
Diagnosing Type Errors with Class

Danfeng Zhang Andrew C. Myers
Department of Computer Science

Cornell University, USA
{zhangdf,andru}@cs.cornell.edu

Dimitrios Vytiniotis Simon Peyton-Jones
Microsoft Research Cambridge, UK
{dimitris,simonpj}@microsoft.com

Abstract
Type inference engines often give terrible error messages, and the
more sophisticated the type system the worse the problem. We
show that even with the highly expressive type system implemented
by the Glasgow Haskell Compiler (GHC)—including type classes,
GADTs, and type families—it is possible to identify the most likely
source of the type error, rather than the first source that the in-
ference engine trips over. To determine which are the likely error
sources, we apply a simple Bayesian model to a graph represen-
tation of the typing constraints; the satisfiability or unsatisfiability
of paths within the graph provides evidence for or against possible
explanations. While we build on prior work on error diagnosis for
simpler type systems, inference in the richer type system of Haskell
requires extending the graph with new nodes. The augmentation of
the graph creates challenges both for Bayesian reasoning and for
ensuring termination. Using a large corpus of Haskell programs,
we show that this error localization technique is practical and sig-
nificantly improves accuracy over the state of the art.

Categories and Subject Descriptors D.2.5 [Testing and De-
bugging]: Diagnostics; F.3.2 [Semantics of Programming Lan-
guages]: Program analysis.

Keywords Error diagnosis; type inference; Haskell

1. Introduction
Type systems and other static analyses help reduce the need for
debugging at run time, but sophisticated type systems can lead to
terrible error messages. The difficulty of understanding these error
messages interferes with the adoption of expressive type systems.

Even for program errors that are detected statically, It can be
difficult to determine where the mistake lies in the program. The
problem is that powerful static analyses and advanced type systems
reduce an otherwise-high annotation burden by drawing informa-
tion from many parts of the program. However, when the analysis
detects an error, the fact that distant parts of the program influence
this determination makes it hard to accurately attribute blame.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, contact the Owner/Author.
Request permissions from permissions@acm.org or Publications Dept., ACM, Inc.,
fax +1 (212) 869-0481. Copyright 2015 held by Owner/Author. Publication Rights
Licensed to ACM.
PLDI’15 , June 13–17, 2015, Portland, OR, USA
Copyright c© 2015 ACM 978-1-4503-3468-6/15/06. . . $15.00
DOI: http://dx.doi.org/10.1145/(to come)

Recent work by Zhang and Myers [36] made progress on this
problem, demonstrating that a more holistic Bayesian approach to
localizing errors can improve accuracy significantly, for at least
some nontrivial type systems (OCaml and Jif). A key idea of that
work is to represent constraints as a constraint graph that allows
efficient reasoning about a possibly large number of counterfactual
error explanations.

However, that graph representation cannot handle richer type
systems in which the reasoning process requires a constraint solver
that can handle quantified propositions involving functions over
types. Type classes and type families, as supported by GHC [21],
require such a solver, whereas simple polymorphic types as in ML
do not [8, 28]. Better error localization would be very valuable for
such type systems, because their error messages can be particu-
larly inscrutable. In the constraint graph representation, however,
a solver for such rich type systems needs to add new nodes to the
constraint graph, posing challenges for soundness, completeness,
termination, and efficiency of the analysis.

Our principal contribution is to show that an approach based
on Bayesian reasoning can be applied even to such type systems.
Specifically:

• We define a constraint language and constraint graph represen-
tation that can encode a broad range of type systems and other
analyses. In particular, they add the ability to handle the fea-
tures of the expressive type system of Haskell, including type
classes, GADTs, and type families. (§3 and §4)
• We extend the constraint-graph solving technique of Zhang and

Myers [36] to allow the creation of new nodes and edges in
the graph and thereby to support counterfactual reasoning about
type classes, type families, and their universally quantified ax-
ioms. We prove that the new algorithm always terminates. (§5)
• We develop a Bayesian model for programmer mistakes that

accounts for the richer representation of constraints and the
presence of derived constraints. (§6)
• We have implemented this technique as an extension to the

publicly available SHErrLoc diagnostic tool [30], using GHC
itself as the constraint generator so that we handle all of Haskell.
(§7)
• Using a corpus of more than 300 Haskell programs, many writ-

ten by students solving programming assignments, we show
that mistakes are more accurately located than with prior tech-
niques. Further, the performance of the diagnostic algorithm is
acceptable. (§8)

2. The challenge we tackle
Type inference problems can generally be expressed in terms of
solving a set of constraints on type expressions, and type inference

succeeds when variables in the constraints can be assigned types
that make all the constraints satisfiable.

When constraints are unsatisfiable, the question is how to iden-
tify the program point that is most likely to be the error source. The
standard practice is to report the program point that generates the
last failed constraint. Unfortunately, this simple approach often re-
sults in misleading error messages—the actual error source may be
far from that program point.

As a motivating example, consider the following Haskell pro-
gram from [18], which fails to type-check:

1 fac n = if n == 0 then 1
2 else n * fac (n == 1)

The actual mistake is that the second equality test (==, in line 2)
should be subtraction (-), but GHC instead blames the literal 0,
saying that Bool is not a numerical type. A programmer reading this
message would probably be confused why 0 should have type Bool.
Unfortunately, such confusing error messages are not uncommon.

The core of the problem is that most type checkers, GHC in-
cluded, implement constraint solving by iteratively simplifying
type constraints, making error reporting sensitive to the order of
simplification. GHC here decides to first unify the return type of
(n == 1), namely Bool, with the type of n, which is the argument
of fac. Once the type of n is fixed to Bool, the compiler picks up
the constraint arising from line 1, (expression n == 0), unifies the
type of 0 with Bool and reports misleadingly that literal 0 is the
error source.

Rather than reporting the location of a single failed constraint,
we might think to report all locations that might contribute to the
error (e.g., as in [7, 10, 32, 35]). But such error reports are often
verbose and hard to understand [14], because many expressions can
be at least partly involved in a given failure.

A more promising approach is described by Zhang and Myers
[36], where the structure of the constraint system as a whole is an-
alyzed, reporting the most likely error rather than the error first en-
countered. The question we address in this paper is: can this holistic
approach be scaled to handle type systems more sophisticated than
those of ML and Jif?

Haskell features we tackle Haskell is recognized as having a
particularly rich type system, and hence makes an excellent test
case. Besides type classes, we treat these features:

• Type families are functions at the level of types:

type instance F [a] = (Int,a)
f :: F [Bool] -> Bool
f x = snd x

In this example, it is okay to treat x as a pair although it is de-
clared to have type F [Bool], because of the axiom describing
the behavior of the type family F. (Note that in Haskell, type
[Bool] represents a list of Bool’s.)
• Type signatures. Polymorphic type signatures introduce uni-

versally quantified variables that cannot be unified with other
types [27]. For instance, the program below

f :: forall a. a -> (a,a)
f x = (True,x)

is ill-typed, as the body of f indicates that the function is not
really polymorphic (consider applying f 42).
Moreover, it is unsound to equate a type variable bound in an
outer scope to a universally quantified variable from an inner
scope. For example, this program

f x = let g :: forall a. a -> (a,a)
g z = (z,x)

Bool
αn α∗

α1

α0

n==1 n

n==1

n==0

Num

Num

Num

1

*

0

X

X

X

Figure 1. Part of the graph for the Haskell example.

in (g 42, g True)

is ill-typed, since x’s type bound in the enclosing context should
not be unified to a, the universally quantified variable from the
signature of g. Indeed, if we were to allow this unification, we’d
be treating x as having both type Int and Bool at the two call
sites of g.
The same issues arise with other GHC extensions, such as
data constructors with existential variables and higher-rank
types [27].
• Local hypotheses. Type signatures with constraint contexts and

GADTs both introduce hypotheses under which we must infer
or check types. For instance:

1 elem :: forall a. Eq a => a->[a]->Bool
2 elem x [] = False
3 elem x (y:ys) = if (x == y) then True
4 else elem x ys

The type signature for elem introduces a constraint hypothe-
sis Eq a, on the universally quantified variable a, and that con-
straint is necessary for using == at line 3.

