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... in the summer of 1958 John McCarthy decided to investigate differentiation as an

interesting symbolic computation problem, which was difficult to express in the primitive

programming languages of the day. This investigation led him to see the importance of

functional arguments and recursive functions in the field of symbolic computation. From
Norvig [Norvig 1992, p248].

1 INTRODUCTION

Forward-mode Automatic Differentiation is relatively straightforward, both as a runtime technique
using dual numbers, or as a source-to-source program transformation. However, forward-mode
AD is usually considered wildly inefficient as a way to compute the gradient of a function, because
it involves calling the forward-mode AD function n times Ð and n may be very large (e.g. n = 106).
This has led to a tremendous amount of work on reverse-mode AD. As a source-to-source

transformation, reverse-mode AD is characterised by the necessity to maintain temporary variables
holding partial results, to be consumed during a łreverse passž of gradient computation. Modern
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systems devote considerable effort (e.g., checkpointing) to optimizing the recompute/store tradeoff
of these temporaries.
Our key contribution is this: we start from the łwildly inefficientž loop in which the forward-

mode function is called n times, and demonstrate that it can be made efficient simply by applying a
collection of non-AD-specific compile-time optimising transformations. In fact, our optimisations
are sufficiently aggressive to generate code that computes the gradient with efficiency that is
sometimes better than standard reverse-mode techniques. Moreover, the entire pipeline is much
simpler: there is no need to grapple with the complexities of reverse mode Ð it simply falls out
from the result of optimisation.
More specifically, our contributions are as follows:

• We introduce a small functional array language (Section 3), and describe forward-mode auto-
matic differentiation as a simple source-to-source program transformation (Section 4).

• We introduce a collection of optimising transformations, none of them AD-specific, for our
language (Section 5).

• For some small but realistic benchmarks, we show that our transformations suffice to generate
extremely efficient code, starting from a naïve loop that repeatedly calls the forward derivative
of the function. We compare our results with those of other AD systems (Section 6).

We discuss related work in Section 7.

2 BACKGROUND

Automatic Differentiation (AD) systematically applies the chain rule, and evaluates the derivatives
for the primitive arithmetic operations (such as addition, multiplication, etc.). One of the key
properties of AD is the constant-time overhead of the differentiated program with respect to the
original code; not being careful about sharing during the process of differentiation, can lead to code
explosion [Baydin et al. 2015b].
There are two main modes for implementing AD. Forward-mode computes the derivative part

(tangent part) alongside the original computation while making a forward pass over the program.
Reverse-mode makes a forward pass to compute the original part of the program, followed by a back-
ward pass for computing the derivative part (adjoint part). Consider a program in ANF [Flanagan
et al. 1993]:

f
(
x1, ...,xn

)
=

letv1 = e1
...
letvn = en
vn

To compute the derivative of this function using the forward-mode AD, we associate a tangent

variable to each variable vi , denoted by
⇀
vi . Each tangent variable is computed as

⇀
vi =

⇀
x1 ×

∂vi
∂x1
+

... +
⇀
xn × ∂vi

∂xn
. In order to compute the partial derivative of f with respect to xi , we assign

⇀
xi = 1

and
⇀
x j = 0 for i , j, and call the transformed code.

Reverse-mode AD computes the n partial derivatives simultaneously, rather than in two different
iterations. To compute the derivative of this function using this approach, we associate an adjoint

variable to each variable vi , denoted by
↼
vi , which is computed as

↼
vi =

∂y

∂vi
. As a result, if we are

interested in computing the partial derivative of function f with respect to x1, we have to compute

the value of
↼
x1. Similarly, if we are interested in the partial derivative of this function with respect
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f : Rn → Rm Jf =
∂ f

∂x
=

∂f1
∂x1

· · ·
∂f1
∂xn

...
. . .

...

∂fm
∂x1

· · ·
∂fm
∂xn




Forward Mode

Reverse Mode

d̃f

Fig. 1. The Jacobian Matrix of a Function. Forward-mode AD computes a column of this matrix, whereas the

reverse-mode AD computes a row of this matrix. d̃f computes the full Jacobian matrix using a vectorized

variant of the forward-mode AD.

to x2, we have to compute the value of
↼
x2. To do so, we have to apply the chain rule in the reverse

order.
Generally speaking, forward and reverse-mode compute a column and a row, respectively, of the

full Jacobian matrix J at each invocation. More precisely, for a function with an input vector of size
n and an output vector of sizem, the forward mode approach computes a column vector of sizem,
and the reverse mode computes a row vector of size n (see Figure 1).
For a class of optimisation problems, such as various computer vision problems using the

Levenberg-Marquardt algorithm [Levenberg 1944; Marquardt 1963; Moré 1978], one is required to
compute the full Jacobian matrix. In such cases, neither of the two techniques perform efficiently.
To compute the full Jacobian matrix, both forward and reverse-mode techniques must iterate over
either the columns or the rows of the Jacobian matrix, respectively. Given that both approaches
have a constant overhead over the original computation, the forward mode technique is more
efficient for computing the full Jacobian matrix whenm ≫ n, whereas the reverse mode AD is
more efficient when n ≫m. However, when n andm are in the same range, it is not clear which
approach performs better. Moreover:

• By carefully examining the body of the loops needed for computing the full Jacobian matrix,
one can observe that many computations are loop-invariant and are unnecessarily performed
multiple times. Thus, there is a lost opportunity for loop-invariant code motion for hoisting
such expressions outside the loop, thus asymptotically improving the performance (cf. the
NNMF and Bundle Adjustment experiments in Section 6).

• Furthermore, while the result of automatic differentiation is known to have only a constant
factor more arithmetic operations than the original program, the constant can be significant;
this overhead can have a dramatic impact on the run-time performance in practice. More
specifically, in applications involving the manipulation of vectors, many intermediate vectors
are allocated that can be removed. The optimisation for eliminating such intermediate vectors
is known as deforestation [Coutts et al. 2007; Gill et al. 1993; Svenningsson 2002; Wadler 1988]
or loop fusion in the functional programming community. This optimisation opens the door
for many other optimisations such as normalising loops that are iterating over sparse vectors
with a single non-zero element into a single statement (cf. Example 5 in Section 5).

3 OVERVIEW

In this section, we start with an overview of the compilation process in d̃f, which is shown in
Figure 2. This figure demonstrates the position of d̃f with respect to existing AD tools.
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M̃ / MATLAB / NumPy Diff. M̃ / MATLAB / NumPy

F̃ (Section 3.1) / F# Diff. F̃/ F#

C / C++ Diff. C / C++

Lowering (Section 3.2)

ADiMat [Bischof et al. 2002] /

Autograd [Maclaurin et al. 2015]

Lowering

d̃f (Section 4.2) /

DiffSharp [Baydin et al. 2015a]

DPS [Shaikhha et al. 2017] DPS [Shaikhha et al. 2017]

Tapenade [Hascoet and Pascual 2013] /

ADIC [Narayanan et al. 2010]

Fig. 2. Compilation process in different AD systems. The solid arrows correspond to the pipeline used in d̃f.

d̃f starts from a program written in a high-level linear algebra library, called M̃ (Section 3.2).
This program is lowered into its implementation in a higher-order functional language with array

support, called F̃ (Section 3.1). If a part of the program requires computing differentiation (which
are specified by using high-level differentiation API exposed by d̃f, as mentioned in Section 4.1) d̃f
uses AD transformation rules (Section 4.2) for transforming the involved expressions into their
differentiated form.
Finally, after applying several simplifications such as loop fusion, partial evaluation, data lay-

out transformation, etc. (Section 5) the differentiated program is transformed into low-level C
code. The generated C code uses efficient stack-discipline memory management by using the
destination-passing style (DPS) technique [Shaikhha et al. 2017]. Alternatively, one can use other
array programming languages such as Futhark [Henriksen et al. 2017] and SAC [Grelck and Scholz

2006] as the target language for differentiated F̃ programs.
Next, we present the core functional language used in d̃f, on top of which we define source-to-

source AD transformation and simplification rules.

