the fixed-size version.

So the question is this: can we allow users to write SDFs over fixed-size arrays,
using familiar element-wise operations and copy/paste; and then reliably and predictably
generalise them to work over arbitrary sized arrays? Yes, we can.

3 A textual notation for sheet-defined functions

In this work we deliberately abstract away from the user interface, in order to concentrate
on the data and computational aspects of SDFs. But we have to describe SDFs somehow!
A simple approach is to describe spreadsheets textually which, as well as slicing away the
user interface, allow us to deploy the tools of the programming language community.

We therefore borrow a recently introduced textual notation for describing the data and
computations of a spreadsheet grid – the Calculation View (Sarkar et al., 2018) of the
spreadsheet. The complete Calculation View language as used in this paper is given in
Figure 2 below for reference.

We do not expect users to use textual notation to define SDFs: Section 3.5 describes how
we expect to get from a familiar spreadsheet grid to a textual SDF. For the purposes of this
paper, however, the discussion of generalisation is made much easier by starting from a
concrete textual form.

3.1 Range assignments, formulas, and values

Figure 1 shows a spreadsheet that computes, in H7, the total cost of purchasing the items in
F4:F6, after accounting for sales tax, whose rate is held in G2. In Calculation View form,
the part of the spreadsheet in the red box is written thus (ignoring text labels, which are not
involved in the computation):

F4 = 20; F5 = 30; F6 = 35; G2 = 20%
G4:G6 = F4 * $G$2
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H4:H6 = F4 + G4
H7 = SUM(H4:H6)

Each cell contains a value computed by the formula in the cell. A value is a number,
boolean, string, error value, or array of values; the exact details are not relevant to this
paper.

The Calculation View form of this sheet fragment consists of a set of range assignments
(note that a range may be a single cell), which can be written in any order, and can appear
on successive lines or on a single line separated by semicolons. Each range assignment is
of form t r = F , where t is a tile name (explained in Section 3.4 and omitted until then), r
is a range, and F is a formula.

Ranges r are already standard in spreadsheets. Referring to Figure 2, a range r can be
denoted by:

• A single cell address a, such as H7. In this paper, we use only the standard A1
notation Sestoft (2014) where the cell is identified by a column name and a row
number.

• A rectangular range denoted by two cell addresses for the upper-left and lower-
right corners, such as G4:G6. We call this corner-corner notation. Conventional
spreadsheets treat a “back to front” range like G5:G4 as identical to G4:G5. This
implicit reversal makes it impossible to represent an empty range, something that
seems absolutely necessary as we move to size-polymorphic functions. In our work
we do no implicit reversal. We consider the range N1m1 : N2m2 to have height m2 −
m1 + 1 and width N2 −N1 + 1. For example, G5:G4 has height 0, while G6:G4 has
height −1. Ranges of negative height or width are generally invalid, though our
treatment will vary in exactly where we exclude them.

Formulas F are also standard in spreadsheets, and again Figure 2 shows our syntax. A
formula can refer to a range using a range reference ρ , such as F4 or $G$2. (The super-
script annotations in our syntax for ρ are explained in Section 3.4 and omitted until then.)
Range references differ from ranges because they can be relative (e.g. B7) or absolute (e.g.
$B$7), a choice that can be made independently for each axis of the reference (e.g. B$7 or
$B7). During copy/paste, relative references are updated to reflect their new location, while
absolute references remain unchanged.

The range on the left-hand side of a range assignment is called a tile. Tiles must have
nonnegative height and width8 and must not overlap, so that each cell is defined only once.
A range assignment t r = F means “put formula F into the top left-hand corner of r, and
then use copy/paste to assign a formula to the other cells in r”. So in our example

G4:G6 = F4 * $G$2

the cell G4 gets the original formula F4 * $G$2, while G6 will get the formula F6 * $G$2,
as adjusted by copy/paste. The general rule is that when a formula is copy/pasted from cell
C to D, its relative references are adjusted by the offset from C to D, while its absolute
references are unchanged. The advantage of our range-assignment notation, compared to

8 Tiles of height or width zero have no effect, but it is easier if we allow some of the algorithms later in the paper
to generate Calculation View forms containing such tiles.
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Column name9 N ::= A | . . . | Z |AA |AB | . . . |∅
Row number m∈Z≥0

Address (column, row) a ::= Nm
Range r ::= a1 : a2 (We write a short for a : a)

Absolute/relative marker µ, ν ::= $ | ‘’
Cell reference θ ::= νNµm
Annotated range reference ρ ::= (θ1 : θ2)

t1,...,tn (We write θ short for θ : θ )
Constant c (either string or number)
Formula F ::= ρ | c | f (F1, . . . , Fn) ( f either builtin function or an SDF)

Tile name t
Range assignment A ::= t r = F
Sheet fragment S ::=A1, . . . ,An

SDF definition F ::= function f (t1 r1, . . . , tk rk) returns rt ′1,...,t
′
j {S }

Length variable α , β , ...
Elastic column name N ::= N | {N + α}
Elastic row number m ::= m | {m + α}
Elastic syntax elements a, r, θ , ρ, F ,A ,S ,F (with N, m replaced by N, m)

Fig. 2: Spreadsheet syntax, in the style of Calculation View (Sarkar et al., 2018).

copy/paste in the grid, is that it makes explicit that the entire range shares a single master
formula.

In the rest of the paper, when we are focusing on an individual range reference ρ within
a formula for a tile tc, we say that it can be resolved to a concrete range r, at a given cell c
of tc, by adjusting relative references for a copy/paste from the top-left corner of tc to c and
then discarding absolute/relative markers, which are no longer needed. We sometimes use
the notation r = Res(ρ, c). Note that the top-left corner of tc, from which the copy/paste
starts, is implicit here. For example, resolving the relative range reference F4 (as it appears
in the range assignment in the previous paragraph) at the cell G6 results in the concrete
range F6, while resolving the absolute range reference $G$2 at G6 results in the concrete
range G2. Resolution can also be applied to any piece of syntax that is part of a range
reference, to produce the corresponding syntax that is part of a concrete range.

3.2 Sheet-defined functions

Next, we extend our Calculation View notation to cover sheet-defined functions (Figure 2).
For example, we can abstract the re-usable computational content of the sheet fragment in
Section 3.1 as an SDF, like this:

9 We use ∅ to denote column number zero. Row and column zero do not exist in the sheet and we will ensure
we do not actually access them, but they are needed in the syntax to express elastic ranges that start in the first
row or column and can shrink to zero size, e.g., A1:A{0+α} and A1:{∅+α}1. Row and column zero are
allowed only in the second endpoint of a range or range reference, not in the first endpoint; e.g., A1:A0 is a
valid range with one column and zero rows, while A0 and A0:A2 are invalid as ranges.



Elastic SDFs 9

function SHOP( F4:F6, G2 ) returns H7 {
G4:G6 = F4 * $G$2
H4:H6 = F4 + G4
H7 = SUM(H4:H6) }

The spreadsheet in Figure 1 contains the body of the SDF as well as two calls to it, the
second of which requires elasticity in order to work correctly.

In general, an SDF definition F consists of a function name, a list of input ranges,
an output range, and a set of range assignments that make up the body. The body tiles
of an SDF are the left-hand sides of its range assignments; the input tiles are the SDF’s
input ranges. Each body tile has a single formula, namely the right-hand side of the range
assignment. The order in which the body tiles are written is immaterial.

Intuitively, the semantics of a call F(e1,e2) to a sheet-defined function F is to evaluate
the arguments to values v1 and v2, generate a fresh temporary spreadsheet containing the
range assignments in F’s body, initialise the input ranges with the argument values v1 and
v2, calculate the value of each cell on the sheet (respecting dependencies), and return the
value of the output range while discarding the temporary sheet. (We formalize this pro-
cess in Section 5.2.) Unlike conventional languages, where the parameters of the function
are (arbitrary) names given to the input values, in our language the input ranges specify
the cell(s) in which the arguments to the function are placed; the output range specifies
the cell(s) whose computed value is the result of the function. In our example, the first
argument to SHOP is placed in F4:F6, while the second is placed in G2.

3.3 Assumptions on sheet-defined functions

For the sake of simplicity, we only attempt to generalise sheet-defined functions that are
tame in the sense that they satisfy the following properties. We discuss whether these
restrictions can be relaxed in Section 6.8, after we have covered enough about our system
that the design possibilities are clear.

Static The range references that appear in a formula identify all the cells that
are needed to evaluate the formula. In Excel the call INDIRECT( "A2" & "3" ) first
computes the string "A23", and then treats it as a cell reference A23, so any use
of INDIRECT makes a formula non-static. The function OFFSET is similar; but
functions like INDEX and VLOOKUP are fine.
Closed For each range reference in the SDF and each cell in its calling tile, resolving
the reference at that cell results in a range of non-negative height and width, and
every cell in this range is inside one of the tiles of the SDF. Likewise, the output
range has non-negative height and width, and every cell in it is inside one of the tiles
of the SDF. For example, consider the tile

F4:F6 = SUM(H4:J4)

When copy/pasted into F5 the formula SUM(H4:J4) becomes SUM(H5:J5) and sim-
ilarly for F6. Each cell in each of these ranges must be defined by some tile of the
SDF.
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No array tiles In many spreadsheet tools, it is possible to set an entire range equal to
the array returned by a formula. We expect that spreadsheet tools that support SDFs
may support such “array tiles” as part of SDFs, and the Calculation View notation
of Sarkar et al. (2018) could naturally be extended to describe them, for example:

function SYMMETRIZE( A1:E5 ) returns A13:E17 {
A7:E11 {=} TRANSPOSE(A1:E5)
A13:E17 = (A1 + A7)/2 }

Generalising SDFs containing array tiles would be very useful. Unfortunately, array
tiles present serious difficulties to our generalisation approach because their sizes
may not be known statically in terms of the input sizes of the SDF. Hence, we do not
include array tiles in the Calculation View syntax of this paper, so they cannot occur
in tame SDFs.
Non-degenerate Each tile has positive height and width. Each range reference
resolves to a range of positive height and width at some cell of the calling tile. Non-
degeneracy makes our proofs simpler by avoiding corner cases, and we know of no
useful functions that are thereby excluded.

Generalising a tame SDF and then specialising it to input sizes different from the origi-
nals will produce a labelled SDF (see the end of Section 4.3 for the precise definition) that
may be degenerate (e.g., if some of the new input sizes are zero) but still satisfies the other
properties.

3.4 Tiles and dependencies

To assign semantics (Section 4.2) to the elastic SDF that results from generalising a given
tame SDF, we will find it helpful to first name each tile in the original SDF and to make
explicit the tiles to which each reference points, like this:

function SHOP( t1 F4:F6, t2 G2 ) returns H7t5 {
t3 G4:G6 = F4t1 * $G$2t2

t4 H4:H6 = F4t1 + G4t3

t5 H7 = SUM(H4:H6t4 ) }

We have given a distinct name, t1, t2, . . . to each of the tiles, which in this example consist
of the three lines in the body of the function, together with the two input ranges. The calling
tile of a range reference is the tile in whose formula that reference appears; for example,
the calling tile of the range reference $G$2t2 is t3.

Furthermore, for each reference in the tile formulas, and in the returns, we have made
explicit the tile(s) to which that reference points, using a superscript – these are the target
tiles of the reference. A reference points to a target tile t if evaluating the reference (or any
of the adjustments of the reference obtained by copy/paste in the same tile, if applicable)
would read a cell from tile t. (More formally, a reference points to t if resolving it at some
cell in the calling tile produces a range that overlaps t.) For example, the reference G4t3 in
the formula for tile t4 is labelled with target tile t3, because evaluating G4 would require the
value of cell G4 which is in tile t3. We can determine these annotations statically because
the SDF is assumed to be both static and closed.
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The output range in the returns clause plays a similar role to range references in tile for-
mulas in that both are used to read data from the sheet, and accordingly, both are annotated
with target tiles. Thus, to enable our algorithms to process the output “range reference”
along with other range references, we pretend that each SDF contains a dummy 1-by-1 tile
that serves as the calling tile of the output range reference. The output range reference is
similar to a range reference in a formula for a 1-by-1 tile in that neither range reference
is subject to adjustment of relative references; by introducing the dummy 1-by-1 tile, our
algorithms will treat both kinds of range references the same way.

In the SHOP example, each reference has a single target tile, but in general, the label
may be a finite set of target tiles. For example, suppose the final line of SHOP was instead

t5 H7 = SUM(G4:H6t3,t4 )

In this (contrived) example, the reference G4:H6 covers both tiles t3 and t4, and must be so
labelled. We show a more realistic example in Section 8.

3.5 From spreadsheet grid to textual form

A textual form makes the technical development of a generalisation algorithm much eas-
ier, but that does not imply that we expect user to write textual function definitions in
Calculation View form. Rather, we envisage three steps to get from a spreadsheet grid to a
Calculation View definition of a SDF:

• Identifying tiles. Given a spreadsheet grid, we can readily identify its tiles, by iden-
tifying the largest rectangular ranges that share a common formula. One possible
algorithm is given by Sarkar et al. (2018, Section IV.C). In most cases this decom-
position into ranges is unique, but not in every case (e.g. think of an L-shaped range,
which can decompose into rectangles in two different ways). Moreover, there are
two ways to decide if two cells share a common formula: we might ask if their
formulas came from copy/paste of a single original formula; or we might ask if
independently-entered formulas are syntactically identical (modulo copy/paste). For
the purposes of this paper, however, we assume that the decomposition is given.

• Labelling. Now we can add tile labels to every reference in the right hand side of a
tile definition, simply by working out which tiles that reference can point to. This
step is straightforward, given our restriction to static SDFs (Section 3.3).

• SDF definitions. From a pure grid we cannot infer the name, input cells, output
cells, and boundary of an SDF. Instead we expect there will be direct UI support for
delineating these aspects of an SDF’s definition.

Although we regard the grid view as primary, we believe that users may actually benefit
from an explicit textual calculation view, complementing the data-centric grid view offered
by typical spreadsheets. We have some evidence that providing two views makes users
more productive (Sarkar et al., 2018). But that thesis is orthogonal to this paper; here we
simply assume that through some means (graphical, textual, whatever) the user has defined
an SDF, and we propose a simple, concrete, textual notation as a formal tool in which we
(not the user!) can write down that SDF and reason about it.
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4 Elastic SDFs

The main focus of the paper is the task of generalising an SDF to an appropriate elastic
SDF. We divide the process into three steps:

1. Calculation View. Construct a textual definition of the SDF in Calculation View
notation, as discussed in Section 3.5.

2. Generalisation. Generalise the SDF to an elastic SDF F . This step is our main
technical contribution, and is described in Sections 6 through 8.

3. Code generation. Transform the elastic SDF to executable form, which can be done
in a variety of ways (Section 9).

In this section we introduce generalisation informally by way of an example (Section 4.1).
We rely on this example as we introduce elastic SDFs: we describe the syntax and seman-
tics of elastic SDFs (Section 4.2), and say what it means for an SDF to be well-defined
(Section 4.3). We return to generalization in the following sections.

4.1 Generalisation by example

We begin with an example to illustrate the process. Suppose we start with the SHOP SDF
introduced in Section 3.4. Step 1 is to annotate it with tiles, as described in Section 3.4,
thus:

function SHOP( t1 F4:F6, t2 G2 ) returns H7t5 {
t3 G4:G6 = F4t1 * $G$2t2

t4 H4:H6 = F4t1 + G4t3

t5 H7 = SUM(H4:H6t4 ) }

Next, in Step 2 we generalise this definition, to become an elastic SDF, thus:

function SHOP( t1 F4:F{3+α}, t2 G2 ) returns H7t5 {
t3 G4:G{3+α} = F4t1 * $G$2t2

t4 H4:H{3+α} = F4t1 + G4t3

t5 H7 = SUM(H4:H{3+α}t4 ) }

We have introduced a length variable, α , which stands for the length of the input vector.
A length variable can take any non-negative integer value. The size of the input range is α

rows by 1 column, and the intermediate ranges rooted at G4 and H4 share this same size.
(If for some reason we needed the ranges to be nonempty, we would just set their bottom
rows to {4+α}.) The idea is, of course, that if we instantiate α to 3, we recover exactly the
SDF that we started with. Notice that the tile labels are unaffected by generalisation.

For Step 3, we discuss what this elastic SDF means (its semantics) in Section 4.2, and
how it might be executed in Section 9.

While the SHOP example illustrates a common spreadsheet layout practice in which all
ranges whose height is the same length variable cover the same row span in the original
SDF (rows 4 through 6), our system does not assume that this property holds. It would still
work, for example, if tile t3 were moved to G5:G7 (and references updated accordingly).
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4.2 Elastic SDFs: syntax and informal semantics

As we have seen, elasticity requires us to generalise spreadsheet notation by allowing cell
coordinates to be computed based on the function’s length variables. The full syntax is
given in Figure 2. We generalize column names N and row numbers m to include the
possibility of adding a single length variable (enclosed in curly braces).10

For example, in the SHOP example, in tile t5 H7 = SUM(H4:H{3+α}), the right-hand side
mentions a range reference H4:H{3+α} which has an elastic bottom row.

Analogous to our rule for inelastic SDFs, we require that every tile range have nonneg-
ative height and width for all values of length variables. So, for example, a tile range of
H4:H{1+α} is invalid because when α = 0, it becomes H4:H1, which has height −2.

An elastic SDF is the central concept of the paper, so it needs a direct execution seman-
tics. At first this looks straightforward: for example, to evaluate a call SHOP( e1, e2 ), using
the elastic SDF resulting from Step 2 in Section 4.1:

• evaluate e1 and e2 to values v1 and v2;
• instantiate the body of SHOP with α equal to the number of rows in v1;
• compute the value of the return range using ordinary spreadsheet semantics.

But there is a tiresome problem: if α > 3, then the ranges of tiles t4 and t5 overlap; for
example, both t4 and t5 define a value for H7.

Disambiguating these collisions is the reason that we introduced tile names ti, at both
definition and use sites. They allow us to speak unambiguously of “the H7 defined by tile
t4” and “the H7 defined by tile t5”. For example, during evaluation, when dereferencing
H7t5 (in the returns position), we choose the value computed in H7 by tile t5, ignoring any
value for H7 by tile t4, using the label attached to the reference H7t5 to disambiguate which
defining tile is intended. This semantics is easy to formalise, and we do so in the next
section, Section 5.

4.3 Well defined elastic SDFs

Not every syntactically-correct elastic SDF is well defined according to this semantics.
Two main things can go wrong.