Our approach We develop a rich constraint language (§3) that
can encode all type constraints generated by GHC [34]. We use
GHC itself to generate type constraints for Haskell programs with
all sophisticated features above, and then translate these constraints
to our constraint language. To simplify the presentation, we col-
lapse these two steps into one, by generating constraints in our
language directly. Our tool handles all GHC constraints, but for
illustration we use a sufficiently rich Haskell subset (§4).

The set of constraints is then transformed into a constraint
graph (§5.1). For example, part of the graph for the motivating
(factorial) example is depicted in Figure 1, where nodes αn, α0,
α1 and α∗ represent the types of n, 0, 1 and the first parameter of
* respectively, and each bidirectional edge represents type equality
between the end nodes. In this figure, each edge is annotated with
the expression that generates it. For example, the edge between αn
and Bool is generated since the return type of (n == 1), namely
Bool, must equal the type of n, the argument of fac.

Besides equality constraints, Haskell also generates type class
constraints. Type classes introduce, in effect, relations over types.
For example, the type of literal 0 can be any instance of the type
class Num, such as Int and Float. We use a directed edge, encoding
a partial ordering, to express these constraints. For example, the
edge from α0 to Num in Figure 1 means that α0 must be an instance
of Num.

The constraint graph is then saturated and expanded so that
all possible deductions are represented as graph edges (§5.2). For
example, the dashed edges in Figure 1 are derived by transitivity.

Each edge in the saturated graph is then classified as satisfiable
or unsatisfiable (§5.3). For example, the edges marked with a red X
are unsatisfiable, since Bool is not an instance of Num.

2

Unification variables α, β, γ Constructors con

Skolem variables a, b, c Functions fun

Quantified variables in hypothesis a, b, c

G ::= A1 ∧ ... ∧An
(n≥0) A ::= H ` I

H ::= Q1 ∧ ... ∧Qn
(n≥0) Q ::= ∀a . C ⇒ I

C ::= I1 ∧ ... ∧ In (n≥0) I ::= E1 ≤ E2

E ::= α` | a` | a | con E | fun E
Figure 2. Syntax of SCL constraints.

Finally, we use the classification of constraint edges to assign
the most likely error source, according to Bayesian principles (§6).
Taken together, the chosen error locations should: 1) explain all
unsatisfiable paths, 2) be small, and 3) not appear often on satisfi-
able paths. In accordance with these three principles, we correctly
determine expression (n == 1) to be the most likely cause of the
error.

What is new The general plan of graph generation, saturation,
and classification follows prior work [36]. The new aspects are
these: first, a rich constraint language that can encode the ex-
pressive type system of Haskell (§3), including type class con-
straints; second, the encoding of type class constraints as inequali-
ties (§4.2); third, a new graph-saturation algorithm, which handles
type classes and type families by generating new nodes and edges in
the constraint graph (§5.2); fourth, an edge-classification algorithm
that correctly handles nested quantifiers (§5.3); finally, a modified
Bayesian model that takes the creation of new nodes and edges into
account (§6).

3. The SCL constraint language
We substantially modified and extended the constraint language
of Zhang and Myers [36] in order to handle the rich type system
of Haskell. The most significant new features of the new constraint
language are quantified axioms, nested universally and existentially
quantified variables, and type-level functions.

3.1 Syntax of the SCL constraint language
Figure 2 presents the syntax of the new constraint language, which
we call SCL (for SHErrLoc Constraint Language). A top-level goal
G is a conjunction of assertions A. An assertion has the form
H ` I , where H is a hypothesis (an assumption) and I is an
inequality to be checked under the assumption H .

Constraints A constraint C is a conjunction of inequalities E1 ≤
E2 over elements from the constraint element domain E (typically
types of the source language), where≤ defines a partial ordering on
elements1. Throughout, we write equalities (E1 =E2) as syntactic
sugar for (E1≤E2 ∧ E2≤E1), and (H ` E1 = E2) is sugar for
two assertions, similarly.

Quantified axioms in hypotheses Hypotheses H can contain
(possibly empty) conjunctions of quantified axioms, Q. Each ax-
iom has the form ∀a. C ⇒ I , where the quantified variables amay
be used in constraints C and inequality I . For example, a hypoth-
esis ∀a. a≤A ⇒ a≤B states that for any constraint element a
such that (a≤A) is valid, inequality a≤B is valid as well. When
both a and C are empty, an axiom Q is written simply as I .

1 The full constraint language of SHErrLoc also supports lattice joins and
meets on elements. We omit them here since 1) they are not needed to
represent Haskell constraints, and 2) adding them is straightforward.

Term variables x, y, z Type classes D

Type variables a, b, c Type families F

Expressions e ::= x | λx . e | e1 e2
| let x :: σ = e1 in e2

Constraints P ::= P1 ∧ P2 | τ1 =τ2 | D τ

Signatures σ ::= ∀a . P ⇒ τ

Monotypes τ ::= a | Int | Bool | [τ] | T τ | F τ

Axiom schemesQ ::= P | Q1 ∧Q2 | ∀a . P ⇒ D τ |
∀a . F τ=τ ′

Figure 3. Syntax of a Haskell-like language.

Handling quantifiers To avoid notational clutter associated with
quantifiers, we do not use an explicit mixed-prefix quantification
notation. Instead, we distinguish universally introduced variables
(a, b, . . .) and existentially introduced variables (α, β, . . .); further,
we annotate each variable with its level, a number that implicitly
represents the scope in which the variable was introduced. For
example, we write the formula a1 = b1 ` (a1, b1) = α2 to
represent ∀a,b.∃α. a=b ` (a, b)=α. Any assertion written using
quantifiers can be put into prenex normal form and therefore can
represented using level numbers.

Constructors and functions over constraint elements As well as
a variable, an element E may be an application con E of a type
constructor con ∈ Con, or an application fun E of a type-function
fun ∈ Fun. Constants are nullary constructors, with arity 0. Since
constructors and functions are global, no levels are associated with
them. Our full constraint language and implementation support
contravariant and invariant constructors as well, but in order to
keep this paper focused on the key challenges and contributions,
we assume all constructors are covariant hereafter.

The main difference between a type constructor con and a type
function fun is that functions are not necessarily injective (i.e.,
fun τ = fun τ ′ 6⇒ τ = τ ′), but constructors can be decomposed
(i.e., con τ = con τ ′ ⇒ τ = τ ′)

3.2 Validity and satisfiability
An assertion A is satisfiable if there is a level-respecting substitu-
tion θ for A’s free unification variables, such that θ[A] is valid.

A substitution θ is level-respecting if the substitution is well-
scoped. More formally, ∀αl ∈ dom(θ), am ∈ fvs(θ[αl]).m ≤ l.
For example, an assertion a1 = b1 ` (a1 = α2 ∧ α2 = b1)
is satisfiable with substitution [α2 7→ a1]. But ` α1 = b2 is
not satisfiable because the substitution [α1 7→ b2] is not level-
respecting. The reason is that with explicit quantifiers, the latter
would look like ∃α∀b. ` α = b and it would be ill-scoped to
instantiate α with b.