3.1 F̃

F̃ (pronounced as F smooth) is a subset of F#, an ML-like higher-order functional programming
language. It is designed to be expressive enough to make it easy to write array-processing workloads,
while simultaneously being restricted enough (e.g., avoiding partially applied functions and returning
functions from lambdas which are enforced by the (T-App) and (T-Abs) typing rules, respectively)
in order to compile it to code that is as efficient as hand-written C, with very simple and efficient
memory management [Shaikhha et al. 2017].
Figure 3 shows the abstract syntax (parentheses can be used as necessary), type system, and

several built-in functions of F̃. x and e denote one or more variables and expressions, respectively,

which are separated by spaces, whereas, T represents one or more types which are separated by

⇒. In addition to the usual λ-calculus constructs (abstraction, application, and variable access), F̃
supports let binding and conditionals.
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e ::= e e | fun x -> e | x ś Application, Abstraction, and Variable Access

| n | i | N ś Scalar, Index, and Cardinality Value

| c ś Constants (see below)

| let x = e in e ś (Non-Recursive) Let Binding

| if e then e else e ś Conditional

T ::= M ś (Non-Functional) Expression Type

| T⇒ M ś Function Types (No Currying)

M ::= Num ś Numeric Type

| Array<M> ś Vector, Matrix, ... Type

| M × M ś Pair Type

| Bool ś Boolean Type

Num ::= Double | Index | Card ś Scalar, Index, and Cardinality Type

Typing Rules:

(T-App)
e0 : T ⇒ M e : T

e0 e : M
(T-Abs)

Γ ∪ x : T ⊢ e : M

Γ ⊢ λx.e : T ⇒ M
(T-Var)

x : T ∈ Γ

Γ ⊢ x : T

(T-Let)
Γ ⊢ e1 : T1 Γ, x : T1 ⊢ e2 : T2

Γ ⊢ let x = e1 in e2: T2

(T-If)
e1 : Bool e2 : M e3 : M

if e1 then e2 else e3 : M
Scalar Function Constants:
+ | - | * | / | ** : Num, Num ⇒ Num
sin | cos | tan |
log | exp : Num ⇒ Num

> | < | == | <> : Num ⇒ Num ⇒ Bool

&& | || : Bool ⇒ Bool ⇒ Bool

! : Bool ⇒ Bool

Vector Function Constants:
build : Card ⇒ (Index⇒M) ⇒ Array<M>

ifold : (M⇒ Index ⇒M)⇒ M⇒ Card ⇒ M
get : Array<M>⇒Index ⇒M
length : Array<M>⇒Card

Pair Function Constants:

pair : M1 ⇒ M2 ⇒M1 ×M2 fst : M1 ×M2 ⇒M1 snd : M1 × M2 ⇒M2

Syntactic Sugar:
e0[e1] = get e0 e1
(e0, e1) = pair e0 e1
e1 bop e2 = bop e1 e2
Vector = Array<Double>

Matrix = Array<Array<Double>>

DoubleD = Double × Double

VectorD = Array<Double × Double>

MatrixD = Array<Array<Double × Double>>

Fig. 3. The syntax, type system, and function constants of the core F̃.

F̃ supports array programming by defining the following built-in functions: build for producing
arrays; ifold for iteration for a particular number of times (from 0 to n-1) while maintaining a
state across iterations; length to get the size of an array; and get to index an array.

One of the key features of F̃ is its support for both source-to-source automatic differentiation
and global optimisations such as loop-invariant code motion and loop fusion. The transformations
required for automatic differentiation are presented in Section 4.2, and the ones for optimisation
and simplification are shown in Section 5.

Next, we show how a Linear Algebra library can be defined on top of F̃.
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Table 1. Equivalent operations in Matlab, R, NumPy, and M̃.

Matlab R NumPy M̃

A * B A %*% B A.dot(B) matrixMult A B

A + B A + B A + B matrixAdd A B

A’ t(A) A.T matrixTranspose A

ones(n, m) matrix(1, n, m) ones((n, m)) matrixOnes n m

zeros(n, m) matrix(0, n, m) zeros((n, m)) matrixZeros n m

eye(n) diag(n) eye(n) matrixEye n

3.2 M̃

M̃ is a functional Linear Algebra library, mainly inspired byMATLAB and R, programming languages

which are heavily used by data analysts. By providing high-level vector and matrix operations, M̃
frees the users from low-level details and enables them to focus on the algorithmic aspects of the
problem in hand.

M̃ is simply a F̃ library, but it can also be thought of as an embedded domain-specific language

(EDSL) [Hudak 1996]. Figure 4 demonstrates a subset of M̃ operations which are defined as func-

tions in F̃. This library is expressive enough for constructing vectors and matrices, element-wise
operations, accessing a slice of elements, reduction-based operations (computing the sum of vector
elements), matrix transpose, and matrix multiplication.1 Supporting more sophisticated operations
such as matrix determinant and matrix decomposition is beyond the scope of the current paper,

and we leave it for the future. As discussed before, M̃ is inspired by MATLAB and R. As a result,

there is a mapping among the constructs of M̃ and these matrix-based languages. Hence, it is easily

possible to translate a program written in one of these languages to M̃. Table 1 demonstrates the

mapping among a subset of the constructs of MATLAB, R, NumPy and M̃.
Example 1. Assume that we have a matrix M and two vectors u and v (which are represented
as column matrices and are independent of M). Based on matrix calculus one can prove that
∂
(
uMvT

)
∂M

= uTv . However, computing the differentiated version of this function using forward-
mode AD tools requires multiple iterations over the differentiated program for every element in
the matrixM . By using the reverse-mode AD, one can invoke the differentiated function only once,
and the adjoint parts of the input matrix M will be filled in. We will show in Section 5 that d̃f
derives the gradient of this expression with respect toM , resulting in an expression equivalent to
uTv . This optimises away multiple iterations over the differentiated program for each element of
matrixM , in contrast to the existing AD tools based on the forward-mode AD technique.

For the moment, we only show how the matrix expression uMvT is expressed in M̃:

let f = fun u M v ->
let um = vectorToMatrix u
let vt = matrixTranspose (vectorToMatrix v)
let m = matrixMult um (matrixMult M vt)
m[0][0]

The last expression is for accessing the single scalar element of a 1 × 1 matrix.
△

1We have duplicated identical implementations for functions such as vectorMap and matrixMap (and similarly for

vectorMap2 and matrixMap2 ) because of the restrictions imposed by F̃ [Shaikhha et al. 2017]. More specifically, the C

code generation process does not handle polymorphic functions. Hence, we need to specify two different monomorphic

functions with the same implementation for such functions.
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let vectorRange = fun n ->

build n (fun i -> i)

let vectorFill = fun n e ->

build n (fun i -> e)

let vectorHot = fun n i ->

build n (fun j -> if i = j then 1 else 0)

let vectorMap = fun v f ->
build (length v) (fun i -> f v[i])

let vectorMap2 = fun v1 v2 f ->
build (length v1) (fun i -> f v1[i] v2[i])

let vectorZip = fun v1 v2 ->
vectorMap2 v1 v2 (pair)

let vectorAdd = fun v1 v2 ->
vectorMap2 v1 v2 (+)

let vectorEMul = fun v1 v2 ->
vectorMap2 v1 v2 (×)

let vectorSMul = fun v s ->
vectorMap v (fun a -> a × s)

let vectorSum = fun v ->
ifold (fun s i -> s + v[i]) 0 (length v)

let vectorDot = fun v1 v2 ->
vectorSum (vectorEMul v1 v2)

let vectorNorm = fun v ->
sqrt (vectorDot v v)

let vectorSlice = fun v s e ->
build (e − s + 1) (fun i -> v[i + s])

let vectorToMatrix = fun v ->
build 1 (fun i -> v)

let vectorOutProd = fun v1 v2 ->
let m1 = vectorToMatrix v1
let m2 = vectorToMatrix v2
let m2T = matrixTranspose m2
matrixMul m1 m2T

let matrixRows = fun m -> lengthm
let matrixCols = fun m -> length (m[0])
let matrixZeros = fun r c ->
build r (fun i -> vectorFill c 0)

let matrixOnes = fun r c ->
build r (fun i -> vectorFill c 1)

let matrixEye = fun n ->

build n (fun i -> vectorHot n i)
let matrixHot = fun n m r c ->
build n (fun i ->
build m (fun j ->
if (i = r && j = c) then 1 else 0

) )
let matrixMap = fun m f ->
build (lengthm) (fun i -> f m[i])

let matrixMap2 = fun m1 m2 f ->
build (lengthm1) (fun i -> f m1[i] m2[i])

let matrixAdd = fun m1 m2 ->
matrixMap2 m1 m2 vectorAdd

let matrixTranspose = fun m ->

build (matrixCols m) (fun i ->
build (matrixRows m) (fun j ->
m[j][i]

) )
let matrixMul = fun m1 m2 ->
let m2T = matrixTranspose m2
build (matrixRows m1) (fun i ->
build (matrixCols m2) (fun j ->
vectorDot (m1[i]) (m2T[j])

) )
let matrixTrace = fun m ->

ifold (fun s i -> s+m[i][i]) 0 (lengthm)

Fig. 4. A subset of M̃ constructs defined in F̃.