• First, to be fully defined and unambiguous, the semantics requires that when eval-
uating a reference, there should be a unique tile among the target-tile set labelling
the reference that defines the referenced cell, not zero (undefined) and not more than
one (ambiguous). For the undefined case, consider this bogus SDF:

function BOGUS SHOP( t1 F4:F{3+α}, t2 G2 ) returns H7t5 {
t3 G4:G{3+α} = F4t1 * $G$2t2

t4 H4:H6 = F4t1 + G4t3 /* NB: Bogus! */
t5 H7 = SUM(H4:H{3+α}t4 ) }

10 We could allow adding a linear combination of length variables, but such combinations will never occur in the
principal regular generalisation of an SDF as defined later, so we disallow them to save a little bit of worry
about whether all the intervening definitions (e.g., determinability in Definition 1 below) make sense with
linear combinations.
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The trouble is that tile t4 does not resize with its inputs t1 and t3. Consequently, if
α < 3, the formula for t4 tries to read F6t1 , but t1 does not define F6. Similarly, if
α > 3, the same happens when the formula in t5 tries to dereference H7t4 .
In these cases, the uniqueness property fails because no target tile contains the ref-
erenced cell. But it can also happen that too many target tiles contain the cell. In our
SHOP example, if the returns clause had been mis-labelled H7t4,t5 , the reference to
H7 would be ambiguous because both t4 and t5 define H7 when α > 3.
In contrast, the reference in the tile shown below (from the end of Section 3.4) is
unambiguous, despite being labelled with two tiles:

t5 H7 = SUM(G4:H6t3,t4 )

When evaluating the reference G4:H6t3,t4 , for every cell in the range G4:H6, there
should be a unique tile among t3, t4 that defines the cell. For example, for G6, that
tile is t3. Similarly H5 is in that range, so it too should be defined by exactly one of
the tiles t3, t4 – in this case t4.

• Second, to have a well-defined semantics, an elastic SDF should not mention length
variables that are not fixed by its inputs. For example:

function NONDET( A1:A{α} ) returns B1 {
C1:C{β} = ...
B1 = SUM( C1:C{β} ) }

Here β is not determined by the size of any of the input parameters, so it is hard to
see how to execute the SDF.

These considerations motivate our definition of what it means for an elastic SDF to be
well-defined. A length assignment for an elastic SDF F is a function φ that maps each
length variable appearing in F to a nonnegative integer. Now we define:

Definition 1 (Well-defined elastic SDF). An elastic SDF F is well-defined if it has the
following properties:

1. It is unambiguous, meaning that under every length assignment for F :

a. No two tiles in the target-tile set of the same reference overlap11.
b. For every range reference ρ = (θ 1 : θ 2)

t1,...,tk in F 12 and every cell a in the
calling tile of ρ , Res(ρ, a) has non-negative height and width and is covered by
the tiles t1, . . . , tk. (It is not required that every target tile of ρ actually overlap
Res(ρ, a) for some a; indeed, in Section 8.2, we will see an example elastic SDF
in which some tiles in the target-tile set of a reference are “unused” for certain
length assignments.)

2. It is determinable: all its length variables are uniquely determined by the sizes of its
arguments. More formally, for any given list of argument sizes, there is at most one
length assignment for F under which the input tile sizes match the given argument
sizes. (There could be none if, for example, F requires that two parameters both

11 This condition may seem stronger than it needs to be. To unambiguously evaluate the reference, it is enough
if no two target tiles overlap at any of the cells actually accessed by the reference. However, the stronger
condition will be helpful for several of the code generation methods in Section 9.

12 This includes the returns reference, which by our convention has a dummy calling tile.
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have height α but the arguments have different heights. Such a call to F would
generate a runtime error.)

Having seen how we intend to use elastic SDFs, we should pause to clarify some defini-
tions. Sections 3.1–3.3 discussed conventional spreadsheets and SDFs that lack tile names
and target-tile labels, which we call unlabelled. Since we make limited use of them in the
paper, we do not formalise their syntax; it is essentially that of Figure 2 without the labels.
A labelled SDF or elastic SDF follows the syntax for F or F in Figure 2 and all the
semantic rules previously stated for unlabelled SDFs, except that tiles may overlap. The
definition of labelled and elastic SDFs does not place any condition on the target-tile labels;
while we will often want the target-tile labels to be such that the SDF is unambiguous, we
will want to study labelled and elastic SDFs that we have not proven to be unambiguous.
On the other hand, our generalisation process always starts with a labelled SDF generated
from a tame unlabelled SDF as per Section 3.4, which we call a tame labelled SDF. We will
make frequent use of the fact that a tame labelled SDF, unlike a labelled SDF in general,
has nonoverlapping tiles and target-tile labels that contain exactly the tiles read by each
reference (an even stronger condition than unambiguity, which allows target-tile labels to
include unused tiles). From here through Section 8, when we refer simply to an “SDF” or
a “tame SDF”, we mean a labelled one.

5 Formal semantics of SDFs and elastic SDFs

In this section, we describe a formal semantics for our core spreadsheet language that
includes SDFs and elastic SDFs. Next, in Section 6 and Section 7, we describe how to
generalize from an example SDF to an elastic SDF.

5.1 Semantics of inelastic formulas

We begin by defining the value of a formula F in the context of a sheet fragment S .
A value V is either a string or number c, or a 2D array: we write

{c1,1, . . . , c1,n; . . . ; cm,1, . . . , cm,n} for an [m× n] 2D array, with m≥ 0 rows and n≥ 0
columns (Figure 3). In common with most spreadsheet systems, our semantics supports
arrays that arise as intermediate values in formulas (such as arguments or results of function
calls), but whole arrays may not be stored in cells.13

We write γ for the context of evaluating a formula. The context includes the current sheet
fragment S , and bindings for any function parameters (Figure 3). We assume a partial
function lookup(t, a, γ) that returns the value or formula stored in tile t at cell address a in
context γ .

We give the full definition of contexts and lookup in Section 5.2, but first we give our
semantics of formulas. The value [[F ]]γ of an inelastic formula F given context γ is as
follows:

[[c]]γ = c

13 Still, our prototype implementation—the basis of our user study—does support arrays-in-cells.
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Value V ::= c | {c1,1, . . . , c1,n; . . . ; cm,1, . . . , cm,n}
Binding B ::= t r =V
Context γ ::= (S ,B1 . . .Bn)

Fig. 3: Additional data structures for formal semantics

[[ f (F1, . . . , Fn)]]γ = [[ f ]]([[F1]]γ, . . . , [[Fn]]γ)

[[(νNµm : ν
′Nµ

′m)t1,...,tn ]]γ = [[F ′]]γ if there is i∈ 1..n such that lookup(ti, Nm, γ) = F ′

and [[F ′]]γ is not an array

[[(θ1 : θ2)
t1,...,tn ]]γ = {c1,1, . . . , c1,n; . . . ; cm,1, . . . , cm,n}

where θ1 : θ2 has size [m× n] 6= [1× 1]
and each ci, j = [[(θi, j : θi, j)

t1,...,tn ]]γ

where each θi, j targets position (i, j) in θ1 : θ2

These recursive equations amount to a denotational semantics of formulas. The semantics
is undefined in circumstances where a spreadsheet would return an error value, or if there
is a cycle between a formula and its own value in the grid. We do not formally treat errors
or cycles in our semantics, but it would be a standard application of domain theory. The
four equations can be understood as follows:

• The first equation defines the semantics of a constant formula to be the constant
itself.

• The second equation defines the meaning of a call to a function f . If f is a func-
tion with arity n, we assume [[ f ]] is a function from n-tuples of values to values to
represent the semantics of f . We assume suitable definitions of [[ f ]] for each builtin
function. For example, for the division operator, the meaning [[/]] is a function that
given (c1, c2) returns c1/c2 if both values are numbers and c2 6= 0; otherwise it
returns a suitable error string.

• The third equation applies to a singleton range reference νNµm : ν ′Nµ ′m that tar-
gets the cell with address Nm. The condition that [[F ′]]γ is not an array is how we
enforce that only scalars can be stored in individual cells. Hence, an attempt to
access an array from a cell is undefined.

• The fourth equation applies to a non-singleton range and returns an array of con-
stants, each of which is computed using a recursive call to compute a singleton
range. Saying that θi, j targets position (i, j) in θ1 : θ2 means that the cell addressed
by θi, j is at position (i, j) in the range θ1 : θ2, where the top-left corner is position
(1, 1).

The following two subsections define [[ f ]] when f is an SDF or an elastic SDF.

5.2 Semantics of SDFs

To represent the actual parameters passed to an SDF, we introduce a notion of binding, B,
of the form t r =V . A binding t r =V means that the formal parameter r, labelled as tile
name t, is bound to the actual parameter V . We can now complete the definition of context:
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a context γ is a pair (S ,B1 . . .Bn), where S is an inelastic sheet fragment, n≥ 0, and
each Bi is a binding.

Consider a function name f defined by an inelastic (labelled) SDF F :

function f (t1 r1, . . ., tk rk) returns rt ′1,...,t
′
j {S }

Its meaning [[ f ]] = [[F ]] is a function from k-tuples of values to values given as follows:

[[F ]] = λ (V1, . . . ,Vk).[[r
t ′1,...,t

′
j ]]γ where γ = (S ,B1 . . .Bk) and each Bi = (ti ri =Vi)

(Unlike V above that was a syntactic nonterminal representing a value, here each Vi is a
parameter of the lambda that receives a value and passes it along to Bi.)

Finally, to complete the semantics we need to specify how lookup operates on contexts.
If γ = (S ,B1 . . .Bk), let lookup(t, a, γ) be the value or formula given by:

• If t r = F is one of the range assignments in S , and address a falls within the
range r, and as is the top-corner of r, then lookup(t, a, γ) = copy(as, a, F), where
copy(as, a, F) is the formula obtained by copying the formula F from source address
as to destination address a.

• If t r = c is one of the bindings in B1 . . .Bk, and range r = a : a, then
lookup(t, a, γ) = c.

• If t r = {c1,1, . . . , c1,n; . . . ; cm,1, . . . , cm,n} is one of the bindings in B1 . . .Bk, and
the size of r is [m× n] (that is, the size of the actual argument), and address a targets
position (i, j) in range r, then lookup(t, a, γ) = ci, j.

• Otherwise, lookup(t, a, γ) is undefined. This happens when a does not fall in the
range of t.

In the first bullet point, we rely on copy(as, ad , F), which returns the formula obtained
by copying formula F from source cell as and paste to a destination cell ad . This func-
tion implements the standard spreadsheet concept (Sestoft, 2014) of formula copy/paste,
as outlined in Section 3.1: relative coordinates are updated by the offset but absolute coor-
dinates are unchanged. Here are two examples based on formulas from the body of the
SHOP function from Section 3.4:

• copy(H4, H5, F4t1 + G4t3) = F5t1 + G5t3 . The row offset is one, so the two occur-
rences of the relative row coordinate 4 update to 5. The column offset is zero, so the
two relative column coordinates F and G remain the same.

• copy(G4, G5, F4t1 ∗ $G$2t1) = F5t1 ∗ $G$2t1 . The relative coordinates update as in
the previous example, but the absolute row and column coordinates in $G$2 are
unchanged in the copy of the formula at the new position.

Hence, if context γ holds the sheet in the body of the SHOP function from Section 3.4,
then we have:

lookup(t3, G5, γ) = F5t1 ∗ $G$2t2

lookup(t4, H5, γ) = F5t1 + G5t3

As explained in Section 4.2, we need the t parameter to uniquely dereference range
references in the semantics of elastic SDFs. Assuming F is unambiguous (in the sense
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of Definition 1 but without using a length assignment), every time the third equation in
Section 5.1 is invoked, there will be a unique i such that lookup(ti, Nm, γ) is defined.

5.3 Semantics of elastic SDFs

Consider a function name f defined by an elastic SDF F :

function f (t1 r1, . . ., tk rk) returns rt ′1,...,t
′
j {S }

Recall from Section 4.3 that a length assignment for F is a function φ that maps each
length variable appearing in F to a nonnegative integer. If P is part of the syntax of F ,
such as a range r, a sheet S , or F itself, we let φ(P) denote the piece of inelastic syntax
generated from P by replacing each occurrence of a length variable α with φ(α).

The meaning [[ f ]] = [[F ]] of the elastic SDF is the function:

[[F ]] = λ (V1, . . . ,Vk).[[φ(F )]](V1, . . . ,Vk)

where φ is the length assignment, if any,
such that size of φ(ri) equals size of Vi for each i

In the final constraint, we refer to the sizes of inelastic ranges φ(ri) and values Vi. Let the
size [m× n] of an inelastic range consist of the number m of rows and the number n of
columns. The size of an array with m rows and n columns is simply [m× n], and the size
of a constant is [1× 1]. Assuming F is well-defined, it is determinable, so there is at most
one φ satisfying the size constraint. If such a φ exists, then φ(F ) is an inelastic (labelled)
SDF, and we can apply the semantics from the previous section. If not, then f (V1, . . . ,Vk)

is undefined.

5.4 A detailed example

Consider our elastic SDF F from Section 1:

function AVG( t1 A1:A{α} ) returns B3t4 { S }

where the sheet fragment S is the following:

t2 B1 = SUM( A1:A{α}t1 );
t3 B2 = COUNT( A1:A{α}t1 );
t4 B3 = B1t2 /B2t3

Then its meaning [[AVG]] is the following:

λ (V1).[[φ(F )]](V1)

for some φ = (α 7→ l)
where size of φ(A1:A{α}) equals size of V1

Consider the following example, including an example call to AVG.

G1=5; G2=6; G3=7; G4=AVG(G1:G3)

Since the range G1:G3 evaluates to the array value {5; 6; 7}, evaluation of the formula
in G4 boils down to the following call:

[[AVG]]({5; 6; 7})
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In terms of the expression above for the meaning [[AVG]], we have V1 = {5; 6; 7} whose
size is [3× 1], and the equation φ(A1:A{α}) = [3× 1] determines that φ = (α 7→ 3), and
so we get:

[[AVG]]({5; 6; 7}) = [[(α 7→ 3)(F )]]({5; 6; 7})

The concrete SDF (α 7→ 3)(F ) is

function AVG( t1 A1:A3 ) returns B3t4 { S3 }

where the sheet fragment S3 is the following:

t2 B1 = SUM( A1:A3t1 );
t3 B2 = COUNT( A1:A3t1 );
t4 B3 = B1t2 /B2t3

The meaning [[(α 7→ 3)(F )]] is the following function from 1-tuples of values to values:

[[(α 7→ 3)(F )]] = λV1.[[B3t4 ]]γ where γ = (S3,B1) and B1 = (t1 A1 : A3 =V1)

Hence, we can conclude that evaluation of the formula in G4 produces the value 6 as
follows:

[[AVG]]({5; 6; 7}) = [[B3t4 ]]γ where γ = (S3,B1) and B1 = (t1 A1 : A3 = {5; 6; 7})
= [[B1t2/B2t3 ]] because lookup(t4, B3, γ) = B1t2/B2t3

= [[B1t2 ]]γ/[[B2t3 ]]γ

= [[SUM(A1:A3t1)]]γ/[[COUNT (A1:A3t1)]]γ

= 18/3

= 6

6 Principal and regular generalisations

As soon as we begin to speak of “generalising” an SDF, it is natural to ask whether there
may be many possible generalisations and, if so, how we decide which one to pick. This
question arises classically in type systems, where one typically proceeds as follows. First,
one says what it means for a term to have a type. Next, one defines a generalisation order
between types. Finally, one shows that every (typeable) term has a principal, or most-
general, type; and gives an algorithm to find it. We will proceed analogously here:

1. We have already specified what it means for an elastic SDF F to be well-defined
(that is, both unambiguous and determinable, see Definition 1).

2. We give a generalisation ordering between elastic SDFs, and say what it means for
F to be a generalisation of an SDF F (Section 6.1).

3. We give examples of SDFs that have no principal well-defined generalisation
(Sections 6.3–6.5). These examples motivate a new concept of a regular gener-
alisation (Section 6.6).

4. We prove that every SDF has a principal regular generalisation and give an
algorithm to find it.

5. We show that the principal regular generalisation is unambiguous, but in obscure
cases might not be determinable; Section 6.2 discusses what to do in this case.
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Length substitution φ ::= ε | φ , α 7→ l | φ , α 7→ β + l (l ∈Z≥0)

Fig. 4: Length substitutions

Notice that only step (4) discusses the generalisation algorithm; the others are entirely
free of algorithmic considerations.

6.1 The generalisation ordering

We start with Step (2). Recall that we have a SDF F and we seek its principal generali-
sation, an elastic SDF F (see Figure 2). An elastic SDF is just like an inelastic one, but
it possesses some length parameters α . So an SDF is just a special case of an elastic SDF
with no length parameters.

As usual with generalisation orderings, we need to define the relevant kind of substitu-
tion, which is a length substitution, shown in Figure 4. A length substitution maps each
length variable α to either a constant length l or an expression β + l, where l is a non-
negative integer and β is a length variable. (Contrast with a length assignment, which
maps each length variable to a constant.) As we did for length assignments in Section 5,
if P is a piece of elastic syntax such as as a range r or an SDF F , we let φ(P) denote the
result of substituting length variables according to φ in P; with a length substitution, φ(P)
is another piece of elastic syntax.

Definition 2 (More general than). An elastic SDF F 1 is more general than (or, equiv-
alently, a generalisation of) F 2 if there exists a length substitution φ such that F 2 =

φ(F 1).

For example, ND4 below (which is studied further in Section 6.2) is more general than
ND1, as witnessed by the length substitution {α 7→ α, β 7→ β , γ 7→ 3}.

function ND4(t1 A1:A{α}, t2 A5:A{4+β}) returns A13t4 {
t3 A9:A{8+γ} = 1
t4 A13 = SUM(A9:A{8+γ}t3 ) }

function ND1(t1 A1:A{α}, t2 A5:A{4+β}) returns A13t4 {
t3 A9:A11 = 1
t4 A13 = SUM(A9:A11t3 ) }

The following proposition is not used anywhere else in the paper but suggests that our
notion of “well-defined generalisation” is reasonable:

Proposition 1. If an elastic SDF F is a well-defined generalisation of an (inelastic) SDF
F , then F is semantically equivalent to F on arguments that are the same sizes as the
input tiles of F .

Proof Let r1, . . . , rn be the input ranges of F , and let r1, . . . , rn be those of F . Since
F is a generalisation of F , there is a length substitution φ such that φ(F ) =F , and in
particular, φ(ri) = ri. Since F is inelastic, φ must map every length variable in F to a
nonnegative integer. Now suppose F is called on arguments V1, . . . ,Vk, where Vi has the
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same size as ri. According to the semantics given in Section 5.3, we construct a length
substitution φ ′ such that for each i, the size of Vi equals the size of φ ′(ri); then we form the
inelastic SDF φ ′(F ) and call it on the arguments.

Since F is well-defined, it is determinable, so for each length variable α in F , α must
affect either the height or the width of some input range ri in F . We know φ ′(ri) is the
same size as Vi, which is the same size as ri (by earlier assumption), but ri = φ(ri). Since
α affects the size of ri, it must be that φ ′(α) = φ(α). Since this is true for every α in F ,
we have φ ′(F ) = φ(F ) =F , so the call to F is semantically equivalent to a call to F ,
as claimed. �

It would be lovely if every SDF had a most general (principal) well-defined generalisa-
tion. But it doesn’t: due to several problems that we describe in the following subsections,
there may be multiple incomparable ways to generalise an SDF to make a perfectly well-
defined elastic SDF. So, when asked to generalise an SDF, which of these incomparable
generalisations should the generalisation algorithm choose? We explain our approach in
Section 6.6.

As we explain the decisions we have made about how SDFs should be generalised,
please bear in mind that this work represents a first effort to generalise SDFs in accordance
with user intent in a range of realistic cases. There is a long tail of cases in which our
system does not give the result a user might want; one can argue about whether each is
realistic. While we mention some of them, we leave to future work a systematic study of
how our system might be changed to accommodate each of these cases and whether the
benefit outweighs the cost in complexity and impact on other cases. If a given elastic SDF
system does not produce the generalisation a user wants for a given SDF, the user may
be able to modify the SDF in some way to get the desired result, or they may need to
turn to another programming paradigm (such as VBA in the setting of Excel) to write a
size-polymorphic function; either way, they may need assistance from someone with more
programming experience.