A unification-variable-free assertion H ` I is valid if I is en-
tailed by H . Since the entailment rules, available in the associated
technical report [37], are entirely standard, we omit them in this pa-
per. A variable-free goal G is valid if all assertions it contains are
valid.

4. Generating constraints from a type system
The SCL constraint language is powerful enough to express ad-
vanced type system features in GHC. We demonstrate this con-
structively, by giving an algorithm to generate suitable constraints
directly from a Haskell-like program.

4.1 Syntax
Figure 3 gives the syntax for a Haskell-like language. It differs from
a vanilla ML language in four significant ways:

3

Constraint translation [[P]] : C

[[D τ]] := τ ≤ D [[D τ]] := (tupn τ) ≤ D

[[P1 ∧ P2]] := [[P1]] ∧ [[P2]] [[τ1 =τ2]] := (τ1 =τ2)

Type inference rules H; Γ |=` e : τ G

(v : ∀a . P ⇒ τ) ∈ Γ α` fresh
H; Γ |=` v : [a 7→ α`]τ H ` [a 7→ α`][[P]]

(VARCON)

H; Γ, (x : α`) |=`+1 e : τ2 G α` fresh
H; Γ |=` λx . e : α` → τ2 G

(ABS)

H; Γ |=` e1 : τ1 G1

H; Γ |=` e2 : τ2 G2 α` fresh
H; Γ |=` e1 e2 : α` G1∧G2∧(H ` τ1 =(τ2 → α`))

(APP)

H ∧H ′; Γ |=`+1 e1 : τ1 G1

H; Γ, x : σ |=` e2 : τ2 G2

G′ = (H ∧H ′ ` (τ1 =τ ′))

σ = (∀a . P ⇒ τ)
a` fresh skolems
τ ′ = [a 7→ a`]τ

H ′ = [a 7→ a`][[P]]

H; Γ |=` let x :: σ = e1 in e2 : τ2 G1∧G2∧G′
(SIG)

Figure 4. Constraint generation.

• A let-binding has a user-supplied type signatures (σ) that may
be polymorphic. For example,
let id :: (∀a . a→ a) = (λx.x) in ...

declares an identity function with a polymorphic type.
• A polymorphic type σ may include constraints (P), which are

conjunctions of type equality constraints (τ1 = τ2) and type
class constraints (D τ). Hence, the language supports multi-
parameter type classes. The constraints in type signatures are
subsumed by SCL, as we see shortly.
• The language supports type families: the syntax of types τ

includes type families (F τ). A type can also be quantified
type variables (a) and regular types (Int, Bool, [τ]) that are no
different from some arbitrary data constructor T.
• An axiom scheme (Q) is introduced by a Haskell instance

declaration, which we omit in the language syntax for sim-
plicity. An axiom scheme can be used to declare relations on
types such as type class instances, and type family equations.
For example, the following declaration introduces an axiom
(∀a . Eq a⇒ Eq [a]) into the global axiom schemesQ:
instance Eq a => Eq [a] where { ... }

Implicit let-bound polymorphism One further point of departure
from Hindley-Milner (but not GHC) is the lack of let-bound im-
plicit generalization. We decided not to address this feature in the
present work for two reasons: 1) Implicit generalization brings no
new challenges from a constraint-solving perspective, the focus of
this paper, 2) It keeps our formalization closer to GHC, which de-
parts from implicit generalization anyway [33].

4.2 Constraint generation
Following prior work on constraint-based type inference [25, 28,
34], we formalize type inference as constraint solving, generating
SCL constraints using the algorithm in Figure 4.

The constraint-generation rules have the formH; Γ |=` e : τ
G, read as follows: “given hypothesesH , in the typing environment
Γ, we may infer that an expression e has a type τ and generates

assertions G”. The level ` associated with each rule is used to
track the scope of unification (existential) and skolem (universal)
variables. Here, both H and G follow the syntax of SCL.

Rule (VARCON) instantiates the polymorphic type of a variable
or constructor, and emits an instantiated constraint of that type un-
der the propagated hypothesis. Rule (ABS) introduces a new unifi-
cation variable at the current level, and checks e with an increased
level. Rule (APP) is straightforward. Rule (SIG) replaces quantified
type variables in type signature with fresh skolem variables. Term
e1 is checked under the assumption (H ′) that the translated con-
straint in the type signature (P) holds, under the same replacement.
The assumption is checked at the uses of x (Rule (VARCON)). The
quantifier level is not increased when e2 is checked, since all unifi-
cation/skolem variables introduced for e1 are invisible in e2.

Constraints are generated for a top-level expression under the
global axiom schemesQ, under the translation below.

Type classes How can we encode Haskell’s type classes in SCL
constraints? The encoding is shown in Figure 4: we express a class
constraint D τ as an inequality τ ≤ D, where D is a unique
constant for class D. The intuition is that τ is a member of the
set of instances of D. For a multi-parameter type class, the same
idea applies, except that we use a constructor tupn to construct a
single element from the parameter tuple of length n.

For example, consider a type class Mul with three parameters
(the types of two operands and the result of multiplication). The
class Mul is the set of all type tuples that match the operators
and result types of a multiplication. Under the translation above,
[[Mul τ1 τ2 τ3]] = (tup3 τ1 τ2 τ3 ≤ Mul).

4.3 Running example
We use the program in Figure 5 as a running example for the rest
of this paper. Relevant axiom schemes and function signatures are
shown in comments. Here, the type family F maps [a], for an
arbitrary type a, to a pair type (a, a). The function h is called
only when a = [b]. Hence, the type signature is equivalent to
∀b. (b, b) → b, so the definition of h is well-typed. On the other
hand, expression (g [’a’]) has a type error: the parameter type
[Char] is not an instance of class Num, as required by the type
signature of g.

The informal reasoning above corresponds to a set of con-
straints, shown in Figure 5. The highlighted constraints are gener-
ated for the expression (g [’a’]) in the following ways. Rule (VAR-
CON) instantiates d in the signature of g at type δ0, and gen-
erates the third constraint (recall that (Num δ0) is encoded as
(δ0 ≤ Num)). Instantiate the type of character ’a’ at type α0;
hence α0 =Char. Finally, using (APP) on the call (g [’a’]) gen-
erates a fresh type variable γ0 and the fifth constraint ([α0] →
γ0) = (δ0→ Bool). These three constraints are unsatisfiable, re-
vealing the type error for g [’a’]. On the other hand, the first
two (satisfiable) constraints are generated for the implementation
of function g. The hypotheses of these two constraints contain
a0 =[b0], added by rule (SIG).

5. Graph-based constraint analysis
Zhang and Myers [36] show that error report quality can be con-
siderably improved by analyzing both satisfiable and unsatisfiable
subsets of constraints. The key idea is to analyze constraints in a
graph representation. We present a novel algorithm that differs from
this prior work in two significant ways: first, it rejects ill-typed pro-
grams that are accepted by the previous algorithm and accepts well-
typed programs that are rejected by the previous algorithm; second,
it supports the challenging language features discussed in §2.