4 DIFFERENTIATION

In this section, we show the differentiation process in d̃f. First, we start by the high-level API
exposed by d̃f to the end users. Then, we show how d̃f uses automatic differentiation behind
the scenes for computing derivatives. Finally, we present the optimisations offered by d̃f, and we
demonstrate how d̃f can use these optimisations to deduce several matrix calculus identities.

4.1 High-Level API

For computing the derivative of an arbitrary function, d̃f provides the deriv construct. This
construct can be better thought of as a macro, which is expanded during compilation time. The
expanded expression includes the expression of the original computation, which is given as the
first argument (and can be an arbitrary scalar, vector, or matrix expression), and the derivative
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of this expression with respect to the variable given as the second argument, referred to as the
independent variable. Note that one can easily compute the derivative of an expression with respect
to a list of free variables by multiple invocation of the deriv construct.
Figure 5 shows the implementation of the deriv construct (denoted by the GJeKx compile-

time transformation, corresponding to computing the derivative of e with respect to x). First,
deriv constructs a lambda function which has the free variables of the given expression as its
input parameters.2 The produced lambda function is given as input to source-to-source automatic
differentiation (denoted by DJK), which can handle expressions of arbitrary type as explained later
in Section 4.2. The differentiated function is applied to the dual number encoding of all the free
variables (using theAiJK compile-time transformation, corresponding to the dual number encoding
of a tensor expression of rank i). Based on the type of the independent variable, the result of this
applied function will be the result scalar value, or an element of the result vector or matrix.

If the free variable is different than the input variable with respect to which we are differentiating
(i.e., the independent variable), the derivative part is a zero scalar, vector, or matrix. Otherwise, the
derivative part is a one-hot encoding scalar, vector, or matrix. If the independent variable has a
scalar type, deriv returns the applied function. However, if the independent variable has a vector
type, deriv constructs a vector with the same number of elements as the independent variable.
For computing the r th element of the result vector, the corresponding input vector is a one-hot
encoding with a single one at the r th position. The situation is similar for an independent variable
with a matrix type; the corresponding one-hot encoding matrix has a single one at the r th row and
c th column.
Example 2. Let us assume that we would like to compute the derivative of a program computing
the cosine function with respect to its input:

cos a

The derivative of this program at point a is represented as follows:

snd (deriv (cos a) a)

This expression is transformed into the following expression after expanding the deriv macro:

snd ((DJfun a -> cos aK) (a, 1))
△

Furthermore, d̃f provides three additional differentiation constructs, inspired by AD tools such as
DiffSharp [Baydin et al. 2015a]: 1) diff computes the derivative of a function, from a real number
to a real number, with respect to its input, 2) grad computes the gradient of a function, from a
vector of real numbers to a real number, with respect to its input vector, and 3) jacob computes
the Jacobian matrix of a vector-valued function, a function from a vector of real numbers to a
vector of real numbers, with respect to its input vector. Figure 6 demonstrates how these high-level
differentiation constructs are defined in terms of the source-to-source AD transformation construct
D.
Example 2 (Continued). For the previous example, if we would like to use the diff construct,
first we have to define the following function:

g = fun x -> cos(x)

The derivative of this function at point a is represented as follows:

2deriv only handles expressions of scalar, vector, or matrix type, and cannot be used for function types. The same restriction

applies for the extracted free variables, but there is no restriction on the type of other sub-expressions.
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deriv e x = GJeKx

GJeKx =

if x: Double (DJfun vi -> eK) A0JviKx
if x: Vector build (length x) (fun r -> (DJfun vi -> eK) A1JviKx,r)
if x: Matrix build (matrixRows x) (fun r ->

build (matrixCols x) (fun c -> (DJfun vi -> eK) A2JviKx,r,c))
where

vi = fvs(e)

A0JxKx = (x, 1)
A0JvKx = (v, 0)

A1JxKx,r = vectorZip x (vectorHot (length x) r)
A1JvKx,r = vectorZip v (vectorZeros (length v))

A2JxKx,r,c = matrixZip x (matrixHot (matrixRows x) (matrixCols x) r c)
A2JvKx,r,c = matrixZip v (matrixZeros (matrixRows v) (matrixCols v))

Fig. 5. Implementation of the deriv construct as a source-to-source transformation pass.

Oper. Type Definition

diff (Double⇒Double)⇒ fun f x -> DJfK (x, 1)
Double⇒DoubleD

grad (Vector⇒Double) fun f v ->
⇒Vector⇒VectorD build (length v) (fun i ->

jacob (Vector⇒Vector) DJfK (vectorZip v (vectorHot (length v) i))
⇒Vector⇒MatrixD )

Fig. 6. High-Level Differentiation API for F̃.

Table 2. Different types of matrix derivatives.

❵
❵
❵
❵
❵
❵

❵
❵

❵
❵
❵
❵

Input Type
Output Type

Scalar Vector Matrix

Scalar diff vdiff mdiff

Vector grad jacob ś

Matrix mgrad ś ś

snd ((diff g) a)

which is expanded to the following program:

snd (DJgK (a, 1))
△

Table 2 summarizes different matrix derivatives, and how they can be computed using our high-level
API. Note that the definition of vdiff and mdiff is similar to diff, and the definition of mgrad is
similar to grad and jacob (cf. Figure 6). Note that the deriv construct subsumes all these operators.
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One key advantage of defining different matrix derivatives in terms of automatic differentiation
is that one no longer needs to define the matrix calculus derivative rules for all different combi-
nations shown in Table 2. Instead these rules can be deduced automatically from the automatic
differentiation rules defined for scalar values. Moreover, even the algebraic identities for matrix
derivative can be deduced by using the simplification rules presented in Section 5.

Next, we present the source code transformation required for applying automatic differentiation
rules.

4.2 Source-to-Source Automatic Differentiation

d̃f relies on source-to-source translation for implementing forward-mode automatic differentiation.
Each expression is converted into an expression containing both the original computation, together
with the derivative computation, a.k.a. the dual number technique. The scalar expressions are
transformed into a pair of values, the original computation and the derivative computation. The
vector expressions are transformed into vectors containing tuple expressions, instead of scalar
expressions. The situation is similar for higher-rank tensors such as matrices.
The rules for automatic differentiation are demonstrated in Figure 7. DJeK specifies the AD

translation for expression e. A variable y is translated as
⇀

y, emphasizing that the translated variable
keeps the derivative part as well (D-Abs, D-Var, and D-Let). PJeK is a shorthand for extracting the
original computation from the translated term DJeK, while EJeK is a shorthand for accessing the
derivative part. Note that in order to avoid redundant computation and code explosion, especially
for the differentiation rules such as the product rule (D-Mult), the arguments are bound to a new
variable.

Constructing an array is differentiated as an array with the same size, however, the way that
each element of the array is constructed is differentiated (D-Build). Differentiating an iteration
results in an iteration with the same number of iterations, and with the initial state and the next
state function both differentiated (D-IFold). The differentiation of the length and indexing an array,
is the same as the length and indexing the differentiated array, respectively (D-Length and D-Get).