6.2 Problem 1: under-constrained sizes

It is possible that the original SDF has a body tile whose size is not constrained to match
that of any input tile. In this case there may be multiple well-defined generalisations that set
the size of that tile in different ways. Here’s an example that is unrealistic but demonstrates
the general problem well:

function ND0(t1 A1:A3, t2 A5:A7) returns A13t4 {
t3 A9:A11 = 1
t4 A13 = SUM(A9:A11t3 ) } /* 3 */

This SDF has the following well-defined generalisations:

function ND1(t1 A1:A{α}, t2 A5:A{4+β}) returns A13t4 {
t3 A9:A11 = 1
t4 A13 = SUM(A9:A11t3 ) } /* Always 3 */
function ND2(t1 A1:A{α}, t2 A5:A{4+β}) returns A13t4 {
t3 A9:A{8+α} = 1
t4 A13 = SUM(A9:A{8+α}t3 ) } /* Equal to the length of the first input */
function ND3(t1 A1:A{α}, t2 A5:A{4+β}) returns A13t4 {
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t3 A9:A{8+β} = 1
t4 A13 = SUM(A9:A{8+β}t3 ) } /* Equal to the length of the second input */

None of these is more general than any of the others, yet all specialise to the original
function when α = β = 3. Which do we want? Even if we were to decide that ND2 or ND3
should be preferred to ND1 because they have a variable for the size of t3 where ND1 has a
constant (dubious when there is no evidence of user intent that t3 resize with t1 or t2), that
would still leave the ambiguity between ND2 and ND3.

Our solution is to drop the requirement that the generalisation be determinable, so
that we can get this generalisation, which is principal (but not executable, since γ is not
determined):

function ND4(t1 A1:A{α}, t2 A5:A{4+β}) returns A13t4 {
t3 A9:A{8+γ} = 1
t4 A13 = SUM(A9:A{8+γ}t3 ) } /* Value depends on γ! */

Now, in the rare cases where the principal generalisation is not determinable, we simply
set the non-determined length variables to their initial values (that is, the value used in the
original function written by the user) and issue a warning. That procedure will result in
ND1 above.

While this workaround is arguably ugly, it is at least easy to understand: if our system
finds no indication that a tile’s size should depend on the input sizes, then the tile does not
resize. Normally, we expect users to write SDFs so that the size of every tile is determined
by the input sizes. In some cases, one could use heuristics to guess the user’s intent and
determine the size of a tile rather than let it default to fixed size. For example, a user might
try to count the number of elements of the input like this:

function MYCOUNT0(t1 A1:A3) returns C1t3 {
t2 B1:B3 = 1
t3 C1 = SUM(B1:B3t2 ) }

Here t2 is positioned alongside t1, but there is no actual reference to t1 that would require the
tiles to have the same size, so the size of t2 is undetermined in the principal generalisation:

function MYCOUNT0(t1 A1:A{α}) returns C1t3 {
t2 B1:B{β} = 1
t3 C1 = SUM(B1:B{β}t2 ) }

Presumably the user wants this generalisation:

function MYCOUNT0(t1 A1:A{α}) returns C1t3 {
t2 B1:B{α} = 1
t3 C1 = SUM(B1:B{α}t2 ) }

To get this result, we could change the system to require that adjacent tiles that have the
same length in the original SDF have the same length variable in the elastic SDF. We do
not consider this design possibility further in this paper. A workaround that works in this
and many other examples is to force the tiles to have the same size by adding a dummy
relative reference, e.g., by writing t2 B1:B3 = 1 + 0*A1t1 in the original SDF.
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6.3 Problem 2: arbitrary tile locations

The next problem is that tiles may be positioned in different ways as a function of the
length variables, as long as the initial values of the variables give the initial positions. For
instance, in the SHOP example, we could gratuitously make the column of the output cell
depend on α:

function SHOP( t1 F4:F{3+α}, t2 G2 ) returns {E+α}7t5 {
t3 G4:G{3+α} = F4t1 * $G$2t2

t4 H4:H{3+α} = F4t1 + G4t3

t5 {E+α}7 = SUM(H4:H{3+α}t4 ) }

Neither the above nor the generalisation in Section 4.1 can be converted into the other by
a substitution for α .

Arbitrary re-location of tiles in the elastic SDF is of no interest; it is a bit like α-renaming
the binders of a lambda-term. The simplest way to avoid this possibility is to require that
the upper-left corner of each tile of the elastic SDF be constant; that is, mention no length
variables.14 Tile t5 above violates this because its top-left corner is at {E+α}7.

One can imagine useful elastic SDFs that violate this restriction, in which a variable
upper-left corner is not arbitrary but is used to position one tile below or right of an elastic
tile. For example:

function BLUR( t2 A2:A{1+α}) returns B1:B{1+α}t4 {
t1 A1 = 0 /* black pixel at top */
t3 A{2+α} = 0 /* black pixel at bottom */
t4 B1:B{1+α} = (A1t1,t2 + A2t2,t3 ) / 2 }

Here the author’s intent is, perhaps, to position cell A{2+α} immediately after the last cell
of the input range A2:A{1+α}. Unfortunately, accommodating this pattern of use while
retaining principality is much more complicated than simply lifting the restriction on
upper-left corners. We leave this problem to future work.

Note that these remarks apply to tile definitions. For references we allow both corners of
the range to be elastic. Consider, for example:

function SUM( t1 A1:A{1+α} ) returns B{1+α}t3 {
t2 B1 = A1t1

t3 B2:B{1+α} = A2t1 + B1t2,t3 }

Here the returned cell reference B{1+α}, a shorthand for the range reference
B{1+α}:B{1+α}, points to the bottom of tile t3 and we want it to move down as α grows.
This need to elasticise the top row of a reference really only applies when the reference is
to a single row (an analogous statement holds for columns), and then only when using an
enhanced version of the system to be described in Section 8 that supports references to the
bottom row or rightmost column of a tile, but it is harmless to always allow elasticity in
both corners of every reference.

14 After generalisation is complete, one possible execution scheme might re-introduce length variables in the
top-left corner to avoid overlaps – see Section 9.
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6.4 Problem 3: generalising size-1 axes

Suppose we were to generalise a tile of height 1 to variable height α . We may then have a
choice to interpret a reference to it as aggregating it or mapping over it, both of which are
among the most common kinds of computation that we want to support. For example, this
SDF:

function G(t1 A1) returns B1t2 {
t2 B1 = COUNT(A1t1 ) } /* Always returns 1 */

has the following possible incomparable generalisations:

function G(t1 A1:A{α}) returns B1t2 {
t2 B1 = COUNT(A1:A{α}t1 ) } /* Returns length of the input */

function G(t1 A1:A{α}) returns B1:B{α}t2 {
t2 B1:B{α} = COUNT(A1t1 ) } /* Returns vector of ones */

Our solution is to ban generalisation of a height of 1 to variable height, and similarly for
width 1. This seems entirely reasonable: if the user wants an SDF to be generalised to an
array of arbitrary size, she should write an example SDF that has an array of at least size
2, not size 1. With this rule, G has no further generalisation at all.

6.5 Problem 4: patterns of computation

The last problem is the trickiest: there may be multiple well-defined ways to elasticise the
same reference. For example, the following SDF:

function F(t1 A1:A2) returns B1:B2t2 { t2 B1:B2 = A1t1 }

has the following incomparable generalisations15:

function F1(t1 A1:A{α}) returns B1:B{α}t2 {
t2 B1:B{α} = A1t1 } /* Returns the entire input */

function F2(t1 A1:A{2+α}) returns B1:B2t2 {
t2 B1:B2 = A1t1 } /* Returns first two elements of input */

function F3(t1 A1:A{2+α}) returns B1:B2t2 {
t2 B1:B2 = A{1+α}t1 } /* Returns last two elements of input */

The latter two generalisations are clearly a bit ad-hoc, because they pick two elements
out of a variable-height input array, so the first is probably the generalisation that the user
intended — but how should we formalise that intuition? We do so by requiring each ref-
erence in the elastic SDF to be well-behaved. It will turn out that the reference in F1 is
well-behaved but those in F2 and F3 are not, resolving the ambiguity and making F1 the
principal generalisation.16

15 Even assuming that we adopt the choice in Section 6.4 and refrain from generalising the size-1 columns of the
ranges.

16 One could argue that this subsection 6.5 and the previous one 6.4 tackle aspects of the same problem (a
variety of possible generalisations) with the same general solution (limit the allowed patterns of computation).
However, as far as we know, the simplest way to achieve principality is to impose both the restriction on
generalising size-1 axes (Section 6.4) and the well-behavedness condition for references (Section 6.5), with
the generalisation algorithm having logic related to each condition. We do not believe there is a way to simplify
the system by merging the two conditions.
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The notion of well-behavedness captures the patterns of computation that our elastic
SDFs can support. The full definition of well-behavedness that we want to use is rather
complex since it seeks to support many patterns of computation. To make the paper easier
to understand, we first describe the entire system using a simpler definition and then, in
Section 8, we describe the necessary changes to use the full definition.

The simpler definition supports three kinds of references, all of which are exhibited in
our SHOP example from Section 4.1, all of whose references are well-behaved:

function SHOP( t1 F4:F{3+α}, t2 G2 ) returns H7t5 {
t3 G4:G{3+α} = F4t1 * $G$2t2

t4 H4:H{3+α} = F4t1 + G4t3

t5 H7 = SUM(H4:H{3+α}t4 ) }

The three kinds are:

• Inelastic. The reference $G$2t2 in the formula for t3 can be copied down the range
G4:G{3+α}, and always refers to the input cell G2. Similarly H7t5 in the returns
clause refers to a size-one range, and is not copied anywhere. We describe both
these references as Inelastic.

• Lockstep. The reference F4t1 in the formula for t3 refers to the top cell of t1; as it
is copied down the range G4:G{3+α} it will refer to successive cells of the input
range F4:F{3+α}; and those two ranges are the same size. The same applies to
the references F4t1 and G4t3 in the formula for t4. We describe these references as
Lockstep.

• Whole. The reference H4:H{3+α}t4 in the formula for t5 refers to the whole of tile t4,
and is not copied anywhere (since t5 is of unit height). We describe this reference as
Whole.

Returning to the F example, we find that the reference A1t1 in F1 is well-behaved because
it follows the Lockstep kind. In contrast, the reference A1t1 in F2 falls in none of these
categories, and hence is not well-behaved. It is closest to Lockstep, because it is copied
down the range B1:B2, but that is a fixed range of size 2, whereas the target tile t1 has
incompatible height 2 + α . Similarly, the reference in F3 is not well-behaved.

We give a formal definition of well-behavedness in Section 6.9. But our goal is:

• Well-behavedness should “make sense”; that is, it should embody patterns of com-
putation that users want. The more restrictive our definition of well-behavedness,
the more limited is the expressiveness of our SDFs.

• Well-behavedness should cut down the space of generalisations so that a principal
generalisation exists. This is a matter of proof.

Our initial definition of well-behavedness applies only to generalisations of basic SDFs,
defined as follows:

Definition 3 (Basic SDF). A tame SDF is basic if each reference has only one target tile.

We note that target-tile labels are unaffected by generalisation, so in a generalisation of a
basic SDF, each reference still has only one target tile.
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All the SDFs we have seen so far are basic. The extended definition of well-behavedness
in Section 8 handles arbitrary tame SDFs (among other enhancements), and that section
includes a realistic non-basic SDF as a motivating example.

6.6 Regularity

Due to the problems we have seen in the previous subsections, an SDF may not have a
principal well-defined generalisation. We recover principality like this:

• We solve the first problem (Section 6.2) as described in that section, by finding a
principal generalisation that may not be determinable, and making it determinable
afterwards.

• We solve the remaining problems (Sections 6.3, 6.4, and 6.5) by restricting the set
of generalisations among which we choose, to the regular ones (defined shortly),
which obey the restrictions discussed in those sections.

The following definitions make the above outline precise.

Definition 4 (Regular generalisation). An elastic SDF F is a regular generalisation of a
basic SDF F if it satisfies the following conditions:

1. F is a generalisation of F .
2. The upper-left corner of each tile of F is constant (Section 6.3).
3. Every tile of non-constant height in F has height at least 2 in F , and likewise for

the width (Section 6.4).
4. Each range reference ρ in F is well-behaved (as sketched in Section 6.5 and

defined formally in Section 6.9).

Definition 5 (Principal regular generalisation). Let F be a basic SDF. An elastic SDF F
∗

is the principal regular generalisation of F (up to renaming of length variables) if it is a
regular generalisation of F and is more general than every other regular generalisation
of F .

Notice that we have not yet proved that a principal regular generalisation of F exists. In
Section 7, we will give (and prove correctness of) an algorithm to find it, thereby proving
that it exists.

6.7 Omitted features: function argument consistency and height/width coupling

A further requirement one could consider placing on regular generalisations that may help
to honor user intent, though it does not affect the existence of a principal regular generalisa-
tion, is that the sizes of the arguments to a function call be consistent with what the function
accepts. Such a requirement may allow the sizes of additional body tiles to be determined
or may constrain the parameter sizes of the elastic SDF so that mismatched argument sizes
can be caught up front. For an example of determining the size of an additional body tile,
consider:
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function WEIGHTEDSUM(t1 A2:A11) returns C1t4 {
t2 B1 = 0
t3 B2:B11 = B1t2,t3 + 1
t4 C1 = SUMPRODUCT(A2:A11t1 , B2:B11t3 ) }

In the current system17, the principal generalisation would be:

function WEIGHTEDSUM(t1 A2:A{1+α}) returns C1t4 {
t2 B1 = 0
t3 B2:B{1+β} = B1t2,t3 + 1
t4 C1 = SUMPRODUCT(A2:A{1+α}t1 , B2:B{1+β}t3 ) }

where β is not determined. According to Section 6.2, we would set β back to 10 and t3
would not resize with the input. To solve the problem, since SUMPRODUCT requires two
arrays of equal size, we could constrain its arguments to have equal size, and then we
would get the desired generalisation:

function WEIGHTEDSUM(t1 A2:A{1+α}) returns C1t4 {
t2 B1 = 0
t3 B2:B{1+α} = B1t2,t3 + 1
t4 C1 = SUMPRODUCT(A2:A{1+α}t1 , B2:B{1+α}t3 ) }

Generating constraints for a function call is a bit complicated in general because the argu-
ments can be arbitrary expressions, which may include function calls whose result sizes
cannot be statically determined in terms of the argument sizes. We do not formalise the
rules to deal with this as it would distract from the main ideas of the paper. Furthermore,
users may be surprised by the inconsistent behavior if we generate constraints when the
argument sizes are statically known and silently skip generating constraints when the
sizes are not known; we are unsure how best to address this issue. In the meantime, the
workaround of forcing tiles to have the same size by adding a dummy relative reference
(end of Section 6.2) works in some cases, including WEIGHTEDSUM.

Without constraints for function argument sizes, we find that the definition of a regular
generalisation is completely independent in the vertical and horizontal directions, and no
length variable will appear in both a row number and a column number in the principal
regular generalisation. There is nothing that can be written in the original SDF to force
generalisations to set the height of one tile equal to the width of another tile. This is because
the only construct that couples the sizes of two tiles is a relative reference of the Lockstep
kind, and when a relative reference is copy/pasted, the target cell always moves in the same
direction as the caller cell, so the sizes of the caller and target tiles are coupled on the same
axis. Consequently, one cannot reimplement a function like TRANSPOSE because there is
no way to force the size of the output tile to generalise correctly.

The problem is only with determining tile sizes. If appropriate tile sizes are given, one
can look up data from a row corresponding to the calling column or vice versa using the
INDEX function. Here is an example in an inelastic SDF:

function MYTRANSPOSE(t1 A1:E7) returns A9:G13t2 {
t2 A9:G13 = INDEX($A$1:$E$7t1 , COLUMNS($A9:A9t2 ), ROWS(A$9:A9t2 ))
}

17 Actually, we need the system of Section 8 to handle the iterative computation in t3. The difference is not
important to the present discussion.
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One could consider adding built-in functions that capture these use cases of INDEX
and couple tile widths and heights appropriately on generalisation. We leave this minor
extension to future work.

6.8 Could the restrictions on tame SDFs be relaxed?

Now that the reader has a sense of how generalisation works, we can consider whether any
of the “tameness” restrictions on the original SDF from Section 3.3 could reasonably be
relaxed.

Static We have no way to know what constraints should be imposed on an elastic SDF
for a call to INDIRECT to function as the user intended, nor does it come with a target-
tile set. Still, we can attempt to execute it by reading the requested cell, failing if more
than one tile in the elastic SDF defines it or returning a blank if none does. If the user
establishes any needed tile size relationships using dummy relative references (see the
end of Section 6.2), it may be possible to use INDIRECT reliably. One could consider
introducing a variant of INDIRECT that takes a target-tile set. Similar remarks apply to
OFFSET(ρ , . . .), except in that case we have the option of using the target-tile set of ρ ,
which is guaranteed to have no overlap. We have not investigated whether users would
want the target-tile set of ρ to be used, although we note that the behavior in which it is
used can alternatively be achieved using INDEX in some cases.
There is a case to be made for supporting INDIRECT and OFFSET in elastic SDFs, based
on their popularity with users. These functions are among the 15 most frequently used
in the Enron and EUSES corpora, according to an analysis by Jansen (2015). However,
there is also a case against including them: the behaviour of these functions is hard to
reason about even in ordinary circumstances, and they would be extraordinarily hard
to debug if they were acting from within an SDF call, especially as there are multiple
possible schemes for implementing these functions and how they elasticise.
Closed If we allow non-closed references in the original SDF, we will have to allow
them in elastic SDFs too. Our current definition of regularity serves the dual purpose
of limiting patterns of computation to guarantee a principal regular generalisation and
ensuring that closed references in the original SDF remain closed in the elastic SDF.
One could conceivably develop a definition for non-closed SDFs that does the former
without the latter, but we have no familiarity with the use cases (if any) for non-closed
SDFs to suggest whether a useful definition of regularity could be developed. We leave
this question to future work, if desired.
No array tiles Array tiles can potentially be handled by describing their sizes with
length variables that are determined during SDF execution. Thus, the execution seman-
tics for an elastic SDF can no longer determine the length variables from the argument
sizes and simply specialise the elastic SDF to an inelastic one, but must work directly
on the elastic SDF, interleaving formula evaluation with the determination of length
variables from array tiles. Tricky problems arise when other parts of the SDF force the
heights or widths of several array tiles to be the same length variable δ . When we need
the value of δ , which of these array tiles t do we try to evaluate? If we find that t cannot
be evaluated without already knowing δ , do we try to determine δ from another array
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tile? What if we find out later that different array tiles determine contradictory values
of δ? We believe there are likely to be adequate solutions to these design problems, but
we leave the details to future work. A further issue is whether we attempt to statically
analyse array tile formulas to generate constraints on length variables; the same remarks
apply as for consistency of function argument sizes in Section 6.7.
Non-degenerate We see no value in relaxing this restriction.

6.9 Complete definition of well-behaved reference

We now give the complete definition of a well-behaved reference that was sketched in
Section 6.5 and will be used in the rest of the paper until Section 8. Aside from formalising
the conditions for each kind of reference (including some variants that are harmless and
useful to support even though they do not appear in the SHOP example), a major new issue
we need to address is elasticity in the horizontal direction as well as the vertical direction.
Indeed, we want to treat the two “axes” of the spreadsheet symmetrically. To this end, we
number the columns starting from 1 like the rows, and we refer to either a row number or
a column number as an axis position. Consistent with the previous syntax, an elastic axis
position is an axis position, optionally with a single length variable added.

