
Backpack: Retrofitting Haskell with Interfaces

Scott Kilpatrick
MPI-SWS

skilpat@mpi-sws.org

Derek Dreyer
MPI-SWS

dreyer@mpi-sws.org

Simon Peyton Jones
Microsoft Research

simonpj@microsoft.com

Simon Marlow
Facebook

marlowsd@gmail.com

Abstract
Module systems like that of Haskell permit only a weak form of
modularity in which module implementations depend directly on
other implementations and must be processed in dependency or-
der. Module systems like that of ML, on the other hand, permit
a stronger form of modularity in which explicit interfaces express
assumptions about dependencies, and each module can be type-
checked and reasoned about independently.

In this paper, we present Backpack, a new language for build-
ing separately-typecheckable packages on top of a weak module
system like Haskell’s. The design of Backpack is inspired by the
MixML module calculus of Rossberg and Dreyer, but differs sig-
nificantly in detail. Like MixML, Backpack supports explicit in-
terfaces and recursive linking. Unlike MixML, Backpack supports
a more flexible applicative semantics of instantiation. Moreover,
its design is motivated less by foundational concerns and more
by the practical concern of integration into Haskell, which has
led us to advocate simplicity—in both the syntax and semantics
of Backpack—over raw expressive power. The semantics of Back-
pack packages is defined by elaboration to sets of Haskell modules
and binary interface files, thus showing how Backpack maintains
interoperability with Haskell while extending it with separate type-
checking. Lastly, although Backpack is geared toward integration
into Haskell, its design and semantics are largely agnostic with re-
spect to the details of the underlying core language.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.3.3 [Programming
Languages]: Language Constructs and Features—Recursion, Ab-
stract data types, Modules; F.3.3 [Logics and Meanings of Pro-
grams]: Studies of Program Constructs—Type structure

Keywords Type systems; mixin modules; Haskell modules; ap-
plicative instantiation; recursive modules; separate modular devel-
opment; packages; module systems

1. Introduction
Suppose an author A wants to write, test, and publish a software
component (or “package”) P, that needs to call a random-number
generator. But A wants each customer C to be able to supply his
or her own random-number generator. In a typed language, the
author A must define the interface to the random-number generator,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
POPL ’14, January 22–24, 2014, San Diego, CA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2544-8/14/01. . . $15.00.
http://dx.doi.org/10.1145/2535838.2535884

typecheck P with respect to the interface, and publish P. The client
C then links P with a particular random-number generator that
matches the interface. We refer to this style of development as
separate modular development (SMD), as distinct from the style of
incremental modular development (IMD) in which a package can
only be typechecked when the implementations of its dependencies
are available.

One of the most prominent approaches to SMD is that taken by
the ML module system and its many variants [22, 21]. ML provides
functors, which enable a module M to be parameterized over the
implementations of its dependencies; the dependencies can then be
instantiated by functor application in multiple different ways, even
within a single program.

An alternative approach is to use mixin modules [4, 3, 13,
11]. Instead of relying on parameterization, mixin modules sup-
port SMD by combining within their namespaces both defined and
undefined components, the latter specified via interfaces. Unlike
functors, mixin modules support recursive linking; and since link-
ing is implicitly “by-name”, mixins also avoid the propagation of
coherence (or “sharing”) constraints so common with functor pro-
gramming. Moreover, recent work by Rossberg and Dreyer on the
MixML type system [27] has demonstrated that mixin modules
have the capacity to subsume the functionality of ML modules.

However, despite their advantages, mixin modules have yet
to be adopted by any widely-used statically-typed functional lan-
guage.1 In the case of the ML languages, this is understandable:
ML already has a powerful module system, and the extra benefit
afforded by mixins is arguably not worth the replacement cost.

What about Haskell? Haskell’s existing module system was
consciously designed as a weak namespace management sys-
tem without a proper notion of interface [17, Section 8.2], and
hence supports only IMD, not SMD. Tools like the Cabal package
management system pick up the slack, enabling users to (ab)use
version-range dependencies in order to work around the lack of
interfaces. But the Haskell community recognizes that this is a
makeshift solution and is actively seeking ways to support SMD
properly.

In short, Haskell is a prime example of a language that is ripe
for extension with interfaces and mixins. The trouble is that the
foundational accounts of mixin modules that have appeared in the
literature [3, 16, 27] employ a variety of complex and unconven-
tional type systems, and it is not at all clear how to convert any of
them into a practical design that could be realistically incorporated
into a language like Haskell.

With this in mind, we make the following contributions:

• We present Backpack, a new language for building mixin-style
packages on top of an existing (weak) module system like
Haskell’s (Section 2). Like MixML [27], Backpack supports
interfaces, recursive linking, abstract data types, and SMD.

1 We are not counting Scala [24]: it supports mixin composition, but in a
way that is integrally tied to its object-oriented mechanisms.

1

Package Names P ∈ PkgNames
Module Path Names p ∈ ModPaths
Package Respositories R ::= D
Package Definitions D ::= package P t where B
Bindings B ::= p = [M] | p :: [S] | p = p | include P t r
Thinning Specs t ::= (p)
Renaming Specs r ::= 〈p 7→ p〉
Module Expressions M ::= . . .
Signature Expressions S ::= . . .

Figure 1. Backpack syntax.

• Unlike MixML, Backpack supports a more flexible applicative
(rather than generative) semantics of instantiation [20], thereby
extending mixin modules into new territory (Section 2.4). It
would be easy to support generativity as well.
• Unlike other strong module systems, Backpack subordinates

expressive power to simplicity, practicality, and orthogonality
from the core language and its type system. The main technical
device that supports this orthogonality is the central notion
of module identity (Section 3.1), which we can treat largely
independently from the type system of the core language. The
type system for Backpack is much simpler than that of MixML.
• We give a formal description (Sections 3.2–3.4) of how to elab-

orate a Backpack package into a set of ordinary Haskell mod-
ules and module types (the latter corresponding to GHC’s exist-
ing notion of “binary interface file”). If the package is complete
(i.e., fully implemented), it can be compiled and executed. But
regardless, the Haskell modules output by elaboration can be
typechecked separately from their missing dependencies.
• We prove soundness of Backpack’s elaboration, which guaran-

tees that a complete package will elaborate to a well-typed set
of Haskell modules (Section 3.5). Even stating soundness re-
quired us to define a formal semantics for separate typechecking
of (recursive) Haskell modules, which did not exist previously.

Finally, we conclude the paper in Sections 4 and 5 with a detailed
discussion of related and future work. For space reasons, we leave a
number of formal details to our accompanying technical appendix,
available at http://plv.mpi-sws.org/backpack/.

2. A Backpack Tour
Figure 1 gives the syntax of Backpack. A package definition D
gives a package name P to a a sequence of bindings B. The
simplest form of binding is a concrete module binding, of the form
p = [M], which binds the module name p to the implementation
[M]. For example:

package ab-1 where
A = [x = True]
B = [import A; y = not x]

The code in square brackets represents module implementations,
whose syntax is just that of a Haskell module (details in the techni-
cal appendix; Appendix §5). Indeed, in a practical implementation
of Backpack, the term [M] might be realized as the name of a file
containing the module’s code. However, note that the module lacks
a header “module M where ...” because the module’s name is given
by the Backpack description.2

Package ab-1 binds two modules named A and B. The first
module, bound to A, imports nothing and defines a core value x,
and the second module, bound to B, imports the first module and
makes use of that x in its definition of y. The type of this package

2 We still provide syntax for optional “export lists” of core language entities;
only the module name disappears.

expresses that it contains a module A which defines x :: Bool
and a module B which defines y :: Bool. (We will more precisely
discuss types, at the package and module levels, in Section 3.)

The module bindings in a package are explicitly sequenced:
each module can refer only to the modules bound earlier in the
sequence. In fact the bindings should be interpreted as iteratively
building up a local module context that tracks the name and type
of each module encountered. For example, if the order of the two
bindings were reversed, then this package would cease to be well-
typed, as the module reference A would no longer make sense.

Module bindings do not shadow. Rather, if the same module
name is bound twice, the two bindings are linked; see Section 2.3.

2.1 Top Level and Dependencies
A package repository consists of an ordered list of package defini-
tions. Each package in a repository sees only those packages whose
definitions occur earlier in the sequence. To make use of those ear-
lier packages — i.e., to depend on them — a package includes them
using the include binding form, thus:

package abcd-1 where
C = [x = False]
include ab-1

D =

[
import qualified A
import qualified C
z = A.x && C.x

]

One should think of an include construct as picking up a package
and dumping all of its contents into the current namespace. In this
case, the modules A and B are inserted into the package abcd-1
as if they were bound between C and D. Consequently the mod-
ule bound to D can import both A and C. The type of abcd-1 says
that it provides four modules: C (which provides x :: Bool), D
(which provides z :: Bool), and the two modules A and B from
package ab-1, even though they were defined there and merely in-
cluded here. (The modules exposed by a package can be controlled
with syntax that resembles that of the module level; this feature is
discussed as a special case of thinning in Section 2.4.)

In this paper, we will treat the example package definitions as
the bindings in a single package repository. At this point, that top
level includes the definition for ab-1 followed by abcd-1.

2.2 Abstraction via Interfaces
Up to this point, the package system appears only to support IMD
since each module can only be checked after those that it depends
on. For example, abcd-1 could only be developed and checked after
the package ab-1 had already been developed and checked; other-
wise we would not be able to make sense of the import declaration
import qualified A and the subsequent usage of A.x as a Bool.

To support SMD as well, Backpack packages may additionally
contain abstract module bindings, or holes. To specify a hole, a
developer provides a set of core-language declarations, called a
signature S, and binds a module name p to it by writing p :: [S].
One should think of holes as obligations to eventually provide
implementing modules; a package is not complete until all such
obligations are met. Concrete modules, on the other hand, are
simply those bound to actual implementations (as in all previous
examples). This combination of abstract and concrete components
reflects the mixin-module basis of our package system.