Differentiating a pair of elements results in the pair of differentiated elements (D-Pair). Similarly,
differentiating the projection of a pair, is the projection of the differentiated pair (D-Fst, D-Snd).
For other scalar-valued functions, the differentiation rules are similar to the corresponding rules in
mathematics.
Example 2 (Continued). In the previous example, based on the automatic differentiation rules,
the differentiated program would be as follows:

⇀

g = fun
⇀

x -> -snd (
⇀

x) * sin(fst (
⇀

x))

Based on the definition of the diff construct, we have to use the AD version of the function (i.e.,
g) and assign 1 to the derivative part of the input. So the value of cos′ for the input a is computed
as follows:

snd ((diff g) a) { snd (DJgK (a, 1)) { snd (
⇀

g (a, 1)) {

-snd ((a, 1)) * sin(fst ((a, 1))) { -1 * sin(a) { -sin(a)
△

Similarly, we can compute the partial derivatives of a given function, by setting the desired derivative
part to one, and the rest of derivatives to zero. This process is illustrated in the next example.
Example 3. Assume that we would like to compute the partial derivative of the expression a * b

with respect to a, which is represented as follows in F̃:

snd (deriv (a * b) a)
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This expression is expanded as follows:

snd (DJfun a b -> a * bK (a, 1) (b, 0))

Note that the derivative part of the second input is set to 0. Similar to the previous example, the
result is as follows:

snd ((fun
⇀

a
⇀

b -> (fst (
⇀

a)*fst (
⇀

b), fst (
⇀

a)*snd (
⇀

b) + snd (
⇀

a)*fst (
⇀

b))) (a, 1) (b, 0))

which is evaluated as follows:

snd ((a * b, 1 * b + a * 0)) { 1 * b + a * 0 { b
△

It is important to note that d̃f performs many of the evaluation steps shown for the previous
examples during compilation time, i.e., performs partial evaluation. Section 5 gives more details on
the optimisations and simplifications offered by d̃f.

4.3 Perturbation Confusion and Nested Differentiation

In several problems such as computing the Hessian matrix, one requires to compute the differentia-
tion of a differentiated program. In such cases, one should be careful dealing with tangent parts.
We demonstrate this problem in the next example.
Example 4. Here is the classical example showing the perturbation confusion problem:

∂

∂x

(
x
∂x + y

∂y

)

This expression should be evaluated to 1 at every point. However, an AD tool can mistakenly
evaluate this expression to 2. This is because of confusing the tangent part (perturbation) of the
free variable x, while computing the inner derivative. This is known as the perturbation confusion

problem in the AD literature. △

If one uses the differentiation API of Figure 6, the perturbation confusion problem appears.
In order to avoid this problem, the deriv macro needs to be used. The macro expansion of the
deriv operator can be thought of as a preprocessing step that binds each of the perturbations to a

different variable [Siskind and Pearlmutter 2005]. Then, it is the responsibility of the F̃ programming
language implementation (e.g., using alpha renaming as mentioned in [Siskind and Pearlmutter
2008]) to avoid the perturbation confusion problem. We demonstrate this fact on our running
example.

Example 4 (Continued). The previous expression is implemented as follows in the F̃ language:

fun x y ->

snd (
deriv (x * (snd (
deriv (x + y) y

))) x
)

After expanding the inner deriv macro, the following expression is derived:
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(D-App) DJe0 e1K = (DJe0K) (DJe1K)
(D-Abs) DJfun x -> eK = fun

⇀

x -> DJeK
(D-Var) DJyK =

⇀

y

(D-Let) DJlet x = e1 in e2K = let
⇀

x = DJe1K in
DJe2K

(D-If) DJif e1 then e2 else e3K = if (fst DJe1K) then DJe2K else DJe3K

(D-Build) DJbuild e0 e1K = build (fst DJe0K) (fun i -> (DJe1K) (i, 0))
(D-IFold) DJifold e0 e1 e2K = ifold (fun x i ->

(DJe0K) x (i, 0)) DJe1K (fst DJe2K)
(D-Get) DJe0[e1]K = (DJe0K)[fst DJe1K]
(D-Length) DJlength e0K = (lengthDJe0K, 0)

(D-Pair) DJ(e0, e1)K = (DJe0K, DJe1K)
(D-Fst) DJfst e0K = fst (DJe0K)
(D-Snd) DJsnd e0K = snd (DJe0K)

(D-Scalar) DJeK = (PJeK, EJeK)

(D-Add) EJe1 + e2K = EJe1K + EJe2K
(D-Mult) EJe1 * e2K = EJe1K * PJe2K + PJe1K * EJe2K
(D-Div) EJe1 / e2K = (EJe1K * PJe2K - PJe1K * EJe2K) / (PJe2K ** 2)
(D-Neg) EJ-e1K = -EJe1K
(D-Pow) EJe1 ** e2K = (PJe2K * EJe1K / PJe1K + log(PJe1K) * EJe2K) *

(PJe1K ** PJe2K)
(D-Sin) EJsin e1K = EJe1K * (cos PJe1K)
(D-Cos) EJcos e1K = -EJe1K * (sin PJe1K)
(D-Tan) EJtan e1K = EJe1K / ((cos PJe1K) ** 2)
(D-Log) EJlog e1K = EJe1K / PJe1K
(D-Exp) EJexp e1K = EJe1K * (exp PJe1K)

(DT-Fun) DTJT1 ⇒ T2K = DTJT1K ⇒ DTJT2K
(DT-Exp) DTJNumK = Num × Num
(DT-Arr) DTJArray<M>K = Array<DTJMK>
(DT-Pair) DTJM1 × M2K = DTJM1K × DTJM2K

Fig. 7. Automatic Differentiation Rules for F̃ Expressions.

fun x y ->

snd (
deriv (
let t1 = snd (
(fun

⇀

x
⇀

y -> (fst (
⇀

x) + fst (
⇀

y), snd (
⇀

x) + snd (
⇀

y))) (x, 0) (y, 1)
)
x * t1) x

)
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Note that the variable t1 is created in order to avoid code explosion that can result from the product
rule (cf. Section 4.2). Expanding the outer deriv macro results in the following expression:

fun x y ->

snd (
(fun

⇀

x
⇀

y ->

let
⇀

t1 = snd (

(fun
⇀

⇀

x
⇀

⇀

y ->

( ( fst (fst (
⇀

⇀

x)) + fst (fst (
⇀

⇀

y)) , snd (fst (
⇀

⇀

x)) + snd (fst (
⇀

⇀

y)) ) ,

( fst (snd (
⇀

⇀

x)) + fst (snd (
⇀

⇀

y)) , snd (snd (
⇀

⇀

x)) + snd (snd (
⇀

⇀

y)) ) )
) (

⇀

x, (0, 0)) (
⇀

y, (1, 0))
)

(fst (
⇀

x) * fst (
⇀

t1), snd (
⇀

x) * fst (
⇀

t1) + fst (
⇀

x) * snd (
⇀

t1))
) (x, 1) (y, 0)

)

Note that this macro expansion results in the inner perturbation variables
⇀

⇀

x and
⇀

⇀

y which are
different from the outer variables

⇀

x and
⇀

y. This different naming results in avoiding the perturbation
confusion problem. Finally, partially evaluating the inner expression results in the following
expression:

fun x y ->

1
△

5 EFFICIENT DIFFERENTIATION

In this section, we show how d̃f achieves efficient differentiable programming. First, we show

several transformation rules applicable on F̃ expressions. We show how these transformation rules

are used to derive matrix-algebraic identities, in the level of F̃ expressions. Then, we show how we

generate C code from F̃ expressions for more efficient memory management.

5.1 Transformation Rules

There are various algebraic identities that one can define for F̃. Based on these identities, vector
and matrix-based programs, as well as differentiated programs can be heavily optimised. Figure 8

shows a set of optimisations defined for F̃. Through examples, we show how these rewrite rules
can discover vector and matrix-level algebraic equalities.
There are various optimisations defined for scalar operations based on the ring structure of

addition and multiplication, which are shown in Figure 8b. Note that other ring-based algebraic
identities, such as associativity and commutativity, do not appear directly in the list of rules that d̃f
applies. This is because they do not necessarily improve the performance, unless they are combined
with other rewrite rules.

As F̃ is based on λ-calculus, all partial evaluation rules for this calculus come for free. Furthermore,
the optimisations defined in the literature for let-binding can also be used. Figure 8a shows this set
of rules.

As the vector constructs of F̃ are based on pull arrays, one can use the pull-array fusion rules for
removing unnecessary intermediate vectors and matrices. The two fusion rules for pull-arrays are
shown in Figure 8c. Apart from fusing a pipline of vector/matrix operations, this optimisation can
also be used to derive several matrix-algebra identities.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 97. Publication date: August 2019.