Although a range is traditionally given by a pair of corners, to allow ranges to adjust
independently in the horizontal and vertical directions, it’s more useful to think of a range
as the intersection of a row span and a column span. Each span has two endpoints that are
axis positions (elastic or not, as the context requires). For example, the range F4:G6 is the
intersection of the row span 4:6 and the column span 6:7.

Recall that a range reference differs from a range in that each row and column has an
absolute/relative marker. Thus, we think of a range reference as the intersection of a row
span reference and a column span reference, where each endpoint of a span reference is
an axis position reference that consists of an axis position with an absolute/relative marker
µ . We review the syntax for the new concepts below. (For each concept, the non-elastic
version simply requires that no length variables be used.)

Axis position m∈Z≥0

Elastic axis position m ::= m | {m + α}
Elastic axis position reference χ ::= µm
Elastic span s ::= m1 : m2

Elastic span reference σ ::= χ1 : χ2

By the coordinate of an elastic axis position reference χ = µm, we mean the underlying
elastic axis position m without regard to whether the reference is absolute or relative. When
we say an elastic row reference χ points to a given location in a tile, we mean that the
coordinate of χ equals the row number in the tile as an expression in terms of length
variables and not just for the values of length variables that reproduce the original SDF.
However, this condition applies only to χ as written in the formula for the upper-left cell of
the calling tile; it is understood that copy/paste may change the reference used to evaluate
the remaining cells of the calling tile, unless the context rules this out.

Finally, we are ready to define a well-behaved reference:
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Definition 6 (Well-behaved reference). Let F be a generalisation of a basic SDF F

(so every range reference in F has a single target tile). A range reference ρ in F is
well-behaved if it satisfies the following conditions:

1. Let tc be the calling tile and tt be the target tile of ρ . Let σ = µ1m1 : µ2m2 be the
row span reference of ρ . Then σ satisfies the conditions of one of the following three
kinds:

– Inelastic: The height of tt is constant, m1 and m2 are both constant, and either
the height of tc is constant or µ1 and µ2 are both absolute. Thus, σ and any
copy/pasted variants will always point to the same row(s) of tt as they did in F .

– Lockstep: The heights of tc and tt are the same non-constant expression, m1 =

m2, µ1 = µ2 is relative, and m1 points to the top row of tt . Thus, when σ is
copy/pasted through tc, each row of tc points to the corresponding row of tt .

– Whole: The height of tt is non-constant, m1 points to the top row of tt , m2 points
to the bottom row of tt , and either the height of tc is 1 or both µ1 and µ2 are
absolute. Thus, σ always refers to the whole row span of tt .

2. The analogous condition for the column span reference of ρ .

6.10 Unambiguity of a regular generalisation

At the beginning of Section 6, we claimed that the principal regular generalisation of an
SDF F is unambiguous; in fact, this is true for any regular generalisation. We are finally
ready to prove that fact.

Theorem 1. Every regular generalisation F of a basic SDF F is unambiguous.

Proof We must show two conditions for each range reference ρ in F , which is well-
behaved by our assumption that F is regular. Since F is basic, ρ has only one target
tile tt , so there is no possibility of overlap among target tiles of ρ . (Things will get more
interesting when we modify this proof for non-basic SDFs in Section 8.) It remains to show
that for every length assignment and at every cell in the calling tile tc, ρ resolves to a range
r of non-negative height and width that is covered by tt . We show that r has non-negative
height and its row span is contained in the row span of tt ; the argument for the column axis
is analogous. Let σ = χ1 : χ2 be the row span reference of ρ .

• If σ is of the Inelastic kind, then tt is fixed at its height in F and χ1 and χ2 contain
no length variables. We also know that either χ1 and χ2 are both absolute (in which
case σ always resolves to the same row span it did in F ) or tc is fixed at its height in
F (in which case, for each caller row, σ resolves to the same row span as it did for
the same caller row in F ). Either way, since F is closed, it follows that for every
caller row, σ resolves to a row span of non-negative height that is contained in the
row span of tt .

• If σ is of the Lockstep kind, then for every length assignment, tt and tc have the
same height, and σ resolved at the ith row of tc points to the ith row of tt , which is
indeed a row span of non-negative height that is contained in the row span of tt .
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Delta variable α̂, β̂

Shrinkage value l ∈Z≥0

Constraint Q ::= α̂ = β̂ | α̂ = 0 | α̂ ≥−l

Fig. 5: Delta variables and constraints

• If σ is of the Whole kind, then for every length assignment, σ resolves to the whole
row span of tt , which has non-negative height and is contained in itself.

This completes the proof. �

7 Elasticity inference

Next, we turn our attention to the task of finding the principal regular generalisation of an
SDF F . Our approach is quite conventional: introduce variables, generate constraints on
those variables, and find their principal solution.

The variables we use are delta variables, denoted α̂ , each of which represents the dif-
ference between an axis position (part of a tile range or range reference) in the elastic SDF
and the original SDF. Setting all delta variables to 0 recovers the original SDF. Unlike
length variables, delta variables can take negative values to allow tiles to shrink compared
to the original SDF, though the amount of shrinkage will be limited by the need to keep
tile sizes nonnegative and references within tile bounds.

The forms of constraints that we use are shown in Figure 5: namely, that two parts of the
SDF move together, that one part not move at all, or that one part not shrink more than a
certain amount. Note that no constraint of these forms can prevent us from recovering F

by setting all delta variables to 0.

7.1 Overview of the inference algorithm

The elasticity inference algorithm is as follows:

1. Elasticise. Generate a “master” elastic version F 0 of F that possesses every degree
of freedom that might conceivably be found in a regular generalisation of F .18

Specifically:

– Tile definitions. Add a fresh delta variable α̂ to the bottom row and right column
of each tile definition. So a tile definition (e.g. the LHS of a range assignment)
t G4:H6 becomes t G4:{H+α̂1}{6+α̂2}. The same applies to the tile definitions
in the arguments of the SDF. Note that we elasticise only the bottom-right cor-
ner of each tile (on the LHS), not the upper-left corner, to respect item 2 of
Definition 4.19

18 Strictly speaking, F 0 is not an elastic SDF because it contains delta variables that may take negative values.
Its syntax is that of F in Figure 2 with delta variables in place of length variables.

19 The dummy calling tile of the returns reference gets variables added in the same way, although they will just
be constrained to 0 in step 2a.
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– References. Add a fresh delta variable to each component of each cor-
ner of each reference in a formula. So a reference C3:D7 becomes
{C+α̂1}{3+α̂2}:{D+α̂3}{7+α̂4}. The same applies to the reference in the returns
clause of the SDF.

Note that we elasticise the bottom-right corner of a tile definition, but both corners
of a reference, for reasons discussed in Section 6.3.

2. Generate constraints. Generate a set of constraints on the delta variables, in the
syntax given in Figure 5, as follows:

a. For each tile, if the height was 1 in F , then constrain the bottom-row delta
variable equal to 020; otherwise constrain the bottom-row delta variable so as to
ensure that the height of the tile is non-negative. Do likewise with the width.

b. Generate constraints for each range reference ρ in F 0, as described in
Section 7.3.

3. Solve constraints. Find the principal solution of the constraints, a delta substitution
Θ∗ that maps every delta variable in F 0 to either zero or α − l where α is a length
variable and l ∈Z≥0 (see Figure 6). The constraint solving process is described in
Section 7.2.

4. Extract the principal solution. Apply Θ∗ to F 0 to produce the principal regular
generalisation F

∗
of F .

We illustrate the algorithm using the SHOP SDF introduced in Section 3.4. We start from
this SDF:

function SHOP( t1 F4:F6, t2 G2:G2) returns H7:H7t5 {
t3 G4:G6 = F4:F4t1 * $G$2:$G$2t2

t4 H4:H6 = F4:F4t1 + G4:G4t3

t5 H7:H7 = SUM(H4:H6t4 ) }

Then we take the following steps:

1. Here is the master elastic version F 0 (to reduce clutter, we have omitted the delta
variables for the columns since nothing interesting happens there):

function SHOP( t1 F4:F{6+α̂1}, t2 G2:G{2+α̂2})
returns H{7+α̂3}:H{7+α̂4}t5 {

t3 G4:G{6+α̂5} = F{4+α̂6}:F{4+α̂7}t1 * $G${2+α̂8}:$G${2+α̂9}t2

t4 H4:H{6+α̂10} = F{4+α̂11}:F{4+α̂12}t1 + G{4+α̂13}:G{4+α̂14}t3

t5 H7:H{7+α̂15} = SUM(H{4+α̂16}:H{6+α̂17}t4 ) }

2. Generate constraints. Here we show F 0 again, with each constraint attached to the
part of F 0 it was generated from. Constraints generated for range references are
marked with the step of the procedure in Section 7.3 that generated them. Unmarked
constraints are from step 2a of the main algorithm at the beginning of this section.

function SHOP( t1 F4:F{6+α̂1}[α̂1≥−3], t2 G2:G{2+α̂2}[α̂2=0])

returns H{7+α̂3}:H{7+α̂4}t5 [(c) α̂15=α̂3=α̂4=0] {
t3 G4:G{6+α̂5}[α̂5≥−3]

20 One might ask, why did we add this delta variable only to immediately constrain it to zero? Ensuring that every
tile has a bottom-row delta variable makes the constraint generation for references slightly easier to state, e.g.,
in step 1 in Section 7.3.
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Intermediate subst θ ::= ε | θ , α̂ 7→ β̂ | θ , α̂ 7→ 0
Delta substitution Θ ::= ε | Θ, α̂ 7→ 0 | Θ, α̂ 7→ α − l

Fig. 6: Substitutions

= F{4+α̂6}:F{4+α̂7}t1 [(a) α̂1=α̂5,α̂6=α̂7=0]

* $G${2+α̂8}:$G${2+α̂9}t2 [(c) α̂2=α̂8=α̂9=0]

t4 H4:H{6+α̂10}[α̂10≥−3]

= F{4+α̂11}:F{4+α̂12}t1 [(a) α̂1=α̂10,α̂11=α̂12=0]

+ G{4+α̂13}:G{4+α̂14}t3 [(a) α̂5=α̂10,α̂13=α̂14=0]

t5 H7:H{7+α̂15}[α̂15=0]

= SUM(H{4+α̂16}:H{6+α̂17}t4 [(b) α̂16=0,α̂17=α̂10]) }

At the definition of t3, we see the constraint α̂5 ≥−3, which keeps the height of
the tile from becoming negative. On the other hand, the definition of t5 has the con-
straint α̂15 = 0 because t5 has height 1 in the original SDF, so it is not allowed to
resize in the elastic SDF. We have not yet given the constraint generation algorithm
for range references, but we can still understand the purpose of the constraints intu-
itively. For the reference F{4+α̂6}:F{4+α̂7}t1 appearing in t3, the constraint α̂1 = α̂5

ensures that t3 resizes along with t1 according to apparent user intent. The con-
straint α̂6 = α̂7 = 0 ensures that the reference continues to point to t1, subject only
to copy/paste, and does not move due to the addition of extraneous variables. For
the reference H{4+α̂16}:H{6+α̂17}t4 in t5, which originally covered the entirety of t4,
the constraint α̂16 = 0 ensures that the top of the reference continues to point to the
top of t4, while α̂17 = α̂10 ensures that the bottom of the reference moves with the
bottom of t4.

3. Solving the constraints yields the delta substitution that maps α̂1, α̂5, α̂10, and α̂17

to α − 3 and all other delta variables to zero.
4. The result of applying this substitution to F 0 is the elastic SDF shown in

Section 4.1 (Step 2).

7.2 Constraint solving

The business of the constraint solver is to find the principal (i.e. most general, up to renam-
ing) delta substitution that satisfies the constraints, eliminating delta variables α̂ in favour
of non-negative length variables α . A delta substitution Θ satisfies a constraint if applying
Θ to both sides of the constraint makes the constraint true for all non-negative values of
length variables. For example α̂ 7→ α + 3 satisfies α̂ ≥ 3 because applying the substitution
to both sides gives α + 3≥ 3, which is true for all α ≥ 0.

A delta substitution Θ1 is more general than Θ2 iff there is a length substitution φ such
that Θ2 = φ ◦Θ1. It is easy to compute the most general solution of a set of constraints:

1. Eliminate all the equality constraints. Gather all the equality constraints α̂ = β̂ and
α̂ = 0 into an intermediate substitution θ (Figure 6). That leaves only lower-bound
constraints.
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2. Simplify lower bounds. Apply θ to the lower bound constraints and combine all the
constraints on each individual variable by taking the maximum of its lower bounds.
Now we have a single constraint α̂ ≥−l for each delta variable α̂ .

3. Replace delta variables with length variables. For each constraint α̂ ≥−l, invent a
fresh length variable α and compose θ with α̂ 7→ α − l.

We will show later that every delta variable is transitively constrained equal to zero or to
a delta variable with a lower bound, and hence the third step eliminates all delta variables
in favour of length variables. Hence the result is a delta substitution Θ∗, with only length
variables in its range (Figure 6).

Proposition 2. Let Θ∗ be the delta substitution produced by the constraint solver. Then it
is principal in the sense that for every delta substitution Θ′ satisfying the constraints, there
exists a length substitution φ such that Θ′ = φ ◦Θ∗.

Proof The only way Θ′ can satisfy an equality constraint is if both sides of the constraint
map to the same expression under Θ′. Every delta variable α̂ for which Θ∗(α̂) = 0 was
transitively constrained equal to 0, so Θ′(α̂) must be 0 as well. Thus we will have Θ′(α̂) =

(φ ◦Θ∗)(α̂) regardless of φ .
The remaining delta variables fall into groups, where the members of each group were

transitively constrained equal. For each group, the constraint solver picks a representative
delta variable α̂ , finds the maximum lower bound −l that applied to any variable in the
group (call this variable β̂ ), and maps all members of the group to α − l where α is a fresh
length variable. If Θ′(α̂) = 0, then we simply choose φ(α) = l. If Θ′(α̂) is of the form
γ −m, then we must have m≤ l. (Otherwise, we would have Θ′(β̂ ) = γ −m because of
equality constraints, and then setting γ = 0 would violate the lower bound constraint β̂ ≥
−l.) In this case, we choose φ(α) = γ + l −m. Either way, we have ensured that Θ′(α̂) =

(φ ◦Θ∗)(α̂) for all α̂ in the group. This completes the proof that Θ′ = φ ◦Θ∗, as desired.
�

7.3 Constraint generation for references

As discussed in Step 2 of Section 7.1, for each reference in F 0 we will generate some
constraints. These constraints ensure that the corresponding reference in the generalisation
F is well-behaved, in the sense of Section 6.9. If we generate too few constraints, F

∗

may contain ill-behaved references, and hence fail to be a regular generalisation of F . But
we must be careful: if we generate too many constraints, we may rule out some regular
generalisations of F , so that F

∗
would fail to be the principal regular generalisation.

The constraints we generate must therefore express well-behavedness, using the lock-
step/whole/inelastic reference kinds described in Section 6.5 and formalised in Section 6.9.
For each range reference ρ in F 0, corresponding to a range reference ρ in F , we generate
constraints as follows:

1. Let tt and tc be the target tile and calling tile of ρ , let σ = µ1{m1 + α̂1} : µ2{m2 +

α̂2} be its row span reference, and let α̂t and α̂c be the bottom-row delta variables
of tt and tc. Try the following cases in order:
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a. (Lockstep) If m1 = m2, µ1 = µ2 is relative, and tt and tc have the same height
in F (at least 2), then we anticipate σ is Lockstep, but it may turn out to be
Inelastic. Constrain α̂t = α̂c and α̂1 = α̂2 = 0. (In this case, m1 must point to the
top row of tt in F in order for ρ to stay within its single target tile tt when
copy/pasted through a calling tile of the same height.)

b. (Whole) Otherwise, if all of the following conditions hold:

* The height of tt in F is at least 2.
* µ1 and µ2 are both absolute or the height of tc in F is 1.
* m1 is the top row of tt in F .
* m2 is the bottom row of tt in F .
Then we anticipate σ is Whole, but it may turn out to be Inelastic. Constrain
α̂1 = 0 and α̂2 = α̂t .

c. (Inelastic) Otherwise, σ is Inelastic. Constrain α̂t = α̂1 = α̂2 = 0. In addition, if
either µ1 or µ2 is relative, then constrain α̂c = 0.

2. Follow the analogue of step (1) for the column axis.

An example of the output of this procedure was given in Section 7.1 (step 2).

7.4 Correctness of the inference algorithm

In this section we prove that our elasticity inference algorithm indeed finds the princi-
pal regular generalisation of a SDF F ; in doing so, we prove that a principal regular
generalisation exists at all.

First we show that every delta variable is transitively constrained equal to zero or to
a delta variable with a lower bound, as required by the constraint solver (Section 7.2).
Indeed, every tile bottom-row and right-column delta variable is directly constrained to
zero or given a lower bound in step 2a of the main algorithm. Each of the three cases of
the reference constraint generation algorithm (Section 7.3) constrains the delta variables
α̂1 and α̂2 of a row span reference equal to either zero or a tile delta variable (which, as
we have just argued, meets the requirement of the constraint solver), and the analogous
procedure applies to column span references. Thus the requirement is satisfied.

Next we deal with the most complex part of the proof: proving that the reference con-
straints properly characterise the well-behavedness of references. I.e., for a range reference
ρ in F 0 and a delta substitution Θ, Θ(ρ) should be well-behaved if and only if Θ satis-
fies the constraints generated for ρ . However, we will find that this equivalence holds
only if Θ(F 0) already satisfies all the conditions to be a regular generalisation other than
reference well-behavedness; this is OK because we will be able to establish those other
conditions first. Thus we define:

Definition 7. An elastic SDF F is a semi-regular generalisation of F if it satisfies con-
ditions (1)–(3) of Definition 4, i.e., all conditions for a regular generalisation except
well-behavedness of references.

We can now prove the main lemma about well-behaved references:
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Lemma 1. Let Θ be a delta substitution such that Θ(F 0) is an elastic SDF21 F that is
a semi-regular generalisation of F . Let ρ0 be a reference in F 0, and let ρ = Θ(ρ0) be
the corresponding reference in Θ(F 0). Then Θ satisfies the constraints generated for ρ0
if and only if ρ is well-behaved.

Proof Both well-behavedness and constraint generation are independent for rows and
columns, so it suffices to consider the row span references σ0 of ρ0 and σ of ρ and prove
that Θ satisfies the constraints generated for σ0 if and only if σ is well-behaved.

Let σ = µ1m1 : µ2m2 be the row span reference of the original reference in F . Let
tt , tc, α̂t , α̂c, α̂1, and α̂2 be defined as in the constraint generator. By construction of
F 0, we have σ0 = µ1{m1 + α̂1} : µ2{m2 + α̂2}. Then σ = Θ(σ0) = µ1{m1 + Θ(α̂1)} :
µ2{m2 + Θ(α̂2)}. For convenience, let m1 = m1 + Θ(α̂1) and m2 = m2 + Θ(α̂2) so that
σ = µ1m1 : µ2m2.

To reduce duplicate reasoning, we first prove a few sub-lemmas.