As our first example, we simulate how the abcd-1 package
might have been developed modularly by specifying holes for the
“other” components, A and B:

2

http://plv.mpi-sws.org/backpack/

package abcd-holes-1 where
A :: [x :: Bool]
B :: [y :: Bool]
C = [... as before ...]
D = [... as before ...]

By “stubbing out” the other components, the developer of abcd-
holes-1 can typecheck her code (in C and D) entirely separately
from the developer who provides A and B. In contrast, in the
existing Cabal package system, developers cannot typecheck their
package code without first choosing particular version instances
of their dependencies. Effectively, they test the well-typedness of
their code with respect to individual configurations of dependencies
which may or may not be the ones their users have installed.

Manually writing the holes for depended-upon components,
as above, involves too much duplication. Instead a developer can
define a package full of holes that designates the interface of an
entire component. A client developer includes that package of holes
and thus brings them into her own package without writing all those
signatures by hand. The following two packages achieve the same
net result (and have the same type) as abcd-holes-1, but without
signatures in the client package:

package ab-sigs where
A :: [x :: Bool]
B :: [y :: Bool]

package abcd-holes-2 where
include ab-sigs
C = [... as before ...]
D = [... as before ...]

Holes are included in exactly the same manner as concrete mod-
ules, and they retain their status as holes after inclusion. Under the
interpretation of holes as obligations, inclusion propagates the obli-
gations into the including package.

In these two examples we have named the packages abcd-holes-
1 and abcd-holes-2, which might suggest multiple versions of a
single package abcd-holes (e.g., in Cabal). However, while they
may convey that informal intuition, in the present work we focus on
modularity of packages, leaving a semantic account of versioning
for future work.

2.3 Linking and Signature Matching
So far, all package examples have contained bindings with distinct
names. What has appeared to be mere sequencing of bindings is ac-
tually a special case of a more general by-name linking mechanism:
linking two mixin modules with strictly distinct names merely con-
catenates them. Whenever two bindings share the same name, how-
ever, the modules to which they are bound must themselves link
together. This gives rise to three cases: hole-hole, mod-mod, and
mod-hole.

First, when linking two holes together, we merge their two in-
terfaces into one. This effectively joins together all the core lan-
guage declarations from their respective signatures. The resulting
hole provides exactly the entities that both original holes provided.

package yourlib where
Prelude :: [data List a = ...]
Yours = [import Prelude; ...]

package mylib where
Prelude :: [data Bool = ...]
include yourlib
Mine = [import Prelude; import Yours; ...]

The mylib package above declares its own hole for Prelude and
also includes the hole for Prelude from yourlib. Before the binding
for Mine is checked, the previous bindings of Prelude must have
linked together. This module can see both List and Bool since
they are both in the interface of the linked hole, whereas the Yours

module could only see the List datatype in Prelude. (Swapping
the order of the first two bindings of mylib has no effect here.)

This example highlights another aspect of programming with
mixin-based packages: each package has the option of writing
precise interfaces for the other packages (i.e., modules) it depends
on. Specifically, yourlib only needs the List datatype from the
standard library’s Prelude module, rather than the entire module’s
myriad other entities. This results in a stronger type for yourlib
since the assumptions it makes about the Prelude module are more
precise and focused.

Not all interface merges are valid. For example, if mylib had
also declared a List datatype, but of a different kind from that in
yourlib (e.g., data List a b = ...), then the merge would be
invalid and the package would be ill-typed.

Second, when linking two module implementations together, it
intuitively makes no sense to link together two different implemen-
tations since they define different code and different types. Rather
than rejecting all mod-mod linkages, as for instance MixML [27]
does, we instead insist that mod-mod linking only succeed if the
two implementations are the same, in which case the linkage is a
no-op. To test this, we require equivalence of their module identities
(about which see Sections 2.4 and 3.1).

Consider the following classic diamond dependency:

package top where
Top = [...]

package right where
include top
Right = [...]

package left where
include top
Left = [...]

package bottom where
include left; include right
Bottom = [...]

The bottom package of the diamond links together the packages
left and right, each of which provides a module named Top that it
got from the top package. The linking resulting from the inclusions
in bottom is well-typed because left and right provide the same
module Top from package top.

Third, when linking a module with a hole, the module’s type
must be a subtype of the hole’s, and we say that the module “fills,”
“matches,” or “implements” that hole. This form of linking most
closely resembles the traditional concept of linking, or of functor
application; it also corresponds to how structures match signatures
in ML. Roughly, a module implements a hole if it defines all the
entities declared in that hole and with the exact same specifications.

The mylib package above has a hole for the Prelude module. As
this package is not yet complete, it can be typechecked, but not yet
compiled and executed. (Supporting separate compilation would
require sweeping changes to GHC’s existing infrastructure.) We
therefore link mylib with a particular implementation of its Prelude
hole so that it may now be compiled and used:

package mylib-complete-1 where
include mylib

Prelude =

[
data List a = ...
data Bool = ...
null xs = ...

]
The implementation of Prelude provides the two entities declared
in the hole (included from mylib) and an additional third entity, the
value null. This implementation matches the interface of the hole,
so the linkage is well-typed.

For simplicity, our definition of when a module matches a hole
is based on width rather than depth subtyping. In other words, a
module may provide more entities than specified by the hole it is
filling, but the types of any values it provides must be the same
as the types declared for those values in the hole’s signature. In
particular, the match will be invalid if the implemented types are
more general than the declared types. For example, a polymorphic

3

package prelude-sig where
Prelude :: [data List a = Nil | Cons a (List a)]

package arrays-sig where
include prelude-sig

Array ::

[
import Prelude
data Arr (i::*) (e::*)
something :: List (Arr i e)

]

package structures where
include arrays-sig
Set = [import Prelude; data S ...]
Graph = [import Prelude; import Array; data G ...]
Tree = [import Prelude; import Graph; data T ...]

package arrays-a where
include prelude-sig

Array =

[
import qualified Prelude as P
data Arr i e = MkArr ...
something = P.Nil

]

package arrays-b where
include prelude-sig

Array =

[
import Prelude
data Arr i e = ANil | ...
something = Cons ANil Nil

]

package graph-a (Graph,Prelude) where
include arrays-a
include structures (Graph,Prelude,Array)

package graph-b (Graph,Prelude) where
include arrays-b
include structures (Graph,Prelude,Array)

package multinst where
include graph-a 〈Graph 7→ GA〉
include graph-b 〈Graph 7→ GB〉

Client =

import qualified GA
import qualified GB
export (main, GA.G)
main = ... GA.G ... GB.G ...

Figure 2. Running example: Data structures library and client.

identity function of type forall a :: *. a -> a will not match a
hole that declares it as having type Int -> Int.

2.4 Instantiation and Reuse
Developers can reuse a package’s concrete modules in different
ways by including the package multiple times and linking it with
distinct implementations for its holes; we call each such linkage an
instantiation of the package. Furthermore, in Backpack, packages
can be instantiated multiple times, and those distinct instantiations
can even coexist in the same linked result. (In contrast, both Cabal
and GHC currently prevent users from ever having two instantia-
tions of a single package in the same program.)

Figure 2 provides an example of multiple instantiations in the
multinst package, but this example employs a couple features of
Backpack we must first introduce—thinning and renaming.3

3 In our examples so far, we have omitted thinning specs entirely. But
actually, according to Figure 1, all package definitions and inclusions should
contain a thinning spec. To infer a thinning spec where one is omitted, one
can simply list all module paths provided by the corresponding package.
The syntax used in our examples can thus be translated into our formal
language with a straightforward (type-directed) rewriting. Moreover, the
syntax for package inclusion given in Figure 1 requires that all inclusions
additionally contain a renaming. When we omit renaming, it means that one
should use the empty renaming, 〈〉.

The two packages arrays-a and arrays-b provide two distinct
implementations of the Array module described by the hole speci-
fication in the earlier arrays-sig package. The next two packages
grab the Graph implementation from structures and implement
its Array hole with the respective array implementations. Since
structures also defines Set and Tree, these (unwanted) modules
would naively be included along with Prelude and Array and would
thus pollute the namespaces of graph-a and graph-b. Instead, these
packages thin the structures package upon inclusion so that only
the desired modules, Prelude and Array, are added to graph-a and
graph-b. (This closely resembles the import lists of Haskell mod-
ules, which may select specific entities to be imported.) Similarly,
implementation details of a package definition can be hidden—
rather than provided to clients—by thinning the definition to expose
only certain module names. (This closely resembles the export lists
of Haskell modules.) By thinning their definitions to expose only
Prelude and Graph, both packages graph-a and graph-b hide the
internal Array modules used to implement their Graph modules.

At this point, graph-a and graph-b provide distinct instantia-
tions of the Graph module from structures, distinct in the sense
that they do not have the same module identity. The identity of
a module—a crucial notion in Backpack’s semantics (see Sec-
tion 3.1)—essentially encodes a dependency graph of the module’s
source code. Since the Graph modules in graph-a and graph-b im-
port two different module sources for the Array hole—one from
arrays-a and the other from arrays-b—they do not share the same
dependency graph and hence have distinct identities.

Thus, if the final package multinst were to naively include both
graph-a and graph-b, Backpack would complain that multinst was
trying to merge two distinct implementations with the same name.
To avoid this error, the inclusions of graph-a and graph-b employ
renaming clauses that rename Graph to GA and GB, respectively,
so that the two Graph implementations do not clash.

One may wonder whether it is necessary to track dependency in-
formation in module identities: why not just generate fresh module
identities to represent each instantiation of a package? To see the
motivation for tracking more precise dependency information, con-
sider the example in Figure 3. Both the applic-left and applic-right
packages separately instantiate the Graph module from structures
with the same Array implementation from arrays-a—i.e., both in-
stantiations refer to the same identity for Array. Backpack thus
treats the two resulting Graph modules (and their G types) as one
and the same, which means the code in applic-bot is well-typed. In
other words, the identity of Graph inside applic-left is equivalent
to that of Graph inside applic-right, and thus the G types mentioned
in both packages are compatible.

As this example indicates, our treatment of identity instantiation
exhibits sharing behavior. We call this an applicative semantics of
identity instantiation, as opposed to a potential generative seman-
tics in which the two instantiations—even when instantiated with
the same identity—would produce distinct identities.