97:14 Amir Shaikhha, Andrew Fitzgibbon, Dimitrios Vytiniotis, and Simon Peyton Jones

(fun x -> e0) e1 { let x = e1 in e0
let x = e0 in e1 { e1[x 7→ e0]

let x = e0 in e1 { e1 (x < fvs(e1))
let x = let y = e0 in
let y = e0 in e1 { let x = e1

in e2 in e2
let x = e0 in let x = e0 in
let y = e0 in { let y = x in
e1 e1
let x = e0 in let y = e1 in
let y = e1 in { let x = e0 in
e2 e2
f(let x = e0 in e1) { let x = e0 in f(e1)

(a) λ-Calculus Rules

e + 0 = 0 + e { e
e * 1 = 1 * e { e
e * 0 = 0 * e { 0
e + -e = e - e { 0
e0 * e1 + e0 * e2 { e0 * (e1 + e2)

(b) Ring-Structure Rules

(build e0 e1)[e2] { e1 e2
length (build e0 e1) { e0

(c) Loop Fusion Rules

if true then e1 else e2 { e1
if false then e1 else e2 { e2
if e0 then e1 else e1 { e1
if e0 then e1 else e2 { if e0 then e1[e0 7→ true] else e2[e0 7→ false]
f (if e0 then e1 else e2) { if e0 then f (e1) else f (e2)

(d) Conditional Rules

ifold f z 0 { z
ifold f z n { ifold (fun a i -> f a (i+1)) (f z 0) (n - 1)
ifold (fun a i -> a) z n { z
ifold (fun a i -> let a = z in let i = e0 in
if(i = e0) then e1 else a) z n { e1 (if e0 does not mention a or i)

(e) Loop Normalisation Rules

fst (e0, e1) { e0
snd (e0, e1) { e1

(f) Tuple Normalisation Rules

ifold (fun a i ->
(f0 (fst a) i, f1 (snd a) i) { (ifold f0 z0 n,

) (z0, z1) n ifold f1 z1 n)

(g) Loop Fission Rule

Fig. 8. Transformation Rules for F̃. Even though none of these rules are AD-specific, the rules of Figure 8f and

Figure 8g are more useful in the AD context.

Example 5. It is known that for a matrix M , the following equality holds (MT )
T
= M . We show

how we can derive the same equality in d̃f. In other words, we show that:

matrixTranspose (matrixTranspose M) = M

After let binding the inner expression, and inlining the definition of matrixTranpose and the
functions inside it, the following program is produced:
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let MT =

build (lengthM[0]) (fun i ->

build (lengthM) (fun j ->

M[j][i] ) ) in

build (lengthMT[0]) (fun i ->

build (lengthMT) (fun j ->

MT[j][i] ) )
Now, by applying the loop fusion rules (cf. Figure 8c) and performing further partial evaluation,
the following expression is derived:

build (lengthM) (fun i ->
build (lengthM[0]) (fun j ->
M[i][j] ) )

This is the same expression as M.
△

Figure 8d shows the rewrite rules for conditional expressions. The first two rules partially
evaluate a conditional expression when its condition is statically known. The next rule removes a
conditional expression when both the branches are the same expression. The fourth rewrite rule
propagates the result of evaluating the condition into both branches. Finally, the last rewrite rule
pushes a function applied to a conditional expression into both branches. This results in duplicating
that function, which can lead to explosion in the size of expressions.

Figure 8e corresponds to normalisation rules for the ifold construct. The first two rewrite rules
are quite well-known; they unfold a loop the size of which is statically known. The last two rewrite
rules are more interesting and can result in asymptotic performance improvements. The third rule
turns a loop that does not modify its state into a single statement corresponding to its initial state.
The last rule turns a loop that modifies its state only in one of its iterations into a single statement.
These two rules are especially useful in the context of dealing with sparse vectors and matrices
(e.g., one-hot encoding vectors which can be the result of gradient computations, as well as identity
matrices) as we can see in the next example.
Example 6. It is known that for a vector v , the following equality holds: v × I = v , where I is an
identity matrix of the same dimension as v . We show how d̃f derives the same algebraic identity.
More specifically, we show that:

let I = matrixEye (length v) in
build (length v) (fun i ->
ifold (length v) 0 (fun a j ->
a + v[j] * I[j][i] )

is equivalent to v. Inlining and fusing this expression results in:

build (length v) (fun i ->
ifold (length v) 0 (fun a j ->
a + v[j] * (if (i=j) then 1 else 0) )

Applying conditional rules (cf. Figure 8d) and ring-structure rules (cf. Figure 8b) results in:

build (length v) (fun i ->
ifold (length v) 0 (fun a j ->
if (i=j) then a + v[j] else a) )

After applying the loop normalisation rules (cf. Figure 8e), the following expression is derived:
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build (length v) (fun i -> let a = 0 in let j = i in a + v[j])

Finally, performing partial evaluation and simplifications results in the following expression:

build (length v) (fun i -> v[i])

This is the same expression as v.
△

Let us focus on transformations which are more related to differentiation (but not specific to
them). Many intermediate tuples resulting from the dual number technique of AD can be removed by
using partial evaluation. Figure 8f shows the partial evaluation rules for removing the intermediate
tuples which are followed by a projection.

Partially evaluating the tuples across the boundary of a loop requires a sophisticated analysis of
the body of the loop. To simplify this task, we perform loop fission for the loops that return a tuple
of values. This is possible only when different elements of the tuple are computed independently in
different iterations of the loop. Figure 8g shows how loop fission turns an iteration creating a pair
of elements into a pair of two iterations constructing independently the elements of that pair. After
performing this optimisation, if we are interested only in a particular element of the result tuple,
other loops corresponding to irrelevant elements are removed by partial evaluation.
The next example, shows how d̃f can derive a well-known algebraic identity for the derivative

of matrices by using a sequence of transformation rules defined in this section.

Example 7. Based on matrix calculus derivative rules, it is known that
∂
(
v1 ·v2

)
∂v1

= v2, where · is

the vector dot product operator. We would like to show how d̃f can deduce the same algebraic
identity. In other words:

vectorMap (deriv (vectorDot v1 v2) v1) snd) = v2

After expanding the deriv macro, d̃f produces the following program:

vectorMap (
build (length v1) (fun i ->

DJfun v1 v2 -> vectorDot v1 v2K
(vectorZip v1 (vectorHot (length v1) i))
(vectorZip v2 (vectorZeros (length v2))))

) snd

After applying AD transformation rules (cf. Figure 7), the following program is derived:

vectorMap (
build (length v1) (fun i ->

fun
⇀

v1
⇀

v2 ->
⇀

vectorDot
⇀

v1
⇀

v2
(vectorZip v1 (vectorHot (length v1) i))
(vectorZip v2 (vectorZeros (length v2))))

) snd

After inlining the definition of
⇀

vectorDot (which is derived by applying the AD transformation
rules over the library given in Figure 4), vectorZip, vectorHot, and vectorZeros, and applying the
fusion and partial evaluation rules (cf. Figure 8), we have:
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build (length v1) (fun i ->

snd (fun
⇀

v1
⇀

v2 -> ifold (fun s j ->

( (fst s) + (fst
⇀

v1[j]) * (fst
⇀

v2[j]) ,

(snd s) + (fst
⇀

v1[j]) * (snd
⇀

v2[j]) + (snd
⇀

v1[j]) * (fst
⇀

v2[j]) )

) (0, 0) (length
⇀

v1))

(build (length v1) (fun j -> (v1[j], if(i=j) then 1 else 0)))

(build (length v2) (fun j -> (v2[j], 0)))))

After further applying β-reduction (cf. Figure 8a), tuple partial evaluation (cf. Figure 8f), and loop
fusion the following program is generated:

build (length v1) (fun i ->
snd (ifold (fun s j ->

( (fst s) + v1[j] * v2[j] ,
(snd s) + v1[j] * 0 + (if (i=j) then 1 else 0) * v2[j] )

) (0, 0) (length v1))

Now we apply loop fission (cf. Figure 8g), conditional rules (cf. Figure 8d), and several other
simplification rules:

build (length v1) (fun i ->
snd (

ifold (fun s j -> s + v1[j] * v2[j]) 0 (length v1) ,
ifold (fun s j -> if (i=j) then s + v2[j] else s) 0 (length v1)

) )

Note that applying the loop fission rule, does not necessarily improve the performance; it is
only after performing tuple partial evaluation rules that the iteration responsible for the original
computation is removed and the performance is improved. Thus, the strategy for applying rewrite
rules can become tricky. For this paritcular rewrite rule, we only apply it, when subsequently we
can use partial evaluation to further simplify the program. To do so, we define a compound rewrite
rule that either applies these rules together, or does not do anything. This has a similar effect to
the fold-fusion law, which can be found in the FP iterature [Gibbons 2006; Hutton 1999]. After
applying the partial evaluation rule, the following program is derived:

build (length v1) (fun i ->
(ifold (fun s j ->
if(i = j) then
(s + v2[j])

else

s) 0 (length v1)))

By using the optimisation that turns single access iterations into a single statement (cf. Figure 8e),
d̃f produces the following program:

build (length v1) (fun i -> v2[i])

This program is equivalent to v2 if the size of the two input vectors are the same (i.e., length v1 =
length v2). Otherwise, the input program is ill-formed.