4

-- f::∀c. (c, c)→ c
-- g::∀d. Num d⇒ d→ Bool
-- assume Q = (∀a . F [a]=(a, a))
-- ∧ ([Int] ≤ Num)

let h::∀a b. a=[b]⇒ (F a)→ b
= λx. f x

in g [‘a’] -- error

(a : a0, b : b0, x : χ1, c : ξ2, f x : φ2,
d : δ0, ’a’ : α0, g [’a’] : γ0)
H ′ ` χ1 → φ2 =(ξ2, ξ2)→ ξ2
∧H ′ ` χ1 → φ2 =(F a0)→ b0
∧ H ` δ0 ≤ Num
∧ H ` α0 =Char
∧ H ` [α0]→ γ0 =δ0 → Bool

where H = (∀a . F [a]=(a, a))
∧ ([Int] ≤ Num)

H ′ = H ∧ (a0 = [b0])

Figure 5. Running example. From left to right: program, generated constraints, part of the graph for constraints.

5.1 Graph generation
A constraint graph is generated from assertions G as follows. As
a running example, Figure 5, excluding the white node and the
dotted edges, shows part of the generated constraint graph for the
constraints in the centre column of the same figure.

1. For each assertion H ` E1 ≤ E2, create nodes for E1 and E2

(if they do not already exist), and an edge LEQ{H} between
the two. For example, nodes for δ0 → Bool and [α0]→ γ0 are
connected by LEQ{H}.

2. For each constructor node (con E) in the graph, create a node
for each of its immediate sub-elements Ei (if they do not al-
ready exist); add a labeled constructor edge consi from the
sub-element to the node; and add a labeled decomposition edge
consi in the reverse direction. For example, δ0 and Bool are
connected to (δ0 → Bool) by edges (→1) and (→2) respec-
tively; and in the reverse direction by edges →1 and →2 re-
spectively.

Repeat step 2 until no more edges or nodes are added. Figure 6
describes this process more formally. Most rules are straightfor-
ward, but two points are worth noting. First, for each assertion
H ` E1 ≤ E2, the hypothesis H is merely recorded in the edge
labels, to be used by later stages of constraint analysis (§5.3). Sec-
ond, while components of a constructor application are connected
to the application by constructor/decomposition edges, neither of
these edges are added for function applications, because function
applications cannot be decomposed: (fun A= fun B) 6⇒A=B.

5.2 Graph saturation
The key ingredient of graph-based constraint analysis is graph
saturation: inequalities that are derivable from a constraint system
are added as new edges in the graph. We first discuss the challenge
of analyzing Haskell constraints, and then propose a new algorithm
that tackles these challenges.

Limitations of previous approach Graph saturation can be for-
malized as a context-free-language (CFL) reachability problem [3,
24, 36]. For example, Zhang and Myers formalized a graph sat-
uration algorithm for a subset of our constraint language as the
first three rules in Figure 7. The first rule infers a new LEQ edge
given two consecutive LEQ edges, reflecting the transitivity of ≤.
This rule also aggregates hypotheses made on existing edges to the
newly inferred edge. The second rule infers a new LEQ edge when
a constructor edge is connected to its dual decomposition edge,
reflecting the fact that constructors can be decomposed. Given
ni ≤ n′i for parameters of n and n′, the third rule infers an LEQ

n : Node (Node = Element)
e : Edge ::= LEQ{H}(n1 7→ n2)

| coni(n1 7→ n2) | coni(n1 7→ n2)

Graph = (℘(Node), ℘(Edge))
E[[E]] : Graph A[[G]] : Graph

A[[A1 ∧ . . . ∧An]] =
⋃

i∈1..n
A[[Ai]]

A[[H ` E1 ≤ E2]] = E[[E1]] ∪ E[[E2]] ∪ ({LEQ{H}(E1 7→ E2)}, ∅)
E[[α`]] = ({α`}, ∅) E[[a`]] = ({a`}, ∅)

E[[con(E)]] = ({con(E)}, ∅) ∪
⋃

i∈1..n
E[[Ei]] ∪

(∅, {coni(Ei 7→con(E)), coni(con(E) 7→ Ei)})

E[[fun(E)]] = (fun(E), ∅) ∪
⋃

i∈1..n
E[[Ei]]

Figure 6. Construction of the constraint graph.

LEQ{H1 ∧H2} ::= LEQ{H1} LEQ{H2}

LEQ{H} ::= coni LEQ{H} coni

LEQ{H}(con(n) 7→con(n′)) ::= LEQ{H}(ni 7→n′i), ∀ 1≤ i≤ |n|

LEQ{H}(fun(n)↔ fun(n′)) ::= LEQ{H}(ni↔n′i), ∀ 1≤ i≤ |n|
where con ∈ Con, fun ∈ Fun. First two rules apply for consecutive edges.

Figure 7. Graph saturation rules. New edges (left) are inferred
based on existing edges (right).

edge from con(n) to con(n′), reflecting the fact that constructors
are covariant.

However, graph saturation is insufficient to handle SCL. We can
see this by considering the constraint graph of the running example,
in Figure 5. Excluding the white nodes and the edges leading to
and from them, this graph is fully saturated according to the rules
in Figure 7. For example, the dotted edges between δ0 and [α0] can
be derived by the second production. However, a crucial inequality
(edge) is missing in the saturated graph: ([Char] ≤ Num), which
can be derived from the shaded constraints in Figure 5. Since
this inequality reveals an error in the program being analyzed
(that [Char] is not an instance of class Num), failure to identify
it means an error is missed. Moreover, the edges between (ξ2, ξ2)
and (F a0) are mistakenly judged as unsatisfiable, as we explain in
§5.3.

5

Trace : (Node, Subst, . . . , Subst) Subst : (Element ↪→ Element)

Procedure expand&saturate(G : Graph)
foreach Element E in G do initialize T (E) with (E, ∅)
call saturate(G) and expand(G, T) until G is unmodified

Procedure saturate(G : Graph)
Add new edges to G according to the rules in Figure 7

Procedure expand(G : Graph, T : Element→ Trace)
For a matched pattern shown in Figure 9, say Eold is in G already.
Add Enew to G. Let E ≤ E′ be an edge between the corresponding
sub-elements of Eold and Enew:

1 if (E ↪→ E′) 6∈ T (Eold) then
2 initialize T (Enew) with (append (T (Eold),(E ↪→E′)))

Figure 8. Graph saturation and expansion algorithm.

Expanding the graph The key insight for making the algorithm
more sound and complete is to expand the constraint graph during
graph saturation. Informally, nodes are added to the constraint
graph so that the third and fourth rules in Figure 7 can be applied.

The (full) constraint graph in Figure 5 is part of the final con-
straint graph after running our new algorithm. The algorithm ex-
pands the original constraint graph with a new node [Char]. Then,
the dotted edge from [Char] to [α0] is added by the third production
in Figure 7, and then the dotted edge from [Char] to Num by the
first production. Therefore, the unsatisfiable inequality ([Char] ≤
Num) is correctly identified by the new algorithm. Moreover, the
same mechanism identifies that (F a0) = (b0, b0) can be entailed
from hypothesis H ′, as we explain in §5.3. Hence, edges from and
to (F a0) are correctly classified as satisfiable.

The key challenge for the expansion algorithm is to explore
useful nodes without creating the possibility of nontermination. For
example, starting from α0 = Char, a naive expansion algorithm
based on the insight above might apply the list constructor to add
nodes [α0], [Char], [[α0]], [[Char]] and so on infinitely.

The new algorithm To ensure termination, the algorithm distin-
guishes two kinds of graph nodes: black nodes are constructed di-
rectly from the system of constraints (i.e., nodes added by rules in
Figure 6); white nodes are added during graph expansion.