As is well known in the ML modules literature [20, 28], applica-
tivity enables significantly more flexibility regarding when module
instantiation must occur in the hierarchy of dependencies. In the
previous example, the authors of applic-left and applic-right were
free to instantiate Graph inside their own packages. Under a gener-
ative semantics, on the other hand, in order to get the same Graph
instantiation in both packages, it would need to be instantiated in
an earlier package (like graph-a from Figure 2) and then included
in both applic-left and applic-right; hence, the code as written in
Figure 3 would under a generative semantics produce two distinct
Graph identities and G types. As Rossberg et al. have noted [28],
applicative semantics is generally safe only when used in conjunc-
tion with purely functional modules. It is thus ideally suited to
Haskell, which isolates computational effects monadically.

4

package applic-left (Prelude, Left) where
include structures
include arrays-a
Left = [import Graph; x :: G = ...]

package applic-right (Prelude,Right) where
include arrays-a
include structures
Right = [import Graph; f :: G -> G = ...]

package applic-bot where
include applic-left
include applic-right
Bot = [import Left; import Right; ... f x ...]

Figure 3. Example of applicativity.

2.5 Aliases
Occasionally one wants to link two holes whose names differ. The
binding form p = p in Figure 1 allows the programmer to add such
aliases, which may be viewed as sharing constraints. For example:

package share where
include foo1 (A,X)
include foo2 (B,Y)
X = Y

Here, A (from foo1) depends on hole X, and B (from foo2) on hole
Y, and we want to require the two holes to be ultimately instantiated
by the same module. The binding X = Y expresses this constraint.

2.6 Recursive Modules
By using holes as “forward declarations” of implementations, pack-
ages can define recursive modules, i.e., modules that transitively
import themselves. The Haskell Language Report ostensibly allows
recursive modules, but it leaves them almost entirely unspecified,
letting Haskell implementations decide how to handle them. Our
approach to handling recursive modules follows that of MixML.

The example below defines two modules, A and B, which im-
port each other. By forward-declaring the parts of B that A depends
on, the first implementation makes sense—i.e., it knows the names
and types of entities it imports from B—and, naturally, the second
implementation makes sense after that. This definition is analogous
to how these modules would be defined in GHC today.4

package ab-rec where
B :: [SB]
A = [import B; ...]
B = [import A; ...]

Normal mixin linking ties the recursive knot, ensuring that the
import B actually resolves to the B implementation in the end.

GHC allows recursive modules only within a single (Cabal)
package. Backpack, on the other hand, allows more flexible re-
cursion. Although packages themselves are not defined recursively,
they may be recursively linked. Consider the following:

package ab-sigs where
A :: [SA]
B :: [SB]

package b-from-a where
include ab-sigs
B = [import A; ...]

package a-from-b where
include ab-sigs
A = [import B; ...]

package ab-rec-sep where
include a-from-b
include b-from-a

4 In GHC, instead of explicit bindings to a signature and two modules, there
would be the two module source files and an additional “boot file” for B
that looks exactly like SB . Moreover, the import B within the A module
would include a “source pragma” that tells the compiler to import the boot
file instead of the full module.

At the level of packages, these definitions do not involve any recur-
sive inclusion, which is good, because that would be illegal! Rather,
they form a diamond dependency, like the earlier packages top,
left, right, and bottom. There is no recursion within the definitions
of ab-sigs, a-from-b, and b-from-a either. The recursion instead
occurs implicitly, as a result of the mixin linking of modules A and
B in the package ab-rec-sep. (Separately typechecked, recursive
units may be defined in MixML in roughly the same way.)

Finally, we note that Backpack’s semantics (presented in the
next section) explicitly addresses one of the key stumbling blocks
in supporting recursive linking in the presence of abstract data
types, namely the so-called double vision problem [6, 8]. In the
context of the above example, the problem is that, in ab-sigs, the
specification SA of the hole A may specify an abstract type T,
which SB then depends on in the types of its core-level entities.
Subsequently, in a-from-b, when the implementation of A imports
B, it will want to know that the type T that it defines is the same as
the one mentioned in SB , or else it will suffer from “double vision”,
seeing two distinct names for the same underlying type. Avoiding
double vision is known to be challenging [8, 9, 27], but crucial
for enabling common patterns of recursive module programming.
Backpack’s semantics avoids double vision completely.

3. The Semantics of Backpack
The main top-level judgment defining the semantics of Backpack
is

∆ ` D : ∀α.Ξ λα.dexp

Given a package definitionD, along with a package environment ∆
describing the types and elaborations of other packages on whichD
depends, this judgment ascribes D a package type ∀α.Ξ, and also
elaborates D into a parameterized directory expression λα.dexp,
which is essentially a set of well-typed Haskell module files.

The above judgment is implemented by a two-pass algorithm.5

The first pass, called shaping, synthesizes a package shape Ξ̃ forD,
which effectively explains the macro-level structure of the package,
i.e., the modules contained in D, the names of all the entities
defined in those modules, and how they all depend on one another.
The second pass, called typing, augments the structural information
in Ξ̃ with additional information about the micro-level structure
of D. In particular, it fills in the types of core-language entities,
forming a package type Ξ and checking thatD is well-formed at Ξ.

Our goal in the present section is to explain in detail this two-
pass typechecking algorithm, as well as the elaboration of Back-
pack into Haskell. Central to both passes of Backpack typecheck-
ing is a notion of module identity. Using the multinst package (and
its dependencies) from Figure 2 as a running example, we will mo-
tivate the role and structure of module identities, and then in sub-
sequent subsections explain the implementation of shaping, typing,
and elaboration. Full details are given in Appendix §6.

3.1 Module Identities
Figure 5 shows the shapes and types of multinst and its dependen-
cies. We proceed by explaining Figure 5 in a left-to-right fashion.

The first column of Figure 5 contains the first key component
of package types: a mapping from modules’ logical names p (i.e.,
their names at the level of Backpack) to their physical identities ν
(i.e., the names of the Haskell modules to which they elaborate).
The reason for distinguishing between logical names and physical
identities is simple: due to aliasing (Section 2.5), there may be

5 The reason for splitting typechecking into two passes has to do with the
double vision problem [8], as discussed in Section 2.6. See Section 4 for
further discussion, as well as a detailed explanation of how our solution to
double vision compares with MixML’s.

5

Identity Variables α, β ∈ IdentVars
Identity Constructors K ∈ IdentCtors
Identities ν ::= α | µα.K ν
Identity Substitutions φ, θ ::= {α := ν}

Figure 4. Module identities.

multiple logical names for the same physical module. (For further
technical justifications for the logical/physical distinction, see the
discussion in Section 4.)

In order to motivate the particular logical mappings in Figure 5,
let us first explore what physical identities are, which means re-
viewing how module names work in Haskell.

Module Names in Haskell Modules in Haskell have fixed names,
which we call “physical” because they are globally unique in a
program, and module definitions may then depend on one another
by importing these physical names. Modules serve two related
roles: (1) as points of origin for core-level entities, and (2) as
syntactic namespaces. Concerning (1), a module may define new
entities, such as values or abstract data types. Concerning (2), a
module may export a set of entities, some of which it has defined
itself and others of which it has imported from other modules.
For example, a module Foo may define a data type named T. A
subsequent module Bar may then import Foo.T and re-export it as
Bar.T. To ensure that type identity is tracked properly, the Haskell
type system models each core-level entity semantically as a pair
[ν]T of its core-level name T and its provenance ν, i.e., the module
that originally defined it (in this example, Foo). Thus, Foo.T and
Bar.T will be viewed as equal by Haskell since they are both just
different names for the same semantic entity [Foo]T.

To ensure compatibility with Haskell, our semantics for Back-
pack inherits Haskell’s use of physical names to identify abstract
types. However, Haskell’s flat physical module namespace is not
expressive enough to support Backpack’s holes, applicative module
instantiation, and recursive linking. To account for these features,
we enrich the language of physical names with a bit more interest-
ing structure. Figure 4 displays this enriched language of—as we
call them—physical module identities.6

Variable and Applicative Identities Physical module identities ν
are either (1) variables α, which are used to represent holes; (2)
applications of identity constructors K, which are used to model
dependency of modules on one another, as needed to implement
applicative instantiation; or (3) recursive module identities, defined
via µ-constructors. We start by explaining the first two.

Each explicit module expression [M] that occurs in a package
definition corresponds (statically) to a globally unique identity con-
structor K that encodes it. For example, if a single module source
M appears on the right-hand side of three distinct module bindings
in a package P , then the three distinct identity constructors of those
modules are, roughly, 〈P.M.1〉, 〈P.M.2〉, and 〈P.M.3〉.7

In the absence of recursive modules, each module identity ν
is then a finite tree term—either a variable α, or a constructor K
applied to zero or more subterms, ν. The identity of a module is the
constructorK that encodes its sourceM , applied to the n identities
to whichM ’s n import statements resolved (in order). For instance,
in the very first example from Section 2, ab-1, the identities of A
and B are Ka and Kb Ka, respectively, where Ka encodes the first
module expression and Kb the second. In a package with holes,
each hole gets a fresh variable (within the package definition) as its

6 To make use of these enriched physical names in our elaboration, we
embed them into the space of Haskell’s physical names; see Section 3.4.
7 We write simply 〈P.M〉, eliding the integer part of the identity construc-
tor, when only one instance of [M] exists in the definition of package P.

identity; in abcd-holes-1 the identities of the four modules are, in
order, αa, αb, Kc, and Kd αa Kc.

Consider now the module identities in the Graph instanti-
ations in multinst, as shown in Figure 5. In the definition of
structures, assume that the variables for Prelude and Array are
αP and αA respectively, and that MG is the module source
that Graph is bound to. Then the identity of Graph is νG =
〈structures.MG〉 αP αA. Similarly, the identities of the two ar-
ray implementations in Figure 2 are νAA = 〈arrays-a.MA〉 αP
and νAB = 〈arrays-b.MB〉 αP .