Sub-lemma 1. If σ is well-behaved of the Inelastic kind, then the constraints are satisfied
no matter which case the constraint generator uses for σ0.

Proof If σ is Inelastic, then we know that α̂t = α̂1 = α̂2 = 0, and furthermore α̂c = 0 if µ1

or µ2 is relative. It is clear that these statements imply the satisfaction of the constraints for
each case of the constraint generator. (Notice that the Lockstep case can only be reached if
µ1 and µ2 are relative, which ensures we have α̂c = 0 in that case.) �

Sub-lemma 2. If σ is well-behaved of the Lockstep kind, then the constraint generator
will use the Lockstep case for σ0.

Proof If σ is Lockstep, then tc and tt have the same non-constant height in F . Since F

is a semi-regular generalisation of F , their common height in F must be at least 2. We
also know m1 = m2, so m1 = m2. Finally, we know µ1 and µ2 are relative. Thus, all the
conditions are met for the constraint generator to use the Lockstep case. �

Sub-lemma 3. If σ is well-behaved of the Whole kind, then the constraint generator will
use the Whole case.

Proof If σ is Whole, then tt has variable height in F . Again, since F is a semi-regular
generalisation of F , the height of tt in F must be at least 2. Since m1 points to the top row
of tt for all values of length variables, if we instantiate the length variables to recover F ,
we find that m1 is the top row of tt in F ; likewise, m2 is the bottom row of tt in F . Finally,
we know that the height of tc is 1 in F (hence also in F ) or both µ1 and µ2 are absolute.
Thus, all the conditions are met for the constraint generator to use the Whole case. We just
have to show it does not use the Lockstep case first. That is clear, because the Lockstep
case would require tc to have height at least 2 in F and µ1 and µ2 to both be relative, which
contradicts what we know. �

21 Θ(F 0) might not be an elastic SDF as we have defined it if it lacks the property that all tiles have nonnegative
height and width for all values of length variables.
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Now we break the proof into cases based on which case of the constraint generator is
reached, and we prove the bidirectional implication between constraint satisfaction and
well-behavedness in each case.

• Lockstep constraint generation: We know that tc and tt have the same height in F

(which is at least 2), m1 = m2, µ1 = µ2 is relative, and m1 points to the top row of tt .
The constraints are α̂t = α̂c and α̂1 = α̂2 = 0.

– If the constraints are satisfied and tt has variable height, then the heights of tc
and tt in F

′
are the same non-constant expression (since the same delta is added

to the same starting height), m1 = m2 = m1 = m2, and hence m1 points to the top
row of tt . Thus σ indeed satisfies the conditions of the Lockstep kind.

– If the constraints are satisfied and tt has constant height, then our constraint
α̂1 = α̂2 = 0 ensures that m1 and m2 are constant. Also, our constraint α̂t = α̂c

ensures that tc has constant height (in fact, the same as tt ). Thus σ satisfies the
requirements of the Inelastic kind.

– If σ is well-behaved, it cannot be Whole by Sub-lemma 3. If it is Inelastic, the
constraints are satisfied by Sub-lemma 1. So suppose σ is Lockstep. Then the
heights of tt and tc are the same non-constant expression; after we subtract the
equal heights of tt and tc in F , α̂t = α̂c must be satisfied. Furthermore, m1 = m2

points to the top row of tt , as does m1, so m1 = m1. Thus α̂1 = α̂2 = 0 is satisfied.
• Whole constraint generation: We know that m1 is the top row of tt in F and m2 is

the bottom row of tt in F . We also know that µ1 and µ2 are both absolute or the
height of tc in F is 1; in the latter case, the height of tc is still 1 in F because F is
a semi-regular generalisation of F . The constraints are α̂1 = 0 and α̂2 = α̂t .

– If the constraints are satisfied and tt has variable height, then our constraints
α̂1 = 0 and α̂2 = α̂t ensure that m1 and m2 point to the top and bottom of tt in F .
With the condition on µ1, µ2, and tc, σ satisfies the requirements of the Whole
kind.

– If the constraints are satisfied and tt has constant height, then Θ(α̂t) must be 0,
so our constraints α̂1 = 0 and α̂2 = α̂t ensure that m1 and m2 are constant. Also,
we know that µ1 and µ2 are both absolute or the height of tc is constant (in fact,
1), by the same logic as in the previous case. Thus σ satisfies the requirements of
the Inelastic kind.

– If σ is well-behaved, it cannot be Lockstep by Sub-lemma 2. If it is Inelastic, the
constraints are satisfied by Sub-lemma 1. So suppose σ is Whole. Then m1 points
to the top row of tt and m2 points to the bottom row of tt in F . It follows that
α̂1 = 0 and α̂2 = α̂t are satisfied.

• Inelastic constraint generation: The constraints are α̂t = α̂1 = α̂2 = 0. If µ1 or µ2 is
relative, there is a further constraint α̂c = 0.

– If the constraints are satisfied, then tt has constant height and m1 and m2 are
constant. Furthermore, either µ1 and µ2 are both absolute or our constraint α̂c =

0 ensures that tc has constant height. Thus, σ satisfies the requirements of the
Inelastic kind.
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– If σ is well-behaved, it cannot be of the Lockstep or Whole kind by Sub-lemmas
2 and 3. So it must be Inelastic, and it satisfies the constraints by Sub-lemma 1.

�

Finally, we proceed to the key theorem:

Theorem 2. Every basic SDF F has a principal regular generalisation F
∗
, and the

algorithm in Section 7.1 finds it.

Proof Let F
∗
= Θ∗(F 0) be the elastic SDF found by the algorithm. (There is a nit: to be

an elastic SDF as we have defined it, F
∗

must have nonnegative tile heights and widths, but
this is guaranteed by the tile size constraints generated in step 2a of the main algorithm.)
We need to show that (A) F

∗
is a regular generalisation of F and (B) it is more general

than every other regular generalisation of F .
(A): F

∗
satisfies condition 2 for regularity because we constructed F 0 with constant tile

upper-left corners. It satisfies condition 3 because of the tile size constraints generated in
step 2a of the main algorithm. Next we claim F

∗
is a generalisation of F (condition 1 for

regularity). Consider the structure of Θ∗ as produced by the constraint solver: some delta
variables map to zero and others map to expressions of the form α − l. The same length
variable α may appear several times, but always in combination with the same l. Thus, we
can construct a length substitution φ that maps each length variable α to the corresponding
l. Then φ ◦Θ∗ maps all delta variables to zero, so (φ ◦Θ∗)(F 0) =F . Thus φ(F

∗
) =F ,

which witnesses that F
∗

is a generalisation of F .
At this point, we have proved that F

∗
satisfies conditions 1–3 to be a regular generali-

sation of F , i.e., it is a semi-regular generalisation of F . Thus, we can apply Lemma 1:
since Θ∗ satisfies the constraints generated for every reference in F 0, every reference in
F
∗

is well-behaved. Therefore, F
∗

is a regular generalisation of F .
(B): Let F be a regular generalisation of F . First we claim there is a delta substitution

Θ such that F = Θ(F 0). Since F is a generalisation of F , there is a length substitution
φ such that F = φ(F ). Since length substitutions only affect length variables appearing
in elastic axis positions, the only places F can differ from F are elastic axis positions
in tile ranges and range references. By regularity condition 2, the upper-left corners of
tiles in F must be constant. In every other place, F has an elastic axis position m of the
form m or m + α , while F 0 has an expression m0 + α̂i for a fresh delta variable α̂i, where
m0 was the position in F . If m = m, then we must have m = m0, otherwise F could not
be specialised to F ; in this case, we add α̂i 7→ 0 to Θ. If m = m + α , then we must have
m≤m0, otherwise F could not be specialised to F (because α must be nonnegative); in
this case, we add α̂i 7→ α + m−m0 to Θ. (Note that m−m0 ≤ 0 as required for a delta
substitution.) In either case, Θ maps the expression in F 0 to the one in F . Thus, we have
constructed the required Θ.

Since F satisfies condition 3 for regularity, it is easy to show that Θ satisfies the tile size
constraints from step 2a of the main algorithm. Furthermore, since F is a semi-regular (in
fact, regular) generalisation of F in which all references are well-behaved, by Lemma 1, Θ

satisfies the constraints generated for every reference. In sum, Θ satisfies all the constraints.
By Proposition 2, there is a length substitution φ such that Θ = φ ◦Θ∗. Then we have
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φ(F
∗
) = φ(Θ∗(F 0)) = Θ(F 0) =F , so F

∗
is more general than F . This completes the

proof. �

It is worth emphasizing: every basic SDF F has a principal regular generalisation F
∗

and the algorithm finds it. If F uses a computational pattern that our system cannot handle,
it is not an error; what normally happens is that F

∗
is less general than the user envisioned.

While it is not essential to the preceding point, the following property is interesting and
should come as no surprise:

Proposition 3. Every basic SDF F is a regular generalisation of itself.

Proof It’s clear that the delta substitution Θ that maps every delta variable to 0 satisfies all
constraints of the allowed forms. By reasoning similar to part (A) of Theorem 2, Θ(F 0)

satisfies all the conditions to be a regular generalisation of F . But Θ(F 0) =F . �

So in the worst case, if F does not use any computational pattern that we can generalise,
we get F

∗
=F .

As mentioned before, F
∗

may fail to be determinable, in which case we recommend
setting all non-determinable length variables to their initial values.

8 An extended generalisation system

In this section, we describe an extension of the system of Sections 6–7 to support more
interesting SDFs, including non-basic SDFs; that is, SDFs that have range references with
multiple target tiles. The only parts of the system we will have to change are the definition
of well-behaved references (which is where the restriction to basic SDFs previously came
from) and the related constraint generation and proofs.

The extra expressiveness of the new system is important in practice. As a motivating
example, below is a function that computes the post-transaction balances of a bank account
with interest compounded daily. The sheet, with example data but without formulas visible,
is in Figure 7.

/* COMPOUND( start date, opening balance, interest rate, transactions )
transactions is a 2-column array of (date, amount) pairs */

function COMPOUND( ts A3, to F3, tr F1, tx A4:B10 ) returns F4:F10t4 {
t1 C4:C10 = A4tx − A3ts,tx /* Interval between transactions */
t2 D4:D10 = POWER(1+$F$1tr , C4t1 ) /* Interest multiplier */
t3 E4:E10 = F3to,t4 * D4t2 /* New balance after interest */
t4 F4:F10 = E4t3 + B4tx } /* Final balance */

The function takes (as its last argument) a 2-column array of transactions. It computes each
new balance by adding a suitable interest payment (which depends on the date interval)
and the transaction amount, and returns an array of the post-transaction balances. We have
carefully placed the start date in A3 immediately above the column of transaction dates
in A4:A10, so that we can uniformly compute the intervals during which interest accrues.
Now consider the reference to A3 in the definition of t1. When resolved at cell C4, the
reference A3 points to the start date input tile ts; but when resolved at cell C5, the A3 has
become A4 (via copy/paste), and hence points to the date on the first transaction, in tile tx.
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Fig. 7: The COMPOUND spreadsheet to compute post-transaction balances of a bank
account with interest compounded daily.

So this reference to A3 has two target tiles, ts and tx, and is therefore labelled with both,
making it a non-basic SDF.

Fortunately, the new system handles arbitrary tame SDFs and still enjoys principal gen-
eralisations. For instance, our algorithm generalises the SDF above to the following elastic
SDF:

function COMPOUND( ts A3, to F3, tr F1, tx A4:B{3+α} ) returns F4:F{3+α}t4 {
t1 C4:C{3+α} = A4tx − A3ts,tx

t2 D4:D{3+α} = POWER(1+$F$1tr , C4t1 )
t3 E4:E{3+α} = F3to,t4 * D4t2

t4 F4:F{3+α} = E4t5 + B4tx

}

8.1 Overview of the extended system

In general, our main goal is to allow relative references with an upward offset between
tiles of the same height, where the “offset” refers to positions within the tiles, regardless
of the locations of the tiles in the sheet. So for example, if r1 and r2 are tiles of height α

and width 1 (or possibly the same tile) and r1 contains a relative reference to r2, then it
may be the case that the second row of r1 points to the first row of r2, the third row of r1

to the second row of r2, and so forth. Of course, the first row of r1 needs somewhere to
point; it must point to a separate, vertically inelastic tile located immediately above r2, like
tiles ts and to in the COMPOUND example. Analogous remarks apply to leftward offsets.
We do not support downward and rightward offsets because supporting offsets in both
directions on the same axis would complicate the algorithm for little benefit. Computations
with downward and rightward offsets are rare outside recreational contexts (e.g., cellular
automata), and in some cases they can be expressed in our system by using an absolute
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Fig. 8: The CUMSUM spreadsheet demonstrating cumulative aggregation.

reference to the entire target tile and then using the INDEX function to extract the desired
element.

Regularity condition 3, which requires that the upper-left corner of each tile be constant,
makes it possible to position an inelastic tile immediately above or to the left of an elastic
tile to fulfill a reference with an upward or leftward offset but does not make it possible to
position an inelastic tile below or to the right of an elastic tile to support a downward or
rightward offset, because in the latter case, the upper-left corner of the inelastic tile would
depend on the size of the elastic tile.

In addition to adding support for upward and leftward offsets (which goes hand in
hand with allowing references with multiple target tiles), we add support for cumulative
aggregation. For example, we would like to generalise:

function CUMSUM(t1 A1:A3) returns B1:B3t2 {
t2 B1:B3 = SUM(A$1:A1t1 ) }

(see the sheet in Figure 8) to:

function CUMSUM(t1 A1:A{α}) returns B1:B{α}t2 {
t2 B1:B{α} = SUM(A$1:A1t1 ) }

To do so, we move beyond the three kinds of span references in the simplified system
and allow each endpoint of a span reference to independently fall into one of four kinds:
Inelastic, Lockstep, Start, and End. The row span $1:1 in the reference A$1:A1 in the
formula for t2 has one Start endpoint $1 and one Lockstep endpoint 1.

In the original system, the only kind of row span reference that could contain a relative
row reference from a calling tile of variable height was Lockstep, and it required that the
heights of the calling and target tiles be exactly the same expression. How much more
flexible can our Lockstep kind be and still ensure that every tame SDF has a principal
regular generalisation? For example, consider an SDF that generates a list iteratively and
has a special formula for the first element:

function SUM2(t1 A1:A3) returns B3t3 {
t2 B1 = A1t1

t3 B2:B3 = B1t2,t3 + A2t1

}

(Of course, a better design in this case would be to initialise the sum to 0 and then use
a consistent formula, but it’s unclear to us whether such a transformation will always be
natural to users in more complex cases.) We’d like the following generalisation:

function SUM2(t1 A1:A{1+α}) returns B{1+α}t3 {
t2 B1 = A1t1
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t3 B2:B{1+α} = B1t2,t3 + A2t1

}

in which t3 has variable height and contains a relative reference to t1, even though their
heights differ by 1. We find that in general, we can allow the heights of the caller and target
tiles to differ by a constant and still have a principal regular generalisation. The principle
that we allow upward but not downward offsets still holds if we consider positions with
respect to the bottoms of the tiles: the last row of the caller tile may point at or above the
last row of the target tile, but not below because there is no way to position another target
tile there. As always, analogous remarks apply to columns.

8.2 Well-behaved references

We can now proceed to the definition of a well behaved reference, replacing the one in
Section 6.9. First we need some auxiliary definitions to deal with the multiple target tiles.
The overall target range of a reference ρ in the original SDF F is the range of all cells
read by ρ resolved at any cell of the calling tile. If ρ = θ1 : θ2 and the range of the calling
tile is a1 : a2, then the overall target range can be computed as Res(θ1, a1) : Res(θ2, a2).22

A target tile of ρ is vertically final if it overlaps the last row of the overall target range and
horizontally final if it overlaps the last column. When we are discussing an elastic SDF F

as a potential generalisation of F , a target tile of a reference ρ is said to be vertically or
horizontally final if the corresponding target tile of the corresponding reference in F is.
(We make this definition because the layout of the target tiles in F provides a template
that we want to use to analyse the the layout of the target tiles in the elastic SDF.)

Definition 8 (Well behaved reference in the extended system). In an elastic SDF F , a
range reference ρ with calling tile tc is well behaved if it is well behaved on both axes.
We give the definition for the row axis; the one for the column axis is analogous. Let
σ = µ1m1 : µ2m2 be the row span reference of ρ . ρ is well behaved on the row axis if it
satisfies the following conditions:

1. Every vertically non-final target tile has constant height.
2. Every vertically final target tile tt stands in one of the following relationships to

each of the two row references µimi in σ :

– Inelastic: The height of tt is constant, mi is constant, and µi is absolute or the
height of tc is constant.

– Lockstep: The heights of tc and tt are non-constant but their difference is a
constant, mi is constant, and µi is relative.

– Start: The height of tt is of the form ht + αt , and µi is absolute or the height of tc
is 1. Furthermore, mi points at a constant non-negative offset above the top row
of tt , and if this offset is zero and i = 2 (i.e., µimi is the bottom endpoint of σ ),
then ht > 0.

22 All of these cells are actually read, since our assumption that F is non-degenerate rules out the possibility that
ρ is a relative reference to a zero-size range that moves across the overall target range without reading any
cells.
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Fig. 9: A (crazy) example well-behaved reference in the extended system.

– End: The height of tt is of the form ht + αt , and µi is absolute or the height of tc
is 1. Furthermore, mi points to the bottom row of tt , and if i = 1 (i.e., µimi is the
top endpoint of σ ), then ht > 0.

Furthermore, the pair of relationships of µ1m1 and µ2m2 to tt must not be (Lockstep,
Start) or (End, Lockstep).23

We give an example of a well-behaved reference that is crazier than anything that would
be expected in practice but serves to illustrate what is possible under the definition. (The
reader may imagine removing things from this example to get more realistic examples.)
Figure 9 shows the fragment of the inelastic SDF, and the corresponding Calculation View
is below:

tc J2:J4 = SUM(B$2:H4t1,t2,t3,t4,t5,t6,t7,t8 )
t1 B1:C2 = ...
t2 D2:D7 = ...
t3 E2:F3 = ...
t4 G1:H3 = ...
t5 A3:C6 = ...
t6 E4:H4 = ...
t7 E5:E8 = ...
t8 F5:H7 = ...

The reference ρ has calling tile tc with range J2:J4, and in the formula for the upper-left
caller cell J2, it is written B$2:H4. The bottom row of ρ is relative and updates as expected
when ρ is copied down to the remaining cells of tc. So ρ , resolved at its various calling
cells, retrieves arrays that are cumulative vertically but have a fixed horizontal span. The
overall target range of ρ is B2:H6, marked by the red dotted rectangle. ρ has eight target
tiles t1, . . . , t8. t5, t2, t7 are vertically final (green); t4 and t6 are horizontally final (light
blue); and t8 is both vertically and horizontally final (dark blue).

The principal regular generalisation of the sheet fragment is as follows:

tc J2:J{1+α} = SUM(B$2:{F+β}4t1,t2,t3,t4,t5,t6,t7,t8 )

23 If these pairs of relationships occurred, then σ would resolve to a negative-height row span at most rows of tc
when tc and tt increase in height. If we did not forbid them here, these pairs could occur in a corner case if tc
and tt both have initial height exactly 2, while (End, Start), which would cause a similar problem, is ruled out
by the non-degeneracy condition.
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t1 B1:C2 = ...
t2 D2:D{4+α} = ...
t3 E2:F3 = ...
t4 G1:{F+β}3 = ...
t5 A3:C{3+α} = ...
t6 E4:{F+β}4 = ...
t7 E5:E{5+α} = ...
t8 F5:{F+β}{4+α} = ...