The algorithm is shown in Figure 8. The top-level procedure
expand&saturate first initializes the trace for each black node,
and then fully expands and saturates a constraint graph. The proce-
dure saturate adds (only) new edges to the constraint graphG by
using the rules shown in Figure 7. The (new) fourth rule is needed
for function applications, reflecting an axiom ∀E1, E2 . E1 =
E2 ⇒ fun E1 = fun E2. We omit the details of graph saturation in
this paper since it is mostly standard [3, 36].

The most interesting part is the procedure expand, which ac-
tively adds (only) new nodes to the graph, so the saturation proce-
dure may saturate the graph further. As depicted in Figure 9, this
procedure looks for an LEQ edge between some elements E and
E′ in the graph G. If G contains only one of con (E1, ., E, ., En)
and con (E1, ., E

′, ., En), the other element is added as a white
node. A similar procedure applies to function applications as well.
The added nodes enable more edges to be added by procedure
saturate (e.g., the dotted edges in Figure 9).

To ensure termination, the expansion procedure puts a couple of
restrictions on edges and nodes that trigger expansion. First, both
of E and E′ must be black nodes. Second, a trace T is kept for
each element. A trace is a sequence of a single black node, and
substitutions in the form (Element ↪→ Element). Intuitively, a
trace records how a constraint element can be derived by applying
substitutions to an element from the original constraint system (a
black node). For example, ((x, y), (x ↪→ Int), (y ↪→ Bool)) is a
possible trace for constraint element (Int,Bool). For a black node,

Figure 9. Graph-expanding patterns. If only one grey node is in
the graph, the other one is added as a white node.

HGraph = (Graph,R) R = ℘(Q) Q[[H]] : HGraph
N : the constraint graph w/o edges A[[G]] : as defined in Figure 6

Q[[Q1 ∧ . . . ∧Qn]] = (N , ∅) ∪
⋃

i∈1..n
Q[[Qi]]

Q[[I]] = (A[[∅ ` I]], ∅) Q[[∀a . C ⇒ I]] = (∅, {∀a . C ⇒ I})

Figure 10. Construction of the hypothesis graph.

the sequence only contains the node itself. It is required that a single
substitution cannot be applied twice (line 1). When a white node
is added, a substitution (E ↪→ E′) is appended to the trace of
T (Enew) (line 2).

Returning to our running example in Figure 5, the LEQ edge
from α0 to Char, as well as the node [α0], match the pattern in Fig-
ure 9. In this example, the white node [Char] is added to the graph.
As an optimization, no constructor/decomposition edges are added,
since these edges are only useful for finding α0 =Char, which is in
the graph already. Moreover, T ([Char]) = ([α0], (α0 ↪→ Char)).

Termination The algorithm in Figure 8 always terminates, be-
cause the number of nodes in the fully expanded and saturated
graph must be finite. This is easily shown by observing that
|T (Enew)| = |T (Eold)| + 1, and trace size is finite (elements
in a substitution must be black).

5.3 Classification
Each LEQ edge LEQ{H}(E1 7→ E2) in the saturated constraint
graph corresponds to an entailment constraint, H ` E1 ≤ E2, that
is derivable from the constraints being analyzed. For example, in
Figure 5, the LEQ edge from (b0, b0) to (F a0) corresponds to the
following entailment:

(∀a. F [a]=(a, a))∧
([Int]≤Num) ∧ (a0 =[b0])

` (b0, b0)≤F a0

Now, the question is: is this entailment satisfiable?

Hypothesis graph For each hypothesis H shown on LEQ edges
in the saturated constraint graph, we construct and saturate a
hypothesis graph so that derivable inequalities from H become
present in the final graph.

The construction of a hypothesis graph is shown in Figure 10.
For an entailment H ` E1 ≤ E2, the constructed graph of H
includes both E1 and E2. These nodes are needed as guidance
for graph saturation. Otherwise, consider an assertion a0 = b0 `
[[a0]] = [[b0]]. Without nodes [[a0]] and [[b0]], we face a dilemma:
either we need to infer (infinite) inequalities derivable from a0 =
b0, or we may miss a valid entailment. As an optimization, all
nodes (but not edges) in the constraint graph (N) are added to
the constructed graph as well. Consequently we need to saturate
a hypothesis graph just once for all edges that share the hypothesis
graph.

The function Q[[H]] translates a hypothesis H into a graph
representation associated with a rule set R. Hypotheses in the
degenerate form (I) are added directly; others are added to the rule
setR, which is part of a hypothesis graph. Returning to our running

6

(a) Hypothesis graph for
H in Figure 5.

(b) Hypothesis graph for H′ in Fig-
ure 5.

Figure 11. Hypothesis graphs for the running example.

Procedure saturate(G : Graph)
1 Add new edges to G according to the rules in Figure 7
2 foreach H = (∀a . I1 ∧ . . . ∧ In⇒E1 ≤ E2)∈R do
3 if ∃θ : a 7→ Node . ∀1 ≤ i ≤ n . θ[Ii] ∈ G then
4 if θ[E1] and θ[E2] are both in G then
5 add edge from E1 to E2 if not in G already

Figure 12. Hypothesis graph saturation for axioms.

example, Figure 11 (excluding the white node and dotted edges)
shows (part of) the constructed hypothesis graphs for hypotheses
H and H ′.

The hypothesis graph is then expanded and saturated in a similar
way as the constraint graph. The difference is that axioms are
applied during saturation, as shown in Figure 12. At line 3, an
axiom ∀a. C⇒ I is applied when it can be instantiated so that all
inequalities inC are inG already (i.e.,H entails these inequalities).
Then, an edge corresponding to the inequality in conclusion is
added to G (line 5).

Consider the hypothesis graph in Figure 11(b). The node F [b0]
is added by expand in Figure 8. Moreover, the quantified axiom
(∀a . F [a] = (a, a)) is applied, under the substitution (a 7→ b0).
Hence, the algorithm adds the dotted edges between F [b0] and
(b0, b0) to the hypothesis graph. The final saturated hypothesis
graph contains edges between F a0 and (b0, b0) as well, by tran-
sitivity. Notice that without graph expansion, this relationship will
not be identified in the hypothesis graph, so the edges from and to
(F a0) in Figure 5 are mistakenly classified as unsatisfiable.

Classification An entailment H ` E1 ≤ E2 is classified as
satisfiable iff there is a level-respecting substitution θ such that
the hypothesis graph for H contains an LEQ edge from θ[E1] to
θ[E2]. Such substitutions are searched for in the fully expanded
and saturated hypothesis graph.

Returning to the example in Figure 5, the LEQ edges between
(b0, b0) and F a0 are (correctly) classified as satisfiable, since
the corresponding edges are in Figure 11(b). LEQ edges between
(ξ2, ξ2) and F a0 are (correctly) classified as satisfiable as well,
with substitution ξ2 7→ b0. On the other hand, the LEQ edge
from [Char] to Num is (correctly) judged as unsatisfiable, since
the inequality is not present in the (saturated) hypothesis graph for
H .

To see why the level-respecting substitution requirement is
needed, consider the following example, adapted slightly from the
introduction:

(λx. let g::(∀a . a→ (a, a)) =
λy. (x, y) in ...)

This program generates an assertion ∅ ` (β2 → (α0, β2)) =
(a1 → (a1, a1)), which requires that the inferred type for the im-
plementation of g be equivalent to its signature. The final constraint
graph for the assertion contains two LEQ edges between nodes β2

and a1. These edges are correctly classified as unsatisfiable, since
the only substitution candidate, β2 7→ a1, is not level-respecting.