The package graph-a is more interesting because it links
the packages arrays-a and structures together, with the imple-
mentation of Array from arrays-a instantiating the hole Array
from structures. This linking is reflected in the identity of the
Graph module in graph-a: whereas in structures it was νG =
〈structures.MG〉 αP αA, in graph-a it is νGA = νG[νAA/αA] =
〈structures.MG〉 αP νAA. Similarly, the identity of Graph in
graph-b is νGB = νG[νAB/αA] = 〈structures.MG〉 αP νAB .
Thus, linking consists of substituting the variable identity of a hole
by the concrete identity of the module filling that hole.

Lastly, multinst makes use of both of these Graph modules,
under the aliases GA and GB, respectively. Consequently, in the
Client module, GA.G and GB.Gwill be correctly viewed as distinct
types since they originate in modules with distinct identities.

As multinst illustrates, module identities effectively encode de-
pendency graphs. The primary motivation for encoding this infor-
mation in identities is our desire for an applicative semantics of
instantiation, as needed for instance in the example of Figure 3. In
that example, both the packages applic-left and applic-right indi-
vidually link arrays-a with structures. The client package applic-
bot subsequently wishes to use both the Left module from applic-
left and the Right module from applic-right, and depends on the
fact that both modules operate over the same Graph.G type. This
fact will be checked when the packages applic-left and applic-right
are both included in the same namespace of applic-bot, and the se-
mantics of mixin linking will insist that their Graph modules have
the same identity. Thanks to the dependency tracking in our mod-
ule identities, we know that the Graph module has identity νGA in
both packages.

Recursive Module Identities In the presence of recursive mod-
ules, module identities are no longer simple finite trees.

Consider again the ab-rec-sep example from the end of Sec-
tion 2. (Although this example does not concern our current focus,
multinst, the careful treatment of recursive module identities de-
serves explanation.) Suppose that νA and νB are the identities of A
and B, and that MA and MB are those modules’ defining module
expressions, respectively. Because MA imports B and MB imports
A, the two identities should satisfy the recursive equations

νA = 〈a-from-b.MA〉 νB
νB = 〈b-from-a.MB〉 νA

These identity equations have no solution in the domain of finite
trees, but they do in the domain of regular, infinite trees, which we
denote (finitely) as

νA = µαA.〈a-from-b.MA〉 (〈b-from-a.MB〉 αA)

νB = µαB .〈b-from-a.MB〉 (〈a-from-b.MA〉 αB)

The semantics of Backpack relies on the ability to perform both
unification and equivalence testing on identities. In the presence
of recursive identities, however, simple unification and syntactic
equivalence of identities no longer suffices since, e.g., the identity
〈a-from-b.MA〉 νB represents the exact same module as νA, albeit
in a syntactically distinct way. Fortunately, we can use Huet’s well-
known unification algorithm for regular trees instead [18, 14].

6

Logical Mapping Physical Shapes Physical Types

prelude-sig Prelude 7→ αP Φ̃P ΦP

arrays-sig
Prelude 7→ αP
Array 7→ αA

Φ̃P , Φ̃A ΦP ,ΦA

structures

Prelude 7→ αP
Array 7→ αA
Set 7→ νS
Graph 7→ νG
Tree 7→ νT

Φ̃P , Φ̃A,
νS :〈|S(. . .) ; [νS]S(. . .)|〉+
νG:〈|G(. . .) ; [νG]G(. . .)|〉+
νT :〈|T(. . .) ; [νT]T(. . .)|〉+

ΦP ,ΦA,
νS :〈|data S . . . ; [νS]S(. . .)|〉+
νG:〈|data G . . . ; [νG]G(. . .)|〉+
νT :〈|data T . . . ; [νT]T(. . .)|〉+

arrays-a
Prelude 7→ αP
Array 7→ νAA

Φ̃P , Φ̃AA ΦP ,ΦAA

arrays-b
Prelude 7→ αP
Array 7→ νAB

Φ̃P , Φ̃AB ΦP ,ΦAB

graph-a
Prelude 7→ αP
Graph 7→ νGA

Φ̃P , Φ̃AA,
νGA:〈|G(. . .) ; [νGA]G(. . .)|〉+

ΦP ,ΦAA,
νGA:〈|data G . . . ; [νGA]G(. . .)|〉+

graph-b
Prelude 7→ αP
Graph 7→ νGB

Φ̃P , Φ̃AB ,
νGB :〈|G(. . .) ; [νGB]G(. . .)|〉+

ΦP ,ΦAB ,
νGB :〈|data G . . . ; [νGB]G(. . .)|〉+

multinst

Prelude 7→ αP
GA 7→ νGA

GB 7→ νGB

Client 7→ νC

Φ̃P , Φ̃AA, Φ̃AB ,
νGA:〈|G(. . .) ; [νGA]G(. . .)|〉+
νGB :〈|G(. . .) ; [νGB]G(. . .)|〉+
νC :〈|main ; [νC]main, [νGA]G()|〉+

ΦP ,ΦAA,ΦAB ,
νGA:〈|data G . . . ; [νGA]G(. . .)|〉+
νGB :〈|data G . . . ; [νGA]G(. . .)|〉+
νC :〈|main :: . . . ; [νC]main, [νGA]G()|〉+

νAA , 〈arrays-a.MA〉 αP
νAB , 〈arrays-b.MB〉 αP

νS , 〈structures.MS〉 αP
νG , 〈structures.MG〉 αP αA

νGA , 〈structures.MG〉 αP νAA

νGB , 〈structures.MG〉 αP νAB

νT , 〈structures.MT 〉 αP νG
νC , 〈multinst.MC〉 νGA νGB

Φ̃P ,

(
αP :〈| ∅ ; [βPL]List(Nil, Cons) |〉−
βPL:〈| List(Nil, Cons) ; [βPL]List(Nil, Cons) |〉−

)
ΦP ,

 αP : 〈| ∅ ; [βPL]List(Nil, Cons)|〉−

βPL:

〈
data List(a :: *) =
Nil | Cons a ([βPL]List a)

; [βPL]List(Nil, Cons)

〉−
Φ̃A ,

 αA :〈| ∅ ; [βAA]Arr(), [βAS]something |〉−
βAA:〈| Arr ; [βAA]Arr() |〉−
βAS :〈| something ; [βAS]something |〉−

ΦA ,

 αA :〈| ∅ ; [βAA]Arr(), [βAS]something |〉−
βAA:〈| data Arr (i :: *) (e :: *) ; [βAA]Arr() |〉−
βAS :〈| something :: [βPL]List ([βAA]Arr i e) ; [βAS]something |〉−

Φ̃AA , νAA: 〈| Arr(MkArr), something ; [νAA]Arr(MkArr), [νAA]something |〉+

ΦAA , νAA:

〈
data Arr (i :: *) (e :: *) = MkArr . . .
something :: [βPL]List ([νAA]Arr i e)

; [νAA]Arr(MkArr), [νAA]something

〉+

Φ̃AB , νAB : 〈| Arr(ANil, . . .), something ; [νAB]Arr(ANil, . . .), [νAB]something |〉+

ΦAB , νAB :

〈
data Arr (i :: *) (e :: *) = ANil| . . .
something :: [βPL]List ([νAB]Arr i e)

; [νAB]Arr(ANil, . . .), [νAB]something

〉+

Figure 5. Example package types and shapes for the multinst package and its dependencies.

3.2 Shaping
Constructing the mapping from logical names to physical identities
is but one part of a larger task we call shaping, which constitutes
the most unusual and interesting part of Backpack’s type system.

The goal of shaping is to compute the shape (i.e., the macro-
level structure) of the package. Formally, a package shape Ξ̃ =
(Φ̃; L̃) has two parts.8 The first is a physical shape context Φ̃ =
ν:τ̃m, which, for each module in the package, maps its physical
identity ν to a polarity m and a module shape τ̃ . The polarity
m specifies whether the module ν is implemented (+) or a hole
(−). The module shape τ̃ = 〈|dent ; espc|〉 enumerates ν’s defined
entities dent—i.e., the entities that the module ν itself defines—as

8 We write a tilde (̃·) on the metavariables of certain shape objects (e.g., τ̃)
not to denote a meta-level operation, but to highlight these objects’ similar-
ity to their corresponding type objects (e.g., τ).

well as export specs espc, which list the names and provenances of
the entities that ν exports. Note that these are not the same thing: a
module ν may import and re-export entities that originated in (i.e.,
whose provenances are) some other modules ν′, and it may also
choose not to export all of the entities that it defines internally. In
our running example in Figure 5, the physical shape contexts Φ̃
computed for each package are shown in the second column.

The second part of the package shape is a logical shape context
L̃ = p 7→ ν@τ̃ , which, for each module in the package, maps its
logical name p to its physical identity ν. (This is the mapping
shown in the first column of Figure 5, which we have already
discussed in detail in Section 3.1). In addition, L̃ also maps p to
a shape τ̃ , which is required to be a subset of the “principal shape”
of ν (as recorded in the physical shape context Φ̃). This may seem
mysterious: if L̃ maps p to ν, and Φ̃ maps ν to τ̃0, say, then why
does L̃ record another τ̃ as well? The reason is twofold: (1) it is

7

Core Level:
Value Names x ∈ ValNames
Type Names T ∈ TypeNames
Constructor Names K ∈ CtorNames
Kind Environments kenv ::= . . .
Semantic Types typ ::= [ν]T typ | . . .
Defined Entity Specs dspc ::= data T kenv = K typ

| data T kenv | x :: typ
Export Specs espc ::= [ν]dent

Module Level:
Polarities m ::= + | −
Types τ, σ ::= 〈|dspc ; espc|〉
Physical Type Ctxts Φ ::= ν:τm

Logical Type Ctxts L ::= p 7→ ν@τ
Package Level:

Package Types Ξ,Γ ::= (Φ;L)

Package Environments ∆ ::= · |∆, P = λα.dexp : ∀α.Ξ
Shaping Objects:

Defined Entities dent ::= x | T | T (K)

Module Shapes τ̃ ::= 〈|dent ; espc|〉
Physical Shape Ctxts Φ̃ ::= ν:τ̃m

Logical Shape Ctxts L̃ ::= p 7→ ν@τ̃

Package Shapes Ξ̃, Γ̃ ::= (Φ̃; L̃)

Figure 6. Semantic objects for shaping and typing.

convenient in some of the inference rules to be able to look up the
shape of a module by merely inspecting the logical shape context
L̃, and (2) it is possible for different logical module names to reflect
different restricted subnamespaces of the same underlying module
(see the technical appendix for an example of this; Appendix §3). In
our running example, however, the reader may ignore this subtlety
and assume that all the τ̃ ’s associated with ν in L̃ and Φ̃ are equal
(which is why we omit them from the first column of Figure 5).