As required, the vertically non-final tiles t1, t3, t4, and t6 have constant height, while the
horizontally non-final tiles t1, t2, t3, t5, and t7 have constant width. The row span reference
of ρ is $2:4. The top endpoint $2 stands in the Start relationship to each of the vertically
final target tiles since it is absolute, they have variable height and it points at or above
their top rows. The bottom endpoint 4 stands in the Lockstep relationship to each of the
vertically final target tiles since it is relative and a constant and the heights of the caller and
vertically final target tiles all have the same length variable α , hence the height differences
are constant.

The column span reference of ρ is B:{F+β}. The left endpoint B stands in the Start
relationship to each of the horizontally final target tiles by similar reasoning as for the top
endpoint, except it is not absolute, but that is OK because tc has width 1. The right endpoint
{F+β} stands in the End relationship to each of the horizontally final target tiles because
they have variable width, it points to their rightmost columns, and (again) tc has width 1.

As α increases, tiles t5, t2, t7, and t8 all grow downward, and tc grows downward with
additional copy/paste adjustments of ρ that refer to most of the new cells. α can also
decrease as far as 0. When α = 1, ρ no longer reads from t7 and t8; this can happen with
Lockstep references. Similar remarks apply with β and horizontal resizing, except that the
right edges of t4, t6, and t8 are referenced by every cell of tc. Since the only way target
tiles grow is that vertically final tiles grow down and horizontally final tiles grow to the
right, intuitively we can see that there is no way two target tiles of ρ can overlap; this
will be proved in the next section. Finally, we note that if α were set to a constant by
other constraints, both row references of ρ would stand in the Inelastic relationship to the
vertically final target tiles; the analogous statement holds for β , the column references, and
the horizontally final target tiles.

We give a second example to illustrate an important case that could not be incorporated
into the first example: a row span reference with both endpoints in the End relationship to
the vertically final target tiles. Figure 10 shows the fragment of the inelastic SDF, and here
is the Calculation View:

tc B7:D7 = B5:B5t1,t2

t1 A2:C5 = ...
t2 D1:E5 = ...

Here is the well-behaved generalisation of interest (not principal, since to keep things
simpler, we have declined to introduce horizontal elasticity):

tc B7:D7 = B{2+α}:B{2+α}t1,t2

t1 A2:C{2+α} = ...
t2 D1:E{2+α} = ...
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Fig. 10: A well-behaved reference with both endpoints of the row span reference in the
End relationship.

Both row references are {2+α}, and they stand in the End relationship to the target tiles.
As α changes, t1 and t2 resize, and the reference continues to select the relevant cells
from their last rows. If α decreases, the reference reads cells above the overall target range
from the original SDF. This can only happen when both row references have the End
relationship, because that is the only way the top row reference contains a length variable
(which can decrease from the value that recovers the original SDF). If the top row reference
has constant coordinate (whether absolute or relative), it is the same constant as in the
inelastic SDF and serves as a lower bound on the row number of any cell that can be read
by the range reference.

One further point: for the top row reference to have the End relationship to the target
tiles, they must have height at least 1 for all values of length variables, so that they have
a bottom row for the range reference to access. We can see this is true of t1 and t2 in the
example. This requirement can sometimes pose a problem. For example, if we modify the
COMPOUND function at the beginning of Section 8 to return just the final balance instead
of the column of post-transaction balances:

/* COMPOUND2( start date, opening balance, interest rate, transactions )
transactions is a 2-column array of (date, amount) pairs */

function COMPOUND2( ts A3, to F3, tr F1, tx A4:B10 )
returns F10t4 {

t1 C4:C10 = A4tx − A3ts,tx /* Interval between transactions */
t2 D4:D10 = POWER(1+$F$1tr , C4t1 ) /* Interest multiplier */
t3 E4:E10 = F3to,t4 * D4t2 /* New balance after interest */
t4 F4:F10 = E4t3 + B4tx } /* Final balance */

we would get the following generalisation:

function COMPOUND2( ts A3, to F3, tr F1, tx A4:B{4+α} )
returns F{4+α}t4 {

t1 C4:C{4+α} = A4tx − A3ts,tx

t2 D4:D{4+α} = POWER(1+$F$1tr , C4t1 )
t3 E4:E{4+α} = F3to,t4 * D4t2

t4 F4:F{4+α} = E4t5 + B4tx

}

Because the top row reference of the returns reference had the End relationship to t4, t4 was
required to have positive height, which propagated to tx, t1, t2, and t3. Now COMPOUND2
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is unable to accept an array of zero transactions. Given such input, we would want it to
return the opening balance. It may be possible to modify the system to allow the returns
reference to read from to even though to was not in this reference’s original target-tile set;
we leave this question to future work. In the meantime, one workaround is to define an
extra tile that copies both to and t4 (which is allowed by the Lockstep relationship) and
then reference the last cell of this tile:

function COMPOUND3( ts A3, to F3, tr F1, tx A4:B10 )
returns G10t5 {

t1 C4:C10 = A4tx − A3ts,tx /* Interval between transactions */
t2 D4:D10 = POWER(1+$F$1tr , C4t1 ) /* Interest multiplier */
t3 E4:E10 = F3to,t4 * D4t2 /* New balance after interest */
t4 F4:F10 = E4t3 + B4tx /* Final balance */
t5 G3:G10 = F3to,t4 }

Now in the generalisation, tx can shrink to zero height and t5 will still have height 1, as
required to reference its last cell:

function COMPOUND3( ts A3, to F3, tr F1, tx A4:B{3+α} )
returns G{3+α}t4 {

t1 C4:C{3+α} = A4tx − A3ts,tx

t2 D4:D{3+α} = POWER(1+$F$1tr , C4t1 )
t3 E4:E{3+α} = F3to,t4 * D4t2

t4 F4:F{3+α} = E4t5 + B4tx

t5 G3:G{3+α} = F3to,t4

}

8.3 Unambiguity of a regular generalisation

Following the earlier presentation (Section 6.10), we next prove that with our new defini-
tion of well-behaved references, every regular generalisation of an SDF is unambiguous.

Theorem 3. Every regular generalisation F of a tame SDF F is unambiguous.

Proof We must show two conditions for each range reference ρ in F , which is well-
behaved by our assumption that F is regular. Let tc be the calling tile of ρ and let a1 : a2

be its range (by regularity, the top-left corner is constant). We need to show that for every
length assignment φ , the target tiles of φ(ρ) do not overlap in φ(F ) and for every cell a in
φ(a1 : a2), the resolved target range Res(φ(ρ), a) has non-negative height and width and
is covered by the target tiles in φ(F ).

Let ρ = (θ 1 : θ 2)
t1,...,tk . Let ρ = (θ1 : θ2)

t1,...,tk be the reference corresponding to ρ in F ,
and let a1 : a2 be the range of tc in F . (The a1 is the same because F is a generalisation of
F .) Let r∗ = Res(θ1, a1) : Res(θ2, a2) be the overall target range of ρ . If a is a cell address,
let R(a) be the cell in r∗ nearest to a (a itself if a is in r∗), and let t(a) be the target tile of
ρ that covers R(a). Of course, the target tiles of ρ correspond to those of ρ .

Lemma 2. For any cell a, no target tile t ′ of φ(ρ) other than possibly t(a) covers a in
φ(F ). Thus, the target tiles of φ(ρ) do not overlap.
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Proof We know that t ′ overlaps r∗ in F . However, because t ′ 6= t(a) and tiles do not
overlap in F , t ′ does not cover R(a) in F . That means it must be above, below, or to the
left or right of R(a) (or more than one of these).

• If t ′ is below R(a), then because t ′ overlaps r∗ in at least one row, R(a) must not be
in the bottom row of r∗. By the definition of R(a), a must be in the same row as R(a)
or above. But the top row of t ′ in F is the same constant as in F by regularity, so a
must be above t ′ in φ(F ).

• If t ′ is above R(a), then because t ′ overlaps r∗ in at least one row, R(a) must not be
in the top row of r∗. By the definition of R(a), a must be in the same row as R(a) or
below. Since t ′ is above R(a), it cannot overlap the last row of r∗, so t ′ is vertically
non-final, so its last row in F is the same constant as in F . Thus a is below t ′ in
φ(F ).

• The horizontal cases are symmetrical.

�

Lemma 3. If a is in the calling range φ(a1 : a2), then Res(φ(ρ), a) has non-negative
height and width.

Proof We prove that the height is non-negative; the argument for the width is symmetri-
cal. Let σ = χ1 : χ2 be the row span reference of ρ , and let σ = χ1 : χ2 be the row span
reference of ρ . We need to prove that Res(φ(σ), a) has non-negative height. Let t∗ be the
tile that covers the lower right corner of r∗ in F ; it is both vertically and horizontally final.
Since ρ is well-behaved, χ1 and χ2 have a valid pair of relationships to t∗. The proof pro-
ceeds by case analysis on this pair. Note that the Inelastic relationship, which requires t∗

to have constant height, cannot be paired with Start, Lockstep, or End, which require t∗ to
have variable height. Also note that χ i = χi unless χ i has the End relationship to t∗.

• (Inelastic, Inelastic): In this case, σ = σ . If tc has fixed height in F , then a is in
the row span of tc in F , so Res(φ(σ), a) = Res(σ , a) = Res(σ , a′), where a′ is an
arbitrary cell in tc in F that is in the same row as a. By our assumption that F is
closed, Res(σ , a′) has nonnegative height. (We cannot use a directly because it may
be outside the column span of tc in F due to horizontal elasticity, but only its row
matters for resolving a row span.) If tc has variable height in F , then χ1 and χ2

must both be absolute, so Res(φ(σ), a) = Res(σ , a1), which again has non-negative
height by our assumption that F is closed.

• (Start, Start): Same argument as (Inelastic, Inelastic) when χ1 and χ2 are both
absolute.

• (Lockstep, Lockstep): We know σ = σ , and Res(σ , a1) has nonnegative height
because F is closed. Suppose a is n rows below a1 (n≥ 0). Then Res(χi, a) is n
rows below Res(χi, a1) for each i, so the height of Res(σ , a) is the same as that of
Res(σ , a1), and thus nonnegative.

• (Start, Lockstep): Same as (Lockstep, Lockstep) except that Res(χ2, a) moves down
and Res(χ1, a) does not, so the height of Res(σ , a) is at least that of Res(σ , a1), and
thus nonnegative.
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• (Lockstep, End): Since t∗ was chosen as a vertically final tile of the overall target
range r∗, Res(χ1, a2) is at or above the bottom of t∗ in F . In F and all instantiations
thereof, the heights of tc and t∗ must differ by the same constant as in F . So if in
φ(F ), both tc and t∗ change in height by x∈Z compared to their heights in F , then
both Res(χ1, φ(a2)) and the bottom of t∗ move x rows down. Thus, Res(χ1, φ(a2))

is still at or above the bottom of t∗. For arbitrary a in tc, Res(χ1, a) is at or above
Res(χ1, φ(a2)), which (as just observed) is at or above the bottom of t∗, which
equals Res(φ(χ2), a). Hence Res(φ(σ), a) has nonnegative height.

• (End, End): Res(φ(σ), a) is just the bottom row of t∗, which has height 1.
• (Start, End): Suppose χ1 points n rows (n≥ 0) above the top row of t∗. We know

Res(φ(χ2), a) points to the bottom row. t∗ has nonnegative height and the height of
Res(φ(σ), a) is greater by n.

• (End, Lockstep) and (Lockstep, Start): These pairs are disallowed by the definition
of a well-behaved reference.

• (End, Start): This pair cannot occur. If t∗ has height h in F , and χ1 points to the
bottom row of t∗ while χ2 points n rows (n≥ 0) above the top of t∗, then σ has height
2− h− n. Since h≥ 2 in order for t∗ to be vertically elastic in F , σ has nonpositive
height at every cell in the calling tile in F , so F fails to be nondegenerate.

�

Define the overall target range of ρ to be r∗ = Res(θ 1, a1) : Res(θ 2, a2). Clearly, for
every a in φ(a1 : a2), Res(φ(ρ), a) is within φ(r∗). So we just need to show that φ(r∗) is
covered by the target tiles.

Lemma 4. Every cell a in φ(r∗) is covered by the tile t(a) in φ(F ).

Proof We prove that a is in the row span of t(a); the argument for the column span is
symmetrical. As before, let χ1 : χ2 be the row span reference of ρ and χ1 : χ2 be that of ρ .
Let t ′ be the vertically final tile that covered the column of R(a) in F .

If a is above r∗ (so R(a) is in the top row of r∗), that means φ(Res(χ1, a1))<

Res(χ1, a1). Given that there is a length substitution φ0 that specialises F back to F ,
the only way this can happen is if χ1 contains a length variable α and φ(α)< φ0(α). And
the only way χ1 can contain a length variable is if its relationship to t ′ is End. Since χ1 rep-
resents the top endpoint of a reference, the definition of well-behavedness requires that t ′

have positive height for all length assignments. Furthermore, as we have seen in Lemma 3,
if χ1 has the End relationship to t ′, so must χ2, so they both point to the bottom row of t ′.
Thus, the row of a can only be Res(φ(χ1), a1) = Res(φ(χ2), a1), which is the last row of
t ′, which is in the row span of t ′ because t ′ has positive height. Even in F , χ1 and χ2 must
have pointed to the same row, so r∗ has only one row, so t ′ = t(a). We have shown that a is
in the row span of t(a), as desired.

Otherwise, a is at or below the top of r∗, so it is at or below R(a). The (constant) top of
t(a) must be at or above R(a), so a is at or below the top of t(a) in φ(F ); we only need to
prove it is at or above the bottom.



Elastic SDFs 49

If t ′ 6= t(a), then a is above the bottom of r∗, so it is on the same row as R(a).
Furthermore, t(a) is vertically non-final and has the same row span in φ(F ) as in F ,
which contained R(a), hence a is in the row span of t(a), as desired.

Otherwise, t ′ = t(a). We know a is within the bottom row of φ(r∗), which is
φ(Res(χ2, a2)), so it suffices to show that φ(Res(χ2, a2)) is within the bottom row of
t(a). We proceed by case analysis of the relationship of χ2 to t(a), using some of the same
reasoning as in Lemma 3:

• Inelastic: Here χ2 = χ2. If tc has fixed height in F , then a2 = a2 and
φ(Res(χ2, a2)) = Res(χ2, a2), which is the last row of r∗. If tc has variable height
in F , then χ2 is absolute, so φ(Res(χ2, a2)) = Res(χ2, a2) even though a2 6= a2.
Since t(a) is vertically final, it must cover this row Res(χ2, a2) in F , and since its
height is fixed, it covers this row in F also.

• Start: Here χ2 points at a constant offset n≥ 0 above the top row of t(a). The highest
the “bottom row” of t(a) can be is one row above its top row (if t(a) has height
zero), and a reference with n > 0 will be within this bottom row. If n = 0, then the
definition of well-behavedness requires that t(a) always have positive height, so the
bottom row is no higher than the top row and again χ2 is within the bottom row.

• Lockstep: Since t(a) is vertically final, Res(χ2, a2) must be at or above the bottom
row of t(a) in F . In F and all instantiations thereof, the heights of tc and t(a) must
differ by the same constant as in F . So if in φ(F ), both tc and t(a) change in height
by x∈Z compared to their heights in F , then both Res(χ2, φ(a2)) and the bottom
of t(a) move x rows down. Thus, Res(χ2, φ(a2)) is still at or above the bottom of
t(a).

• End: χ2 points to the bottom row of t(a), which is within t(a).

�

These three lemmas together prove that ρ meets the conditions for unambiguity.
�

8.4 Constraint generation for references

For each range reference ρ in F 0, the new constraint generation procedure is as follows:

1. Constrain the bottom-row delta variable of each vertically non-final target tile of ρ

equal to 0.
2. Let tc be the calling tile of ρ and let σ = χ1 : χ2 be its row span reference. For

i = 1, 2, let µi{mi + α̂i}= χ i. For each vertically final target tile tt of ρ and for
i = 1, 2, let α̂t and α̂c be the bottom-row delta variables of tt and tc, and try the
cases below in order for the relationship of χ i to tt . However, if the pair of cases
for i = 1, 2 for the same target tile tt would be either (Lockstep, Start) or (End,
Lockstep) in that order, then use (Inelastic, Inelastic) instead.

a. (Lockstep) If µi is relative and the heights of tt and tc in F are at least 2, then we
anticipate that the relationship is Lockstep, but it may turn out to be Inelastic.
Constrain α̂t = α̂c and α̂i = 0.



50 M. McCutchen et al.

b. (Start) Otherwise, if all of the following conditions hold:

* The height of tt in F is at least 2.
* µi is absolute or the height of tc in F is 1.
* mi points at or above the top row of tt in F .
Then we anticipate that the relationship is Start, but it may turn out to be
Inelastic. Perform the following steps:

* Constrain α̂i = 0.
* If mi points exactly to the top row of tt in F and i = 2, then constrain the

height of tt to be at least 1.
c. (End) Otherwise, if all of the following conditions hold:

* The height of tt in F is at least 2.
* µi is absolute or the height of tc in F is 1.
* mi points to the bottom row of tt in F .
Then we anticipate that the relationship is End, but it may turn out to be Inelastic.
Perform the following steps:

* Constrain α̂i = α̂t .
* If i = 1, then constrain the height of tt to be at least 1.

d. (Inelastic) Otherwise, the relationship must be Inelastic. Constrain α̂t = α̂i = 0.
In addition, if µi is relative, then constrain α̂c = 0.

3. Follow the analogues of steps (1) and (2) for the column axis.

8.5 Correctness of the inference algorithm

Finally, we update the proof of correctness of the inference algorithm (Section 7.4). The
first issue is the requirement of the constraint solver that every delta variable is transitively
constrained equal to zero or to a delta variable with a lower bound. As before, the main
algorithm takes care of this for tile delta variables, and every reference delta variable is
constrained equal to either zero or a tile delta variable, satisfying the requirement.

Now, we prove that the reference constraints characterise well-behavedness of refer-
ences:

Lemma 5. Let Θ be a delta substitution such that Θ(F 0) is an elastic SDF F that is a
semi-regular generalisation of F . Let ρ0 be a reference in F 0, and let ρ = Θ(ρ0) be the
corresponding reference in Θ(F 0). Then Θ satisfies the constraints generated for ρ0 if
and only if ρ is well-behaved.

Proof The structure of the proof is generally similar to that of Lemma 1. Again, we do
the proof for rows only. The first difference is that ρ0 may have many target tiles; both
well-behavedness and constraint generation are independent for each target tile, so we can
prove the equivalence for each tile. For a vertically non-final target tile tt with bottom-row
delta variable α̂t , it’s obvious that tt has constant height if and only if the constraint α̂t = 0
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is satisfied. So consider a vertically final target tile tt . Let σ0 = χ01 : χ02 be the row span
reference of ρ0, and let σ = χ1 : χ2 be the row span reference of ρ .

For now we pretend that neither the definition of well-behavedness nor the constraint
generator has the special restriction on the (Lockstep, Start) and (End, Lockstep) pairs (the
“forbidden pairs”); we address that restriction at the end.