If the signature of g is (∀a . a = Int ⇒ a → (a, a)), the
program is well-typed, since the parameter of g must be Int. This
programs generates the same assertion as the previous example, but
with a hypothesis a1 = Int. This assertion is correctly classified as
satisfiable, via a level-respecting substitution β2 7→ Int.

Informative edges When either end node of a satisfiable LEQ
edge is an unification variable, its satisfiability is trivial and hence
not informative for error diagnosis. Also uninformative is an LEQ
edge derived from unsatisfiable edges. Only the informative edges
are used for error diagnosis.

6. Bayesian model for ranking explanations
When unsatisfiable edges are detected, we are interested in infer-
ring the program expressions that (generated the constraints that)
most likely caused the errors. To do this, we extend the Bayesian
model of Zhang and Myers [36].

The observed symptom of errors is a fully analyzed constraint
graph (§5), in which all informative LEQ edges are classified as
satisfiable or unsatisfiable. For simplicity, in what follows we write
“edge” to mean “informative edge”.

Formally, an observation o is a set (o1, o2, . . . , on), where oi∈
{unsat, sat} represents satisfiability of the i-th edge. Let E be
the set of all expressions in a program, each occurring in a distinct
source location and giving rise to a typing constraint. We are look-
ing for a set E ⊆ E that maximizes P (E|o), the posterior prob-
ability that the expressions E contain errors. By Bayes’ theorem,
this term has an easier, equivalent form: PE(E)×P (o|E)/PO(o),
where PE(E) is a prior probability that expressions in E contain
errors, and PO is a prior distribution on observations. Since PO(o)
does not vary in E, the goal of error diagnosis is to find:

arg max
E⊆E

PE(E)× P (o|E)

Redundant edges To further simplify the term PE(E)×P (o|E),
Zhang and Myers [36] assume that the satisfiability of informative
edges is independent. However, the introduction of white nodes un-
dermines this assumption. In Figure 5, the satisfiability of the edge
between [α0] and [Char] merely repeats the edge between α0 and
Char; the fact that end-nodes can be decomposed is also uninforma-
tive because white nodes are constructed this way. In other words,
this edge provides neither positive nor negative evidence that the
constraints it captures are correct. It is redundant. We can soundly
capture a large class of redundant edges:

DEFINITION 1. An edge is redundant if 1) both end-nodes are
constructor applications of the same constructor, and at least one
node is white; or 2) both end-nodes are function applications to the
same function, and for each simple edge along this edge, at least
one of its end-nodes is white. Otherwise, an edge is non-redundant.

The following lemma (see the associated technical report [37]
for the proof) shows that if an edge is redundant according to the
previous definition then it does not add any positive or negative
information in the graph – it is equivalent to some other set of non-
redundant edges.

LEMMA 1. For any redundant edge from E1 to E2, there exist
non-redundant edges say Pi from Ei1 to Ei2, so that E11 ≤
E12 ∧ . . . ∧ En1 ≤ En2 ⇔ E1 ≤ E2.

Calculating likelihood Let ô = (ô1, ô2, . . . , ôm) be all non-
redundant edges. Lemma 1 implies thatPE(E)×P (o|E)=PE(E)×
P (ô|E). We make two simplifying assumptions:

7

1. All expressions are equally likely to be wrong (with fixed prob-
ability P1), and

2. Remaining paths in ô are independent.2

These assumptions allow us to rewrite PE(E)× P (ô|E) as
P
|E|
1 ×

∏
i P (ôi|E). The term P (ôi|E) is calculated using two

heuristics:

1. If ôi = unsat, at least one constraint that gives rise to the
edge must be wrong. Therefore, we only need to consider the
expressions that generate constraints along unsatisfiable edges
in ô. We denote this set by G.

2. If ôi =sat, it is unlikely (with fixed probability P2<0.5) that
expressions in E give rise to the edge.

Assume that constraints generated for E appear on kE of satis-
fiable edges. Using the previous heuristics, the likelihood is maxi-
mized at:

arg max
E⊆E

P
|E|
1

∏
i

P (ôi|E) = arg max
E∈G

P
|E|
1 (P2/(1− P2))kE

If C1 =− logP1 and C2 =− log(P2/(1 − P2)), maximizing
the likelihood is equivalent to minimizing the ranking metric |E|+
(C2
C1

)kE . An intuitive understanding is that the cause must explain
all unsatisfiable edges; the wrong entities are likely to be small (|E|
is small) and not used often on satisfiable edges (since C2 > 0 by
heuristic 2). We use the efficient A∗ search algorithm in [36] to find
a set of expressions minimizing this metric.

7. Implementation
We built our error diagnostic tool based on the open-source tool
SHErrLoc [30]. Our diagnostic tool reads in constraints following
the syntax of Figure 2, and computes constraints most likely to
have caused errors in the constraint system being analyzed. The
extension includes about 2,500 lines of code (LOC), above the
5,000 LOC of SHErrLoc.

Generating constraints from Haskell type inference involved
little effort. We modified the GHC compiler (version 7.8.2), which
already generates and solves constraints during type inference,
to emit unsimplified, unsolved constraints. The modification is
minimal: only 50 LOC are added or modified. Constraints in GHC’s
format are then converted by a lightweight Perl script (about 400
LOC) into the syntax of our error diagnosis tool.

8. Evaluation
8.1 Benchmarks
To evaluate our error diagnosis tool, we used two sets of previously
collected Haskell programs containing errors. The first corpus (the
CE benchmark) contains 121 Haskell programs, collected by Chen
and Erwig [5] from 22 publications about type-error diagnosis. Al-
though many of these programs are small, most of them have been
carefully chosen or designed in the 22 publications to illustrate im-
portant (and often, challenging) problems for error diagnosis.

The second benchmark, the Helium benchmark [11], contains
over 50k Haskell programs logged by Helium [13], a compiler
for a substantial subset of Haskell, from first-year undergraduate
students working on assignments of a programming course offered
at the University of Utrecht during course years 2002–2003 and
2003–2004. Among these programs, 16,632 contain type errors.

2 These assumptions might be refined to improve accuracy. For example, the
(rare) missed locations in our evaluation usually occur because program-
mers are more likely to misuse certain operators (e.g., ++ and :) than others
in Haskell. We leave refining these assumptions as future work.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

vs GHC vs Helium

%
 o

f
to

ta
l

The CE Benchmark

2 4
7 5

35

48

33

20

vs GHC vs Helium

The Helium Benchmark

2 1423 11

154 156

49 47

Figure 13. Comparison with GHC and Helium on two bench-
marks. From top to bottom, columns count programs where (1) our
tool finds a correct error location that the other tool misses; (2) both
tools report the correct error location; (3) both approaches miss the
error location; (4) our tool misses the error location but the other
tool finds one of them.

8.2 Evaluation setup
To evaluate the quality of an error report, we first need to retrieve
the true error locations of the Haskell programs being analyzed,
before running our evaluation.

The CE benchmark contains 86 programs where the true error
locations are well-marked. We reused these locations in evaluation.
Since not all collected programs are initially written in Haskell, the
richer type system of Haskell actually makes 9 of these programs
type-safe. Excluding these well-typed programs, 77 programs are
left.

The Helium benchmark contains programs written by 262
groups of students taking the course. To make our evaluation ob-
jective, we only considered programs whose true error locations
are clear from subsequences of those programs where the errors
are fixed. Among those candidates, we picked one program with
the latest time stamp (usually the most complex program) for each
group to make our evaluation feasible. Groups were ignored if ei-
ther they contain no type errors, or the error causes are unclear. In
the end, we used 228 programs. The programs were chosen without
reference to how well various tools diagnosed their errors.