Figure 6 defines the semantic objects for shaping and typing,
and Figure 7 gives some of the key rules implementing shaping.

Shaping Rules The main shaping judgment, ∆ B ⇒ Ξ̃,
takes as input the body of a package definition, which is just a
sequence of bindings B. Rule SHSEQ synthesizes the shape of B
by proceeding, in left-to-right order, to synthesize the shape of each
individual binding B (via the judgment ∆; Γ̃ B ⇒ Ξ̃) and then
merge it with the shapes of the previous bindings (via the judgment
 Ξ̃1 + Ξ̃2 ⇒ Ξ̃).

Let us begin with the judgment that shapes an individual bind-
ing. The rule SHALIAS should be self-explanatory.

The rule SHINC is simple as well, choosing fresh identity vari-
ables α to represent the holes in package P and applying the re-
naming r to P ’s shape. (Note that it uses some simple auxiliary
definitions: rename, for applying a renaming to the L part of a
shape, and shape, for erasing a package type Ξ to a shape by re-
moving typing information. Moreover, by alpha-varying the type of
P we rename its variables to match the freshly chosen α.)

The rule SHMOD generates the appropriate globally unique
identity ν0 to represent [M], and then calls out to a shaping judg-
ment for Haskell modules, Γ̃; ν0 c M : τ̃ (Appendix §5.1.1),
which generates the shape τ̃ of M assuming that ν0 is the mod-
ule’s identity. As an example of this, observe the shape generated
for the Client module νC in multinst in Figure 5. The shape as-
cribes provenance νC to the main entity, since it is freshly defined
in Client, while ascribing provenance νGA to the G type, since it
was imported from GA and is only being re-exported by Client.

The rule SHSIG, for shaping hole declarations, is a bit subtler
than the other rules. Perhaps surprisingly, the generated shape de-
clares not only a fresh identity variable α for the hole itself, but
also a set of fresh identity variables β, one for each entity speci-

∆; Γ̃ B ⇒ Ξ̃
p′ 7→ ν@τ̃ ∈ Γ̃

∆; Γ̃ p = p′ ⇒ (∅; p 7→ ν@τ̃)
(SHALIAS)

ν0 = mkident(M ; Γ̃) Γ̃; ν0 c M : τ̃

∆; Γ̃ p = [M]⇒ (ν0:τ̃+; p 7→ ν0@τ̃)
(SHMOD)

α, β fresh τ̃0 = 〈|∅ ; [β]dent |〉 Γ̃; τ̃0 c S τ̃ ; Φ̃′

∆; Γ̃ p :: [S]⇒ ((α:τ̃−, Φ̃′); p 7→ α@τ̃)
(SHSIG)

α fresh (P : ∀α.Ξ) ∈ ∆ Ξ′ = rename(r; Ξ)

∆; Γ̃ include P r ⇒ shape(Ξ′)
(SHINC)

∆ B ⇒ Ξ̃
∆ ∅ ⇒ (∅; ∅) (SHNIL)

∆ B1 ⇒ Ξ̃1 ∆; Ξ̃1 B2 ⇒ Ξ̃2 Ξ̃1 + Ξ̃2 ⇒ Ξ̃

∆ B1, B2 ⇒ Ξ̃
(SHSEQ)

Figure 7. Shaping rules (ignoring thinning).

fied in the hole signature S. (The intermediate τ̃0 merely encodes
these fresh identities as input to the signature shaping judgment.)
The reason for this is simply to maximize flexibility: there is no
reason to demand a priori that the module that fills in the hole (i.e.,
the module whose identity ν will end up getting substituted for α)
must itself be responsible for defining all the entities specified in
the hole signature—it need only be responsible for exporting those
entities, which may very well have been defined in other modules.

The shape Φ̃A in Figure 5 illustrates the output of SHSIG on the
Array hole in package arrays-sig. This shape specifies that βAA is a
module defining an entity called Arr, that βAS is a module defining
an entity called something, and that αA is a module bringing
[βAA]Arr and [βAS]something together in its export spec. Of
course, when the hole is eventually filled (e.g., in the graph-a
package, whose shaping is discussed below), it may indeed be the
case that the same module identity ν is substituted forαA, βAA, and
βAS—i.e., that ν both defines and exports Arr and something—
but SHSIG does not require this.

Returning now to the merging judgment Ξ̃1 + Ξ̃2 ⇒ Ξ̃ that
is invoked in the last premise of (SHSEQ): This merging judgment
(Appendix §6.6) is where the real “meat” of shaping occurs—in
particular, this is where mixin linking is performed by unification of
module identities. If a module with logical name p is mapped by Ξ̃1

and Ξ̃2 to physical identities ν1 and ν2, respectively, the merging
judgment will unify ν1 and ν2 together. Moreover, if ν1 and ν2
are specified by Ξ̃1 and Ξ̃2 as having different module shapes τ̃1
and τ̃2, respectively, those shapes will be merged as well, with
the resulting shape containing all of the components specified in
either τ̃1 and τ̃2. For any entities appearing in both τ̃1 and τ̃2, their
provenances will be unified.

To see a concrete instance of this, consider the merging that
occurs during the shaping of the graph-a package in our running
example in Figure 5. The graph-a package includes two packages
defined earlier: arrays-a and structures. As per rule (SHINC), each
inclusion will generate fresh identity variables for the packages’
holes (say, αP , βPL, αA, βAA, βAS for structures, and α′P , β′PL for
arrays-a). Since both packages export Prelude, the merging judg-
ment will unify αP and α′P , the physical identities associated with
Prelude in the shapes of the two packages; consequently, the shape
of αP , namely 〈|∅ ; [βPL]List(Nil, Cons)|〉, will be unified with
the shape of α′P , namely 〈|∅ ; [β′PL]List(Nil, Cons)|〉, resulting
in the unification of βPL and β′PL as well.

Similarly, since both packages export Array, the merging judg-
ment will link the implementation of Array in arrays-a with the
hole for Array in structures by unifying αA, βAA, and βAS with

8

νAA. As a result, the occurrences of αA, βAA, and βAS in νG (and
its shape) get substituted with νAA, which explains why the shape
of graph-a maps Graph to νGA = νG[νAA/αA]. Lastly, merging
will check that the implementation of Array in arrays-a actually
provides all the entities required by the hole specification in struc-
tures, i.e., that Φ̃AA subsumes Φ̃A, which indeed it does.

3.3 Typing
In our running example thus far, we have not yet performed any
typechecking of core-level code, such as the code inside multinst’s
Client module. There is a good reason for this: before shaping,
we don’t know whether core-level types such as GA.G and GB.G
(imported by Client) are equal, because we don’t know what the
identities of GA and GB are. But after shaping, we have all the
identity information we need to perform typechecking proper.

Thus, as seen in the top-level package rule TYPKG in Figure 8,
the output of the shaping judgment—namely, Ξ̃pkg—is passed as
input to the typing judgment, ∆; Ξ̃pkg ` B : Ξ dexp . Typing,
in turn, produces a package type Ξ, which enriches the package
shape Ξ̃pkg with core-level (i.e., Haskell-level) typing information.
The final type returned for the package, ∀α.Ξ, then just quantifies
over the variable identities α of the holes in Ξ, so that they may be
instantiated in different ways by subsequent package definitions.

The package types Ξ generated for the packages in our running
example appear in the third column of Figure 5. Formally, the only
difference between these package types and the package shapes in
the second column of Figure 5 lies in the difference between their
constituent module types τ = 〈|dspc ; espc|〉 and module shapes
τ̃ = 〈|dent ; espc|〉. Whereas the “defined entities” component
(dent) of τ̃ only names the entities defined by a module, the
“defined entity specs” component (dspc) of τ additionally specifies
their core-level kinds/types. For example, observe the module type
ascribed to arrays-a’s module νAA in ΦAA. This type enriches the
pre-computed shape (in Φ̃AA) with additional information about
the kind of Arr and the type of something.

Let us now explain the typing rules in Figure 8. For the moment,
we will ignore the shaded parts of the rules concerning elaboration
into Haskell; we will return to them in Section 3.4.

The rules TYNIL and TYSEQ implement typing of a sequence
of bindings B. The procedure is structurally very similar to the
one used in the shaping of B: we process (in left-to-right order)
each constituent binding B, producing a type that we merge into
the types of the previous bindings. The key difference is that the
partial merge operator⊕ does not perform any unification on mod-
ule identities—it merely performs a mixin merge, which checks
that all specifications (kinds or types) assigned to any particular
core-level entity are equal. For instance, when typing graph-a, the
mixin merge will check that the type of something in the Array
implementation from arrays-a is equal to the type of something in
the Array hole from structures, and thus that the implementation
satisfies the requirements of the hole.