We can prove sub-lemmas analogous to the previous ones:

1. If χ i has the Inelastic relationship to tt , then it satisfies the constraints no matter
which case the constraint generator uses for χ0i.

2. If χ i has the Lockstep, Start, or End relationship to tt , then the constraint generator
uses the corresponding case for χ0i.

We can then prove, as before, that if the constraint generator uses a given case C for χ0i:

3. If the constraints for χ0i are satisfied, then χ i has relationship either C or Inelastic
to tt .

4. If χ i has a valid relationship to tt , then the constraints for χ0i are satisfied.

We will need one extra property:

5. If the Inelastic constraints for χ0i are satisfied (even if the conditions for another
constraint generation case would be met), then χ i has relationship Inelastic to tt .

Now we consider well-behavedness and constraint generation with the restriction on
forbidden pairs.

• First suppose the constraints are satisfied. If the constraint generator hits a forbidden
pair and falls back to (Inelastic, Inelastic), then σ is well-behaved by (5). If the
constraint generator’s case pair is not forbidden, then by (3), the relationship pair of
σ is not forbidden either, so σ is well-behaved.

• For the converse, suppose σ is well-behaved. Notice that of the possible relation-
ships of χ i to tt , Inelastic requires that tt have constant height, while Lockstep, Start,
and End all require that tt have variable height. So either:

– χ1 and χ2 are both Inelastic. Then the constraints are satisfied by (1) regardless
of the cases used by the constraint generator.

– χ1 and χ2 both have non-Inelastic relationships. By (2), the constraint generator
initially attempts to use the corresponding cases. Since σ is well-behaved, its
relationships do not constitute a forbidden pair, so the constraint generator does
not fall back and we use (4) as usual to show that the constraints are satisfied.

�

The remainder of the proof of correctness of the inference algorithm (Theorem 2) goes
through as before, and we have:

Theorem 4. With reference well-behavedness defined by Definition 8, every tame SDF F

has a principal regular generalisation F
∗
, and the algorithm in Section 7.1 (using the

reference constraint generator of Section 8.4) finds it.
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9 Translation of elastic SDFs to executable form

In Section 4.2 we sketched the semantics of an elastic SDF, but doing so relied on an exe-
cution model that uses the target-tile label on each reference to disambiguate references.
One could imagine an implementation based directly on this model, but in this section we
sketch three alternative routes for execution: using multiple worksheets (Section 9.1), using
coordinate arithmetic to avoid tile overlaps (Section 9.2), or using array-level operations
instead of element-level ones (Section 9.3). A detailed description and evaluation of these
implementation strategies is beyond the scope of this paper. Indeed, spreadsheet tools sup-
port various tricky formula constructs (for example, functions such as ROW and COLUMN
that get the calling row and column number) that may require care to emulate correctly
under each of these strategies. Our purpose here is to reassure the reader that elastic SDFs
can be implemented efficiently, and to provide background on the prototype used in our
user study.

Given that implementation techniques exist for SDFs (Sestoft, 2014), the key new chal-
lenge for elastic SDFs is to avoid overlap between tiles when instantiating the length
variables. Indeed, we define:

Definition 9 (Overlap-free elastic SDF). An elastic SDF F is overlap-free if no two of its
tiles overlap for any length assignment.

9.1 Use multiple worksheets to avoid tile overlaps

One way to make an elastic SDF overlap-free is to use multiple worksheets. Indeed, if the
SDF is basic (each reference has exactly one target tile), then the translation is easy: we
simply place each tile on a separate worksheet. For example, here is a translation of our
SHOP SDF, using the standard “!” notation for worksheet references:

function SHOP( S1!F4:F{3+α}, S2!G2 ) returns S5!H7 {
S3!G4:G{3+α} = S1!F4 * S2!$G$2
S4!H4:H{3+α} = S1!F4 + S3!G4
S5!H7 = SUM(S4!H4:H{3+α}) /* No overlap because tiles are

on separate sheets S4, S5 */
}

If F is not basic, we can use a slightly more complex process: move each tile to a separate
worksheet, then for each range reference ρ = (θ 1 : θ 2)

t1,...,tk , generate a worksheet that
copies t1, . . . , tk from their respective worksheets (remember, they never collide because
F is well-defined) and update ρ to refer to this worksheet.

9.2 Move tiles to avoid overlap

Another approach is to move tiles within the single worksheet so they do not collide.
Compared to using multiple worksheets, this approach has the advantage that the trans-
formed SDF bears a greater resemblance to the original in case the user needs to view it
for debugging, although other approaches to debugging elastic SDFs may be better yet.
Here is the SHOP example again:
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function SHOP( F4:F{3+α}, G2 ) returns H{4+α} {
G4:G{3+α} = F4 * $G$2
H4:H{3+α} = F4 + G4
H{4+α} = SUM(H4:H{3+α}) /* No overlap because H{4+α}

moves down as α increases */
}

By anchoring the final tile at H{4+α}, rather than H7 as before, it will move downwards
as α increases, avoiding the overlap with the tile anchored at H4. This transformation is
nontrivial in general, and is described in Appendix A. In general, it produces an extended
elastic SDF in which the upper-left corner of a tile may involve a linear combination of
length variables, which is not allowed by the grammar of Figure 2. The specific algorithm
we choose is rather naive but gives adequate results at least on simple examples.

9.3 Transform to an SDF that uses an array to represent each tile

The two previous approaches transform an elastic SDF into another that is constructed so
that overlaps cannot occur: these elastic SDFs can be interpreted according to a simplified
form of the semantics of Section 4.2 without references needing to track tiles.

Given a spreadsheet interpreter that supports arrays-in-cells (Blackwell et al., 2004), our
third approach is to transform an elastic SDF to an (ordinary) SDF, where we replace each
tile with an array in its top-left corner. For example, in the SHOP function, the input vector
(of whatever size) can land wholesale in F4, the intermediates (of whatever size) can land
in G4 and H4, and no collision arises:

function SHOP( F4, G2 ) returns H7 {
/* F4 is an array, so the operator * lifts over its elements */
G4 = F4 * $G$2

/* F4 and G4 are arrays, so operator + lifts over both */
H4 = F4 + G4
H7 = SUM(H4) /* H4 is an array; SUM adds up its elements */
}

Not apparent in this definition is the expectation that the first parameter is a vector and the
second is a scalar, but spreadsheets are typically dynamically typed.

The implicit lifting of operators like (+) over arrays (a standard feature of spreadsheets)
makes the transformed SHOP function seem particularly simple, but this may not be so for
non-basic SDFs. Here is an attempt to write COMPOUND using arrays-as-cell-values.

function COMPOUND( A3, F3, F1, A4 ) returns F4 {
C4 = COLUMN( A4, 1 ) − SHIFT DOWN( A3, COLUMN( A4, 1) )
D4 = POWER(1+$F$1, C4)
E4 = SHIFT DOWN( F3, F4 ) * D4 /* BUT array E4 depends on F4 */
F4 = E4 + COLUMN(A4,2) /* and F4 depends on E4 */
}

While a reference that targets a single tile simply becomes a reference to the
corresponding array, a reference that targets multiple tiles becomes a specially con-
structed array. For instance, the reference A3ts,tx in the original code becomes the array
SHIFT DOWN( A3, COLUMN( A4, 1) ), where the function COLUMN extracts the first col-
umn of the two-column array A4, and the function SHIFT DOWN inserts the element A3
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at the front of the resulting array while dropping its last element. Similarly, the reference
F3to,t4 becomes the array SHIFT DOWN( F3, F4 ).

Unfortunately, we arrive at a cyclic dependency between arrays E4 and F4: each depends
on the other. There is a dependence between items in columns E and F in the original
example, but since the items are in separate cells, the spreadsheet interpreter can select
a raster-scan schedule without any cycles. By placing these columns within arrays, the
interpreter is forced to evaluate one or the other column first, leading to a loop.

To solve this problem, the interpreter in our prototype uses a lazy array to represent each
tile. Each lazy array consists of an array of thunks, each a memoized argumentless lambda
(lambdas being an experimental feature in our prototype). We obtain a uniform translation
of elastic SDFs that gave no problems on functions authored by our users.

As an alternative to lazy arrays, we can introduce array-processing functions that capture
particular schedules such as raster scan, as illustrated by the following (correct) version of
COMPOUND:

function COMPOUND( A3, F3, F1, A4 ) returns F4 {
C4 = COLUMN( A4, 1 ) − SHIFT DOWN( A3, COLUMN( A4, 1) )
D4 = POWER(1+$F$1, C4)
F4 = VSCAN2( D4, COLUMN( A4, 2 ), F3,

LAMBDA( bal, int, amt, bal * int + amt ) )
}

The function VSCAN2 runs down two arrays in parallel, with an accumulator, and we
used a lambda-expression too. We conjecture that a large class of elastic SDFs can be
efficiently implemented by transformation to concrete SDFs using arrays-as-cell-values,
with appeal to implicit lifting and to explicit array-functions like COLUMN and VSCAN2.
Moreover, we believe that the manual use of these techniques represents the best solution,
using previously known spreadsheet technology, to the problem of writing SDFs that act
on variable-sized arrays. The point of our user study is to test elastic SDFs versus this
alternative technology with a group of spreadsheet users.

Can we automatically transform an elastic SDF to use array-processing functions? We
believe so, as long as it has a simple schedule that we can identify, but leave the details to
future work.

10 User Study

We believe that SDFs are the best way to provide user-defined functions to spreadsheet
programmers, but any viable solution must work for variable-length inputs. How would
users write SDFs for variable-length inputs, if elastic SDFs were unavailable? The most
plausible alternative is to write the SDF using arrays-at-a-time operations, rather than
element-wise operations. This approach is described, with a user study, by Blackwell et al.
(2004). There is already limited support for arrays-at-a-time operations in various spread-
sheet packages.24 The implementation of array programming used in our study was very

24 https://aka.ms/excel-dynamic-arrays; https://support.google.com/docs/answer/
3093275?hl=en; last accessed: January 6, 2020

https://aka.ms/excel-dynamic-arrays
https://support.google.com/docs/answer/3093275?hl=en
https://support.google.com/docs/answer/3093275?hl=en
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similar to the dynamic arrays feature of Excel, with the addition of raster scanning func-
tions such as VSCAN, which are not currently supported in Excel’s implementation, but
which were necessary for completing the real-world representative tasks in our user study.

We therefore ask: from the user’s point of view, for a task involving a variable-
length input SDF, are elastic SDFs better or worse than using arrays-at-a-time operations?
Concretely, we designed a user study to investigate the following:

• RQ1: Does the use of elastic SDFs versus array programming affect the cognitive
load experienced by users in writing SDFs?

• RQ2: Does the use of elastic SDFs versus array programming affect the subjective
user experience?

• RQ3: Are any observed differences affected by users’ programming expertise?

There are a number of other very good questions that might be asked, such as:

• Isolating the inference algorithm: do users prefer to intervene in the generalisation
process themselves, perhaps by reviewing the inferred constraints, or are they happy
leaving this task to be completely automated? The former might make it easier to
ensure that the generalisation was performed as expected.

• Expressiveness: are the constraints expressible in the type system able to capture the
constraints that (expert) users would exploit?

While we gain a partial understanding of these additional questions through our user
study, we do not address them specifically, choosing to focus on comparing elastic SDFs
with arrays-at-a-time operations to make the scope of the study tractable. In particular,
the design of an interactive tool that allows users to understand and intervene in the
elasticisation process is a substantial undertaking, that we leave to future work.

10.1 Prototype of SDFs for User Study

We adapted an existing research prototype of sheet-defined functions written as an add-
in for Excel. The prototype already supports lambda-abstractions, and we extended it
to support arrays-in-cells and provided functions for manipulating arrays, as outlined in
Section 9.3.

To support elastic SDFs, we added a check-box for the user to indicate that an SDF
should be elastic. If so, we generalise the given SDF to an elastic SDF, which is then
implemented as a concrete SDF by the lazy array translation described in Section 9.3.

10.2 Participants

We had twenty participants (seven female) aged 18-35 (mean 24), an above-average sam-
ple for within-subjects experiments in human-computer interaction (Caine, 2016). They
were students in Statistical Science, Mathematics, Management, Computer Science and
related disciplines. Ten participants also had industry experience working with spread-
sheets. Participants were recruited through convenience sampling via email, and were
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selected based on their responses to a screening questionnaire which asked them to self-
assess their spreadsheet and programming experience. To qualify, participants needed to be
familiar with using formulas and ranges in spreadsheets. All participants had some (self-
assessed) expertise with spreadsheets, and some (self-assessed) programming expertise.
Participants were reimbursed with a £40 voucher after completing the study.

10.3 Tasks

We developed tasks that were representative of real-world spreadsheet tasks, to maintain
external validity (i.e., the validity of applying the conclusions of a scientific study out-
side the context of that study (Mitchell and Jolley, 2012)). We achieved this by adapting
real spreadsheets that we had previously gathered from participants of a different study,
in which we had interviewed users who had shared and explained the use and structure of
these spreadsheets. We adapted the sheets into tasks by removing personally identifiable
information and intellectual property, and then designating a part of the sheet to be con-
verted into an SDF and reused elsewhere. For each task, the participant was presented with
a spreadsheet partially filled with fictional data, a brief description of what the sheet was
to be used for, and a description of what the participant had to calculate.

Participants were given six spreadsheet tasks. Shortened versions of the task descriptions
are included below. The solutions of Task 1 and 6 are included to illustrate how SDFs were
made using elastic SDFs and array programming.

1. Claiming expenses.

You have recently come back from a business trip, and now want to claim back the
expenses you made. The spreadsheet shows all the expenses incurred for this trip. For
each expense, it shows the maximum amount you are allowed to claim back, and the
actual costs you incurred. If your actual costs are lower than the maximum amount,
you can claim back your actual costs, however if your actual costs exceed the maxi-
mum amount, you are only allowed to claim back the maximum amount. Calculate how
much money you spent that you cannot claim back. That is, if of all these expenses you
can claim back £1,000, but you have spent £1,230 in total, there is £230 which you
cannot claim back.

Figure 11 shows a spreadsheet that computes, in E17, the total amount of money
that cannot be claimed back, after calculating for each expense how much can be
claimed back in E6:E15. In Calculation View form, the elastic SDF is written as the
following.

function EXPENSES( t1 C6:C{5+α}, t2 D6:D{5+α} ) returns F17t4 {
t3 E6:E{5+α} = IF(D6t2<C6t1 , D6t2 , C6t1 )
t4 F17 = SUM(D6:D{5+α}t2 ) − SUM(E6:E{5+α}t3 )
}

This example needs only the simpler system based on the definition of well-behaved
references in Section 6.9.
The array SDF is similar and written as:

function ARRAY EXPENSES( C6, D6 ) returns F17 {
E6 = IF(D6<C6, D6, C6)
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Fig. 11: A spreadsheet containing the definition of the EXPENSES SDF.

F17 = SUM(D6) − SUM(E6)
}

2. Salary payment.

You are the manager of a school and oversee the hours that all employees have worked,
to calculate how much they should be paid. The spreadsheet shows a timesheet, with a
row for each employee, and their hourly rate, and their worked hours. Calculate how
much salary should be paid in total, to all employees. Hint: To calculate the salary of
one employee, sum up his/her hours and multiply this by their specific hourly rate.

Figure 12 shows a spreadsheet that computes the desired result in N7.

Fig. 12: A spreadsheet containing the definition of the SALARYPAYMENT SDF.

3. Bank loan.

You are working at a bank, and are considering to extend a loan in US dollars to a
client over a fixed time period. The spreadsheet shows the amount you plan to lend
in US dollars, the expected exchange rates for each month, and the expected interest
rates for each month. Calculate your total expected costs over the time period.

Figure 13 shows a spreadsheet that computes the desired result in D9.
4. Worked hours.

You use a spreadsheet to keep track of how many hours you should work per day
each month, and how many hours you have actually worked. The spreadsheet shows,
for each month: how many hours you have been paid and thus how many hours you
should work for the whole month, how many hours you have worked each day so far,
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Fig. 13: A spreadsheet containing the definition of the BANKLOAN SDF.

and how many working days you have left in the month. Use the amount of days left
in the month that you have to work to calculate how many hours you should work per
day on average for the rest of the month.

Figure 14 shows a spreadsheet that computes the desired result in F15.

Fig. 14: A spreadsheet containing the definition of the WORKINGHOURS SDF.

5. Weekend hours.

You are the manager of a school and oversee the hours that all employees have worked,
to calculate how much they should be paid. The spreadsheet shows a timesheet, with a
row for each employee and their worked hours. In a previous task, you worked out how
much they should be paid. However, a new rule has come into place that employees
should be paid more when they have worked on the weekend; therefore, you now want
to know how many of the worked hours in the timesheet were on a weekend day.
Calculate the total number of worked hours in the weekend.

Figure 15 shows a spreadsheet that computes the desired result in M7.

Fig. 15: A spreadsheet containing the definition of the WEEKENDHOURS SDF.

6. Expected profit.
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Fig. 16: A spreadsheet containing the definition of the PROFIT SDF.

You are the producer of water bottles, and want to estimate your expected profit over
several quarters. The spreadsheet shows: a price per bottle, which is expected to
change each quarter depending on inflation rate; expected sales, which is the number
of bottles you are expected to sell each quarter; expected inflation rate per quarter;,
and a fixed production cost that is the same regardless of how many water bottles you
sell, but is expected to change each quarter depending on inflation rate. Calculate
your total expected profit.

Figure 16 shows a spreadsheet that computes, in C12, the total expected profit.
The solution for the elastic SDF and array SDF is given in Calculation View form
below. Note: HSCAN is the horizontal analog of VSCAN and was provided to the
participants:

function HSCAN (A2,B1:{A+α}1,f) returns B2:{A+α}2 {
B2:{A+α} = f(A2,B1)
}

The elastic SDF is written as:

function PROFIT( t1 C4:{B+α}4, t2 C6:{B+α}6 , t3 B7, t4 B8 ) returns C12t8 {
t5 C7:{B+α}7 = B7t3,t5 * (1 + C4t1 )
t6 C8:{B+α}8 = B8t4,t6 * (1 + C4t1 )
t7 C9:{B+α}9 = ( C6t2 * C7t5 ) − C8t6

t8 C12 = SUM(C9:{B+α}9t7 )
}

This example needs the extended system of Section 8.
The array SDF is written as:

function ARRAY PROFIT( C4,C6, B7, B8 ) returns C12 {
C7 = HSCAN(LAMBDA(X,Y,X*1+Y), B7, C4)
C8 = HSCAN(LAMBDA(X,Y,X*1+Y), B8, C4)
C9 = (C6 * C7) − C8
C12 = SUM(C9)
}

10.4 Protocol

Prior to the study, participants watched a 10-minute instructional video that explained how
to create SDFs, how to use elastic SDFs, and our array notation, with step-by-step exam-
ples. A study session consisted of two parts, one in which the participant used elastic SDFs,
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and one in which they used arrays to define SDFs. In each part, a practice task was per-
formed followed by three task trials. The order of conditions was counterbalanced to avoid
order effects: one group of participants used arrays in the first part, and the second group
of participants used elastic SDFs in the first part. After each part, participants completed a
questionnaire to measure their perceived workload. We used the NASA Task Load Index
(TLX) questionnaire, a commonly used tool in user-centred design research, which enables
users to self-assess their workload during a task (Hart and Staveland, 1988). The ques-
tionnaire consists of six subscales: mental demand, physical demand, temporal demand,
performance, effort and frustration. The user is asked to rate their subjective workload on
each scale, which ranges from 5 (low workload) to 100 (high workload) in increments of 5
(thus effectively a 20-point scale). These ratings can be averaged to yield the overall cogni-
tive load. After the second part, participants were interviewed on their overall experience.
The study lasted approximately two hours on average.