△

Based on the same set of transformation rules, d̃f derives other matrix-calculus identities for the

gradient of matrices such as
∂tr

(
M
)

∂M
= I , which states that the derivative of the trace of a matrix
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with respect to that matrix, is an identity matrix. More generally, d̃f can automatically discover the

following algebraic identity if A is independent ofM :
∂tr

(
MA

)
∂M

= AT .
Now we return to the example shown in the beginning of this paper.

Example 1 (Continued). If we have a matrixM and two vectorsu andv (which are represented as

row matrices and are independent ofM), using matrix calculus one can prove that
∂
(
uMvT

)
∂M

= uTv .

First, we start by a partially inlined representation of this program in F̃:

let f = fun u M v ->
let m =
matrixMult
(build 1 (fun i -> u))
(matrixMult M
(matrixTranspose (build 1 (fun i -> v))))

m[0][0]
fun u M v ->
(build (lengthM) (fun i ->
(build (lengthM[0]) (fun j ->
(snd (DJfK
(vectorZip v (vectorZeros (length v)))
(matrixZip M (matrixHot (lengthM) (lengthM[0]) i j))
(vectorZip v (vectorZeros (length v)))))))))

Note that the function f is returning the only scalar element of the 1-by-1 matrix uMvT . After
performing loop fusion, loop fission and partial evaluation the following program is derived:

fun u M v ->
build (lengthM) (fun i ->
build (lengthM[0]) (fun j ->
u[i] * v[j]))

This program is equivalent to uTv if the input program is well formed, i.e., the number of rows and
columns ofM are the same as the length of u and v , respectively.

△

5.2 Code Generation

After applying the optimisations mentioned in the previous section, one can further improve the
efficiency by generating programs in a low-level language with manual memory management. This
way, the overhead of garbage collection can be removed. Furthermore, by using stack-discipline
memory management techniques such as Destination-Passing Style (DPS) [Shaikhha et al. 2017],
one can benefit from efficient bump memory allocation instead of using the expensive malloc and
free calls.

Example 1 (Continued). The generated C code for the optimised differentiated program is as
follows:

matrix uMv_d(storage s, vector u, matrix M, vector v) {

matrix res = (matrix)s;

for(int r = 0; r < M->rows; r++) {

for(int c = 0; c < M->cols; c++) {

res->elems[r][c] = u->elems[r] * v->elems[c];

}
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}

return res;

}

The parameter s is the storage area allocated for storing the result matrix.
△

Up to now, we have only seen the cases where only the derivative part of the program was of
interest. If we are interested in the original part of the program as well (e.g., the intermediate
vectors cannot be fused), we need to store both the original and derivative parts. In such cases, the
differentiated vectors, which are represented as arrays of tuples, can be transformed into a more
efficient data layout. The well-known array of structs (AoS) to struct of arrays (SoA) transformation
represents differentiated vectors as a tuple of two numeric arrays. Further partial evaluation can
remove the unnecessary decoupled numeric arrays.

5.3 Discussion

As we have seen in the examples of this section, d̃f managed to recover matrix-level algebraic

identities (which are normally encoded as high-level optimisations at the level of M̃), by using

lower-level rewrite rules in the level of F̃. This is achieved using the 1) algebraic identities available
in the scalar arithmetic level (e.g., associativity, commutativity, and distributivity as shown in
Figure 8b), 2) λ-calculus and its extended constructs rewrite rules (as shown in Figures 8a, 8f,
and 8d), and 3) the functional loop transformations (e.g., pull-array loop fusion, induction-based
loop normalisation rules of ifold , and loop fission as shown in Figures 8c, 8e, and 8g).

Furthermore, we have used these rewrite rules in order to make the differentiation of the vector
and matrix expressions more efficient. Even though, we do not have any guarantee that for all
programs these sets of rewrite rules are sufficient to make forward-mode AD as efficient as reverse-
mode AD, we show how well our technique works in practice in the next section. We achieve these

results by relying on the restrictions imposed by the F̃ language, such as only allowing a limited
form of recursion (using ifold and build, thus benefiting from their associated optimisations).
Furthermore, these restrictions enable us to produce efficient low-level C code using DPS [Shaikhha
et al. 2017].
One of the key challenges for applying these rewrite rules is the order in which these rules

should be applied. We apply these rules based on heuristics and cost models for the size of the
code (which is used by many optimising compilers, especially the ones for just-in-time scenarios).
Furthermore, based on heuristics, we ensure that certain rules are applied only when some specific
other rules are applicable. For example, the loop fission rule (Figure 8g) is usually applicable only
when it can be combined with tuple projection partial evaluation rules (Figure 8f). We leave the use
of search strategies for automated rewriting (e.g., using Monte-Carlo tree search [De Mesmay et al.
2009]) as future work.

6 EXPERIMENTAL RESULTS

In this section, we show how d̃f performs in practice. We show the performance of the differentiated
code for micro benchmarks as well as two real-world machine learning and computer vision
applications.
Experimental Setup. We have performed the experiments using an iMac machine equipped with
an Intel Core i5 CPU running at 2.7GHz, 32GB of DDR3 RAM at 1333Mhz. The operating system is
OS X 10.13.1. We use CLang 900.0.39.2 for compiling the generated C code, and Python 2.7.12 for
running the Python code, and Mono 5.8.1 for compiling and running F# programs. Furthermore, we
use DiffSharp 0.6.3, Tapenade 3.14 (its web interface), Theano 0.9.0, TensorFlow 1.13, and Futhark
0.10.2. For all the experiments, we compute the mean time of ten runs, and the time out is set to
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twenty minutes. For the TensorFlow experiments, we do not use the XLA backend and we do not

consider the run time of the first round in order to remove the overhead of its graph compilation.
Throughout this section, we compare the performance of the following alternatives:

• DiffSharp (R): The reverse-mode AD of the DiffSharp library [Baydin et al. 2015a].
• DiffSharp (F): The forward-mode AD of the DiffSharp library.
• Tapenade (R): The reverse-mode AD of the Tapenade framework [Hascoet and Pascual 2013].
• Tapenade (F): The forward-mode AD of the Tapenade framework.
• Theano: The AD offered by the Theano framework [Bergstra et al. 2010], which is a combina-
tion of the reverse-mode AD with symbolic differentiation.

• TensorFlow: The AD offered by the Tensorflow framework [Henriksen et al. 2017], which is
based on the reverse-mode AD.

• Futhark: A forward-mode AD implementation on top of the Futhark programming lan-
guage [Henriksen et al. 2017].

• d̃f: The code generated by d̃f with different sets of optimisations (e.g., loop fusion (LF ),
loop-invariant code motion (LICM), loop normalisation (LN ), and Destination-Passing Style
(DPS) [Shaikhha et al. 2017] for stack-discipline memory management).

Micro Benchmarks which consist of the following vector expressions: 1) gradient of dot product
of two vectors with respect to the first vector (which is a Jacobian matrix with a single row), 2)
gradient of the maximum value of a vector with respect to the input vector (which is a Jacobian
matrix with a single row), 3) gradient of addition of two vectors with respect to the first vector
(which is a Jacobian matrix), and 4) gradient of the multiplication of a vector with a scalar value
with respect to the scalar value (which is a Jacobian matrix with a single column).