The remaining rules concern the typing of individual bindings,
∆; Γ; Ξ̃pkg ` B : Ξ dexp . The typing rules TYMOD and
TYSIG are structurally very similar to the corresponding shaping
rules given in Figure 7. The key difference is that, whereas SHMOD
and SHSIG generate appropriate identities for their module/hole,
TYMOD and TYSIG instead look up the pre-computed identities
in the package shape Ξ̃pkg. As an example of this, observe what
happens when we type the Array module in arrays-a using rule
TYMOD. The package shape Ξ̃pkg we pre-computed in the shap-
ing pass tells us that the physical module identity associated with
the logical module name Array is νAA, so we can go ahead and
assume νAA is the identity of Array when typing its implementa-

∆; Γ; Ξ̃pkg ` B : Ξ dexp

p′ 7→ ν@τ ∈ Γ

∆; Γ; Ξ̃pkg ` p = p′ : (∅; p 7→ ν@τ) {}
(TYALIAS)

p 7→ ν0@τ̃0 ∈ Ξ̃pkg Γ; ν0 c̀ M : τ hsmod

∆; Γ; Ξ̃pkg ` p = [M] : (ν0:τ+; p 7→ ν0@τ)

 {ν0? 7→ hsmod : τ?}

(TYMOD)

p 7→ ν0@τ̃0 ∈ Ξ̃pkg Γ; τ̃0 c̀ S τ ; Φ′

Φ′′ = ν0:τ− ⊕ Φ′ defined

∆; Γ; Ξ̃pkg ` p :: [S] : (Φ′′; p 7→ ν0@τ)

 {ν? 7→ − : σ? | ν:σ− ∈ Φ′′}

(TYSIG)

α fresh (P =λα.dexp : ∀α.Ξ) ∈ ∆ Ξ′= rename(r; Ξ)

` Ξ̃pkg ≤α Ξ′ φ Ξ′′ = apply(φ; Ξ′) defined

∆; Γ; Ξ̃pkg ` include P r : Ξ′′ apply(φ?; dexp)
(TYINC)

∆; Ξ̃pkg ` B : Ξ dexp
∆; Ξ̃pkg ` ∅ : (∅; ∅) {}

(TYNIL)

∆; Ξ̃pkg ` B1 : Ξ1 dexp1 Ξ = Ξ1 ⊕ Ξ2 defined

∆; Ξ1; Ξ̃pkg ` B2 : Ξ2 dexp2

∆; Ξ̃pkg ` B1, B2 : Ξ dexp1 ⊕ dexp2

(TYSEQ)

∆ ` D : ∀α.Ξ λα.dexp

∆ B ⇒ Ξ̃pkg ∆; Ξ̃pkg ` B : Ξ dexp α= fv(Ξ)

∆ ` package P where B : ∀α.Ξ λα.dexp
(TYPKG)

Figure 8. Typing and elaboration rules (ignoring thinning).

tion. Note that TYMOD and TYSIG call out to typing judgments
for Haskell modules and signatures (`c). Like the analogous shap-
ing judgments, these are defined formally in the appendix (Ap-
pendix §5.1.1).

Like TYMOD and TYSIG, the rule TYINC also inspects Ξ̃pkg

to determine the pre-computed identities of the modules/holes in
the package P being included. The only difference is that an in-
cluded package contains a whole bunch of subcomponents (rather
than only one), so looking up their identities is a bit more in-
volved. It is performed by appealing to a “matching” judgment
` Ξ̃pkg ≤α Ξ′ φ, similar to the one needed for signature match-
ing in ML module systems [28]. This judgment looks up the instan-
tiations of all the included holes by matching Ξ′ (the type of the
included package P after applying the renaming r) against Ξ̃pkg.
This produces a substitution φ with domain α, which then gets ap-
plied to Ξ′ to produce the type of the include binding. For example,
when typing the package graph-a, we know after shaping that the
identity of the Array module is νAA. When we include structures,
the matching judgment will glean this information from Ξ̃pkg, and
produce a substitution φ mapping structures’ αA parameter to the
actual Array implementation νAA.

3.4 Elaborating Backpack to Haskell
We substantiate our claim to retrofit Haskell with SMD through an
elaboration of Backpack, our external language (EL), into a model
of GHC Haskell, our internal language (IL). The EL, as we have

9

(Module Names) f ∈ IlModNames
(Module Sources) hsmod ::= . . .
(File Expressions) fexp ::= hsmod | −
(File Types) ftyp ::= 〈|dspc? ; espc?|〉
(Typed File Expressions) tfexp ::= fexp : ftyp

(Directory Expressions) dexp ::= {f 7→ tfexp}

(Identity Translation) (−)? ∈ Identities/≡µ � IlModNames

Figure 9. IL syntax. (dspc? and espc? mention f instead of ν.)

demonstrated so far, extends across the package, module, and core
levels, while the IL defines only module and core levels; effectively
the outer, package level gets “compiled away” into mere modules in
the IL. Figure 9 gives the syntax of the IL; for its semantics, includ-
ing the typing judgment, see the technical appendix (Appendix §7).

Elaboration translates a Backpack package into a parameter-
ized directory expression λα.dexp, which is a mapping from a set
of module names f to typed file expressions tfexp, parameterized
over the identities α of the package’s holes. We assume an embed-
ding (−)? from module identities into IL module names, which
respects the equi-recursive equivalence on module identities that
the Backpack type system relies on. However, for readability, we
will leave the embedding implicit in the remainder of this section.
As for the typed file expressions tfexp, they can either be defined
file expressions (hsmod : ftyp), which provide both an implemen-
tation of a module along with its type, or undefined file expressions
(− : ftyp), which describe a hole with type ftyp. Thus, all com-
ponents of a dexp are explicitly-typed. This has the benefit that the
modules in a dexp can be typechecked in any order, since all static
information about them is specified in their explicit file types.

As a continuation of our running example, Figure 10 displays
the elaboration of the multinst package, except with the file types
stripped off for brevity. First, note that each module identity ν in
the physical type ΦM of multinst (lower-right hand corner of the
table in Figure 5) corresponds to one of the Haskell modules in
the elaboration of the package, and for each ν, its type in ΦM is
(modulo the embedding (−)?) precisely the file type of ν that we
have omitted from Figure 10. The concrete module identities in ΦM
map to defined file expressions, while the identity variables αP and
βPL (representing holes) map to undefined file expressions.

The elaboration of packages (marked with shaded text) is al-
most entirely straightforward, following the typing rules. More in-
teresting is the elaboration of Haskell modules, which is appealed
to in the second premise of rule TYMOD (and formalized in the
appendix; Appendix §6). Offhand, one might expect module elabo-
ration to be the identity translation, but in fact it is a bit more subtle
than that.

Consider the νC entry in the directory, corresponding to the
Client module, as a concrete example.

The module header: Unlike the original EL implementation
of Client, which was anonymous, its elaborated IL version has a
module header specifying νC as its fixed physical name, and main
and GA.G() as its exported entities. More generally, the exported
entities should reflect those listed in the module’s type τ .

The import statements: Our elaboration rewrites imports of log-
ical names like GA into imports of physical module identities like
νGA, since the physical identities are the actual names of Haskell
modules in the elaborated directory expression. We must therefore
take care to preserve the logical module names that the definitions
in the module’s body expect to be able to refer to. For example, the
reference GA.G is seen to have provenance [νGA]G during Backpack
typechecking of Client, so in the elaborated IL version of Client we
want GA.G to mean the same thing. We achieve this by means of
Haskell’s “import aliases”, which support renaming of imported
module names; e.g., the first import statement in νC imports the

λαP βPL .

αP 7→

βPL 7→

νAA 7→

module νAA (Arr(MkArr)) where
import qualified αP as P (List(Nil,Cons))
data Arr i e = MkArr ...
something = P.Nil :: P.List (Arr i e)

νAB 7→

module νAB (Arr(ANil, ...)) where
import αP as Prelude (List(Nil, Cons))
data Arr i e = ANil | ...
something = Cons ANil Nil

νGA 7→

module νGA (G(...)) where
import αP as Prelude (List(Nil, Cons))
import νAA as Array (Arr(), something)
data G ...

νGB 7→

module νGB (G(...)) where
import αP as Prelude (List(Nil, Cons))
import νAB as Array (Arr(), something)
data G ...

νC 7→

module νC (main, GA.G()) where
import qualified νGA as GA (G())
import qualified νGB as GB (G())
main = ... GA.G ... GB.G ...

Figure 10. Elaboration of multinst. (For readability, the transla-
tion from identities to module names, (−)?, and the file type anno-
tation on each module file have been omitted. See Figure 5 for the
latter.)

physical name νGA but gives it the logical name GA in the body,
thus ensuring that the reference GA.G still has (the same) meaning
as it did during Backpack typechecking.

The body: Thanks to the import aliasing we just described,
the entity definitions in the body of νC can remain syntactically
identical to those in the original Client module.

Explicitness of imports and exports: All imported and exported
entities are given as explicitly as the Haskell module syntax allows,
even when the original EL modules neglect to make them explicit;
e.g., the original code for Graph lists neither its imports nor its
exports, but its elaboration (as νGA and νGB) does. The primary
reason for this explicitness is that it enables us to prove a “weak-
ening” property on IL modules, which is critical for the proof of
soundness of elaboration. If modules are not explicit about which
core-level entities they are importing and exporting, their module
types will not be stable under weakening.

3.5 Formalization of Haskell Modules and Soundness
We have proven the following key soundness theorem about the
elaboration: if a package definition D has type ∀α.(Φ;L) and
elaborates into a parameterized directory expression λα.dexp, then
every module in dexp is well-typed in the IL, and the identities and
types in Φ directly match those of dexp. (For example, soundness
means that the identities and EL module types appearing in the type
of multinst in Figure 5 correspond precisely to the names and types
of the IL modules in Figure 10.)

As part of this effort, our IL constitutes a new formal model of
the Haskell module system. This model follows the Haskell Lan-
guage Report as closely as possible in its definition of well-formed
modules—i.e., the processing of module dependencies through im-
port statements and export lists. Unlike previous work on formal-
izing the Haskell module system [7, 12], our model supports (sep-
arately typechecked) recursive modules; furthermore, we have de-
veloped some basic metatheory for the IL (e.g., “substitution” and
“weakening”) in order to prove soundness of elaboration, a non-

10

trivial undertaking given that substitution can result in the merging
of module/signature bindings. Full details of the IL are given in the
accompanying technical appendix (Appendix §7).

We do not provide any kind of dynamic semantics in Backpack
and thus we cannot prove (or even state) any conventional type
safety theorem. Instead, the soundness of Backpack’s elaboration
simply reduces the question of whether Backpack is type-safe to
the question of whether Haskell is type-safe.