10.5 Results

10.5.1 Workload

A mixed analysis of variance (ANOVA) was used to analyse the TLX scores. The ANOVA
is a statistical model used to analyse any differences in mean score among groups. A sig-
nificance level (α) of 0.05 was used; we interpreted p-values lower than this to mean that
the observed difference was unlikely due to chance.

(a) Arrays vs elastic SDFs (b) Programming expertise

Fig. 17: Boxplots showing differences in cognitive load scores between groups. (a)
Cognitive load was lower with elastic SDFs than with arrays. (b) Cognitive load was not
significantly affected by programming expertise.
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Participants perceived a significantly lower workload for elastic SDFs (Figure 17a) (M
= 37.46, SD = 14.24) than arrays (M = 52.25, SD = 14.80), F(1, 18)25 = 10.22, p < 0.01.
There was no significant difference between the group starting with arrays (M = 47.92, SD
= 15.08) and the group starting with elastic SDFs (M = 41.79, SD = 17.02), F(1,18) = 1.93,
p = 0.2. There was also no significant interaction effect between SDF version and order,
F(1,18) = 1.31, p = 0.3. This lack of interaction means that both groups associated elastic
SDFs with a lower workload.

Our prototype was built as an Excel add-in, but issues in our implementation (unrelated
to the elasticity inference algorithm) created occasional delays in response to user inter-
actions, and instances where Excel needed to be restarted. Due to this limitation, we were
unable to draw a statistical comparison of task completion times between elastic SDFs and
array programming. Average task completion times for tasks unaffected by technical inter-
ruptions are described here to give some insight on the timing advantage of elastic SDFs,
but this comparison is not statistically formal. When participants used arrays, the average
task completion time was 13 minutes and 34 seconds (814 seconds). Using elastic SDFs,
the average task completion time was 7 minutes and 48 seconds (468 seconds).

Participants’ solutions were checked for correctness, and tasks were considered com-
pleted if they were correct. Of 160 task instances (2 conditions× 4 tasks× 20 participants),
33 (21%) were not completed. In only 3 cases, these were not completed because the
participant could not solve the problem. All 3 unsolved cases occurred with the array
programming condition, but with 3 different participants and 3 different tasks, thus the
inability to solve the task cannot be attributed to any individual or the hardness of any par-
ticular task. The remaining 30 non-completed tasks were not completed either because of
technical difficulties with the prototype (11 cases) or because too much time was spent on
earlier tasks and the allotted time for the experiment ran out before the participant could
reach later tasks (19 cases). However, every participant successfully completed at least one
task with arrays and elastic SDFs respectively, which is sufficient for the validity of the
TLX comparison.

10.5.2 Programming experience

We asked participants to rate their programming experience on a scale from 1 to 4, with
1 being ‘little to no experience’, 2 ‘some experience, still a beginner’, 3 ‘extensive expe-
rience, some expertise’ and 4 being ‘very experienced, high expertise’. They also stated
how many years of programming experience they had. We divided our participants into
‘low’ and ‘high’ expertise groups. Low expertise participants classified themselves as a
beginner (self-rated experience level of 1 or 2) or had less than two years of experience.
Seven participants fell into the low expertise group, 13 in the high expertise group. We did
not observe significant differences in cognitive load between low (M = 43.33, SD = 10.51)
and high (M = 46.71, SD = 8.61) expertise programmers, F(1,18) = 2.20, p = 0.16 (see
Figure 17b). There was also no interaction effect between SDF version or programming

25 The numbers in brackets indicate the degrees of freedom and are calculated from the number of groups and
number of participants of the study. These are used to assess how large the F value needs to be in order to reject
the hypothesis that mean scores of different groups are equal. For a detailed explanation of ANOVA results
and notation, see Field (2013).
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experience, F(1,18) = 0.09, p = 0.77, thus we do not have evidence that the observed dif-
ferences in cognitive load between elastic SDFs and array programming were affected by
users’ programming experience. This means that we did not obtain evidence that elastic
SDFs offer differing cognitive benefits to novice /low-expertise as well as high-expertise
programmers.

10.5.3 Interviews

In the interview, participants were positive about SDFs and could see them being applied
to their own work in which custom calculations often have to be re-used: ‘Just yesterday
I was doing things to calculate the pre-taxed value, after we know the post-taxed value.
Then I always just copy and paste the functions, over and over again, because the original
Excel file that I’m given is kind of messy. So if I have one function to do that, that would be
much easier.’ (P17, accountant).

Arrays were found useful in reducing the manual effort required to repeat a simple,
built-in function for a large range of cells. For example, when participants had to do a
multiplication for each row in the sheet, instead of having to enter a formula for the first
row, and then drag-fill the formula down the range of rows, they only needed to enter the
function once if these rows were held in one cell as an array, and the function was automat-
ically lifted over elements of the input array to produce an output array. However, when
authoring and invoking complex SDFs, participants preferred ranges to arrays, because
they were familiar with passing ranges as arguments into built-in functions. Similarly, par-
ticipants commented that they preferred elastic SDFs over arrays because the use of ranges
was more similar to their typical use of formulas: ‘I think elastic functions are easier to
work with, also with the mental model that you have of Excel, because you can more just
follow your normal Excel workflow.’ (P9, student in Computer Science).

Participants liked that the implementation details of SDFs are hidden when the SDF
is invoked, but they also wanted to have the option to see further details (i.e., a trace) at
invocation sites. Participants wanted to understand how the function behaved with different
types of input, debugging, and to inspect intermediate results: ‘This saves a lot of time, but
it’s always important to check the substeps. There is some trade-off between making steps
invisible and not being able to spot mistakes.’ (P13, former economist at a bank).

Furthermore, some participants desired control over which arguments to make elastic,
as not all elasticisable arguments might necessarily make sense to elasticise at the domain
level, for example when dealing with a contract or time period with a fixed length.

To address our research questions directly:

• RQ1: Elastic SDFs offered reduced cognitive load, and potentially lower authoring
time, compared to array programming.

• RQ2: Participants found arrays useful and transparent when mapping a simple for-
mula over a range, but preferred elastic SDFs for calculations involving complex
array combinators, because it allowed the use of familiar formula structure and
familiar behaviour of built-in functions that take ranges as arguments.

• RQ3: The observed differences were not affected by users’ programming expertise,
suggesting similar benefits to low-expertise as well as high-expertise programmers.
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In summary: the study found that elastic sheet-defined functions can successfully enable
end users to define functions that accept variable-length input, without having to write
array combinators. We also observed qualitatively that sheet-defined functions can be a
valuable tool in spreadsheet users’ work.

11 Related work

Generalising an SDF is an example of program synthesis, where the task is to synthesise
a program from some specification of what the program should do; see Gulwani et al.
(2017) for a recent survey. The specification is often partial; a popular choice is to allow
the user to supply a set of input/output examples. The field is a very active one and, like
our work, is mostly focused on the needs of non-expert end users rather than professional
programmers. However, our work seems unusual: rather than use input/output examples,
or program skeletons, we directly generalise a single concrete program to one that handles
a broader variety of inputs, and we offer provable guarantees that the result is not just any
generalisation but the most general one possible.

Sheet-defined functions originated in Forms (Ambler, 1987) and have been implemented
in various other research systems since then. Sestoft (2014) describes an implementation of
sheet-defined functions with first-class arrays (e.g., an array can be the value of a cell) and
compilation to the .NET intermediate language. He does not consider synthesis of SDFs
by example.

Various spreadsheet tools let a user define a computation on input of one size and have a
mechanism to modify the computation to take input of a different size, but the mechanism
has to be invoked manually by the user, and while a user can of course copy a computa-
tion, there is no means of sharing logic so that computations on different input sizes can
be updated together. The most rudimentary mechanism is drag-filling of formulas, which
has to be performed once for each group of contiguous aligned tiles in the computation.
(Indeed, drag-filling is the typical means by which a user would build an SDF for a certain
fixed input size before making the SDF elastic.) Excel also has support for “tables” with
a homogeneous formula in each column; adding rows to a table does the equivalent of a
drag-fill of the column formulas, and a syntax is provided to reference an entire column of
a table for aggregation.

Abraham and Erwig describe spreadsheet “templates” in the ViTSL language (Erwig
et al., 2006). Like an elastic SDF, a ViTSL template describes patterns of repeating formu-
las and can be specialised to any desired number of repetitions, but there are no means of
reusing the same template multiple times within a single spreadsheet. Also, the feature sets
differ. A ViTSL template can have a group of rows or columns that repeats (“ABABAB”)
but cannot specify that two separate groups have the same number of repetitions (“AAA
BBB”), while the reverse is true of an elastic SDF. In many cases, a sheet designed in one
of those ways can be converted to an equivalent sheet designed the other way, though the
attractiveness of the designs to a user may differ. As far as we can tell from the formal-
isation, ViTSL does not support offset references, which is a major limitation compared
to elastic SDFs. Similarly, Paine’s ‘Model Master’ language (Paine, 2008) offers a textual
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notation for describing spreadsheet computations, but its presentation in terms of array for-
mulas and separation from the grid (requiring the use of an auxiliary ‘layout’ file) make it
more suitable for use by expert programmers, rather than non-expert end users. It does not
support SDFs.

Tabula (Mendes and Saraiva, 2017) and Object Spreadsheets (McCutchen et al., 2016)
are structured spreadsheet tools that let a user construct a computation that applies to
variable-size input by writing element-wise formulas and then reuse the computation on
several inputs of different sizes by introducing an outer level of structural repetition around
it. However, they do not support extracting such a computation from an existing unstruc-
tured spreadsheet, nor (currently) packaging such a computation as a function that can
be called from anywhere. Furthermore, offset references are awkward to express in these
tools.

Our formal semantics appears to be the first denotational semantics for sheet-defined
functions. Sestoft (2014) presents a big-step semantics for simplified spreadsheet formu-
las, but it does not cover the details of dereferencing ranges nor of sheet-defined functions.
More recently, Bock et al. (2020) generalize Sestoft’s operational semantics to a spread-
sheet language with (concrete) sheet-defined functions and arrays, based on the FunCalc
system of Sestoft’s book. Neither these operational semantics nor our semantics attempts
to capture the details of incremental recalc of spreadsheets. A recent work (Mokhov et al.,
2018) explores the connection between incremental spreadsheet recalc and build systems.

Although the work of Peyton Jones et al. (2003) was informed by HCI theories of usabil-
ity (Green and Petre, 1996; Blackwell, 2002), our work appears to be the first report of a
study of sheet-defined functions with actual users.

12 Conclusion

No prior work on sheet-defined functions has considered how to author functions that take
variable-sized inputs. And yet a great many spreadsheets act on lists of items to be tallied
and carried in a multitude of ways. Our work paves the way for end-user programmers to
capture such computations as reusable functions, exemplified on short lists, and reliably
generalized to work on arbitrary-sized inputs. The time is ripe to introduce elastic SDFs to
the world of spreadsheets!
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Blackwell, A. F. 2002. First steps in programming: A rationale for attention investment mod-
els. In Human Centric Computing Languages and Environments, 2002. Proceedings. IEEE 2002
Symposia on, pp. 2–10. IEEE.

Blackwell, A. F., Burnett, M. M., and Jones, S. P. 2004. Champagne prototyping: A research
technique for early evaluation of complex end-user programming systems. In Visual Languages
and Human Centric Computing, 2004 IEEE Symposium on, pp. 47–54. IEEE.

Bock, A. A., Bøgholm, T., Sestoft, P., Thomsen, B., and Thomsen, L. L. 2020. On the semantics
for spreadsheets with sheet-defined functions. Journal of Computer Languages, 57.

Bostrom, R. P., Olfman, L., and Sein, M. K. 1990. The Importance of Learning Style in End-User
Training. MIS Quarterly, 14(1):101.

Caine, K. 2016. Local standards for sample size at CHI. In Proceedings of the 2016 CHI Conference
on Human Factors in Computing Systems, pp. 981–992. ACM.

Erwig, M., Abraham, R., Kollmansberger, S., and Cooperstein, I. 2006. Gencel: a program
generator for correct spreadsheets. Journal of Functional Programming, 16(3):293–325.

Field, A. 2013. Discovering Statistics Using IBM SPSS Statistics. Sage Publications Ltd., 4th edition.
Green, T. R. G. and Petre, M. 1996. Usability analysis of visual programming environments: a

‘cognitive dimensions’ framework. Journal of Visual Languages & Computing, 7(2):131–174.
Gulwani, S., Polozov, O., and Singh, R. 2017. Program synthesis. Foundations and Trends in

Programming Languages, 4(1-2):1–119.
Hart, S. G. and Staveland, L. E. 1988. Development of NASA-TLX (Task Load Index): Results of

empirical and theoretical research. Human mental workload, 1(3):139–183.
Jansen, B. 2015. Enron versus euses: A comparison of two spreadsheet corpora. arXiv preprint

arXiv:1503.04055.
McCutchen, M., Itzhaky, S., and Jackson, D. 2016. Object Spreadsheets: A new computational

model for end-user development of data-centric web applications. In Proceedings of the 2016
ACM International Symposium on New Ideas, New Paradigms, and Reflections on Programming
and Software, Onward! 2016, pp. 112–127, New York, NY, USA. ACM.

Mendes, J. and Saraiva, J. 2017. Tabula: A language to model spreadsheet tables. CoRR,
abs/1707.02833.

Mitchell, M. L. and Jolley, J. M. 2012. Research design explained. Cengage Learning.
Mokhov, A., Mitchell, N., and Peyton Jones, S. 2018. Build systems à la carte. PACMPL,
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A Moving tiles to avoid overlaps: details

In this Appendix, we describe the translation of an elastic SDF F to a overlap-free elastic
SDF by moving tiles. The basic idea is simple (we position the tiles dynamically in terms
of the length variables to keep them from colliding when the variables increase), but we
have to deal with several special cases. The stages of the algorithm (explained in detail in
the rest of this section) are:

1. Identify complexes of tiles that must remain together.
2. Ensure that the tiles within each individual complex do not collide when length

variables increase.
3. Move the complexes apart so they do not collide, and update range references

accordingly.

A.1 Identifying complexes

Two tiles in F are linked if they both occur in the target-tile set of some range reference
ρ , meaning that we cannot move the tiles to different locations unless we were to replace
ρ with a more complicated formula to read from both tiles, which the present algorithm
does not do. For example, in the COMPOUND elastic SDF of Section 8, tiles to and t4 are
linked by the reference F3to,t4 in the tile E4:E{3+α}. A complex is a set of tiles that are
transitively linked to one another. All target tiles of a given range reference belong to the
same complex, so if we move a whole complex by a certain number of rows and columns,
we just need to offset all range references to the complex by that number of rows and
columns. The first step of the translation is to identify complexes by entering linked tiles
in a union-find data structure.

A.2 Ensuring complexes are expandable

A complex is expandable if its tiles do not collide for any values of the length variables.
(It suffices to imagine setting all length variables to ∞.) Given that we do not separate the
tiles of a complex, we need every complex to be expandable. For typical elastic SDFs,
all complexes will be expandable, but in pathological cases, we may get a non-expandable
complex. In such a case, we remove all length variables involved in the tile overlap from F

by setting them to their initial values. Specifically, suppose that elastic tiles t1 and t2 with
ranges a1 : N1m1 and a2 : N2m2 collide if all length variables are set to ∞. Two rectangles
overlap if and only if their row spans overlap and their column spans overlap. We know
that t1 and t2 do not overlap in the original SDF F , so their row spans must be disjoint or
their column spans must be disjoint (or both). If t1 and t2 are disjoint in rows but overlap
in columns in F , then we remove all length variables that appear in m1 and m2, which
will leave the tiles t1 and t2 in F with their initial row spans, which do not overlap. (This
change could also affect the column spans if the same variable appeared in both a height
and a width, although as mentioned in Section 6.7, this never occurs in a principal regular
generalisation in our current system.) Conversely, if t1 and t2 are disjoint in columns but
overlap in rows in F , then we remove all length variables that appear in N1 and N2.
If t1 and t2 are disjoint in both rows and columns in F (e.g., elastic ranges B4:{A+α}4
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and D2:D{1+β} with initial values α = β = 2), then either change would be sufficient to
resolve the overlap, but for symmetry, we perform both of them. In this case, after ensuring
complex expandability, we cannot claim to have the “principal regular generalisation with
expandable complexes”, but it’s a pathological case anyway.

A.3 Positioning the complexes

Finally, we are ready to position the complexes dynamically so they do not collide. In this
section, we assume that elastic coordinates x may contain positive linear combinations of
length variables, i.e., they are of the form {x + ∑i uiαi} where ui > 0.

If m and m′ are elastic axis positions, we say that m is potentially greater than m′ if either
the constant term or some length variable coefficient of m−m′ is greater than zero. We say
that elastic spans m1 : m2 and m′1 : m′2 potentially overlap if m2 is potentially greater than
m′1 − 1 and m′2 is potentially greater than m1 − 1. Finally, two elastic rectangles potentially
overlap if their row spans potentially overlap and their column spans potentially overlap.
(There are various cases in which two elastic rectangles that potentially overlap do not
actually overlap for any length assignment, but that’s OK.) The upper bound of a set of
elastic coordinates is an elastic coordinate that has the maximum of their constant terms
and the maximum of their coefficients for each length variable, and the lower bound is
defined analogously.

The positioning algorithm is as follows: Compute an elastic bounding rectangle for each
complex by taking upper and lower bounds of the coordinates of the tiles of the complex.
Then do the following for each complex C , where complexes are ordered according to the
first occupied cell of each complex and cell addresses are compared lexicographically:

1. Let Nm be the current upper left corner of C ’s bounding rectangle, and let S be
the set of previously processed complexes whose bounding rectangles potentially
overlap that of C . If S is empty, then positioning of C is complete, otherwise
continue.

2. Let SR be the set of complexes in S whose row spans in F are disjoint from the row
span of C in F , and define SC analogously for columns. Let S′ = S \ (SR ∪ SC); a
complex may belong to S′ if its bounding rectangle in F overlaps that of C even
though we know that the actual tiles do not overlap.

3. Let m′ be the upper bound of m and one more than the bottom bounding edge of
each complex in SR ∪ S′, and let N′ be the upper bound of N and one more than the
right bounding edge of each complex in SC ∪ S′.

4. Move C so that its upper left corner is at N′m′. It is now disjoint from SR ∪ S′ in rows
and disjoint from SC ∪ S′ in columns, so it is disjoint from all complexes in S, but
it may collide with other complexes. Return to step 1. (The process must terminate
because after C potentially overlaps a given previously processed complex and is
moved either down or to the right, C is only moved further down or to the right, so
it can never potentially overlap the same complex again.)

Once all complexes have been positioned, we update all range references to reflect the
new locations of their respective complexes, and we have the overlap-free extended elastic
SDF.



68 M. McCutchen et al.

Proposition 4. For every well-defined elastic SDF F , tile movement produces a well-
defined overlap-free extended elastic SDF F o f that is semantically equivalent to some
well-defined elastic SDF F

′
of which F is a generalisation.

(F
′

is the elastic SDF that we have after making complexes expandable.)
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