We compared the error localization accuracy of our tool to
GHC 7.8.2 and Helium 1.8 [15]; both represent the state of the art
for diagnosing Haskell errors. A tool accurately locates the errors
in a program if and only if it points to at least one of the true error
locations in the program.

One difference from GHC and Helium is that sometimes, our
tool reports a small set of top-rank source locations, with the same
likelihood. For fairness, we ensure that the majority of suggestions
are correct when we count our tool as accurate. Average suggestion
size is 1.7, so we expect a limited effect on results for offering
multiple suggestions.

8.3 Error report accuracy
Figure 13 shows the error report accuracy of our tool, compared
with GHC and Helium. For the CE benchmark, our tool provides
strictly more accurate error reports for 43% and 26% of the pro-
grams, compared with GHC and Helium respectively. Overall,
GHC, Helium and our tool finds the true error locations for 48%,
68% and 88% of programs. Clearly, our tool, with no Haskell-
specific heuristics, already significantly improves accuracy com-
pared with tools that do.

8

 0.001

 0.01

 0.1

 1

 10

 100

50 200 400 600 10 100

ti
m

e
 (

in
 s

e
c
o

n
d

s
)

program size (LOC)

analysis time
ranking time

Figure 14. Performance on the Helium benchmark.

On the Helium benchmark, the accuracy of GHC, 68%, is con-
siderably better than on the CE benchmark; our guess is the latter
offers more challenging cases for error diagnosis. Nevertheless, our
tool still outperforms GHC by 21%. Compared with Helium, our
tool is strictly better for 21% of the programs. Overall, the accu-
racy of our tool is 89% for the Helium benchmark, a considerable
improvement compared with both GHC (68%) and Helium (75%).

Our tool sometimes does miss error causes identified by other
tools. For 14 programs, Helium finds true error locations that our
tool misses. Among these programs, most (12) contain the same
mistake: students confuse the list operators for concatenation (++)
and cons (:). To find these error causes, Helium uses a heuris-
tic based on the knowledge that this particular mistake is com-
mon in Haskell. It is likely that our tool, which currently uses
no Haskell-specific heuristics, can improve accuracy further by
exploiting knowledge regarding common mistakes. However, we
leave integration of language-specific heuristics to future work.

Comparison with CF-typing Chen and Erwig [5] evaluated their
CF-typing method on the CE benchmark. For the 86 programs
where the true error locations are well-marked, the accuracy of
their tool is 67%, 80%, 88% and 92% respectively, when their tool
reports 1, 2, 3 and 4 suggestions for each program; the accuracy
of our tool is 88% with an average of 1.62 suggestions3. When our
tool reports suboptimal suggestions, the accuracy becomes 92% ,
with an average suggestion size of 3.2.

Comparison with SHErrLoc Zhang and Myers evaluated their
error diagnosis algorithm using a suite of OCaml programs col-
lected from students by Lerner et al. [20]. We checked that our ex-
tensions to their SHErrLoc tool did not harm accuracy. Using their
benchmark data, in which true errors are already labeled, and their
constraint generation process, we found that accuracy is unaffected
by our extensions. This result is expected since OCaml programs
use none of the advanced features that this paper targets.

8.4 Performance
We evaluated the performance of our tool on a Ubuntu 14.04 system
with a dual-core 2.93GHz Intel E7500 processor and 4GB memory.
We separate the time spent into that taken by graph-based constraint
analysis (§5) and by ranking (§6).

The CE benchmark Most programs in this benchmark are small.
The maximum constraint analysis and ranking time for a single
program are 0.24 and 0.02 seconds respectively.

3 A slight difference is that we excluded 9 programs that are well-typed in
Haskell. However, we confirmed that the accuracy of CF-typing on the same
77 programs changes by 1% at most [4].

The Helium benchmark Figure 14 shows the performance on the
Helium benchmark. The results suggest that both constraint anal-
ysis and ranking scale reasonably with increasing size of Haskell
program being analyzed. Constraint analysis dominates the running
time of our tool. Although the analysis time varies for programs of
the same size, in practice it is roughly quadratic in the size of the
source program.

Constraint analysis finishes within 35 seconds for all programs;
96% are done within 10 seconds, and the median time is 3.3 sec-
onds. Most (on average, 97%) of the time required is used by graph
saturation rather than expansion. Ranking is more efficient: all pro-
grams take less than one second.

8.5 Sensitivity
Recall (§6) that the only tunable parameter that affects ranking of
error diagnoses is the ratio between C2 and C1. To see how the
ratio affects accuracy, we measured the accuracy of our tool with
different ratios (from 0.2 to 5). The result is that accuracy and
average suggestion size of our tool change by at most 1% and 0.05
respectively. Hence, the accuracy of our tool does not depend on
choosing the ratio carefully.

If only unsatisfiable paths are used for error diagnosis (i.e.,
C2 = 0), the top-rank suggestion size is much larger (over 2.5 for
both benchmarks, compared with ∼1.7). Hence, satisfiable paths
are important for error diagnosis.

9. Related work
The most closely related work is clearly that of Zhang and My-
ers [36]. In order to handle the highly expressive type system of
Haskell, it was necessary to significantly extend many aspects of
that work: the constraint language and constraint graph construc-
tion, the graph saturation algorithm, and the Bayesian model used
for ranking errors.

Error diagnoses for ML-like languages Efforts on improving
error messages for ML-like languages can be traced to the 80’s [16,
35]. Most of these efforts can be categorized into three directions.

The first direction, followed by [14, 16, 19, 22, 26, 36] as well
as most compilers for ML-like language, attempts to infer the most
likely cause. One approach is to alter the order of type unifica-
tion [6, 19, 22]. But any specific order fails in some circumstance,
since the error location may be used anywhere during the unifica-
tion procedure. Some prior work [12, 14, 16, 26, 36] also builds
on constraints, but these constraint languages at most have limited
support for sophisticated features such as type classes, type signa-
tures, type families, and GADTs. Most of these approaches also use
language-specific heuristics to improve report quality.

The second direction [7, 9, 10, 29, 31, 32, 35], attempts to trace
everything that contributes to the error. Despite the attractiveness
of feeding a full explanation to the programmer, the reports are
usually verbose and hard to follow [14].

A third approach is to fix errors by searching for similar pro-
grams [20, 23] or type substitutions [5] that do type-check. Unfor-
tunately, we cannot obtain a common corpus to perform direct com-
parison with [23]. On the suite of OCaml programs used in [36], our
tool improves on accuracy of [20] by 10%. The results on the CE
benchmark (§8.3) suggests that our tool localizes true error loca-
tions more accurately than in [5]. Although our tool currently does
not provide suggested fixes, accurate error localization is likely to
provide good places to search for fixes.

Constraints and graph representations for type inference Mod-
eling type inference via constraint solving is not a new idea. The
most related work is on set constraints [1, 2] and type qualifiers [9].
Like SCL, this work has a natural graph representations, with con-
straint solving strongly connected to CFL-reachability [17, 24].

9

However, neither set constraints nor type qualifiers handle the hy-
potheses and type-level functions essential to representing Haskell
constraints.

Probabilistic inference More broadly, other work in the past
decade has explored various approaches for applying probabilis-
tic inference to program analysis and bug finding. This work is
summarized by Zhang and Myers [36].