4. Related Work and Technical Discussion
Detailed Comparison with MixML ML modules provide a very
expressive and convenient language for programming with ab-
stract data types. However, due to the double vision problem (Sec-
tion 2.6), functors are fundamentally incompatible with recursive
linking [27]. There have therefore been several attempts to synthe-
size aspects of ML modules and mixin modules in a single system,
including Owens and Flatt’s typed unit calculus [25] and Duggan’s
type system for recursive DLLs [10].

Arguably the most advanced system in this space is Rossberg
and Dreyer’s MixML [27], which aims to be a highly expressive
foundational calculus of mixin modules for an ML-like core lan-
guage. Backpack’s design and semantics are inspired by those of
MixML, but our design decisions, driven by our goal of retrofitting
Haskell with SMD, have led to considerable simplifications.

MixML supports first-class and higher-order units (i.e., instan-
tiable mixins), whereas Backpack’s units—packages—only exist
at the top level. We believe Backpack’s units to be sufficient for
practical programming, and restricting them to top level stream-
lines the semantics of applicative identities. MixML also supports
hierarchical mixin modules with “deep linking”, but Backpack re-
stricts packages to be flat namespaces of modules. Deep linking
lets MixML express many different ML constructs (e.g., n-ary sig-
natures) using just one form of linking. Since our focus is on prac-
ticality rather than expressiveness, we sacrifice features like first-
class units and deep linking for simplicity of syntax and seman-
tics, optimizing instead for common usage patterns. In particular,
our include construct is more straightforward to program with than
MixML’s binary linking/binding construct, and fits better with the
“feel” of the Haskell module language (e.g., its import statements).
Backpack also provides some features that MixML lacks, such as
renaming, thinning, and an applicative semantics of instantiation.

Concerning the double vision problem, MixML solves it through
the use of a two-pass algorithm for typechecking linked modules:
the first pass computes all information about type components in
the modules, and the second pass performs full typechecking. In
MixML, these two passes are defined using a single set of infer-
ence rules, with the first pass defined by conveniently ignoring
certain premises. Backpack adopts the same two-pass idea in or-
der to compute the physical module identities involved in a pack-
age before typechecking it. However, Backpack distinguishes the
two passes—shaping and typing—using completely separate judg-
ments and rules. Although this leads to a doubling of rules, the rules
themselves are (we feel) much easier to understand. In particular,
the account of linking given by the sequencing rules SHSEQ and
TYSEQ is considerably simpler than MixML’s formidable linking
rule. Moreover, Backpack stages the shaping pass over a whole
package entirely before the typing pass, leading to a clearer con-
ceptual split between the two phases of package typechecking than
in MixML, where the two passes are interleaved.

A key reason we can get by with a simpler semantics of linking
is that we are deliberately less ambitious than MixML in a certain
sense: unlike MixML, we do not aim to completely subsume the
functionality of ML modules. MixML does, and this means that its
semantics must deal with nested uses of translucent sealing (i.e.,
the ability to define types that are “transparent” inside a module

but “opaque” outside), a defining feature of ML modules which
compounds the already-tricky double-vision problem. In contrast,
Backpack does not attempt to support translucent sealing—and
thus does not suffer the attendant complexities—for the simple
reason that Haskell, our target of elaboration, cannot support it.

Finally, MixML is defined by elaboration into an internal lan-
guage, LTG, which was designed specifically to capture all the nec-
essary features of MixML. (LTG is an extension, with linear kinds,
of an earlier IL, similarly specialized for recursive ML module sys-
tems, called RTG [9].) LTG’s unconventional metatheory under-
scores MixML’s status as a foundational calculus rather than a prac-
tical language design, in contrast to Backpack, whose IL is a for-
malization of an existing implementation artifact, the GHC module
system. A major benefit of our approach is that the semantics (via
elaboration) of a Backpack package may be understood by Haskell
programmers essentially in terms of a reshuffling of import and ex-
port lists in their Haskell modules. The elaboration in Figure 10 is
a case in point.

Logical Module Names vs. Physical Module Identities Module
identities, which establish canonical physical names for modules
(as distinct from program-level logical names), serve two important
roles in Backpack’s semantics: (1) they simplify and regularize the
elaboration into Haskell modules (and its soundness proof), and (2)
they are the principal component of our solution for how to support
applicative mixin linking.

Concerning the first point: The distinction between logical and
physical names is a central technical element enabling—and con-
ceptually reinforcing—the elaboration into our Haskell-based IL.
In particular, a key invariant of elaboration is that the physical part
of a package’s EL type gives a precise description of the IL mod-
ules that it elaborates to; the logical part of its type is only relevant
for namespace management during Backpack-level typechecking.

Concerning the second point: The idea of distinguishing be-
tween logical and physical names is not new. A number of prior for-
malisms for ML-style modules—including the Definition of Stan-
dard ML itself—rely on a similar distinction [22, 29, 28]. The key
advantage of this approach (as opposed to more direct, syntactic
type systems for modules, e.g., [20, 15]) is that physical identities
greatly simplify the treatment of type equality in the presence of
aliasing: no matter their logical names, two types are equal iff they
have the same physical identity. This eliminates the need for fancier
mechanisms for handling type sharing, like translucent sums or sin-
gleton kinds (see Rossberg et al. [28] for further discussion). More-
over, for recursive and mixin module extensions of ML [8, 27], the
logical/physical distinction has enabled clean solutions to the dou-
ble vision problem, as discussed above. (There is some recent work
by Im et al. [19] on solving double vision “syntactically”—i.e., us-
ing only logical names—but it does not account for separate type-
checking of mutually recursive modules in general.)

What distinguishes Backpack from these prior systems is its
support for both separate typechecking of recursive modules and
an applicative semantics of instantiation, as appropriate for a pure
language like Haskell. To handle the combination, we needed to
enrich the language of module identities with both (equi-)recursive
µ-binders and constructor applications, and employ (standard) uni-
fication and equivalence-checking algorithms that work for these
recursive identities [18, 14]. To see why, consider the example from
Section 2.6, in which the modules A and B in package ab-rec-sep
have the recursive identities νA and νB defined on the subsequent
page. If one were to define another package ab-rec-sep2 in the
same way, the identities of A and B would be exactly the same.
In contrast, were we to code up this example in MixML, each dis-
tinct package defined like ab-rec-sep would produce modules with
“fresh” (distinct) identities, as one would expect given MixML’s
generative semantics of instantiation. Nevertheless, we observe that

11

recursive identities do not complicate the semantics much, a testa-
ment to the scalability of the logical/physical approach.

Separate Compilation for ML Setting aside the lack of support
for recursive linking, ML functors are not by themselves really a
practical mechanism for SMD due to the proliferation of “sharing”
constraints that are known to arise when programming in a “fully
functorized” style (i.e., in which modules are parameterized explic-
itly, via the functor mechanism, over all their dependencies). Con-
sequently, a number of systems have been proposed for building a
better SMD framework on top of the existing ML module system.

Before discussing these systems in more detail, let us observe
two important ways in which they all differ from Backpack. First,
unlike Backpack, the separate compilation systems for ML build
improved SMD support on top of the already-powerful ML module
system, which offers instantiation, reuse, and at least some form
of SMD via functors. In contrast, Backpack is built on top of
Haskell, which lacks those features, and thus the expressiveness
boost it offers over the underlying language is in some sense more
significant. Second, we realize this boost not through functors but
through mixins; as a result, Backpack supports recursive linking,
and avoids the need for any separate notion of sharing constraints.

To address the lack of separate compilation in ML, Cardelli
introduced a foundational calculus of linksets [5]. However, as
a foundational calculus, this framework lacks support for user-
defined abstract data types, as well as recursion at the module
or core level—two prominent features that drive the complexity
of state-of-the-art module systems. Building on Cardelli’s linkset
foundation, Swasey et al. [31] designed a typed language of pro-
gram fragments, SMLSC, that organizes lists of top-level SML def-
initions (e.g., modules) into what they call units. Linking happens
automatically by name when unit definitions are considered in the
same linkset. In particular, when multiple units in a linkset have
“interface imports” on some common name, those dependencies
unify automatically without extra annotations. SMLSC units there-
fore eliminate the need for sharing constraints on dependencies—as
mixin modules do—but they do not permit recursive linking.

In a different vein, targeting “open” modular programming, the
Acute language of Sewell et al. [30] and the Alice ML language of
Rossberg et al. [26] support not only separate compilation, but dy-
namic linking, marshalling/pickling, and (in the case of Acute) ver-
sioning of components, all of which are beyond the scope of Back-
pack. While Acute repurposes modules (with new primitive opera-
tions) as a mechanism for compilation units and linking, Alice ML
defines “components” by reduction to a simpler construct of “pack-
ages” (modules as first-class core values). Linking in Acute con-
sists of (non-recursive) chains of module definitions and imports,
whereas Alice ML employs a more flexible and dynamic “compo-
nent manager” approach based on Java class-loading (rather than
linksets). Neither Acute nor Alice ML supports recursive modules.

As part of the OCaml module system [21], the ocamlc compila-
tion tool performs separate compilation on files that contain module
components. The tool treats the file system rather like a mixin: each
component (i.e., a file) can be defined as an implementation (i.e., a
.ml file) or a hole (i.e., a .mli file), and components can be re-
cursively linked. Like SMLSC but unlike Backpack, though, these
“mixins” cannot be instantiated and reused: a separately-compiled
file cannot be linked with multiple implementations of its depen-
dencies. In essence, ocamlc implements something similar to the
target IL of Backpack’s elaboration, albeit for OCaml (obviously)
and extended with full separate compilation rather than just sep-
arate typechecking. It does not, however, provide a language for
building and linking components, as Backpack does.

Mixin Modules for OO Languages Our focus has been on mixin-
based SMD in the setting of a typed functional language. In the

object-oriented community, mixins have already seen significant
uptake. Both Scala [24] and J& [23], for instance, incorporate
mixin-style composition into the very fabric of their designs. How-
ever, as we have explained, we are particularly interested in the
question of how to retrofit existing languages with mixin-based
SMD, and to our knowledge there is relatively little work on that.