Figure 9 shows the performance results for the mentioned micro benchmarks. In all cases,
DiffSharp, Theano, and TensorFlow have performance overhead, which is reduced for larger data
sizes thanks to the less interpretation overhead. the Futhark compiler generates C code after
applying various types of optimisations such as loop fusion, code motion, dead-code elimination,
double buffering (for loops), and standard optimisations like copy-propagation, constant-folding,
and CSE among many other optimisations. In all the experiments, we have applied the best of
possible optimisations to the programs generated by d̃f (denoted by d̃f (Opt)). The performance
of these programs is improved further when the generated C code uses DPS for stack-discipline
memory management (denoted by d̃f (Opt) + DPS).
As in the first two cases the Jacobian matrix is a row vector, reverse-mode AD computes the

whole Jacobian matrix in a single backward pass. However, forward-mode AD needs to iterate over
each column to compute the corresponding derivative value. Hence, Tapenade (F) and DiffSharp (F)
have asymptotic performance difference. Even though, the Futhark compiler implements many
optimisations mentioned above, the forward-mode AD is asymptotically worse than the reverse-
mode AD. On the other hand, DiffSharp (R), Theano, and TensorFlow show performance overhead
which is reduced for larger data sizes. In addition, Tapenade (R) and the code generated by d̃f
(d̃f (Opt)) show similar performance. This shows that the optimisations explained in Section 5 have
succesfully made the forward-mode AD code of d̃f as efficient as the reverse-mode AD code. Finally,
the performance of d̃f is improved further when the generated C code uses DPS for stack-discipline
memory management.

For the case of the addition of two vectors, as the Jacobian matrix is a square matrix, reverse-mode
AD and forward-mode AD show comparable performance. Both AD modes of DiffSharp are from
two to three orders of magnitude slower than d̃f. Both Theano and TensorFlow have performance
overhead, which again reduces for bigger data sizes. Specifically, TensorFlow becomes as good as
Tapenade (R), Futhark, and d̃f.
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Fig. 9. Performance results for Micro Benchmarks.

Finally, for the last case, as the Jacobian matrix is a column vector, the forward mode AD
computes the whole Jacobian matrix in a single forward pass. However, the reverse mode AD
requires traversing over each row to compute the corresponding partial derivative values. Hence,
as opposed to computing the gradient for the dot product and the maximum element of a vector,
the systems based on the forward-mode AD show asymptotically better performance.
Non-Negative Matrix Factorization (NNMF) is a useful tool which has many applications in
various fields ranging from document clustering, recommendation systems, signal processing, to
computer vision. For instance, in [Liu et al. 2010], the authors study the NNMF of Web dyadic
data represented as the matrix A. Dyadic data contains rich information about the interactions
between the two participating sets. It is useful for a broad range of practical applications including
Web search, Internet monetization, and social media content [Liu et al. 2010]. For example the
(query, clicked URL) data is used in query clustering [Ji-rong Wen 2002], query suggestions [Baeza-
Yates et al. 2004] and improving search relevance [Agichtein et al. 2006]. Matrix factorization is a
commonly used approach to understanding the latent structure of the observed matrix for various
applications [Berry et al. 2006; Sra and Dhillon 2006]. The authors present a probabilistic NNMF
framework for a variety of Web dyadic data that conforms to different probabilistic distributions.
For instance, an Exponential distribution is used to model Web lifetime dyadic data, e.g., user dwell
time, and similarly the Poisson distribution is used to model count dyadic data, e.g., click counts.
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Fig. 10. Performance results for NNMF.

The iterative algorithm to find W and H depends on the form of the assumed underlying
distribution. In particular the update formula for gradient descent are derived by computing
the gradient of the negative log of the likelihood function. For example, the negative log of the
exponential distribution is represented as follows:

D
(
A| |Ã

)
= Σ(i, j)

(
log

(
Ãi, j

)
+

Ai, j

Ãi, j

)
, Ã =WH

The update formulas are derived manually, and for each new distribution it is the responsibility of
the user to undertake the error prone and laborious task of deriving, optimizing, and implementing
the update rules. d̃f automatically derives the gradient of the negative log of the likelihood function
for the exponential distribution. After performing optimizations, d̃f produces an expression which
is equivalent to the following update formula, which is manually derived by hand in [Liu et al.
2010]:
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Figure 10 shows the performance results of executing the derived update rule on DiffSharp, Tape-
nade, Theano, and d̃f. For all the experiments, we consider factorizing the matrixA into two vectors
W and H (represented as u and vT , respectively). Comparing Tapenade and d̃f, we observe that the
reverse-mode AD of Tapenade behaves similarly to d̃f. This shows that d̃f successfully generates
efficient code for this case, which is an ideal case for the reverse-mode AD (the loss function is
a scalar valued function, which should compute the gradient with respect to all elements of the
input vector). Finally, as the dimension of the vectors increases, Theano and TensorFlow converge
to the same performance as d̃f and reverse-mode AD of Tapenade, because of two reasons. First,
the overhead of invoking C functions from Python becomes negligible as the size of the vector
increases. Second, Theano and TensorFlow invoke BLAS routines which are highly tuned and
vectorised implementations for vector operations.

By comparing different configurations of d̃f, we observe the following three points. First, the
loop fusion improves the performance by around one order of magnitude. The generated C code
after applying these optimisations is as efficient as the code generated by Futhark. Second, the loop
normalisation (LN ) optimisations (which are the ones shown in Figure 8e) have the most impact by
asymptotically improving the performance from two to three orders of magnitude. As explained
in Section 5, thse transformation rules should be combined with loop fission to become effective.
Finally, the DPS representation slightly improves the performance by using the stack-allocation
descipline for memory management.
Bundle Adjustment [Agarwal et al. 2010; Triggs et al. 1999; Zach 2014] is a computer vision
problem, where the goal is to optimise several parameters in order to have an accurate estimate
of the projection of a 3D point by a camera. This is achieved by minimizing an objective function
representing the reprojection error.

For the experiments, we compute the Jacobian matrix of the Project function in Bundle Adjust-
ment. For a 3D point X ∈ R3 and a camera with rotation parameter r ∈ R3, center position C ∈ R3,
focal index f ∈ R, principal point x0 ∈ R2, and radical distortion k ∈ R2, the Project function
computes the projected point as follows:

project
(
r ,C, f ,x0,k,X

)
= distort

(
k, p2e

(
rodrigues

(
r ,X −C

) ) )
f + x0

distort
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2
+ k2 | |x | |

4
)

p2e
(
X

)
= X1..2 ÷ X3

rodrigues
(
r ,X

)
= X cos

(
θ
)
+

(
v × X

)
sin

(
θ
)
+v

(
vTX

) (
1 − cos

(
θ
) )
,
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In order to better demonstrate the expressibility and conciseness of M̃, Figure 12 shows the imple-
mentation of these functions in this language.
Consider having N 3D points and a vector of 11 camera parameters. we are interested in

computing a Jacobian matrix with 2N rows (the project function produces a 2D output for each
input data point) and 11 columns.

Figure 11 shows the performance results for computing the mentioned Jacobian matrix. For this
application, as the Jacobian matrix has more rows than columns, the forward-mode AD outperforms
the reverse-mode. Thus, we observe that the forward-mode AD of all systems outperforms their
reverse-mode. d̃f outperforms all its competitors by up to three orders of magnitude. More specifi-
cally, d̃f outperforms both forward and reverse mode of Tapenade. We observe that as opposed to
the NNMF application, the loop normalisation rules have a negligible impact for this application.
However, the loop-invariant code motion optimisations result in up to two times performance
improvement by hoisting the shared computation outside the loop. In addition, DPS representation
leads to an additional 10% performance improvement. Finally, Futhark outperforms the generated
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Fig. 11. Performance results for Project in Bundle Adjustment.

let distort = fun (radical: Vector) (proj: Vector) ->

let rsq = vectorNorm proj

let L = 1.0 + radical.[0] * rsq + radical.[1] * rsq * rsq

vectorSMul proj L

let rodrigues = fun (rotation: Vector) (x: Vector) ->

let sqtheta = vectorNorm rotation

let theta = sqrt sqtheta

let thetaInv = 1.0 / theta

let w = vectorSMul rotation thetaInv

let wCrossX = vectorCross w x

let tmp = (vectorDot w x) * (1.0 - (cos theta))

let v1 = vectorSMul x (cos theta)

let v2 = vectorSMul wCrossX (sin theta)

vectorAdd (vectorAdd v1 v2) (vectorSMul w tmp)

let project = fun (cam: Vector) (x: Vector) ->

let Xcam = rodrigues (vectorSlice cam 0 2) (

vectorSub x (vectorSlice cam 3 5) )

let distorted = distort (vectorSlice cam 9 10) (

vectorSMul (vectorSlice Xcam 0 1) (1.0/Xcam.[2]) )

vectorAdd (vectorSlice cam 7 8) (

vectorSMul distorted cam.[6] )

Fig. 12. Bundle Adjustment functions in M̃.