10. Conclusion
We have shown how to use probabilistic inference to effectively lo-
calize errors for the highly expressive type system of Haskell. This
contribution is clearly useful for Haskell programmers. However,
because Haskell is so expressive, success with Haskell suggests that
the approach has broad applicability to other type systems.

Acknowledgments
We thank Jurriaan Hage, Chinawat Isradisaikul, Jed Liu, Tom Ma-
grino and the anonymous reviewers for their helpful suggestions.
We also thank Jurriaan Hage, Shen Chen and Martin Erwig for
making available the excellent Haskell data sets.

This work was supported by two grant N00014-13-1-0089 from
the Office of Naval by MURI grant FA9550-12-1-0400, by a grant
from the National Science Foundation (CCF-0964409).

References
[1] A. Aiken. Introduction to set constraint-based program analysis.

Science of Computer Programming, 35:79–111, 1999.
[2] A. Aiken and E. L. Wimmers. Type inclusion constraints and type in-

ference. In Conf. Functional Programming Languages and Computer
Architecture, pages 31–41, 1993.

[3] C. Barrett, R. Jacob, and M. Marathe. Formal-language-constrained
path problems. SIAM Journal on Computing, 30:809–837, 2000.

[4] S. Chen. Accuracy of CF-typing. Private communication, 2014.
[5] S. Chen and M. Erwig. Counter-factual typing for debugging type

errors. In POPL 41, Jan. 2014.
[6] S. Chen and M. Erwig. Better type-error messages through lazy

typing. Technical report, Oregon State University, 2014.
[7] V. Choppella and C. T. Haynes. Diagnosis of ill-typed programs.

Technical report, Indiana University, December 1995.
[8] EasyOCaml. EasyOCaml. http://easyocaml.forge.
ocamlcore.org.

[9] J. S. Foster, R. Johnson, J. Kodumal, and A. Aiken. Flow-insensitive
type qualifiers. ACM Trans. Prog. Lang. Syst., 28(6):1035–1087, Nov.
2006.

[10] C. Haack and J. B. Wells. Type error slicing in implicitly typed higher-
order languages. Science of Computer Programming, 50(1–3):189–
224, 2004.

[11] J. Hage. Helium benchmark programs, (2002–2005). Private commu-
nication, 2014.

[12] J. Hage and B. Heeren. Heuristics for type error discovery and re-
covery. In Z. Horváth, V. Zsók, and A. Butterfield, editors, Imple-
mentation and Application of Functional Languages, volume 4449 of
Lecture Notes in Computer Science, pages 199–216. Springer, 2007.

[13] B. Heeren, D. Leijen, and A. van IJzendoorn. Helium, for learning
Haskell. In Proc. 2003 ACM SIGPLAN Workshop on Haskell, pages
62–71, 2003.

[14] B. J. Heeren. Top Quality Type Error Messages. PhD thesis, Univer-
siteit Utrecht, The Netherlands, Sept. 2005.

[15] Helium 1.8(2014). Helium (ver. 1.8). https://hackage.haskell.
org/package/helium, 2014.

[16] G. F. Johnson and J. A. Walz. A maximum flow approach to anomaly
isolation in unification-based incremental type inference. In POPL 13,
pages 44–57, 1986.

[17] J. Kodumal and A. Aiken. The set constraint/CFL reachability con-
nection in practice. In PLDI’04, pages 207–218, 2004.

[18] O. Lee and K. Yi. Proofs about a folklore let-polymorphic type
inference algorithm. ACM Trans. Program. Lang. Syst., 20(4):707–
723, July 1998.

[19] O. Lee and K. Yi. Proofs about a folklore let-polymorphic type
inference algorithm. ACM Trans. Prog. Lang. Syst., 20(4):707–723,
1998.

[20] B. S. Lerner, M. Flower, D. Grossman, and C. Chambers. Searching
for type-error messages. In PLDI’07, pages 425–434, 2007.

[21] S. Marlow and S. Peyton-Jones. The Glasgow Haskell compiler.
http://www.aosabook.org/en/ghc.html, 1993.

[22] B. J. McAdam. On the unification of substitutions in type inference.
In Implementation of Functional Languages, pages 139–154, 1998.

[23] B. J. McAdam. Repairing Type Errors in Functional Programs.
PhD thesis, Laboratory for Foundations of Computer Science, The
University of Edinburgh, 2001.

[24] D. Melski and T. Reps. Interconvertibility of a class of set constraints
and context-free language reachability. Theoretical Computer Science,
248(1–2):29–98, 2000.

[25] M. Odersky, M. Sulzmann, and M. Wehr. Type inference with con-
strained types. Theor. Pract. Object Syst., 5(1):35–55, Jan. 1999.

[26] Z. Pavlinovic, T. King, and T. Wies. Finding minimum type error
sources. In OOPSLA’14, pages 525–542, 2014.

[27] S. Peyton Jones, D. Vytiniotis, S. Weirich, and M. Shields. Practical
type inference for arbitrary-rank types. J. Funct. Program., 17(1):1–
82, Jan. 2007.

[28] F. Pottier and D. Rémy. The essence of ML type inference. In B. C.
Pierce, editor, Advanced topics in types and programming languages,
pages 389–489. MIT Press, 2005.

[29] V. Rahli, J. B. Wells, and F. Kamareddine. A constraint system for a
SML type error slicer. Technical Report HW-MACS-TR-0079, Heriot-
Watt university, 2010.

[30] SHErrLoc. SHErrLoc (Static Holistic Error Locator) tool release (ver
1.0). http://www.cs.cornell.edu/projects/sherrloc, 2014.

[31] P. J. Stuckey, M. Sulzmann, and J. Wazny. Interactive type debugging
in Haskell. In Proc. 2003 ACM SIGPLAN Workshop on Haskell,
Haskell ’03, pages 72–83, 2003.

[32] F. Tip and T. B. Dinesh. A slicing-based approach for locating type
errors. ACM Trans. on Software Engineering and Methodology, 10(1):
5–55, 2001.

[33] D. Vytiniotis, S. Peyton Jones, and T. Schrijvers. Let should not
be generalized. In Proc. 5th ACM SIGPLAN Workshop on Types in
Language Design and Implementation, pages 39–50, New York, NY,
USA, 2010. ACM.

[34] D. Vytiniotis, S. P. Jones, T. Schrijvers, and M. Sulzmann. Out-
sidein(X): Modular type inference with local assumptions. Journal
of Functional Programming, September 2011.

[35] M. Wand. Finding the source of type errors. In POPL 13, 1986.
[36] D. Zhang and A. C. Myers. Toward general diagnosis of static errors.

In POPL, pages 569–581, Jan. 2014.
[37] D. Zhang, A. C. Myers, D. Vytiniotis, and S. Peyton-

Jones. Diagnosing Haskell type errors. Technical Report
http://hdl.handle.net/1813/39907, Cornell University, Apr. 2015.

10

http://easyocaml.forge.ocamlcore.org
http://easyocaml.forge.ocamlcore.org
https://hackage.haskell.org/package/helium
https://hackage.haskell.org/package/helium
http://www.aosabook.org/en/ghc.html
http://www.cs.cornell.edu/projects/sherrloc

	Introduction
	The challenge we tackle
	The SCL constraint language
	Syntax of the SCL constraint language
	Validity and satisfiability

	Generating constraints from a type system
	Syntax
	Constraint generation
	Running example

	Graph-based constraint analysis
	Graph generation
	Graph saturation
	Classification

	Bayesian model for ranking explanations
	Implementation
	Evaluation
	Benchmarks
	Evaluation setup
	Error report accuracy
	Performance
	Sensitivity

	Related work
	Conclusion