The SMARTJAVAMOD/component systems of Ancona et al. [2]
define a new level of mixin modules to encapsulate existing Java
classes. A component contains defined classes and deferred classes,
the latter of which are specified as abstract class names with various
constraints. The “bind” construct, which performs mixin linking,
instantiates components generatively, producing a unique copy of
all the classes inside the merged result (and thus fresh abstract
types). In contrast, Backpack supports an applicative semantics of
instantiation.

The SMARTJAVAMOD/component languages are implemented
with a translation into “polymorphic bytecode” [1], essentially an
extension of JVM bytecode with markers and constraints for the de-
ferred classes (i.e., holes) in the component. For that reason, their
IL resembles Backpack’s, although they present no formal defini-
tion of their elaboration into this language. Instead, they define a
reduction semantics on components that flattens them into fully in-
stantiated Java class definitions. In Backpack, following much work
on ML module systems [15, 28, 27], packages do not have a direct
reduction semantics—rather, their meaning is given by a formal
translation into a typed IL, in our case based on Haskell.

As is the tradition in object-oriented languages, the aforemen-
tioned systems emphasize dynamic binding, virtual methods, over-
riding, etc., and do not consider the issue of the double vision prob-
lem. In contrast, Backpack supports only static binding, does not
permit overriding, and invests great effort to avoid double vision.

5. Future Work
Type Classes Backpack modules only allow data types and val-
ues; type classes and type class instances are conspicuously absent.
We have left them out of the system deliberately in order to focus
attention on the essential features of Backpack that we hope will be
broadly applicable, not just to Haskell. That being said, we believe
that incorporating type classes into Backpack should be feasible.

In the extension we envision, type classes and instances would
both be new kinds of core entities, although the latter would differ
from existing entities in that (1) they do not have simple syntactic
names and (2) import resolution treats them differently (see below).
As with all entities, the export specs (espc) listed in a module type
would denote which instances a module provides to its clients.

The interaction between instances and signatures poses an in-
teresting challenge: linking an implementation for a hole, or even
linking two holes together through aliasing, might result in the exis-
tence of two distinct instances for the same type class and type that
are visible within a single module. For example, in the bindings

P = [class Eq a where ...]
A :: [data T]
B :: [data T]

C =

import P
import qualified A
import qualified B
instance Eq A.T where ...
instance Eq B.T where ...

well-typedness of C requires that A.T and B.T be distinct types.
But if we then add an alias binding A = B, these two types are
unified into a single one, and now C defines two different instances
for a single class and type, making it ill-typed.

To prevent this form of error, we would need to amend the
definition of merging for sets of export specs (espc) to prevent

12

two distinct instances for the same class and type from merging
together successfully. This would be enough to guarantee that the
substitution that links A and B together would not be well defined
on the package type for the previous four bindings, thus rejecting
the addition of the alias binding A = B.

We would also need to extend the IL in order to maintain a
crucial invariant of the elaboration translation, namely that the IL
translation of a module only imports the entities that were visible
to that module during Backpack-level typechecking (Section 3.4).
Naively, this invariant would not be preserved in the presence of
type classes because Haskell does not support named instances,
so there is no way to explicitly delimit the instances that one
module imports from another. For example, suppose a module Y
imports a hole X, and then the hole is subsequently filled with an
implementation defining an instance that was not in the signature
for X. In that case, we do not want the elaboration of Y to suddenly
see that new instance, since it might break Y’s well-typedness, but
there is no way a priori to prevent it.

To restore this invariant in the presence of type classes, we
would need to introduce—only in the IL—the ability to explicitly
name instances on import statements. This capability, which would
require a minor extension to GHC, would then allow us, when elab-
orating Y in the above example, to explicitly restrict the import of
X to only include those instances that were visible in X’s signature.

Type Synonyms and newtype We could straightforwardly ex-
tend Backpack with both type synonyms and Haskell’s newtype
mechanism for defining abstract data types. Both would be sepa-
rate entities along with datatypes and values, with accompanying
defined entity specs (dspc); because they are core entities, they
would be imported, exported, and recorded in module types just
like datatypes and values. However, for compatibility with GHC,
neither would be declarable “abstractly” in signatures (i.e., by omit-
ting the “right-hand sides”), unlike regular data types.

In the case of type synonyms, we would need to treat them as
transparently equal to their defining types. To accomplish this, we
would simply expand type synonyms as part of Backpack elabo-
ration, ensuring that they never appeared in our semantic objects
(the “F-ing modules” approach of Rossberg et al. [28] works sim-
ilarly). Since the synonyms themselves would never appear in any
semantic types (typ), they would not complicate type equality. In
contrast, newtypes would not be automatically equated with their
defining types; in semantic types (typ) they would look and behave
essentially like regular data types.

Versioning Lastly, while the support for versioning in Cabal
(Haskell’s existing package management system) does not obvi-
ate interfaces and mixins, neither do interfaces and mixins obviate
versioning. An important direction for future work is to investigate
how best to integrate versioning into Backpack.

Acknowledgments
We are grateful for innumerable impromptu whiteboard discussions
with Neel Krishnaswami, Joshua Dunfield, Aaron Turon, Beta Zil-
iani, and Georg Neis; for early design discussions with Claudio
Russo, Dimitrios Vytiniotis, and Duncan Coutts; and for detailed
technical feedback from Andreas Rossberg.

References
[1] Davide Ancona, Ferruccio Damiani, Sophia Drossopoulou, and Elena

Zucca. Polymorphic bytecode: compositional compilation for Java-
like languages. In POPL ’05.

[2] Davide Ancona, Giovanni Lagorio, and Elena Zucca. Flexible type-
safe linking of components for Java-like languages. In JMLC ’06.

[3] Davide Ancona and Elena Zucca. A calculus of module systems. JFP,
12(2), 2002.

[4] Gilad Bracha and Gary Lindstrom. Modularity meets inheritance. In
ICCL ’92.

[5] Luca Cardelli. Program fragments, linking, and modularization. In
POPL ’97.

[6] Karl Crary, Robert Harper, and Sidd Puri. What is a recursive module?
In PLDI ’99.

[7] Iavor S. Diatchki, Mark P. Jones, and Thomas Hallgren. A formal
specification of the Haskell 98 module system. In Haskell ’02.

[8] Derek Dreyer. A type system for recursive modules. In ICFP ’07.

[9] Derek Dreyer. Recursive type generativity. JFP, 17(4&5), 2007.

[10] Dominic Duggan. Type-safe linking with recursive DLLs and shared
libraries. ACM TOPLAS, 24(6):711–804, 2002.

[11] Dominic Duggan and Constantinos Sourelis. Mixin modules. In
ICFP ’96.

[12] Karl-Filip Faxén. A static semantics for Haskell. JFP, 12(5), 2002.

[13] Matthew Flatt and Matthias Felleisen. Units: Cool modules for HOT
languages. In PLDI ’98.

[14] Nadji Gauthier and François Pottier. Numbering matters: First-order
canonical forms for second-order recursive types. In ICFP ’04.

[15] Robert Harper and Chris Stone. A type-theoretic interpretation of
Standard ML. In Proof, Language, and Interaction: Essays in Honor
of Robin Milner. MIT Press, 2000.

[16] Tom Hirschowitz and Xavier Leroy. Mixin modules in a call-by-value
setting. ACM TOPLAS, 27(5):857–881, 2005.

[17] Paul Hudak, John Hughes, Simon Peyton Jones, and Philip Wadler. A
history of Haskell: Being lazy with class. In HOPL III, 2007.

[18] Gérard Huet. Résolution d’équations dans des langages d’ordre 1, 2,
. . ., ω. PhD thesis, Université Paris 7, September 1976.

[19] Hyeonseung Im, Keiko Nakata, Jacques Garrigue, and Sungwoo Park.
A syntactic type system for recursive modules. In OOPSLA ’11.

[20] Xavier Leroy. Applicative functors and fully transparent higher-order
modules. In POPL ’95.

[21] Xavier Leroy. The Objective Caml system: Documentation and user’s
manual. http://caml.inria.fr/ocaml/htmlman/.

[22] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The
Definition of Standard ML (Revised). MIT Press, 1997.

[23] Nathaniel Nystrom, Xin Qi, and Andrew Myers. J&: Nested intersec-
tion for scalable software composition. In OOPSLA ’06.

[24] Martin Odersky and Matthias Zenger. Scalable component abstrac-
tions. In OOPSLA ’05.

[25] Scott Owens and Matthew Flatt. From structures and functors to
modules and units. In ICFP ’06.

[26] Andreas Rossberg. The missing link – dynamic components for ML.
In ICFP ’06.

[27] Andreas Rossberg and Derek Dreyer. Mixin’ up the ML module
system. ACM TOPLAS, 35(1), 2013.

[28] Andreas Rossberg, Claudio V. Russo, and Derek Dreyer. F-ing mod-
ules. In TLDI ’10. Extended version available from the author’s web-
site at: http://www.mpi-sws.org/~rossberg/f-ing.

[29] Claudio V. Russo. Types for Modules. PhD thesis, University of
Edinburgh, 1998.

[30] Peter Sewell, James J. Leifer, Keith Wansbrough, Francesco Zappa
Nardelli, Mair Allen-Williams, Pierre Habouzit, and Viktor Vafeiadis.
Acute: High-level programming language design for distributed com-
putation. JFP, 17(4–5), 2007.

[31] David Swasey, Tom Murphy VII, Karl Crary, and Robert Harper. A
separate compilation extension to Standard ML. In ML ’06.

13

http://caml.inria.fr/ocaml/htmlman/
http://www.mpi-sws.org/~rossberg/f-ing

	Introduction
	A Backpack Tour
	Top Level and Dependencies
	Abstraction via Interfaces
	Linking and Signature Matching
	Instantiation and Reuse
	Aliases
	Recursive Modules

	The Semantics of Backpack
	Module Identities
	Shaping
	Typing
	Elaborating Backpack to Haskell
	Formalization of Haskell Modules and Soundness

	Related Work and Technical Discussion
	Future Work