C code of d̃f mainly thanks to a better data layout representation for tensors, which we plan to
integrate into d̃f in the future.

7 RELATED WORK

Automatic Differentiation. There is a large body of work on automatic differentiation (AD)
of imperative programming languages. Tapenade [Hascoet and Pascual 2013] performs AD for a
subset of C and Fortran, whereas, ADIFOR [Bischof et al. 1996] performs AD for Fortran programs.
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Adept [Hogan 2014] and ADIC [Narayanan et al. 2010] perform automatic differentiation for C++
by using expression templates. However, as we have seen in our experimental results, an AD tool
such as Tapenade misses several optimisation opportunities, mainly due to their limited support
for loop fusion and loop-invariant code motion.

ADiMat [Bischof et al. 2002], ADiGator [Weinstein and Rao 2016], and Mad [Forth 2006] perform
AD for MATLAB programs, whereas MuPAD [Hivert and Thiéry 2004] computes the derivatives
using symbolic differentiation. AutoGrad [Maclaurin et al. 2015] performs AD for Python programs
that use NumPy library for array manipulation, whereas Theano [Bergstra et al. 2010] uses symbolic
differentiation. Tensorflow [Abadi et al. 2016] performs source-to-source reverse-mode AD, and uses
advanced heuristics to solve the memory inefficiencies. ForwardDiff [Revels et al. 2016] employs
vector forward-mode AD [Khan and Barton 2015] for differentiating Julia programs. This system
keeps a vector of derivative values in the dual number instead of only a single derivative value. All
these systems miss important optimisation opportunities such as loop fusion and loop-invariant
code motion.
DiffSharp [Baydin et al. 2015a] is an AD library implemented in F#. This library provides both

forward-mode and reverse-mode AD techniques. As DiffSharp is a library implementation of AD (in
contrast to d̃f, which implements AD as source-to-source transformation rules), it cannot support
the simplification rules such as loop-invariant code motion, loop fusion, and partial evaluation.
Furthermore, d̃f can efficiently manage memory by generating C code using DPS, whereas DiffSharp
should rely on the garbage collection provided by the .NET framework for memory management.

Stalingrad [Pearlmutter and Siskind 2008] is an optimising compiler for a dialect of Scheme with a
first-class AD operator, with the support for both forward mode and reverse mode of AD. One of the
key challenges that Stalingrad addresses is perturbation confusion [Siskind and Pearlmutter 2005],
which occurs for computing the derivative of the functions for which the derivatives are already
computed, or the cases where we need the computation of nested differentiation [Pearlmutter and
Siskind 2007]. We have shown how d̃f solves the perturbation confusion problem using a static
approach thanks to the derivmacro (Section 4.3). One of the main advantages of d̃f over Stalingrad
is its support for loop transformations such as loop fusion and loop-invariant code motion.
Karczmarczuk [Karczmarczuk 1999] presents a Haskell implementation for both forward and

reverse mode AD. Elliott [Elliott 2009] improves this work by giving a more elegant implementation
for its forward mode AD. Furthermore, Elliott [Elliott 2018] provides a generalization of AD based
on category theory for implementing both forward and reverse-mode AD. These implementations
lack the optimisations offered by transformation rules, espcially loop transformations.

D* [Guenter 2007] is a symbolic differentiation system, which performs the factorisation of the
common product terms in sum-of-product expressions. d̃f also performs a similar idea by performing
common-subexpression elimination and loop-invariant code motion in order to eliminate the
redundant computation, hence, imporving the performance of forward-mode AD. One of the
key limitations of D* is that its input programs should be fully loop unrolled. In other words, its
differentiation process does not accept programs with loops. It would be interesting to see if d̃f can
be used to optimise the computer graphics applications handled by D*.
Tensorflow [Abadi et al. 2016] and Pytorch [Paszke et al. 2017] are machine learning libraries

implemented using Python. These systems are mostly based on tensor abstractions and come
with a predefined set of efficient combinators for manipulating tensors. Furthermore, they can use
compilation (e.g., the XLA [Leary and Wang 2017] backend for Tensorflow and the Glow [Rotem
et al. 2018] backend for PyTorch) in order to perform further optimisations. However, these systems
are quite restrictive in what constructs are efficiently supported; additional tensor operations are
not as efficient as the predefined set of tensor operators.
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Lantern [Wang et al. 2018] uses the multi-stage programming [Taha and Sheard 2000] features
provided by LMS [Rompf and Odersky 2010] in order to perform AD for numerical programs
written in a subset of Scala. A key feature provided by Lantern is supporting reverse-mode AD by
using delimited continuations [Danvy and Filinski 1990]. To the best of our knowledge there is no
support for loop fusion nor loop normalisation in Lantern. However, there are some imperative
forms of fusion implemented for LMS [Rompf et al. 2013] which Lantern can benefit from. Fur-
thermore, some form of loop-invariant code motion should be acheived thanks to the sea-of-node
representation [Click 1995] provided by LMS [Rompf and Odersky 2010]. We plan to implement
the reverse-mode AD using closures and continuations as implemented in Lantern [Wang et al.
2018] and Stalingrad [Pearlmutter and Siskind 2008].

Pilatus [Shaikhha and Parreaux 2019] is a linear algebra language which is also using pull arrays
for implementing vectors and matrices. Pilatus performs optimisations (e.g., loop fusion and alge-
braic optimisations) by using multi-stage programming and rewriting facilities of Squid [Parreaux
et al. 2017a,b]. However, it does not support loop-invariant code motion and loop normalisation.
Apart from supporting forward-mode AD, Pilatus also supports graph processing algorithms and
logical probablistic programming, which can be a future direction for d̃f.
Array Languages and Fusion. There are many array programming languages in the literature,
APL [Iverson 1962] being the pioneer among them. There are functional array languages such as
Futhark [Henriksen et al. 2017] and SAC [Grelck and Scholz 2006] with support for fusion.
In array languages fusion can be achieved by using functional arrays known as push and pull

arrays [Anker and Svenningsson 2013; Claessen et al. 2012; Svensson and Svenningsson 2014]. A
push-array is represented by an effectful function that, given an index and a value, will write the
value into the array. A pull-array is represented by the length of the array and a function producing

an element for a given index, similar to the build construct in F̃. Similarly, functional programming
languages use shortcut deforestation for fusing lists either by pulling the stream of data [Coutts
et al. 2007; Svenningsson 2002] or pushing them [Gill et al. 1993], which are implemented in Haskell
using the rewrite rule facilities of GHC [Jones et al. 2001]. Shortcut deforestation can also be
implemented as a library using multi-stage programming [Jonnalagedda and Stucki 2015; Kiselyov
et al. 2017; Shaikhha et al. 2018]. It would be interesting to see how the techniques presented in
this paper can be implemented on top of other functional array programming languages (e.g., by
using GHC rewrite rules or multi-stage programming).
Numerical DSLs. There are many DSLs for numerical workloads. These DSLs can be classified
in three categories. The first category consists of mainstream programming languages used by
data analysts such as MATLAB and R. These languages offer many toolboxes for performing a
wide range of tasks, however, from a performance point of view the focus is only on the efficient
implementation of the libraries. The second category consists of DSLs such as Lift [Steuwer et al.
2015], Opt [DeVito et al. 2016], Halide [Ragan-Kelley et al. 2013], Diderot [Chiw et al. 2012], and
OptiML [Sujeeth et al. 2011], which generate parallel code from their high-level programs. The
third category is the DSLs which focus on generating efficient machine code for fixed size linear
algbra problems such as Spiral [Puschel et al. 2005] and LGen [Spampinato and Püschel 2016].
These DSLs exploit the memory hierarchy by relying on searching algorithms for making tiling
and scheduling decisions. Except the first category, for which automatic differentiation tools exist,
the other DSLs do not have any support for automatic differentiation. Moreover, parallel code
generation and efficient machine code generation are orthogonal concepts and can be added to d̃f
in the future.
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8 CONCLUSIONS

In this paper we have demonstrated how to efficiently compute the derivate of a program. The
key idea behind our system is exposing all the constructs used in differentiated programs to the
underlying compiler. As a result, the compiler can apply various loop transformations such as
loop-invariant code motion and loop fusion for optimizing differentiated programs. We have shown
how d̃f outperforms the existing AD tools on micro benchmarks and real-world machine learning
and computer vision applications.
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